UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA DE ALIMENTOS DEPARTAMENTO DE ENGENHARIA DE ALIMENTOS EXTRAÇÃO, MICRONIZAÇÃO E ESTABILIZAÇÃO DE PIGMENTOS FUNCIONAIS: CONSTRUÇÃO DE UMA UNIDADE MULTIPROPÓSITO PARA DESENVOLVIMENTO DE PROCESSOS COM FLUIDOS PRESSURIZADOS Diego Tresinari dos Santos Orientador: Profa. Dra. Maria Angela de Almeida Meireles. Tese apresentada à Faculdade de Engenharia de Alimentos da Universidade Estadual de Campinas, para Obtenção do Título de Doutor em Engenharia de Alimentos. CAMPINAS-SP Fevereiro de 2011 FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECA DA FEA – UNICAMP Sa59e Santos, Diego Tresinari dos Extração, micronização e estabilização de pigmentos funcionais: construção de uma unidade multipropósito para desenvolvimento de processos com fluidos pressurizados / Diego Tresinari dos Santos. -Campinas, SP: [s.n], 2011. Orientador: Maria Angela de Almeida Meireles Tese (doutorado) – Universidade Estadual de Campinas. Faculdade de Engenharia de Alimentos. 1. Estabilização. 2. Extração. 3. Fluidos Pressurizados. 4. Micronização. 5. Pigmentos funcionais. I. Meireles, Maria Angela de Almeida. II. Universidade Estadual de Campinas. Faculdade de Engenharia de Alimentos. III. Título. cars/bibfea Título em inglês: Extraction, micronization and stabilization of functional pigments: construction of multipurpose unit for pressurized fluid process development Palavras-chave em inglês (Keywords): Stabilization, Extraction, Pressurized Fluids, Micronization, Functional pigments Titulação: Doutor em Engenharia de Alimentos Banca examinadora: Maria Angela de Almeida Meireles Silvânia Regina Mendes Moreschi Carlos Raimundo Ferreira Grosso Reinaldo Camino Bazito Juliana Martin do Prado Data da Defesa: 22/02/2011 Programa de Pós Graduação em Engenharia de Alimentos ii Este exemplar corresponde à redação final da tese defendida em 22/02/2011 por Diego Tresinari dos Santos aprovado pela comissão julgadora em 22/02/2011. ________________________________________________ Profa. Dra. Maria Angela de Almeida Meireles FEA / UNICAMP Orientador ________________________________________________ Profa. Dra. Silvânia Regina Mendes Moreschi Universidade Tecnológica Federal do Paraná Membro ________________________________________________ Prof. Dr. Carlos Raimundo Ferreira Grosso FEA / UNICAMP Membro ________________________________________________ Prof. Dr. Reinaldo Camino Bazito IQ / USP Membro ________________________________________________ Dra. Juliana Martin do Prado FEA / UNICAMP Membro ________________________________________________ Dra. Carmen Lucia Queiroga CPQBA / UNICAMP Suplente ________________________________________________ Dr. Flávio Cortiñas Albuquerque CENPES / PETROBRÁS Suplente ________________________________________________ Profa. Dra. Miriam Dupas Hubinger FEA / UNICAMP Suplente iii Todas as inovações eficazes são surpreendentemente simples. Na verdade, o maior elogio que uma inovação pode receber é haver quem diga: isto é óbvio. Por que não pensei nisso antes? Peter Drucker iv AGRADECIMENTOS Á Deus, por tudo que me há propiciado seja profissionalmente ou pessoalmente. À UNICAMP, por toda a sua estrutura. Ao CNPq, pela concessão da bolsa e financiamento deste projeto de pesquisa. À CAPES, pelo auxílio financeiro (PROEX) para participação no 10 º Congresso Brasileiro de Polímeros em Foz do Iguaçu-PR. À Profa. Dra. Maria Angela de Almeida Meireles, pela brilhante orientação, confiança, entusiasmo e exemplo como orientadora, pesquisadora e professora, bem como aos ensinamentos de não mensurável valor transmitidos a mim de ordem profissional e pessoal. Ao Pesquisador Ariovaldo Astini, pela amizade e valiosa contribuição de ordem técnica e intelectual durante o desenvolvimento deste projeto de pesquisa. Aos Pesquisadores Prof. Dr. Elton Franceschi, Prof. Dr. Paulo de Tarso Vieira e Rosa e aos membros da banca examinadora, pelas sugestões e ensinamentos fundamentais para a realização deste trabalho. Às Pesquisadoras Profa. Dra. Marisa Beppu e Dra. Carmem Queiroga, por disponibilizarem seus laboratórios para a realização de alguns experimentos referentes a este projeto de pesquisa. À minha amiga, parceira de dança, investidora, “marida” e Pesquisadora Ms. Juliana Queiroz Albarelli, pelas inúmeras “trocas de idéias” sobre o desenvolvimento desta tese e de outros trabalhos que desenvolvemos em parceria, bem como por ter contribuído v significativamente no desenvolvimento dos experimentos relacionados à estabilização dos extratos antociânicos. Aos colegas de trabalho Priscilla Veggi, Rodrigo Cavalcanti, Helmut Navarro e Carolina Albuquerque, pelo ânimo e disponibilidade de desenvolvermos alguns trabalhos em paralelo que resultaram e ainda resultarão em algumas publicações. Aos Pesquisadores e amigos Prof. Dr. Silvio Silvério da Silva, Prof. Dr. Attílio Converti, Prof. Dr. Victor Haber Pérez, Dr. Boutros Fouad Sarrouh, Profa. Dra. Lilian Masson, Prof. Dr. Michael Oelgemöller e Profa. Dra. Maria José Cocero, que com seus valiosos ensinamentos e conselhos contribuíram para a construção do profissional que me tornei. À minha Mãe, por ter sempre se preocupado prioritariamente com a minha educação e formação, as quais foram os alicerces para a chegada no patamar que estou, bem como pelo amor incondicional. Ao meu Pai, à minha Vó, Tio Fernando, Tia Maria, Tia Flor e a todos os familiares que, mesmo de longe, participaram me apoiando e incentivando em todos os momentos. Aos amigos e colegas do DEA pelas horas agradáveis que compartilhamos. vi ÍNDICE RESUMO........................................................................................................................ XVII ABSTRACT ..................................................................................................................... XIX CAPÍTULO 1 - INTRODUÇÃO E OBJETIVOS ............................................................. 1 1.1 Introdução ....................................................................................................................... 1 1.2 Objetivos da Pesquisa..................................................................................................... 3 1.2.1 Geral ...................................................................................................................... 3 1.2.2 Específicos ............................................................................................................. 3 1.3 Estrutura da Tese de Doutorado ................................................................................... 4 CAPÍTULO 2 - REVISÃO BIBLIOGRÁFICA................................................................. 9 2.1. Pigmentos Funcionais .................................................................................................... 9 2.1.1 Flavonóides ......................................................................................................... 10 2.1.2 Carotenóides........................................................................................................ 13 2.2. Métodos de Extração ................................................................................................... 15 2.2.1 Extração com Fluidos Pressurizados .................................................................. 17 2.2.1.1 Extração com Líquidos Pressurizados .......................................................... 18 2.2.1.2 Extração com CO2 supercrítico .................................................................... 19 2.2.2 Métodos de Extração Assistida ........................................................................... 20 2.2.2.1. Com ultrassom ............................................................................................. 20 2.2.2.2. Com CO2 a alta pressão ............................................................................... 21 2.3. Formação de Partículas .............................................................................................. 22 2.4.1 Para Extração ..................................................................................................... 23 2.4.1.1 Para Extração com Líquidos Pressurizados .................................................. 25 2.4.1.2 Para Extração com CO2 Supercrítico........................................................... 25 2.4.1.3 Para Extração assistida com ultrassom ......................................................... 26 2.4.1.4 Para Extração assistida com CO2 a alta pressão ........................................... 27 2.4.2 Para Formação de Partículas ............................................................................. 28 2.4.2.1 Para Formação de Partículas Via SAS ......................................................... 28 2.4.2.2 Para Formação de Partículas Via RESS ....................................................... 29 Referências .......................................................................................................................... 29 CAPÍTULO 3 - DETALHAMENTO DA CONSTRUÇÃO E FUNCIONAMENTO DA UNIDADE MULTIPROPÓSITO ..................................................................................... 37 CAPÍTULO 4 - ANTIOXIDANT PIGMENT EXTRACTION USING A HOMEMADE PRESSURIZED SOLVENT EXTRACTION SYSTEM ................................... 43 Key words ............................................................................................................................ 44 Abstract ............................................................................................................................... 44 vii 4.1 Introduction .................................................................................................................. 44 4.2 Materials and methods ................................................................................................. 47 4.2.1 Plant Material ..................................................................................................... 47 4.2.1 Annatto seeds................................................................................................... 47 4.2.2 Jabuticaba skins ............................................................................................... 47 4.2.2 Extraction Procedures ......................................................................................... 48 4.2.3 Extract Characterization ..................................................................................... 51 4.2.3.1 From Jabuticaba skins .................................................................................. 51 4.2.3.1.1 Anthocyanin content .............................................................................. 51 4.2.3.1.2 Thin-Layer Chromatography (TLC)...................................................... 52 4.2.4 Statistical Analysis............................................................................................... 52 4.3 Results and discussion .................................................................................................. 53 4.3.1 Obtaining Annatto seed extracts ......................................................................... 53 4.3.2 Obtaining Jabuticaba skin extracts ..................................................................... 56 4.4 Conclusions ................................................................................................................... 59 Acknowledgements ............................................................................................................. 59 References ........................................................................................................................... 59 CAPÍTULO 5 - PRESSURIZED LIQUID EXTRACTION OF PHENOLIC COMPOUNDS FROM JABUTICABA SKINS: OPTIMIZATION STUDY ............... 61 Key words ............................................................................................................................ 62 Abstract ............................................................................................................................... 62 5.1 Introduction .................................................................................................................. 62 5.2 Material and methods .................................................................................................. 65 5.2.1 Plant Material ..................................................................................................... 65 5.2.2 Extraction Procedures ......................................................................................... 65 5.2.3 Extract Characterization ..................................................................................... 67 5.2.4 Statistical Analysis............................................................................................... 69 5.3 Results and discussion .................................................................................................. 70 5.3.1 Effects of process variables on the extraction yield ............................................ 70 5.3.2 Effects of process variables on the recovery of anthocyanins ............................. 71 5.3.3 Effects of process variables on the recovery of phenolic compounds ................. 74 5.3.4 Optimization of the extraction process ................................................................ 77 5.4 Conclusions ................................................................................................................... 82 Acknowledgements ............................................................................................................. 83 References ........................................................................................................................... 83 viii CAPÍTULO 6 - OPTIMIZATION OF BIOACTIVE COMPOUNDS EXTRACTION FROM JABUTICABA (MYRCIARIA CAULIFLORA) SKINS ASSISTED BY HIGH PRESSURE CO2 ................................................................................................................. 87 Key words ............................................................................................................................ 88 Abstract ............................................................................................................................... 88 6.1 Introduction .................................................................................................................. 