Aula 1 Sandro R. Lautenschlager Mecânica dos Fluidos 1-Considerações Básicas Mecânica dos Fluidos • Definição – Estudo dos líquidos e gases no qual não há movimento (estáticos) e naqueles no qual há movimentos (dinâmica) History Faces of Fluid Mechanics Archimedes (C. 287-212 BC) Navier (1785-1836) Newton (1642-1727) Stokes (1819-1903) Leibniz (1646-1716) Reynolds (1842-1912) Bernoulli Euler (1667-1748) (1707-1783) Prandtl Taylor (1875-1953) (1886-1975) Weather & Climate Tornadoes Thunderstorm Global Climate Hurricanes Vehicles Aircraft High-speed rail Surface ships Submarines Environment Air pollution River hydraulics Physiology and Medicine Blood pump Ventricular assist device Sports & Recreation Water sports Auto racing Cycling Offshore racing Surfing Aplicação em engenharia Computer Simulations Save US $150,000 in Commuter Jet Design by Reducing Wind Tunnel Testing Aplicação em engenharia Aplicação em engenharia Aplicação em engenharia Propriedades dos Fluidos g • Peso específico Onde: g-gravidade local (9,8 m/s2); -massa especifica (kg/m3); -peso específico (kg/m2s2) ou N/m3 Propriedades dos Fluidos • Densidade S água água Temperatura de referência 40C Variação de e com a temperatura H O 2 T 4 1000 H O 2 2 180 T 4 9800 2 18 Massa Especifica (H2O) 3 Massa especifica (kg/m ) Massa Específica 1001.0 1000.0 999.0 998.0 997.0 996.0 995.0 994.0 993.0 992.0 H O 2 T 4 1000 25 30 2 -15 -10 -5 0 5 10 15 20 0 Temperatura ( C) 180 35 40 45 H 2O(00 C) H 2O(40 C) Peso Específico Peso Especifico (H2O) Massa especifica (kg/m3) 9810.0 9800.0 H O 9790.0 2 2 T 4 9800 18 9780.0 9770.0 9760.0 9750.0 9740.0 9730.0 9720.0 -15 -10 -5 0 5 10 15 20 25 Temperatura (0C) 30 35 40 45 Nas condições Normais Massa Especifica (kg/m3) Peso Especifico (N/m3) Densidade Ar 1,23 12,1 0,00123 Água 1000 9810 1 Some Simple Flows • Flow between a fixed and a moving plate Fluid in contact with the plate has the same velocity as the plate u = x-direction component of velocity y Moving plate u=V V B u( y) V y B Fluid Fixed plate x u=0 Some Simple Flows • Flow through a long, straight pipe Fluid in contact with the pipe wall has the same velocity as the wall u = x-direction component of velocity R r x r 2 u (r ) V 1 R V Fluid Fluid Deformation • Flow between a fixed and a moving plate • Force causes plate to move with velocity V and the fluid deforms continuously. y Moving plate t0 u=V t1 t2 Fluid Fixed plate x u=0 Fluid Deformation Shear stress on the plate is proportional to deformation rate of the fluid da dL dy dt dL dV da dV dt dy da dt dV dy y dL t da dy Moving plate u=V+dV t+dt dx Fluid Fixed plate x u=V Shear in Different Fluids • Shear-stress relations for different types of fluids • Newtonian fluids: linear relationship • Slope of line (coefficient of proportionality) is “viscosity” dV dy dV dy Viscosity • Newton’s Law of Viscosity • Viscosity • Units • N / m2 N s m / s / m m2 o Water (@ 20 C) – • dV / dy V+dv = 1x10-3 N-s/m2 Air (@ 20oC) – • dV dy = 1.8x10-5 N-s/m2 Kinematic viscosity V Flow between 2 plates Force is same on top and bottom F1 1 A1 2 A2 F2 A1 A2 1 2 y 1 du du 2 dy 1 dy 2 Thus, slope of velocity profile is constant and velocity profile is a st. line Moving plate u=V V B u( y) V y B Fluid Fixed plate Force acting ON the plate x u=0 Flow between 2 plates Shear stress anywhere between plates du V dy B 0.1 N s / m 2 ( SAE 30 @ 38o C ) (0.1 N s / m 2 )( 3 m / s ) 0.02 m V 3 m/s B 0.02 m y 15 N / m 2 Moving plate V B u( y) V y B u=V Fixed plate Shear on fluid x u=0 Flow between 2 plates • 2 different coordinate systems B r x r 2 u (r ) V 1 B V u ( y) C yB y y x Example: Journal Bearing • Given – – – – – – Rotation rate, w = 1500 rpm d = 6 cm l = 40 cm D = 6.02 cm SGoil = 0.88 oil = 0.003 m2/s • Find: Torque and Power required to turn the bearing at the indicated speed. Example: cont. • Assume: Linear velocity profile in oil film Shear Stress dV w (d / 2) dy (D d ) / 2 2 * 1500 (0.06 / 2) 60 (0.88*1000* 0.003) 124kN / m 2 (0.0002) / 2 Torque M (2 d d l) 2 2 (2 *124,000 * 0.06 0.06 * 0.4) 281 N m 2 2 Power P Mw 281*157.1 44,100 N m / s 44.1 kW Compressibilidade Módulo de elasticidade volumétrica p p B lim lim V 0 V / V T 0 / p V V T p T T Módulo de elasticidade para água • B=2100MPa ou 21000x atm Mudança 1% H O 21Mpa (210atm) 2 Líquidos podem ser considerados incompressíveis Cálculo velocidade do som c p T B Exemplo para água c = 1450m/s (condições normais ) Data da Provas • • • • P1 17/08/11 Cap. 1 e 2; P2 05/10/11 Cap. 3 e 4; P3 21/11/11 Cap 4 e 6. Exame 5/12/11 NP1 NP2 NP3 Média 3 Média 6,0 Aprovaçãodireta Média 6,0 Deverá realizar avaliação final Avaliação final Cap. 1, 2, 3, 4 e 6