89 6.2 Material and methods .................................................................................................. 91 6.2.1 Plant material ...................................................................................................... 91 6.2.2 High Pressure Carbon Dioxide Assisted-Extraction (HPCDAE) system............ 91 6.2.3 Extraction Procedures ......................................................................................... 92 6.2.4 Extract Characterization ..................................................................................... 95 6.2.5 Statistical analysis ............................................................................................... 97 6.2.6 Determination of experimental extraction kinetics curves and parameters ........ 97 6.3 Results and discussion .................................................................................................. 97 6.3.1 Effects of process variables on recovery of anthocyanins................................... 97 6.3.2 Effects of process variables on recovery of phenolic compounds ..................... 101 6.3.3 Optimization of the extraction process .............................................................. 105 6.3.4 Experimental extraction kinetics curves using optimum conditions ................. 108 6.4 Conclusions ................................................................................................................. 112 Acknowledgements ........................................................................................................... 114 References ......................................................................................................................... 114 CAPÍTULO 7 - MICRONIZATION AND ENCAPSULATION OF FUNCTIONAL PIGMENTS USING SUPERCRITICAL CARBON DIOXIDE .................................. 117 Key words .......................................................................................................................... 118 Abstract ............................................................................................................................. 118 7.1 Introduction ................................................................................................................ 119 7.2 Materials and methods ............................................................................................... 121 7.2.1 Materials............................................................................................................ 121 7.2.2 Micronization process via SAS .......................................................................... 124 7.2.3 Encapsulation process via SAS ......................................................................... 127 7.2.4 Encapsulation process via RESS ....................................................................... 128 7.2.5 Characterization and Analysis .......................................................................... 130 7.2.5.1.1 Determination of Precipitation Yield - PY (%) .................................. 131 7.2.5.1.2 Determination of Encapsulation Efficiency (EE (%)) ......................... 131 7.3 Results and discussion ................................................................................................ 132 7.3.1 Micronization process via SAS .......................................................................... 132 7.3.2 Encapsulation process via SAS ......................................................................... 138 ix 7.3.3 Encapsulation process via RESS ....................................................................... 142 7.4 Conclusions ................................................................................................................. 145 Acknowledgements ........................................................................................................... 147 References ......................................................................................................................... 147 CAPÍTULO 8 - STABILIZATION OF ANTHOCYANIN EXTRACT FROM JABUTICABA SKINS BY ENCAPSULATION USING SUPERCRITICAL CO2 AS SOLVENT ......................................................................................................................... 153 Key words .......................................................................................................................... 154 Abstract ............................................................................................................................. 154 8.1 Introduction ................................................................................................................ 154 8.2.2 Anthocyanin Extraction ..................................................................................... 156 8.2.3 Encapsulation of Anthocyanin Extract .............................................................. 156 8.2.3.1 By Rapid Expansion of Supercritical Solution (RESS) process ................ 156 8.2.3.1.1 Evaluation of the antioxidant activity of the encapsulated anthocyanin extract after RESS process ..................................................................................... 161 8.2.3.2 By conventional method ............................................................................. 161 8.2.4 Anthocyanin Stabilization Studies ..................................................................... 162 8.2.4.1 Free and encapsulated extract degradation studies ..................................... 162 8.2.4.2 Thermal analysis of free and encapsulated extracts ................................... 164 8.2.5 Anthocyanin Extract Release Studies ................................................................ 164 8.2.6 Statistical Analysis............................................................................................. 164 8.3 Results and discussion ................................................................................................ 165 8.3.1 Encapsulation of anthocyanin extract by RESS process ................................... 165 8.3.2 Encapsulation of anthocyanin extract by conventional method ....................... 169 8.3.3 Anthocyanin stabilization by encapsulation ...................................................... 170 8.3.4 Release studies................................................................................................... 173 8.4 Conclusions ................................................................................................................. 175 Acknowledgements ........................................................................................................... 176 References ......................................................................................................................... 176 CAPÍTULO 9 - CONCLUSÕES GERAIS ..................................................................... 181 SUGESTÕES PARA TRABALHOS FUTUROS .......................................................... 185 MEMÓRIA DO PERÍODO DO DOUTORADO .......................................................... 187 PRODUÇÃO BIBLIOGRÁFICA ................................................................................... 189 APÊNDICE I - ARTIGO DE REVISÃO - JABUTICABA AS A SOURCE OF FUNCTIONAL PIGMENTS ........................................................................................... 193 x APÊNDICE II – DETALHAMENTO DO PROCEDIMENTO DE CÁLCULO DA CONCENTRAÇÃO DE ANTOCIANINAS E FENÓIS ............................................... 201 APÊNDICE III - ARTIGO DE REVISÃO - CAROTENOID PIGMENTS ENCAPSULATION: FUNDAMENTALS, TECHNIQUES AND RECENT TRENDS ............................................................................................................................................ 207 APÊNDICE IV - MANUAL DE OPERAÇÃO DA UNIDADE MULTIPROPÓSITO ............................................................................................................................................ 219 LISTA DE TABELAS Tabela 2.2.1.1 - Constantes críticas de alguns fluidos com interesse em extração (MENDES et al., 2003) ........................................................................................................................... 17 Table 4.3.1.1 - Percentage of Residual Extract (%) deposited in the exit tubing line when using different SFE systems/configurations. ........................................................................ 55 Table 5.2.2.1 - The experimental design of phenolic compound extraction from jabuticaba skins ...................................................................................................................................... 66 Table 5.3.4.1 - Optimum PLE conditions for the extraction yields, anthocyanins and total phenols from jabuticaba skins .............................................................................................. 77 Table 5.3.4.2 - Predicted and experimental values of responses under optimum PLE conditions (50 bar, temperature of 80 °C and static extraction time of 9 min) and experimental values responses obtained by Conventional Low Pressure Liquid Extraction (LPLE) .................................................................................................................................. 79 Table 6.3.1.1 - 23 full factorial design for HPCD Assisted-Extraction from jabuticaba skins and the total anthocyanin and phenolic contents of the extracts .......................................... 99 Table 6.3.1.2 - Regression coefficients of the model for the response variables ............... 101 Table 6.3.3.1 - Predicted and experimental values of response variables under optimum HPCDAE conditions (at 117 bar, temperature of 80 °C, of 20 % and 20 minutes of extraction) and experimental values of response variables obtained by control HPCDAE experiment (at atmospheric pressure, temperature of 80 ºC and 20 minutes of extraction) and by PLE experiment (at 117 bar, temperature of 80 ºC, 20 minutes of extraction and flow rate of 1 mL of acidified water/min) .......................................................................... 108 Table 6.3.4.1 - Experimental values of the steady-state extraction Y*, the time t* to reach the Y* and the mass transfer rate M* for the recovery of anthocyanins and phenolic compounds .......................................................................................................................... 111 LISTA DE FIGURAS Figura 2.1.1.1 - Estrutura base dos flavonóides. .................................................................. 11 Figura 2.1.1.2 - Cascas de jabuticaba. .................................................................................. 12 xi Figura 2.1.2.1 - Estrutura do β-caroteno............................................................................... 13 Figura 2.1.2.2 - Sementes de urucum. .................................................................................. 15 Figura 2.2.1.2.1 - Diagrama de fase pressão-temperatura do dióxido de carbono ............... 20 Figura 2.4.1.1.1 - Equipamento comercial para extração com líquidos pressurizados. a) ASE® 150; b) ASE® 350 (DIONEX, 2010).......................................................................... 24 Figura 2.4.1.1.2 - Equipamento comercial para extração com líquidos pressurizados (FLUID MANAGEMENT SYSTEMS, 2010) ..................................................................... 24 Figura 2.4.1.2.1 - Equipamento comercial para extração com CO2 supercrítico (APPLIED SEPARATIONS, 2010) ........................................................................................................ 26 Figura 2.4.1.3.1 - Equipamento comercial para extração assistida com ultrassom (HIELSCHER, 2010) ........................................................................................................... 27 Figura 2.4.2.1.1 - Equipamento comercial para formação de partículas via SAS (THAR TECHNOLOGIES, 2010) .................................................................................................... 28 Figura 2.4.2.2.1 - Fluxograma da unidade experimental comercial da Thar Technologies RESS-100. 1 - Reator; 2 - Agitador; 3 – Termostato; 4, 7 e 8 - válvulas; 5 -Medidor de fluxo; 6 - Bomba de alta pressão; 9 - Dispositivo de expansão; 10 - Trocador de calor para aquecimento; 11 - Câmara de expansão; 12 - Trocador de calor para resfriamento; 13 Computador (GIL’MUTDINOV et al., 2009). ..................................................................... 29 Figura 3.1 - Foto da parte estrutural da unidade. .................................................................. 38 Figura 3.2 - Fotos da unidade multipropósito. A - Vista de frente da unidade; B - Sistema ultrassônico quando acoplado à unidade; C - Vista do sistema de aquecimento do vasos de pressão menor: D - Vista lateral da unidade. ........................................................................ 40 Figura 3.3 - Foto da serpentina imersa no banho termostatizado de resfriamento. .............. 42 Figure 4.2.2.1 - Schematic diagram of the home-made pressurized solvent extraction system. 1 CO2 cylinder; 2 CO2 filter; 3 Manometers; 4 Valves; 5 Thermostatic bath; 6 CO2 Pump; 7 Back pressure regulator; 8 HPLC pump; 9 Solvent resevoir; 10 Extraction cell; 11 Micrometric valve with a heating system; 12 Temperature controller; 13 Sampling bottle.48 Figure 4.2.2.2 - Schematic diagram of the home-made pressurized solvent extraction system. 1 CO2 cylinder; 2 CO2 filter; 3 Manometers; 4 Valves; 5 Thermostatic bath; 6 CO2 Pump; 7 Back pressure regulator; 8 HPLC pump; 9 Solvent reservoir; 10 Extraction cell; 11 Ultrasound bath; 12 Heating bath; 13 Micrometric valve with a heating system; 14 Temperature controller; 15 Sampling bottle......................................................................... 50 Figure 4.3.1.1 - Recovery of pigments from Annatto seeds as a function of time using different SFE systems/configurations: ■ Commercial SFE; □ Home-made SFE using electric heating; ● Home-made Ultrasound Assisted SFE; ○ Home-made SFE using water bath heating. ......................................................................................................................... 54 Figure 4.3.1.2 - Extraction yields (%) (after 240 min) using different SFE systems/configurations. ........................................................................................................ 55 xii Figure 4.3.2.1 - Thin-layer chromatography (TLC) plates (1 - Extract obtained at 30 MPa/333 K run 1; 2 – Extract obtained at 30 MPa/333 K run 2; a) Revealed using DPPH reagent on visible light; b) Revealed using Natural products (NP) reagent on light (365 nm); c) Revealed using anisaldehide-sulphuric acid reagent on visible light; d) Revealed using anisaldehide-sulphuric acid reagent on ultraviolet light (365 nm). ...................................... 58 Figure 5.2.2.1 - Pressurized liquid extraction set-up. ........................................................... 66 Figure 5.3.1 - Three-dimensional response surfaces of the influence of extraction temperature and static extraction time on the extraction yield. ............................................ 70 Figure 5.3.2.1 - Effect (p<0.05) of extraction variables on the recovery of anthocyanins: a) at 50-100 bar, 40-80 ºC and 3-9 min; b) at 80-120 ºC and 9-15 min at a fixed extraction pressure of 50 bar (1, pressure; 2, temperature; 3, static time)............................................. 72 Figure 5.3.2.2 - Three-dimensional response surfaces of the influence of temperature and static extraction time on recovery of anthocyanins .............................................................. 73 Figure 5.3.3.1 - Effect (p<0.05) of extraction variables on the recovery of total phenolic compounds: a) at 50-100 bar, 40-80 ºC and 3-9 min; b) at 80-120 ºC and 9-15 min at a fixed extraction pressure of 50 bar (1, pressure; 2, temperature; 3, static time). ................. 75 Figure 5.3.3.2 - Three-dimensional response surfaces of the influence of temperature and static extraction time on recovery of total phenolic compounds. ......................................... 76 Figure 5.3.4.1 - Kinetics curves: a) overall extraction yield; b) recovery of anthocyanins; c) recovery of total phenolic compounds under optimum PLE conditions (50 bar, temperature of 80 °C and 9 min of static extraction time). ...................................................................... 81 Figure 6.2.1 - Diagram of High Pressure Carbon Dioxide Assisted-Extraction (HPCDAE) system. 1 CO2 cylinder; 2 CO2 filter; 3 Manometers; 4 Valves; 5 Thermostatic bath; 6 Pump; 7 Back pressure regulator; 8 Heating bath; 9 High pressure vessel; 10 Thermocouple; 11 Temperature controllers; 12 Micrometric valve with a heating system. 92 Figure 6.3.1.1 - Three-dimensional response surfaces of the influence of extraction pressure and temperature on recovery of anthocyanins. ................................................................... 100 Figure 6.3.1.2 - Two-dimensional response surfaces of the influence of extraction pressure and temperature on recovery of anthocyanins. ................................................................... 100 Figure 6.3.2.1 - Three-dimensional response surfaces of the influence of extraction pressure and temperature on the recovery of phenolic compounds. ................................................. 103 Figure 6.3.2.2 - Two-dimensional response surfaces of the influence of extraction pressure and temperature on the recovery of phenolic compounds. ................................................. 104 Figure 6.3.3.1 - Three-dimensional response surfaces of the influence of the extraction variables on the desirability. ............................................................................................... 106 Figure 6.3.3.2 - Profiles of the predicted values and desirability of the extraction variables. ............................................................................................................................................ 106 xiii Figure 6.3.4.1 - Kinetics curves for the recovery of anthocyanins a) under optimum HPCDAE conditions (117 bar, temperature of 80 °C and of 20 %; b) obtained by control HPCDAE experiment (at atmospheric pressure, temperature of 80 ºC and 20 minutes of extraction) and c) PLE experiment (at 117 bar, temperature of 80 ºC, 20 minutes of extraction and flow rate of 1 mL/min of acidified water/min). .......................................... 109 Figure 6.3.4.2 - Kinetics curves for the recovery of phenolic compounds a) under optimum HPCDAE conditions (117 bar, temperature of 80 °C and of 20 %; b) obtained by control HPCDAE experiment (at atmospheric pressure, temperature of 80 ºC and 20 minutes of extraction) and c) PLE experiment (at 117 bar, temperature of 80 ºC, 20 minutes of extraction and flow rate of 1 mL/min of acidified water/min). .......................................... 110 Figure 7.2.1.1 - SEM micrograph of unprocessed quercetin sample. ................................ 122 Figure 7.2.1.2 - SEM micrograph of unprocessed β-carotene sample. .............................. 122 Figure 7.2.1.3 - SEM micrograph of unprocessed rutin sample. ........................................ 124 Figure 7.2.2.1 - Schematic diagram of the SAS apparatus. 1 CO2 cylinder; 2 CO2 filter; 3 manometers; 4 valves; 5 thermostatic bath; 6 CO2 pump; 7 back pressure regulator; 8 solution reservoir; 9 solution pump; 10 thermocouple; 11 precipitation vessel; 12 heating bath; 13 temperature controllers; 14 micrometric valve with a heating system; 15 glass flask; 16 glass float rotameter; 17 flow totalizer. ............................................................... 126 Figure 7.2.4.1 - Schematic diagram of the RESS apparatus. 1 CO2 cylinder; 2 CO2 filter; 3 manometers; 4 valves; 5 thermostatic bath; 6 CO2 pump; 7 back pressure regulator; 8 preexpansion vessel; 9 micrometric valve with a heating system; 10 temperature controller; 11 nozzle; 12 expansion vessel................................................................................................ 129 Figure 7.3.1.1.1 - SEM micrograph of quercetin micronized particles obtained by SAS process. ............................................................................................................................... 133 Figure 7.3.1.1.2 - SEM micrograph of quercetin micronized particles obtained by conventional process........................................................................................................... 133 Figure 7.3.1.1.3 - Size distribution of quercetin particles obtained by SAS and conventional processes. ............................................................................................................................ 135 Figure 7.3.1.2.1 - SEM micrograph of β-carotene micronized particles obtained by SAS process. ............................................................................................................................... 136 Figure 7.3.2.1.1 - Optical micrographs of: 1) PEG sample; 2) bixin-rich extract encapsulated in PEG by SAS process (CO2 flow rate of 0.6 kg.h-1; mass ratio between core material and PEG of 1:10); 3) rutin encapsulated in PEG by RESS process (mass ratio between core material and PEG of 1:10); 4) anthocyanin-rich extract encapsulated in PEG by RESS process (mass ratio between core material and PEG of 1:10)............................. 140 Figure 7.3.2.1.2 - SEM micrographs of: 1) bixin-rich extract encapsulated in PEG by SAS process (CO2 flow rate of 0.6 kg.h-1; mass ratio between core material and PEG of 1:10); 2) rutin encapsulated in PEG by RESS process (mass ratio between core material and PEG of 1:2); 3) rutin encapsulated in PEG by RESS process (mass ratio between core material xiv and PEG of 1:10); 4) anthocyanin-rich extract encapsulated in PEG by RESS process (mass ratio between core material and PEG of 1:10). .................................................................. 141 Figure 8.8.2.3.1.1 - Schematic diagram of the RESS apparatus. 1 CO2 cylinder; 2 CO2 filter; 3 manometers; 4 valves; 5 thermostatic bath; 6 CO2 pump; 7 back pressure regulator; 8 pre-expansion vessel; 9 micrometric valve with a heating system; 10 temperature controller; 11 nozzle; 12 expansion vessel. ........................................................................ 158 Figure 8.2.3.2.1 - Encapsulation by entrapment in Ca-alginate beads. .............................. 162 Figure 8.3.1.1 - Optical micrographs of unprocessed PEG (a), Encapsulated anthocyanin extract – T: 313.15 K; P: 100 bar (b), Encapsulated anthocyanin extract – T: 323.15 K; P: 100 bar (c)........................................................................................................................... 166 Figure 8.3.1.2 - Influence of different proportions of anthocyanin extract:PEG on the percentage of encapsulated (gray bars); encapsulation efficiency (black bars) ................. 168 Figure 8.3.1.3 - Antioxidant activity of encapsulated anthocyanin extracts obtained using different operating RESS conditions (gray symbols), the anthocyanin extract (♦) and pure synthetic BHT (■); without any antioxidant compound (▲) ............................................. 169 Figure 8.3.3.1 - Degradation of free anthocyanin extract at different environments. ........ 170 Figure 8.3.3.2 - Degradation of encapsulated anthocyanin extract at different environments by RESS process and conventional method. ...................................................................... 171 Figure 8.3.4.3 - DSC thermograms of free anthocyanin extract, Ca-alginate beads, PEG, anthocyanin extract encapsulated in Ca-alginate beads and anthocyanin extract encapsulated in PEG. .......................................................................................................... 173 Figure 8.3.4.1 - The cumulative release of anthocyanin extract from the encapsulated systems obtained by RESS process and conventional method at pH 1.4 and temperature 37 ºC. ....................................................................................................................................... 174 Figura A1- Esquema das transformações estruturais das antocianinas em função do pH gerando soluções coloridas. ................................................................................................ 201 Figura A2- Espectro de varredura para os extratos de casca de jabuticaba obtidos utilizando diferentes métodos de extrações. ........................................................................................ 203 Figura A3 - Curva de calibração previamente construída de ácido gálico (AG) ............... 206 xv NOMENCLATURAS/ABREVIATURAS RESS - Rapid Expansion of Supercritical Solutions SAS - Supercritical fluid Anti-Solvent SSI - Supercritical Solvent Impregnation PGSS - Particles from Gas Saturated Solutions SFEE - Supercritical Fluid Extraction of Emulsions GRAS - Generally Recognised as Safe PEG - PolyEthylene Glycol SFE - Supercritical Fluid Extraction PLE - Pressurized Liquid Extraction USFE - Ultrasound-Assisted Supercritical Fluid Extraction LPLE - Low Pressure Liquid Extraction ASE – Accelerated Solvent Extraction PSE - Pressurized Solvent Extraction RSM - Response Surface Methodology HPCDAE - High Pressure Carbon Dioxide Assisted Extraction SCFs - SuperCritical Fluids xvi RESUMO A indústria de alimentos está constantemente à procura de compostos que apresentam propriedades físicas e químicas para melhorar seus produtos. A maioria destes compostos são aditivos com propriedades antioxidantes, corantes ou aditivos com efeitos positivos sobre a saúde humana. Aditivos naturais são sempre preferíveis aos compostos sintéticos. Flavonóides e carotenóides são duas das principais classes de pigmentos funcionais pelas quais as indústrias de alimentos, cosmética e farmacêutica têm apresentado maior interesse. No entanto, estes compostos apresentam uma série de limitações ao serem aplicados em produtos processados. Diversos fatores, tais como luz, temperatura, pH, entre outros, desencadeiam a degradação oxidativa destes pigmentos funcionais limitando não só a aplicação final destes, mas também restringindo toda a cadeia do processo: desde a escolha do método de extração do pigmento da fonte vegetal até o tratamento que o produto formulado irá sofrer após a sua formulação passando pela escolha do método de redução do tamanho e/ou encapsulação das partículas visando a melhora da taxa de dissolução, biodisponibilidade e estabilidade destes compostos. Tecnologias de extração, micronização e estabilização de pigmentos funcionais por encapsulação em matrizes poliméricas utilizando fluidos pressurizados podem representar uma alternativa ambientalmente correta, uma vez que estão incluídas no conceito de "química verde" e do desenvolvimento sustentável, e economicamente viável em relação aos respectivos métodos convencionais, onde grandes quantidades de solventes orgânicos, longos tempos de processo e altas temperaturas são requeridas, o que pode promover a degradação, isto é, perda de cor e capacidade antioxidante, condições estas normalmente utilizadas nos processos convencionais. Adicionalmente, processos de extração e formação de partículas utilizando fluidos supercríticos permitem um fácil e eficiente controle do processo através de pequenas variações nas condições de operação (Pressão, Temperatura, etc.). Apesar de comercialmente encontrarem-se disponíveis equipamentos distintos para cada processo mencionado uma unidade para pesquisa que possibilite o estudo de diferentes processos com fluidos pressurizados proporcionaria uma melhor relação custo-benefício associada a esta tecnologia. Portanto, uma unidade multipropósito para o desenvolvimento de processos com fluidos pressurizados que possibilite a extração e formação de partículas de pigmentos xvii funcionais, bem como de outros compostos bioativos em um único equipamento foi projetada, construída e testada. Processos de extração utilizando CO2 supercrítico ou líquidos pressurizados como solventes, assistidos por dióxido de carbono a alta pressão; de formação de partículas encapsuladas ou não via RESS (Rapid Expansion of Supercritical Solutions) e SAS (Supercritical fluid Anti-Solvent) foram desenvolvidos na unidade multipropósito produzindo resultados semelhantes aos obtidos por equipamentos similares, reprodutíveis e melhores do que quando utilizando processos convencionais. Palavras-chave: Estabilização, Extração, Fluidos Pressurizados, Micronização, Pigmentos Funcionais. xviii ABSTRACT The food industry is continuously searching compounds that present physical and chemical properties to improve their products. Most of them are additives with antioxidant properties, colorants or additives with positive effects to human health. Natural additives are always preferred to synthetic compounds. Flavonoids and carotenoids are two of the major functional pigments class that food, cosmetic and pharmaceutical industries are more interested recently. Nevertheless, these compounds present a series of limitations when applied to processed products. Several factors, such as light, temperature, pH, among others, trigger the oxidative degradation of theses functional pigments limiting not only their final applications, but also restricting all the process chain: from the choice of the extraction method of the pigment from the vegetable source, passing through the choice of the particle reduction and/or encapsulation technique aiming the improvement of the dissolution rate, biodisponibility and stability of these compounds. Technologies for extraction, micronization and stabilization of functional pigments into polymeric matrices using supercritical fluids may represent an environmentally friend alternative, once they are inserted in the concept of green chemistry and sustainable development, and economically viable comparing to conventional methods, wherein large amounts of organic solvents, long process time and high temperatures are required, that can promote degradation, i. e., color and antioxidant activity loss, conditions normally employed on conventional processes. Moreover, extraction and particle formation processes utilizing supercritical fluids permit an easy and efficient process control with little variation on operational conditions (Pressure, Temperature, etc.). Despite distinct commercial equipments are available to carry out each mentioned process a unit for research that can be used to carry out different processes with pressurized fluids would lead to a better cost-benefit relation associated to this technology. Therefore, a multipurpose unit to develop processes with pressurized fluids that can be used for extraction and particle formation purposes of functional pigments, as well as of other bioactive compounds using the same apparatus was designed, constructed and tested. Extraction processes using supercritical CO2, employing pressurized liquid solvents, assisted by high pressure carbon dioxide; particle formation processes to obtain encapsulated or non encapsulated particles via RESS (Rapid Expansion of Supercritical xix Solutions) and SAS (Supercritical Anti-Solvent) were done using the multipurpose unit producing comparable experimental results to those obtained by similar equipments. Good reproducibility and better results than those obtained using conventional processes were observed employing our home-made apparatus. Keywords: Stabilization, Extraction, Pressurized Fluids, Micronization, Functional Pigments. xx CAPÍTULO 1 - INTRODUÇÃO E OBJETIVOS 1.1 Introdução O aumento da preocupação dos consumidores sobre o uso de aditivos sintéticos em produtos tem impulsionado as indústrias alimentícias, de cosméticos e farmacêutica em direção à substituição destes aditivos por produtos naturais. Entretanto, dificuldades têm sido encontradas devido, principalmente, à instabilidade destes compostos. Um exemplo são os pigmentos funcionais extraídos de fontes vegetais, tais como as antocianinas e carotenóides (KONG et al., 2003; MIKI, 1991). Os flavonóides e os carotenóides são responsáveis por uma grande variedade de cores presentes em vegetais, flores, frutas e produtos derivados. Oriundos do metabolismo secundário das plantas, ambas as classes de compostos são de grande importância para a sobrevivência delas, bem como quando ingeridos são responsáveis por diversos benefícios à saúde devido às suas atividades biológicas. Entre tais benefícios encontram-se a redução da incidência de muitas doenças oxidativas, inflamatórias, entre outras (REYNERTSON et al., 2008; ARTS; HOLLMAN, 2005). Diversos fatores, tais como luz, temperatura, pH, entre outros, desencadeiam a degradação oxidativa destes pigmentos funcionais (SANTOS; MEIRELES, 2009, 2010) limitando não só a aplicação final destes, mas também restringindo toda a cadeia do processo: desde a escolha do método de extração do pigmento da fonte vegetal até o tratamento que o produto final irá sofrer após a sua formulação, passando pela escolha do método de redução do tamanho (micronização) e/ou encapsulação das partículas visando a melhora da taxa de dissolução, biodisponibilidade e estabilidade destes compostos. O projeto de processos industriais, sob a ótica da sustentabilidade, visa alterações substanciais na indústria atual. Para tanto, é exigido o desenvolvimento de novos processos baseados em matérias-primas renováveis, na utilização mínima necessária de energia e solventes sem restrições ambientais. Neste contexto, as tecnologias baseadas na utilização de fluidos pressurizados parecem oferecer soluções para essas demandas. Tecnologias de extração de antocianinas e carotenóides utilizando fluidos pressurizados podem representar uma alternativa 1 ambientalmente correta e economicamente viável em relação aos métodos convencionais de extração onde grandes quantidades de solventes, longos tempos de extração e altas temperaturas são requeridas, o que pode promover a degradação destes compostos durante o processo extrativo (JU; HOWARD, 2003; NOBRE et al., 2006). Uma vez extraídos os pigmentos, pré-tratamentos destes aditivos podem ser realizados visando uma maior dissolução e/ou proteção/estabilização destes através de, respectivamente, técnicas de micronização e encapsulação em matrizes poliméricas (SELIM; TSIMIDOU; BILIADERIS, 2000). Técnicas utilizando fluidos pressurizados acima da condição crítica (conhecidos como fluidos supercríticos) permitem os objetivos requeridos sem levar o aditivo às condições que podem ocasionar sua degradação, isto é, perda de cor e capacidade antioxidante, condições estas normalmente utilizadas nos processos convencionais. Adicionalmente, processos de precipitação utilizando fluidos supercríticos permitem um fácil controle da formação de partículas através de pequenas variações nas condições de operação (Pressão, Temperatura, Relação Pigmento: Material de Encapsulação, etc.) (MATTEA; MARTÍN; COCERO, 2008). Diferentes processos de encapsulação que usam fluidos supercríticos, bem como equipamentos para a realização destes processos, têm sido desenvolvidos. Estes processos podem ser classificados de acordo com a função do fluido supercrítico no processo: solvente [“Rapid Expansion of Supercritical Solutions” (RESS)]; “Supercritical Solvent Impregnation” (SSI); soluto [“Particles from Gas Saturated Solutions” (PGSS)] ou anti-solvente [“Supercritical Anti-Solvent” (SAS); “Supercritical Fluid Extraction of Emulsions” (SFEE)] (MARTÍN; COCERO, 2008). Geralmente, tanto para os processos de extração com fluidos pressurizados, quanto para os processos de precipitação, solventes GRAS (“Generally Recognised as Safe”) são preferidos, sendo dióxido de carbono, água e etanol os mais utilizados. Apesar de, comercialmente, encontrarem-se disponíveis equipamentos distintos para cada processo, uma unidade para pesquisa que possibilite o estudo de diferentes processos com fluidos pressurizados proporcionaria uma melhor relação custo-benefício associada a esta tecnologia. 2 1.2 Objetivos da Pesquisa 1.2.1 Geral Construir e validar uma unidade multipropósito para o desenvolvimento de processos com fluidos pressurizados que possibilite a extração, micronização e encapsulação de pigmentos funcionais, bem como de outros compostos bioativos em um único equipamento. 1.2.2 Específicos o Obter extratos ricos nos pigmentos antocianinas e em outros compostos antioxidantes a partir de cascas de jabuticaba utilizando a unidade construída para estudar os seguintes métodos: Extração com Líquidos Pressurizados utilizando etanol ou água acidificada como solvente; Extração Assistida por CO2 a Alta Pressão utilizando água acidificada como solvente, comparando os resultados com os obtidos utilizando o método convencional de Percolação em Leito Fixo; o Verificar a viabilidade técnica da extração supercrítica assistida por ultrassom na unidade construída, utilizando a extração de pigmentos carotenóides de sementes de urucum por CO2 supercrítico como processo de extração modelo; o Verificar a viabilidade técnica da encapsulação/co-precipitação de extrato rico em carotenóides oriundo de sementes de urucum, com o polímero polietilenoglicol (PEG) via SAS, utilizando a unidade construída e CO2 supercrítico como antisolvente; o Verificar a viabilidade técnica da encapsulação/co-precipitação de extrato antociânico de casca de jabuticaba e do pigmento funcional também da classe dos flavonóides rutina, com o polímero polietilenoglicol (PEG) via RESS utilizando a unidade construída e CO2 supercrítico como solvente e etanol como co-solvente; o Otimizar o processo de encapsulação/co-precipitação de extrato antociânico de casca de jabuticaba com o polímero polietilenoglicol (PEG) via RESS, utilizando a unidade construída e CO2 supercrítico como solvente e etanol como co-solvente, comparando os resultados relacionados à estabilidade com os obtidos pelo método 3 convencional de gelificação iônica utilizando o biopolímero alginato como material de encapsulação. Adicionalmente, também se objetivou analisar a influência dos parâmetros de processo pressão e temperatura na estabilidade do extrato antociânico. 1.3 Estrutura da Tese de Doutorado Esta Tese de Doutorado está dividida em 8 capítulos da seguinte forma: O Capítulo 1 (Introdução) insere o leitor ao tema central desta tese, colocando, de forma sucinta, os pontos mais relevantes. O Capítulo 2 (Revisão da literatura) contextualiza o leitor no estado da arte referente a este trabalho de tese. O Capítulo 3 detalha a construção e o funcionamento da unidade multipropósito. O Capítulo 4 traz o artigo intitulado “Antioxidant pigment extraction using a home-made pressurized solvent extraction system”, que compara os resultados em termos de eficiência de extração utilizando CO2 supercrítico puro, obtidos pela unidade multipropósito com os obtidos por uma unidade de extração supercrítica comercial, com a finalidade de validação da unidade construída. Para tanto, foram utilizadas como fontes vegetais modelos duas fontes ricas em pigmentos funcionais: sementes de urucum e cascas de jabuticaba. Adicionalmente, neste capítulo, a viabilidade técnica de se desenvolver processos de extrações fracionadas e extrações com fluidos pressurizados assistida com ultrassom foi verificada. De uma maneira geral, este capítulo relata uma etapa fundamental para o sucesso no desenvolvimento do restante do trabalho, uma vez que os resultados obtidos demonstraram que a unidade construída no desenvolvimento de extrações utilizando fluidos pressurizados produz resultados similares aos obtidos por equipamentos comerciais, bem como resultados reprodutíveis. O trabalho seguinte foi explorar a potencialidade de obtenção de extratos ricos em antocianinas utilizando a unidade multipropósito validada conforme descrito no capítulo anterior. Neste contexto, o artigo apresentado no Capítulo 5, intitulado “Pressurized liquid 4 extraction of phenolic compounds from jabuticaba skins: optimization study”, investiga a influência das variáveis: Pressão, Temperatura e Tempo de Extração Estática, e otimiza o processo de extração de antocianinas e outros compostos fenólicos de cascas de jabuticaba utilizando etanol pressurizado. Ao final, os resultados obtidos empregando condições otimizadas foram comparados aos obtidos utilizando o método convencional à baixa pressão de percolação em leito fixo. O artigo apresentado no Capítulo 6, intitulado “Optimization of bioactive compounds extraction from jabuticaba (Myrciaria cauliflora) skins assisted by high pressure CO2”, traz os resultados obtidos para a extração de antocianinas e outros compostos fenólicos de cascas de jabuticaba também utilizando a unidade construída, porém agora configurada para desenvolver uma metodologia de extração diferente, chamada de extração assistida com CO2 a alta pressão. Neste trabalho é investigada a influência das variáveis: Pressão, Temperatura e Relação entre o Volume de Matéria-prima + Solvente e o Volume de CO2 dentro da célula extratora na extração de antocianinas e outros compostos fenólicos. Ao final, foi realizada uma comparação dos resultados obtidos empregando condições otimizadas com os obtidos desenvolvendo a metodologia de extração com líquidos pressurizados também utilizando esta unidade com o mesmo solvente (Água acidificada) nas mesmas temperatura e pressão. Continuando com a mesma abordagem descrita no Capítulo 4, de verificar se a unidade construída produz resultados similares aos obtidos por equipamentos similares (validação da unidade multipropósito construída), o Capítulo 7 traz o artigo intitulado “Micronization and encapsulation of functional pigments using supercritical carbon dioxide” que apresenta um estudo comparativo das partículas formadas pela unidade construída com as formadas por outros equipamentos de outros grupos de pesquisa. Adicionalmente, neste capítulo foi estudada a viabilidade técnica de se desenvolver processos de formação de partículas encapsuladas de extrato de sementes de urucum (obtidos conforme descrito no Capítulo 4), de extrato de cascas de jabuticaba (obtidos conforme descrito no Capítulo 5) e de pigmento rutina puro utilizando como material de encapsulação polietilenoglicol (PEG). 5 Uma vez demonstrada a potencialidade de formação de partículas encapsuladas de extrato de cascas de jabuticaba empregando a unidade multipropósito no Capítulo 7 este processo foi mais bem explorado no Capítulo 8, bem como foi verificado o potencial de aumento de estabilidade deste extrato quando protegido por matrizes poliméricas. O artigo intitulado “Stabilization of anthocyanins from jabuticaba skins by encapsulation using supercritical CO2” analisa também a influência dos parâmetros de processo pressão e temperatura na estabilidade do extrato antociânico. Ao final, foi realizada uma comparação dos resultados obtidos empregando condições otimizadas com os obtidos utilizando o método convencional à baixa pressão gelificação iônica. De uma maneira geral, este capítulo encerra os objetivos previstos para este trabalho de tese, fechando o ciclo de validação-experimentação dos processos de extração e formação de partículas que a unidade multipropósito pode desenvolver. O Capítulo 9 (Conclusões gerais) discorre sobre os principais resultados obtidos em cada um dos artigos apresentados nesta tese. O Apêndice I traz um artigo de revisão sobre as antocianinas, discorrendo sobre a estrutura química, propriedades benéficas à saúde e principais fontes de obtenção destes compostos, enfatizando que para o Brasil as cascas de jabuticaba podem ser uma potencial fonte destes pigmentos instáveis. Já o Apêndice II traz o detalhamento do procedimento de cálculo para a determinação da concentração de antocianinas e compostos fenólicos presentes nos extratos obtidos neste trabalho. O Apêndice III traz um artigo de revisão sobre os métodos de formação de partículas que discorre sobre as vantagens e limitações dos principais métodos empregados atualmente, descrevendo como cada processo é desenvolvido, bem como enfatizando a potencialidade de utilizar os métodos que empregam fluidos supercríticos na formação de partículas encapsuladas em matrizes poliméricas. Finalmente, o Apêndice IV traz o manual de operação da unidade multipropósito construída, detalhando o procedimento adotado para o desenvolvimento dos processos estudados nesta tese, bem como os procedimentos para a realização de outros processos que a unidade possibilita desenvolver. 6 Nesta Tese de Doutorado, o desenvolvimento dos capítulos e apêndices apresenta-se através de artigos publicados/submetidos ou a serem submetidos a periódicos. Permissões para a utilização dos artigos publicados em periódicos foram devidamente obtidas com as respectivas editoras, previamente. 7 8 CAPÍTULO 2 - REVISÃO BIBLIOGRÁFICA 2.1. Pigmentos Funcionais Existe grande interesse sobre as propriedades benéficas que os componentes nutracêuticos presentes em alimentos propiciam à saúde humana (PALIYATH, 2003). Têm sido adquirido conhecimento científico a respeito dos ingredientes presentes nos alimentos que ingerimos, com potencial para prevenir e tratar doenças específicas. Paralelo a isto, novas tecnologias, como a biotecnologia e a engenharia genética especificamente, têm criado uma era onde descobertas científicas e produtos inovadores são cada vez mais comuns. Estes desenvolvimentos têm resultado num aumento do número de produtos potencialmente nutricionais com benefícios para a saúde, produtos estes chamados de “alimentos funcionais”. Os alimentos funcionais, além do valor nutritivo básico, contêm um equilíbrio próprio de ingredientes, os quais podem ajudar diretamente na prevenção e tratamento de doenças (GOLDBERG, 1994). As substâncias bioativas presentes nos alimentos funcionais representam constituintes “extranutricionais” naturalmente presentes em pequenas quantidades na matriz do alimento (KITTS, 1994). Estas substâncias bioativas são pertencentes ao grupo dos compostos do metabolismo secundário de plantas, também chamados de compostos fitoquímicos, e podem ser definidos como substâncias derivadas de plantas que são altamente ativas do ponto de vista nutricional, fisiológico e/ou medicinal (GOLDBERG, 1994). Os pigmentos naturais presentes naturalmente em alimentos proporcionam cor, contribuindo para seu aspecto visual, atributo que está diretamente relacionado à aceitação deste alimento pelos consumidores (CLYDESDALE, 1993). O consumo de um alimento que possui em sua composição aditivos corantes naturais é associado à imagem de um alimento de qualidade e saudável; além dos corantes sintéticos possuírem a tendência de serem vistos como indesejáveis e prejudiciais, alguns são responsabilizados por reações alergênicas e de intolerância (MONTES et al., 2005). Pigmentos das classes dos flavonóides e carotenóides têm sido relacionados a importantes funções e ações fisiológicas, podendo ser considerados promotores da saúde humana. A ingestão de frutas e vegetais está sendo associada com a diminuição do desenvolvimento de doenças crônico9 degenerativas tais como câncer, inflamações, doenças cardiovasculares, catarata, degeneração macular, entre outras (KONG et al., 2003; KRINSKY, 1994). De forma geral, as propriedades antioxidantes destes compostos parecem ser a chave para a elucidação dos mecanismos envolvidos nestas ações. 2.1.1 Flavonóides Os flavonóides são pigmentos naturais presentes nos vegetais que desempenham um papel fundamental na proteção contra agentes oxidantes, como por exemplo, os raios ultravioleta, a poluição ambiental, substâncias químicas presentes nos alimentos, entre outros. Eles atuam como agentes terapêuticos num elevado número de patologias, tais como arteriosclerose, cancer, etc (PASSAMONTI et al., 2009). Dado que não podem ser sintetizados pelo nosso organismo, sendo representativos da parte não energética da dieta humana, os flavonóides são obtidos através da ingestão de alimentos que os contenham. Exemplos de fontes de flavonóides são frutas, verduras, cerveja, vinho, chá e soja. A maioria dos flavonóides presentes no vinho provém da uva, especialmente da pele (KOSMIDER; OSIECKA, 2004). Os flavonóides apresentam uma estrutura química base C6-C3-C6 (dois anéis benzênicos – A e B – ligados através de um anel pirano – C (Figura 2.1.1.1). Dependendo da substituição e do nível de oxidação no anel C, os flavonóides podem ser divididos em 14 classes, sendo os que se incluem na dieta humana divididos essencialmente em 6 grupos (PASSAMONTI et al., 2009; KOSMIDER; OSIECKA, 2004; ERLUND, 2004): • Flavanóis – possuem um grupo hidroxila na posição 3. Exemplos: catequina, epicatequina. • Flavonóis – possuem um grupo carbonila na posição 4, um grupo hidroxila na posição 3 e uma ligação dupla entre as posições 2 e 3. Exemplos: quercetina, kaempferol, quercitagetina, etc. • Flavonas – possuem um grupo carbonila na posição 4 e uma ligação dupla entre as posições 2 e 3. Exemplos: rutina, apigenina, luteoleína, etc. 10 • Antocianidinas – possuem um grupo hidroxila na posição 3 e duas ligações duplas: uma entre o átomo de oxigênio e o carbono 2 e outra entre os carbonos 2 e 3. Exemplos: cianidinas, petunidinas, malvidina, etc. • Isoflavonóides – possuem um grupo carbonila na posição 4 e o anel B encontra-se ligado ao restante da molécula através do carbono 3. Podem ainda possuir uma ligação dupla entre os carbonos 2 e 3. Exemplos: genisteína, coumestrol, etc. • Flavononas – possuem um grupo carbonila na posição 4. Exemplos: miricetina, hesperidina, etc. Figura 2.1.1.1 - Estrutura base dos flavonóides. Dentro da mesma classe, os flavonóides diferem na substituição dos anéis A e B. Estes se encontram na natureza sob a forma de glicosídeos, o que promove uma melhor absorção intestinal e uma maior biodisponibilidade destes compostos. Os glicosídeos formam-se através da união de resíduos de D-glicose à posição 3 ou à posição 7 destes flavonóides, sendo a primeira substituição a mais freqüente. Outros resíduos de açúcares, que também podem se encontrar ligados a este tipo de compostos, são a D-galactose, a Lramnose, a L-arabinose, a D-xilose e o ácido D-glucurônico (ERLUND, 2004). As antocianinas são um dos exemplos de flavonóides encontrados na natureza sob a forma de glicosídeos. Antocianinas são compostos derivados das antocianidinas. Nas antocianinas, uma ou mais hidroxilas das posições 3, 5 e 7 estão ligadas a açúcares, aos 11 quais podem estar ligados ácidos fenólicos. Os diferentes grupos R e R´ ligados nas posições 3´e 5´ e açúcares ligados nas posições 3, 5 e 7, assim como os ácidos a eles ligados, caracterizam os diferentes tipos de antocianinas, sendo que a mais comum é a cianidina-3-glicosídeo (SANTOS; MEIRELES, 2009). Maiores detalhes sobre as antocianinas: estrutura química, instabilidade, propriedades benéficas à saúde e principais fontes de obtenção destes compostos são encontrados no Apêndice I desta tese. Neste Apêndice também é demonstrado que, para o Brasil, as cascas de jabuticaba (Figura 2.1.1.2) podem ser uma potencial fonte destes pigmentos. Diversos fatores, tais como luz, temperatura, pH, entre outros, desencadeiam a degradação oxidativa das antocianinas, sendo estes compostos mais estáveis em meios ácidos do que em alcalinos. A natureza da estrutura iônica das antocianinas possibilita mudanças na estrutura molecular de acordo com o pH, resultando diferentes cores. Em pH < 3, a antocianina cianidina-3-glicosídeo, por exemplo, existe primariamente como uma estrutura molecular que resulta na cor vermelha. Aumentando-se os valores de pH do meio, novas formas moleculares são produzidas, resultando em cores que vão desde o violeta a uma forma incolor. Zhang et al. (2010) sugere que a degradação da cianidina-3-glicosídeo se inicia devido a facilidade de se hidrolisar o grupo glicosídeo ligado a estrutura base. Um esquema das transformações estruturais das antocianinas em função do pH gerando soluções coloridas é apresentado no Apêndice II. Figura 2.1.1.2 - Cascas de jabuticaba. 12 Além da identificação dos tipos de antocianinas presentes nos extratos, a determinação da sua concentração, bem como de outros compostos co-extraídos, é de extrema importância, pois elas estão associadas às funções biológicas destes extratos. Para a determinação da concentração dos flavonóides antocianinas nos extratos, os métodos baseados nas transformações estruturais das antocianinas em função do pH, gerando soluções coloridas, têm propiciado resultados confiáveis, sendo o método denominado de método do pH diferencial descrito por Giusti e Wrolstad (2001) um dos mais utilizados. Maiores informações sobre o procedimento de cálculo deste método são encontradas no Apêndice II desta tese. Neste Apêndice também é descrito como é feito o cálculo da concentração de compostos fenólicos presentes nos extratos (incluindo a concentração de antocianinas e outros compostos fenólicos co-extraídos). 2.1.2 Carotenóides Os carotenóides são uma classe de compostos lipofílicos amplamente conhecidos pelo seu poder corante que pode variar do amarelo ao vermelho. A sua estrutura básica é um tetraterpeno com 40 átomos de carbono, formado por oito unidades isoprenóides de cinco carbonos, ligados de tal forma que a molécula é linear com simetria invertida no centro. A principal característica dos carotenóides é um sistema de ligações duplas conjugadas, que corresponde ao cromóforo, e que permite a estes compostos absorver luz na região do visível, como pode ser observado na estrutura do β-caroteno (Figura 2.1.2.1) (MIKI, 1991). Figura 2.1.2.1 - Estrutura do β-caroteno 13 Os carotenóides são inicialmente divididos em dois grandes grupos, os carotenos que quimicamente são hidrocarbonetos, e as xantofilas que são derivados oxigenados. Neste último grupo estão incluídos pigmentos que possuem em sua estrutura grupos hidroxílicos, carbonílicos, carboxílicos e/ou epóxidos. Podendo ser também acíclicos, monocíclicos ou bicíclicos. Muitas outras modificações estruturais ainda são possíveis, permitindo obtenção de uma diversidade de compostos (BRITTON, 1995). Alguns dos tipos de carotenóides mais amplamente distribuídos na natureza são: βcaroteno, licopeno, luteína, zeaxantina, bixina, entre outros (MCCLEMENTS et al., 2009; ALBUQUERQUE; MEIRELES, 2010). A significância dos carotenóides não é somente devido às suas propriedades corantes, eles também são muito importantes para a saúde. Estes compostos também desempenham importante papel nutricional como precursores de vitamina A, além de outras ações, tais como proteção contra alguns tipos de câncer, doenças cardiovasculares, cataratas, degeneração macular e melhoria do sistema imunológico (GOUVEIA; EMPIS, 2003; ROBERT et al., 2003). Edge, McGarvey e Truscott (1997) associaram, em seus estudos, as funções biológicas dos carotenóides em seres humanos. De acordo com estes autores, esses compostos podem ser importantes na proteção de células atuando como antioxidantes contra radicais livres e seqüestrando oxigênio singlete devido ao seu longo sistema de ligações duplas conjugadas. Pigmentos das classes dos carotenóides, assim como os da classe dos flavonóides, têm sua degradação oxidativa acelerada pela luz, temperatura e/ou pH extremo na presença de oxigênio (SANTOS; MEIRELES, 2010). Comercialmente, uma das fontes vegetais de pigmentos mais amplamente utilizadas pela indústria de alimentos é o urucum (Bixa orellana), correspondendo em torno de 90% do total de consumo de corantes naturais no Brasil, e em torno de 70% de corantes naturais mundialmente empregados em alimentos (CONSTANT; STRINGHETA; SANDI, 2002). No Brasil, o urucum é uma espécie economicamente importante e ocorre em todas as regiões brasileiras e sua disseminação em diversas regiões do mundo está relacionada 14 com a procura por corante natural pelas indústrias de medicamentos, cosméticos, têxteis e principalmente alimentar (FRANCO et al., 2008). Urucum (Bixa orellana L.) é uma arvore tropical cujas sementes são ricas no pigmento da classe dos carotenóides conhecido como bixina, o qual é somente encontrado nesta fonte vegetal. Quimicamente bixina (C25H30O4) é um mono-metil ester do ácido dicarboxílico norabixina, um outro importante pigmento encontrado nas sementes de urucum (Figura 2.1.2.2). Entre outras aplicações, estes corantes são usados pela indústria alimentícia para melhorar queijos, margarinas e manteigas (ANDERSON et al., 1997). Figura 2.1.2.2 - Sementes de urucum. 2.2. Métodos de Extração Existem, na literatura, várias metodologias de obtenção de extratos de vegetais, utilizando vários solventes, empregando ou não altas pressões e temperaturas ou até mesmo associando metodologias no intuito de obter um ou mais extratos com o perfil fitoquímico desejável, com alto rendimento e que não possua características indesejáveis como a presença de compostos co-extraídos como ceras e clorofila e a presença residual de solventes (BRAGA, 2005). A seguir são descritos alguns métodos que foram utilizados na obtenção de extratos ricos em antocianinas e no carotenóide bixina. O solvente mais utilizado na extração de antocianinas é o metanol, apesar da sua toxicidade. Entretanto, para algumas aplicações onde o aspecto quantitativo não é 15 prioritário, etanol e água também têm sido utilizados. A limitação do uso de etanol e água está relacionada com a menor eficiência na extração de antocianinas (TERCI, 2004). Estas metodologias, também chamadas de convencionais, implicam na co-extração de compostos não fenólicos como açúcares, ácidos orgânicos e proteínas, requerendo uma subseqüente purificação destes extratos, uma vez que estes processos geralmente apresentam baixa seletividade (CASTAÑEDA-OVANDO et al., 2009). Comumente, métodos de extração convencionais, tais como soxhlet, por agitação, por percolação em leito fixo, entre outros, são utilizados nos processos de extração de antocianinas, entretanto, estes métodos geralmente consomem muito tempo e grande quantidade de solventes e podem degradar estes compostos durante o processo extrativo. Segundo Pinedo (2007), a hidrólise completa dos açúcares ligados a antocianinas, açúcares que propiciam melhor estabilidade dos pigmentos após a extração, ocorre em 1 hora a 333,15 K na presença de etanol acidificado com 1% de HCl. Visando eliminar estas limitações, métodos de extrações rápidas que utilizam fluidos pressurizados têm sido empregados com sucesso para a obtenção de extratos ricos em antocianinas (ARAPITSAS; TURNER, 2008). Também, a utilização de tratamentos com ultrassom e CO2 a alta pressão, auxiliares ao processo extrativo de antocianinas, tem demonstrado melhorar o desempenho da extração, aumentando rendimento, reduzindo o tempo de extração, etc. (CAI et al., 2003; XU et al., 2010). Extratos comerciais de sementes de urucum são obtidos utilizando vários processos, tais como extração com óleos vegetais, com solução alcalina e com solventes orgânicos: clorofórmio, diclorometano, acetona e metanol (PRESTON; RICKARD, 1980). As preparações de extratos ricos em pigmentos têm as desvantagens de conterem pequenas concentrações do composto bioativo alvo (bixina), bem como apresentar solvente tóxico no produto final. Suspensões de extratos de urucum em óleos vegetais são mais concentradas, mas podem conter produtos de degradação devido ao fato de altas temperaturas (> 100 ºC) serem empregadas nestes processos, afetando a qualidade do extrato (MCKEOWN; MARK, 1962; REITH; GIELEN, 1971). 16 Visando eliminar estas limitações, o emprego de fluidos pressurizados em condições supercríticas como solventes de extração na obtenção de extratos ricos no carotenóide bixina tem se demonstrado uma potencial opção (MENDES et al., 2003). A alta seletividade do processo de extração supercrítica, através de pequenas alterações nas variáveis do processo (pressão e temperatura), aliada à eliminação de solventes residuais no produto final e ao uso de baixas temperaturas ao se utilizar CO2 supercrítico puro na obtenção de extratos ricos em bixina a partir de sementes de urucum, têm sido as principais justificativas para a utilização deste método de extração em substituição aos métodos convencionais (ANDERSON et al., 1997; NOBRE et al., 2006; SILVA et al., 2008). 2.2.1 Extração com Fluidos Pressurizados Os fluidos supercríticos caracterizam-se por a sua temperatura e pressão serem superiores aos correspondentes valores críticos. Acima do ponto crítico, deixa de haver tensão superficial e separação entre as fases líquida e gasosa em equilíbrio, formando-se uma única fase supercrítica, cujas propriedades são intermediárias daqueles dois estados. Abaixo do ponto crítico o fluido pode existir como um líquido ou como um vapor (SANDLER, 1989). A Tabela 2.2.1.1 registra a pressão e temperatura críticas de alguns fluidos com interesse em processos de extração. Tabela 2.2.1.1 - Propiedades críticas de alguns fluidos com interesse em extração (MENDES et al., 2003) Fluido Tc (ºC) Pc (bar) 50,4 Etileno 9,4 Dióxido de carbono 31,1 Etano 32,4 Óxido nitroso 36,6 Propano 96,8 17 73,8 48,8 72,4 42,5 Etanol 240,9 Benzeno 289,1 Tolueno 318,8 Água 401,3 61,4 48,9 41,0 221,2 Nas proximidades da região crítica, os fluidos não apenas são solventes eficazes para a extração de compostos bioativos de fontes vegetais, mas apresentam uma série de peculiaridades que os tornam mais vantajosos com relação aos solventes líquidos, comumente utilizados (REZENDE, 1998). Algumas peculiaridades/vantagens são: * Ausência de resíduos do solvente nos produtos (extratos); * Uma variedade maior de solventes pode ser utilizada, já que as características básicas da extração supercrítica devem-se, além das propriedades do solvente, às condições termodinâmicas; * A seletividade de um dado soluto, em uma solução do solvente, pode ser controlada, manipulando-se a densidade do solvente. 2.2.1.1 Extração com Líquidos Pressurizados Um fluido pressurizado e aquecido à pressões e temperaturas abaixo das críticas pode existir como um líquido ou como um vapor. No caso de o fluido ser etanol ou água, por exemplo, à pressões menores que 200 bar e temperaturas menores que 200 ºC este fluido se mantém no estado líquido, apesar de a temperatura estar acima da sua temperatura de ebulição a pressão atmosférica. A utilização destes fluidos nestas condições em processos extrativos permite uma melhora da solubilidade dos compostos a serem extraídos, bem como uma aceleração da cinética de dessorção destes compostos da matriz vegetal (RICHTER et al., 1997). Nestes processos, a utilização de elevada temperatura de extração aumenta a capacidade do solvente de solubilizar os compostos alvo, já o emprego de altas pressões 18 acelera a difusão nos poros da matriz e diminui a viscosidade do solvente, causando uma maior penetração do solvente na matriz e, portanto aumentando sua capacidade de extração (LOPEZ-AVILA, 1999). O método de extração com líquidos pressurizados emprega menor volume de solvente que as extrações convencionais (soxhlet, etc.) e é mais rápido (tempo de extração varia entre 10 e 20 minutos). De outras perspectivas, incluindo considerações sobre meio ambiente, segurança e economia, muitos esforços têm sido feitos com o objetivo de diminuir o uso de solventes orgânicos nos laboratórios químicos e processos industriais. O uso da água como solvente de extração apresenta vantagens adicionais. A água é barata, não-tóxica, não combustível ou explosiva e é ambientalmente segura. A alta temperatura, o aumento do produto iônico e a mudança na constante dielétrica fazem com que os compostos bioativos a serem extraídos sejam altamente solúveis na água sob estas condições. A constante dielétrica pode influenciar as taxas de extrações com o aumento da polaridade do solvente extrativo. Assim, a densidade pode ser usada para manipular a constante dielétrica e, conseqüentemente as cinéticas de extração (CORRALES; BUTZ; TAUSCHER, 2008; JU; HOWARD, 2003; CACACE; MAZZA, 2002). Mais detalhes sobre a metodologia de extração com etanol e água pressurizados, particularmente de pigmentos antociânicos, são apresentados nos Capítulos 5 e 6, respectivamente. 2.2.1.2 Extração com CO2 supercrítico Na maioria das vezes tem-se utilizado o dióxido de carbono para a extração supercrítica de produtos naturais. A grande aceitação do dióxido de carbono deve-se (REVERCHON; OSSÉO, 1994): * À sua atoxidade, em pequenas quantidades; * À sua não-inflamabilidade; * Ao seu ponto crítico ocorrer em condições relativamente brandas. A temperatura crítica é de 31,0 °C (304,1 K) e a pressão crítica de 73,8 bar (Figura 2.2.1.2.1); 19 * À sua estabilidade química; * À sua disponibilidade a baixo custo. O dióxido de carbono pode ser obtido, por exemplo, a partir de processos fermentativos. Mais detalhes sobre a metodologia de extração com CO2 supercrítico, particularmente de pigmento bixina da classe dos carotenóides, são apresentados no Capítulo 4. Figura 2.2.1.2.1 - Diagrama de fase pressão-temperatura do dióxido de carbono. 2.2.2 Métodos de Extração Assistida 2.2.2.1. Com ultrassom Processos de extração assistidos com ultrassom têm sido cada vez mais estudados, pois o emprego do ultrassom na extração de diferentes fontes vegetais utilizando diferentes solventes de extração tem propiciado: i) um maior rendimento de extração; ii) um aumento da taxa de extração; iii) uma redução no tempo de extração, dentre outras vantagens (VILKHU et al., 2008). A gama de aplicações do uso da extração assistida com ultrassom inclui ervas, óleos, proteínas e compostos bioativos de materiais vegetais e animais (por exemplo, 20 compostos fenólicos, antocianinas, compostos aromáticos, polissacarídeos, etc.) e a gama de solventes de extração já empregados nestes processos incluem água, etanol, hexano, dióxido de carbono supercrítico, entre outros (VINATORU, 2001; RIERA et al., 2010; ROMDHANE; GOURDAN, 2002). A melhora do processo de extração através do uso do ultrassom tem sido atribuída à propagação das ondas de pressão ultrasônicas, o que resulta em cavitação. Altas forças de cisalhamento provocam o aumento da transferência de massa dos compostos a serem extraídos. Durante esta etapa temperaturas muito elevadas (cerca de 5.000 K) e pressões (aproximadamente 2.000 bar) são atingidas localmente. Quando as bolhas atingem um volume em que já não podem absorver energia, ocorre um colapso violento. Este fenômeno é denominado de cavitação. A implosão das bolhas de cavitação gera microturbulência, colisões entre as partículas em alta velocidade e perturbação nos microporos das partículas da matriz vegetal, o que acelera a difusão. Este efeito proporciona uma exposição de novas superfícies aumentando ainda mais a transferência de massa (JIANBING et al., 2006). Os efeitos do ultrassom no processo de extração dependem da freqüência e capacidade do equipamento e do tempo empregado para a extração. Alguns autores têm informado a ocorrência de transformações químicas nos extratos, resultantes da utilização de longos tempos de irradiação ultrasônica (VINATORU, 2001). Mais detalhes sobre a metodologia de extração assistida com ultrassom são apresentados no Capítulo 4. 2.2.2.2. Com CO2 a alta pressão O efeito explosivo da descompressão de CO2 a alta pressão em primeiro lugar demonstrou romper células bacterianas através da rápida liberação de pressão de gás com o objetivo de recolher o conteúdo da célula (lise celular). Numerosos estudos têm mostrado a eficácia do uso de CO2 a alta pressão para inativar microrganismos e enzimas (BALABAN et al., 1991; KINCAL et al., 2006). 21 Devido à similaridade entre os processos que visam à inativação microbiana e os que visam à extração sólido-líquido de compostos bioativos de matrizes vegetais, Xu et al. (2010), pela primeira vez, deduziram e confirmaram com seus resultados experimentais que extrações sólido-líquido, assistidas com CO2 a alta pressão, poderiam propiciar melhores resultados que quando não assistidas. A melhora do processo de extração através do uso de CO2 a alta pressão foi atribuída às habilidades do CO2 a alta pressão de modificar a membrana celular, diminuir o pH intracelular, desorientar o equilíbrio eletrolítico intracelular, remover os componentes vitais das células e membranas celulares (XU et al., 2010). Adicionalmente, no caso especificamente estudado por Xu et al. (2010), o uso de CO2 a alta pressão melhorou o processo de extração possivelmente por este ter reagido com o solvente utilizado (água), gerando um produto de reação (água carbonatada) com mais habilidades em extrair os compostos bioativos desejados. Mais detalhes sobre a metodologia de extração assistida com CO2 a alta pressão, particularmente de pigmentos antociânicos, são apresentados no Capítulo 6. 2.3. Formação de Partículas A aplicação dos pigmentos das classes dos flavonóides e carotenóides como aditivos em produtos alimentícios é severamente limitada: por sua rápida degradação acelerada pela luz, temperatura e presença de oxigênio, por sua baixa solubilidade em sistemas aquosos, etc. (ÖZEN; AKBULUT; ARTIK, 2009; MATTEA; MARTÍN; COCERO, 2009). A redução do tamanho das partículas destes pigmentos funcionais e/ou sua encapsulação em geral tem sido opções que visam eliminar estas limitações (SUO et al., 2005; MATTEA; MARTÍN; COCERO, 2009). A produção controlada de partículas de um determinado produto (que pode ser um aditivo alimentício como corante) cujas características físicas (tamanho, morfologia e estrutura) estão otimizadas é designada por “engenharia de partículas”. O objetivo principal desta disciplina é a incorporação de atributos desejáveis nas partículas, tais como uma 22 estreita distribuição de tamanhos, elevada estabilidade, maior biodisponibilidade, distribuição controlada e administração dirigida (CHOW et al., 2007). Diferentes métodos de formação de partículas nas formas puras ou encapsuladas têm sido desenvolvidos. Maiores detalhes sobre estes métodos: vantagens e limitações são apresentadas no Apêndice III desta tese. Dentre os novos métodos de formação de partículas, particular ênfase se é dada aos processos RESS [Rapid Expansion of Supercritical Solutions] e SAS [Supercritical Anti-Solvent] que utilizam CO2 supercrítico na função de solvente e anti-solvente, respectivamente. Além do controle das propriedades das partículas, estes novos processos trazem vantagens competitivas aos métodos tradicionais, pois requerem menor manuseamento, o que permite um aumento do rendimento e simplifica os procedimentos de limpeza e esterilização, e estão mais aptos para o aumento de escala. Estes processos podem também operar em modo contínuo, ao contrário da grande maioria dos processos convencionais, que operam em descontínuo (SANTOS; MEIRELES, 2010). Mais detalhes sobre cada um deles, bem como a potencialidade de utilizar estes métodos que empregam fluidos supercríticos na formação de partículas encapsuladas em matrizes poliméricas visando à estabilização de pigmentos funcionais, particularmente os da classe dos carotenóides, também é encontrado no Apêndice III. Mais detalhes sobre a metodologia de formação de partículas nas formas puras ou encapsuladas empregando os processos RESS [Rapid Expansion of Supercritical Solutions] e SAS [Supercritical Anti-Solvent] são apresentados no Capítulo 7. Detalhes sobre a estabilização destes pigmentos funcionais, particularmente os antociânicos, por encapsulação em matrizes poliméricas, são encontrados no Capítulo 8. 2.4. Equipamentos que utilizam fluidos pressurizados 2.4.1 Para Extração 2.4.1.1 Para Extração com Líquidos Pressurizados 23 A extração com líquidos pressurizados, também conhecida como extração com solventes pressurizados, extração acelerada com solventes ou extração com fluidos pressurizados é desenvolvida em equipamentos comerciais e “Home-made”. Existem diferentes fornecedores de sistemas de extração para extração com líquidos pressurizados. Dionex oferece dois sistemas de extração: 1) ASE® 150 - um sistema de extração com uma célula de extração simples (Figura 2.4.1.1.1a); 2) ASE® 350 um sistema de extração que possibilita a extração automatizada de até 24 amostras (Figura 2.4.1.1.1b). Fluid Management Systems oferece um único sistema de extração seqüencial capaz de extração automatizada de até 6 amostras (Figura 2.4.1.1.2). Figura 2.4.1.1.1 - Equipamento comercial para extração com líquidos pressurizados. a) ASE® 150; b) ASE® 350 (DIONEX, 2010) Figura 2.4.1.1.2 - Equipamento comercial para extração com líquidos pressurizados (FLUID MANAGEMENT SYSTEMS, 2010) 24 2.4.1.2 Para Extração com CO2 Supercrítico Em 1978 começou a operar o primeiro processo industrial de extração de cafeína com CO2 supercrítico. A extração supercrítica já é utilizada em escala industrial para descafeinação do café e de chá e também para a extração de lúpulo (BRUNNER, 1994). Estima-se que há atualmente cerca de 250 plantas industriais que utilizam esta 1 tecnologia . Segundo Perrut (2000), existem em operação unidades de extração supercríticas na Itália e na França que operam no processamento de ingredientes de alimentos, princípios ativos farmacêuticos e cosméticos. Também há relatos que recentemente na Espanha, o primeiro processo de extração com CO2 supercrítico começou a operar em San Vicente de Alcántara (Badajoz) em 2005 e em 2008, a empresa começou a operar outra planta em Valência1. Entretanto, não existe nenhuma unidade de produção em escala industrial na América do Sul, exceto por uma unidade semi-piloto que se encontra em testes2. Existem diferentes fornecedores que oferecem equipamentos para o desenvolvimento de extrações com fluidos supercríticos com diferentes configurações e capacidades, porém a utilização de equipamentos “Home-made” também é muito usual em nível laboratorial. A série Spe-ed SFE (Supercritical Fluid Extraction) da Applied Separations é uma das séries mais populares, pois oferece uma variedade de opções que atendem necessidades analíticas e de pesquisa. O sistema de aquecimento da célula extratora constitui de um forno, o que permite que células extratoras de diferentes capacidades possam ser utilizadas nos processos de extração, ou mais de uma célula extratora seja utilizada, o que possibilita processos de extração de modo semi-contínuo (enquanto uma célula extratora é empacotada a outra está sendo utilizada e vice-versa) (Figura 2.4.1.2.1). Adicionalmente, ao equipamento Spe-ed SFE uma bomba de co-solvente 1 2 Informação pessoal de Prof. Dra. M. J. Cocero. Informação pessoal de A. Astini. 25 pode ser incorporada (módulo comprado a parte) para possibilitar a extração com CO2 supercrítico + co-solventes. Figura 2.4.1.2.1 - Equipamento comercial para extração com CO2 supercrítico (APPLIED SEPARATIONS, 2010) 2.4.1.3 Para Extração assistida com ultrassom Recentemente, o design de equipamentos com transdutores de ultrassom tem avançado para fornecer capacidade de processamento em nível industrial. Atualmente, 16 kW é a potência do maior transdutor de ultrassom disponível. Fornecedores industriais de transdutores de ultrassom têm promovido cada vez mais a utilização de ondas ultrasônicas em diversos processos de extração convencionais para diferentes aplicações nos últimos anos (VILKHU et al., 2008). Vários projetos de extratores com transdutores de ultrassom acoplados têm sido descritos por Chisti (2003) e Vinatoru (2001). Estes incluíram transdutores de ultrassom ora 26 no agitador mecânico que fica em contato com meio extrativo (solvente + material a ser extraído) (Figura 2.4.1.3.1) ora na parede das células de extração. Figura 2.4.1.3.1 - Equipamento comercial para extração assistida com ultrassom (HIELSCHER, 2010) Sistemas modernos de ultrassom possuem um dispositivo automatizado que ajusta a freqüência das ondas ultrasônicas para assegurar que a potência máxima é transmitida ao conteúdo da célula extratora, bem como possibilitam exposição às ondas ultrasônicas de modo intermitente ou contínuo (ROMDHANE; GOURDAN, 2002). 2.4.1.4 Para Extração assistida com CO2 a alta pressão Há somente um relato do processo de extração assistida com CO2 a alta pressão, tendo este sido desenvolvido em equipamento “Home-made” projetado para preservar alimentos por inativação microbiana (Xu et al., 2010). Segundo Parton et al. (2007) ainda não há equipamentos comerciais disponíveis de pasteurização/inativação bacteriana de alimentos que utiliza CO2 a alta pressão devido, principalmente, a duas razões: i) falta de conhecimento sobre instalações de alta pressão para processamento de alimentos; ii) pobre 27 compreensão do mecanismo de inativação induzido pela pressão do CO2 sobre os microrganismos. 2.4.2 Para Formação de Partículas 2.4.2.1 Para Formação de Partículas Via SAS Processos de formação de partículas via SAS são desenvolvidos tanto em equipamentos comerciais como em “Home-made”. A empresa Thar Technologies, acompanhando o desenvolvimento científico produzido por pesquisadores que estudam processos de formação de partículas via SAS, lançou recentemente no mercado um produto que pode realizar o processo SEDS (Solution Enhanced Dispersion by Supercritical fluids), um subtipo do processo SAS (Figura 2.4.2.1.1). Sabe-se que anteriormente a esta modificação os pesquisadores, que adquiriram os equipamentos para o desenvolvimento dos processos via SAS convencional, já faziam a modificação em seus laboratórios (JACOBSON et al., 2010). Basicamente a modificação se dá na entrada da tubulação de CO2 através da inserção de uma conexão “T” que permite a entrada da solução contendo a substância ativa a ser micronizada ou encapsulada coaxialmente ao CO2 supercrítico. Maiores detalhes sobre este sistema coaxial podem ser encontrados no Capítulo 7. Figura 2.4.2.1.1 - Equipamento comercial para formação de partículas via SAS (THAR TECHNOLOGIES, 2010) 28 2.4.2.2 Para Formação de Partículas Via RESS Processos de formação de partículas via RESS são desenvolvidos principalmente em equipamentos “Home-made”, apesar de existirem comercialmente equipamentos para o desenvolvimento de tais processos. Isto deve-se principalmente a simplicidade em instrumentação para o desenvolvimento destes processos. A figura 2.4.2.2.1 apresenta o fluxograma da unidade experimental comercial da Thar Technologies RESS-100. Figura 2.4.2.2.1 - Fluxograma da unidade experimental comercial da Thar Technologies RESS-100. 1 - Reator; 2 - Agitador; 3 – Termostato; 4, 7 e 8 - válvulas; 5 Medidor de fluxo; 6 - Bomba de alta pressão; 9 - Dispositivo de expansão; 10 - Trocador de calor para aquecimento; 11 - Câmara de expansão; 12 - Trocador de calor para resfriamento; 13 - Computador (GIL’MUTDINOV et al., 2009). Referências ALBUQUERQUE, C.L.C.; MEIRELES, M.A.A. Estimate of the Cost of Manufacturing (COM) of Natural Colorants Obtained by Supercritical Fluid Extraction. In.: Proceedings of II Iberoamerican Conference on Supercritical Fluids, Natal, Brazil. 2010. ANDERSON, S.G.; MURALEEDHARAN, G.N.; CHANDRA, A.; MORRISON, E. Supercritical Fluid Carbon Dioxide Extraction of Annatto Seeds and Quantification of 29 Trans-Bixin by High Pressure Liquid Chromatography. Phytochemical Analysis, v. 8, p. 247, 1997. APPLIED SEPARATIONS. Disponível em: http://www.appliedseparations.com. Acesso 16 de Agosto de 2010. ARAPITSAS, P.; TURNER, C. Pressurized solvent extraction and monolithic columnHPLC/DAD analysis of anthocyanins in red cabbage. Talanta, v. 74, p. 1218–1223, 2008. ARTS, I. C. W; HOLLMAN, P.C.H. Polyphenols and disease risk in epidemiologic studies. American Journal of Clinical Nutrition, v. 81, p. 317S–325S, 2005. BALABAN, M.O.; ARREOLA, A.G.; MARSHALL, M.; PEPLOW, A.; WEI, C.I.; CORNELL, J. Inactivation of pectinesterase in orange juice by supercritical carbon dioxide. Journal of Food Science, v. 56, p. 743–746, 1991. BRAGA, Mara Elga Medeiros. Obtenção de compostos bioativos de Curcuma longa L. e Lippia alba M. por tecnologia supercrítica: rendimento global, cinética de extração, composição química e aproveitamento do resíduo amiláceo. 2005. Tese (Doutorado em Engenharia de Alimentos) – Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, Campinas, 2005. BRITTON, G. UV/Visible Spectroscopy. In: BRITTON, G., LIAAEN-JENSEN, S., PFANDER, H. (Eds.). Carotenoids Handbook: Spectroscopy, Basel: Birkhäuser, 1995, p. 13-62. BRUNNER, G. Gas Extraction: An Introduction to Fundamentals of Supercritical Fluids and the Application to Separation Process. Hamburgo: Springer, 1994. CACACE, J.E.; MAZZA, G. Extraction of Anthocyanins and Other Phenolics from Black Currants with Sulfured Water. Journal of Agricultural and Food Chemistry, v. 50, p. 5939– 5946, 2002. CAI, J.; LIU, X.; LI, Z.; AN, C. Study on extraction technology of strawberry pigments and its physicochemical properties. Food & Fermentation Industries, v. 29, p. 69−73, 2003. CASTAÑEDA-OVANDO, A.; PACHECO-HERNÁNDEZ, M.L; PÁEZ-HERNÁNDEZ, M.E.; RODRÍGUEZ, J.A.; GALÁN-VIDAL, C.A. Chemical studies of anthocyanins: A review. Food Chemistry, v. 113, n. 4, p. 859-887, 2009. CHISTI, Y. Sonobioreactors: Using ultrasound to enhance microbial productivity. Trends in Biotechnology, v. 21, p. 89-93, 2003. CHOW, A.H.L.; TONG, H.H.Y.; CHATTOPADHYAY, P.; SHEKUNOV, B.Y. Particle engineering for pulmonary drug delivery. Pharmaceutical Research, v. 24, n. 3, p. 411‐437, 2007. CLYDESDALE, F.M. Color as a factor in food choice. Critical Reviews in Food Science and Nutrition, v. 33, p. 83-101, 1993. 30 CONSTANT, P.B.L.; STRINGHETA, P.C.; SANDI, D. Corantes Alimentícios. Boletim do CEPPA, v. 20, n. 2, p. 203-220, 2002. CORRALES, M.; BUTZ, P.; TAUSCHER, B. Anthocyanin condensation reactions under high hydrostatic pressure. Food Chemistry, v. 110, p. 627–635, 2008. DIONEX. Disponível em: http://www.dionex.com. Acesso 16 de agosto de 2010. EDGE, R.; MCGARVEY, D.J.; TRUSCOTT, T.G. The carotenoids as anti-oxidants – a review. Journal of Photochemistry and Photobiology B: Biology, v. 41, p. 189-200, 1997. ERLUND, I. Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, bioavailability, and epidemiology. Nutrition Research, 24, p. 851874, 2004. FLUID MANAGEMENT SYSTEMS. Disponível em http://www.fmsenvironmental.com. Acesso 16 de agosto de 2010. FRANCO, C.F.O.; FABRI, E.G.; NETO, M.B.; MANFIOLLI, M.H.; HARDER, M.N.C.; RUCKER, N.G.A. Urucum: Sistemas de Produção para o Brasil. João Pessoa: Emepa, Apta, 2008. 112p. GIL’MUTDINOV, I.M.; KHAIRUTDINOV, V. F.; KUZNETSOVA, I.V.; MUKHAMADIEV, A.A.; GABITOV, F.R.; GUMEROV, F.M.; SABIRZYANOV, A.N. The Dispersion of Polymeric Materials with the Use of Supercritical Fluids. Russian Journal of Physical Chemistry B, v. 3, n. 8, p. 1145–1153, 2009. GIUSTI, M.; WROLSTAD, R.E. Characterization and measurement of Anthocyanins by UV–visible spectroscopy. In: WROLSTAD, R.E. (Ed.). Current Protocols in Food Analytical Chemistry. New York: John Wiley & Sons, 2001. GOLDBERG, I. Functional Foods: designer foods, pharmafoods, and nutraceuticals. New York: Chapman & Hall, 1994. 571p. GOUVEIA, L.; EMPIS, J. Relative stabilities of microalgal carotenoids in microalgal extracts, biomass and fish feed: effect of storage conditions. Innovative Food Science and Emerging Technologies, v. 4, p. 227- 233, 2003. HIELSCHER. Disponível em: http://www.hielscher.com. Acesso 16 de Agosto de 2010. JACOBSON, G.B.; SHINDE, R.; MCCULLOUGH, R.L.; CHENG,N.J.; CREASMAN, A.; BEYENE, A.; HICKERSON, R.P.; QUAN, C.; TURNER, C.; KASPAR, R.L.; CONTAG, C.H.; ZARE, R. N. Nanoparticle Formation of Organic Compounds With Retained Biological Activity. Journal of Pharmaceutical Sciences, v. 99, n. 6, 2750-2755, 2010. JIAN-BING, J.; XIANG-HONG, L.; MEI-QIANG, C.; ZHI-CHAO, X. Improvement of leaching process of Geniposide with ultrasound. Ultrasonics Sonochemistry, v. 13, p. 455−462, 2006. 31 JU, Z.Y.; HOWARD, L.R. Effects of solvent and temperature on pressurized liquid extraction of anthocyanins and total phenolics from dried red grape skin. Journal of Agricultural and Food Chemistry, v. 51, p. 5207–5213, 2003. KINCAL, D.; HILL, W.S.; BALABAN, M.O.; PORTIER, K.M.; SIMS, C.; WEI, C.I.; MARSHALL, M. A continuous high-pressure carbon dioxide system for cloud and quality retention in orange juice. Journal of Food Science, v. 71, p. 338–344, 2006. KITTS, D.D. Bioactive substances in food: identification and potential uses. Canadian Journal of Physiology and Pharmacology, v. 72, n. 4, p. 423-34, 1994. KONG, J.; CHIA, L.; GOH, N.; CHIA, T.; BROUILLARD, R. Analysis and biological activities of anthocyanins. Phytochemistry, v. 64, n. 5, p. 923–933, 2003. KOSMIDER, B.; OSIECKA, R. Flavonoid Compounds: A Review of Anticancer Properties and Interactions with cis-Diamminedichloroplatinum (II). Drug Development Research, v. 63, p. 200-211, 2004. KRINSKY, N.I. The biological properties of carotenoids. Pure and Applied Chemistry, v. 66, p. 1003-1010, 1994. LOPEZ-AVILA, V. Sample preparation for Environmental Analysis. Critical Reviews in Analytical Chemistry, 29, n. 3, p. 195-230, 1999. MARTÍN, A.; COCERO, M.J. Micronization processes with supercritical fluids: Fundamentals and mechanisms. Advanced Drug Delivery Reviews, v. 60, n.3, p. 339-350, 2008. MATTEA, F.; MARTÍN, A.; COCERO, M.J. Carotenoid processing with supercritical fluids. Journal Food Engineering, v. 93, n. 3, p. 255-265, 2009. MATTEA, F.; MARTÍN, A.; COCERO, M.J. Co-precipitation of betacarotene and polyethylene glycol with compressed CO2 as an antisolvent: Effect of temperature and concentration. Industrial & Engineering Chemistry Research, v. 47, n. 11, p. 3900-3906, 2008. MCCLEMENTS, D.J.; DECKER, E.A.; PARK, Y.; WEISS, J. Structural Design Principles for Delivery of Bioactive Components in Nutraceuticals and Functional Foods. Critical Reviews in Food Science and Nutrition, v. 49, p. 577-606, 2009. MCKEOWN, G.G.; MARK, E. The Composition of Oil-Soluble Annatto Food Colours, Journal of the AOAC, v. 45, n. 3, p. 761, 1962. MENDES, R.L.; NOBRE, B.P.; CARDOSO, M.T.; PEREIRA, A.P.; PALAVRA, A.F. Supercritical Carbon Dioxide Extraction of Compounds with Pharmaceutical Importance from Microalgae. Inorganica Chimica Acta, v. 356, p. 328, 2003. MIKI, W.. Biological functions and activities of carotenoids. Pure and Applied Chemistry, v. 63 , p. 141-146, 1991. 32 MONTES, C.; VICÁRIO, I.M.; RAYMUNDO, M.; FETT, R.; HEREDIA, F.J. Application of tristimulus colorimetry to optimize the extraction of anthocyanins from Jaboticaba (Myricia Jaboticaba Berg.). Food Research International, v. 38, n. 8-9, p. 983-988, 2005. NOBRE, B.P.; MENDES, R.L.; QUEIROZ, E.M.; PESSOA, F.L.P.; COELHO, J. P.; PALAVRA, A. F. Supercritical Carbon Dioxide Extraction of Pigments From Bixa Orellana Seeds (Experiments and Modeling). Brazilian Journal of Chemical Engineering, v. 23, n. 2, p. 251-258, 2006. ÖZEN, G.; AKBULUT, M.; ARTIK, N. Stability of Black Carrot Anthocyanins in the Turkish Delight (Lokum) During Storage. Journal of Food Process Engineering, In press, 2009. PALIYATH, G. Natural colorants for food and nutraceutical use. Trends in Food Science & Technology, v. 14, p. 438, 2003. PARTON, T.; BERTUCCO, A.; ELVASSORE, N.; GRIMOLIZZI, L. A continuous plant for food preservation by high pressure CO2. Journal of Food Engineering, v. 79, p. 1410– 1417, 2007. PASSAMONTI, S.; TERDOSLAVICH, M.; FRANCA, R.; VANZO, A.; TRAMER, F.; BRAIDOT, E.; PETRUSSA, E.; VIANELLO, A. Bioavailability of Flavonoids: A Review of Their Membrane Transport and the Function of Bilitranslocase in Animal and Plant Organisms. Current Drug Metabolism, v. 10, p. 369-394, 2009. PERRUT, M. Supercritical fluid application: industrial development and economic issues. Industrial & Engineering Chemistry Research, v. 39, p.4531-4535, 2000. PINEDO, Rosalinda Arevalo. Estudo da estabilização da polpa de camucamu (Myrciaria dubia (h.b.k.) mc vaugh) congelada visando a manutenção de ácido ascórbico e de antocianinas. 2007. Tese (Doutorado em Engenharia Química) – Faculdade de Engenharia Química, FEQ, Universidade Estadual de Campinas, Campinas, 2007. PRESTON, H.D.; RICKARD, M.D. Extraction and Chemistry of Annatto. Food Chemistry, v. 5, p. 47, 1980. REITH, J.F.; GIELEN, J.W. Properties of Bixin and Norbixin and the Composition of Annatto Extracts. Journal of Food Science, v. 36, p. 861, 1971. REVERCHON, E.; OSSÈO, L.S. Comparison of Processes for the Supercritical Carbon Dioxide Extraction of Oil from Soybean Seeds. Journal of the American Oil Chemists’ Society, v. 71, n. 9, p. 1007-1012, 1994. REYNERTSON, K.A.; YANG, H.; JIANG, B.; BASILE, M.J.; KENNELLY, E.J. Quantitative analysis of antiradical phenolic constituents from fourteen edible Myrtaceae fruits. Food Chemistry, v. 109, n. 4, p. 883–890, 2008. REZENDE, D.F. Estudo Exploratório de Aplicabilidade dos Meios Supercríticos para Extração e Processamento de Óleos Vegetais com Ênfase em Controle Aplicado à Unidade 33 Extratora. 1998. Tese (Doutorado em Engenharia Química) – Faculdade de Egenharia Química, Universidade Estadual de Campinas, 1998. 178 p. RICHTER, B.E.; JONES, B.A.; EZZELL, J.L.; PORTER, N.L. Accelerated solvent extraction: a new technique for sample preparation. Analytical Chemistry, v. 68, p. 10331039, 1997. RIERA, E.; BLANCO, A.; GARCÍA, J.; BENEDITO, J./ MULET, A.; GALLEGOJUÁREZ, J.A.; BLASCO, M. High-power ultrasonic system for the enhancement of mass transfer in supercritical CO2 extraction processes. Ultrasonics, v. 50, n. 2, p. 306-309, 2010. ROBERT, P.; CARLSSON, R.M.; ROMERO, N.; MASSON, L. Stability of spray-dried encapsulated carotenoid pigments from rosa mosqueta (Rosa rubiginosa) oleoresin. Journal of The American Oil Chemist’s Society, v. 80, n.11, 2003. ROMDHANE, M.; GOURDAN, C. Investigation in solid–liquid extraction: Influence of ultrasound. Chemical Engineering Journal, v. 87, p. 11−19, 2002. SANDLER, S.I. Chemical and Engineering Thermodynamics (second edition). New York: Wiley InterScience, 1989. p. 622. SANTOS, D.T.; MEIRELES, M. A.A. Carotenoid Pigments Encapsulation: Fundamentals, Techniques and Recent Trends. The Open Chemical Engineering Journal, v. 4, p. 42-50, 2010. SANTOS, D.T.; MEIRELES, M.A.A. Jabuticaba as a source of functional pigments. Pharmacognosy Reviews, v. 3, n. 5, p. 127–132, 2009. SELIM, K.; TSIMIDOU, M.; BILIADERIS, C.G. Kinetic studies of degradation of saron carotenoids encapsulated in amorphous polymer matrices. Food Chemistry, v. 71, p. 199206, 2000. SILVA, G. F.; GAMARRA, F.M. C.; OLIVEIRA, A.L.; CABRAL, F.A. Extraction of Bixin From Annatto Seeds Using Supercritical Carbon Dioxide. Brazilian Journal of Chemical Engineering, v. 25, n. 2, p. 419-426, 2008. SUO, Q.L.; HE, W.Z.; HUANG, Y.C.; LI, C.P.; HONG, H.L.; LI, Y.X.; ZHU, M.D. Micronization of the natural pigment-bixin by the SEDS process through prefilming atomization. Powder Technology, v. 154, p. 110-115, 2005. TERCI, Daniela Brotto Lopes. Aplicações analiticas e didaticas de antocianinas extraidas de frutas. 2004. Tese (Doutorado em Química) – Instituto de Química, Universidade Estadual de Campinas, Campinas, 2004. THAR TECHNOLOGIES. Disponível em: http://www.thartech.com. Acesso 16 de agosto de 2010. VILKHU, K.; MAWSON, R.; SIMONS, L.; BATES, D. Applications and opportunities for ultrasound assisted extraction in the food industry - A review. Innovative Food Science and Emerging Technologies, v. 9, p. 161–169, 2008. 34 VINATORU, M. An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrasonics Sonochemistry, v. 8, p. 303−313, 2001. XU, Z.; WU, J.; ZHANG, Y.; HU, X.; LIAO, X.; WANG, Z. Extraction of anthocyanins from red cabbage using high pressure CO2. Bioresource Technology, v. 101, p. 7151-7157, 2010. ZHANG, Y.: SUN, J.; HU, X.; LIAO, X. Spectral alteration and degradation of cyanidin-3glucoside exposed to pulsed electric field. Journal of Agricultural and Food Chemistry, v. 58, p. 3524-3531. 35 36 CAPÍTULO 3 - DETALHAMENTO DA CONSTRUÇÃO E FUNCIONAMENTO DA UNIDADE MULTIPROPÓSITO A unidade multipropósito para desenvolvimento de processos com fluidos pressurizados construída pode ser utilizada em laboratórios públicos e privados de centros de pesquisa, universidades e indústrias para fins de ensino, pesquisa e desenvolvimento de processos e produtos. A unidade multipropósito possibilita o desenvolvimento e realização de diferentes processos com fluidos pressurizados, tais como extração com fluidos pressurizados: extração sub ou supercrítica sem ou com co-solvente, sem ou com separadores, assistida ou não por ultrassom, extração com líquidos pressurizados; extração utilizando explosão com CO2 a alta pressão; pasteurização com CO2 a alta pressão; reação em fluidos pressurizados; formação de micro e nano partículas via RESS (Rapid Expansion of Supercritical Solutions) com precipitação em condições ambientes ou condições de pressão e temperatura escolhidas ou via SAS (Supercritical fluid Anti-Solvent), dentre outros processos. Nos processos de extração, formação de partículas, dentre outros, geralmente solventes ambientalmente corretos são empregados, tais como dióxido de carbono, água ou etanol, porém a referida unidade possibilita a utilização de outros solventes, tais como isopropanol, entre outros. A parte estrutural da unidade foi montada utilizando perfilados quadrados de alumínio de 45 mm (Figura 3.1). Tubulações de aço inox 316 sem costura nos diâmetros de 1/8”e 1/16” foram utilizados para interligar os componentes dos sistemas que suportam pressões de trabalho de até 800 bar. 37 A unidade contempla componentes fixos e móveis, sendo que os móveis foram construídos para que qualquer pessoa possa fazer as pequenas modificações com o mínimo esforço. Figura 3.1 - Foto da parte estrutural da unidade. Os componentes fixos são: uma bomba pneumática, uma “válvula Back Pressure regulator”, uma bomba de HPLC, 2 banhos sendo, um para aquecimento e outro para resfriamento de alguns componentes da unidade, 4 manômetros e 1 termopar para medição da pressão e temperatura, respectivamente, em diferentes pontos do sistema, duas plataformas de tamanhos diferentes construídas para os componentes móveis serem incorporados, 7 válvulas de bloqueio e uma válvula micrométrica com sistema elétrico de aquecimento para evitar congelamento e entupimento da linha devido ao efeito JouleThomsom, 1 sistema de aquecimento elétrico tipo jaqueta (para o vaso de pressão menor), 2 38 controladores de temperatura (um para o sistema de aquecimento da válvula micrométrica e outro para a jaqueta), um rotâmetro e um totalizador de fluxo. E os componentes móveis são: 1 vaso de pressão de 6,57 mL (aproximadamente 2 cm de diâmetro e 4,5 cm de altura) com entrada e saída em suas extremidades, e um banho ultrassônico; 1 vaso de pressão de 500 mL (aproximadamente 6,5 cm de diâmetro e 17 cm de altura) com fundo chato encamisado (possibilita temperaturas de operação de -10 a 90 ºC por possuir duas serpentinas - uma para fluido refrigerante do banho de resfriamento e outra para água do banho de aquecimento) com 3 orifícios em sua extremidade superior que, por exemplo, ora funciona como um separador no processo de extração, possibilitando o fracionamento do extrato obtido, ora funciona como câmara de precipitação nos processo de formação de partículas via RESS e SAS, e diferentes acessórios contendo pequenos fragmentos de tubulações previamente construídas para possibilitar um fácil e rápido rearranjo das linhas da unidade para realizar os diferentes processos. Maiores informações sobre os procedimentos a serem adotados para a realização dos processos que a unidade possibilita desenvolver, bem como fluxogramas/esquemas de cada processo são encontradas no Apêndice IV desta tese. Em uma planta química tradicional constituída de tubulações, bombas, válvulas, filtros, vasos de pressão, etc. estes elementos estão dispostos em um arranjo pré-definido e quaisquer modificações que se deseje realizar na planta necessita da inserção ou retirada de tubulações, bombas, válvulas, etc. Já na unidade multipropósito, nenhuma bomba, válvula, vaso de pressão é retirado da unidade. O que ocorre é somente a inserção (“encaixe”) ou remoção (“desencaixe”) de fragmentos de tubulações seguida de uma posterior limpeza da tubulação para a adequação da unidade para operar um novo processo. 39 Para a realização de outros processos que também podem ser feitos na referida unidade multipropósito (Figura 3.2), tais como reação, impregnação, adsorção, recobrimento de partículas utilizando fluidos pressurizados, dentre outros, é necessário a escolha correta de qual dos acessórios, bem como de qual dos dois vasos de pressão, ou se os dois, serão utilizados. Por exemplo, para o desenvolvimento de extrações, somente o vaso de pressão menor, juntamente com o sistema de aquecimento elétrico e os acessórios que possibilitem a união das partes móveis com as fixas, devem ser utilizados. Figura 3.2 - Fotos da unidade multipropósito. A - Vista de frente da unidade; B - Sistema ultrassônico quando acoplado à unidade; C - Vista do sistema de aquecimento do vasos de pressão menor: D - Vista lateral da unidade. 40 Do modo como a unidade multipropósito foi projetada ela permite facilmente, ainda, a sua integração/acoplamento com sistemas de análise (por exemplo, sistemas de cromatografia), a sua automação por controle via CLP (Controle Lógico Programável) e IHM (Interface Homem Máquina), assim como a substituição dos seus atuais componentes móveis (vasos de pressão, por exemplo) por componentes com capacidade diferente. Para uma ampliação de escala em graus maiores, a unidade possui uma limitação relacionada à capacidade dos componentes fixos (bombas, banhos, etc.). Porém, com a substituição destes é possível fazer o escalonamento da unidade para quaisquer dimensões. Basicamente, a unidade multipropósito pode ser dividida em 4 partes: Parte 1 - Alimentação do CO2. Esta parte da unidade é composta por bomba pneumática, uma “válvula Back Pressure regulator”, 1 banho de resfriamento, tubulações e válvulas de bloqueio. CO2 é pressurizado até altas pressões. Para isto, o solvente é, primeiramente, refrigerado através da passagem por uma serpentina imersa (extensão de 7 metros) no banho termostatizado de resfriamento (Figura 3.3) para se liquefazer a fim de ser bombeado/pressurizado pela bomba pneumática. Parte 2 - Alimentação do solvente líquido. Esta parte da unidade é composta por bomba de HPLC, tubulações e válvulas de bloqueio. O solvente líquido (H2O, solventes orgânicos) é pressurizado até altas pressões utilizando uma bomba de HPLC. Parte 3 - Desenvolvimento dos processos com fluido pressurizado. Esta parte da unidade é composta por 2 vasos de pressão, banho de aquecimento, banho de resfriamento, sistema de aquecimento elétrico tipo jaqueta (para o vaso de pressão de 6,57 mL), tubulações, válvulas de bloqueio e válvula micrométrica com sistema de aquecimento. O fluido pressurizado [puro ou uma mistura (solvente+co-solvente)] executam sua função 41 específica (solvente de extração, solvente ou anti-solvente para formação de partícula, carbonatação de água, manter uma atmosfera asséptica, proporcionar rompimento celular, facilitar a extração de metabólitos secundários de fontes vegetais, inchamento do agente encapsulante, etc.) durante um determinado tempo. Figura 3.3 - Foto da serpentina imersa no banho termostatizado de resfriamento. Parte 4 - Medição dos parâmetros de processo. Esta parte da unidade é composta por medidor de temperatura (1 termopar) e pressão (4 manômetros), controladores de temperatura (um para o sistema de aquecimento da válvula micrométrica e outro para a jaqueta), um rotâmetro e um totalizador de fluxo. A medição dos parâmetros: temperatura e pressão do processo, vazão de CO2 e vazão do solvente líquido são continuamente medidas durante o desenvolvimento do processo. 42 CAPÍTULO 4 - ANTIOXIDANT PIGMENT EXTRACTION USING A HOMEMADE PRESSURIZED SOLVENT EXTRACTION SYSTEM Diego T. Santos and M. Angela A. Meireles Trabalho submetido ao periódico International Journal of Food Engineering. 43 Key words Antioxidant pigments, Pressurized Solvent Extraction, Anthocyanins, Bixin, Home-made equipment Abstract Increasing reports on health hazards and toxicity of synthetic pigments are driving the food industry towards application of natural colorants in an increasing number of processed food products. The attention that natural dyes is getting is also due to the functional properties attributed to some of these pigments. Commonly, conventional extraction methods are used to extract these compounds from natural sources, nevertheless, these methods are, in general, time and solvent consuming and may promote the degradation of these compounds. In order to overcome these drawbacks short time extraction conditions using environmentally friendly pressurized solvents, such as supercritical carbon dioxide and pressurized ethanol have been used successfully to obtain antioxidant pigments-rich extracts. The objective of this work was to validate a home-made pressurized solvent extraction system that can be used for Supercritical Fluid Extraction (SFE) and Pressurized Liquid Extraction (PLE) processes, independently. For this, functional pigment sources such as Annatto seeds and Jabuticaba skins were used as model plant materials. The feasibility of the integration of an ultrasonic system to our home-made unit was also evaluated. It was demonstrated that our home-made pressurized solvent extraction consistently leaded to the expected results with good reproducibility. Furthermore, it was shown that one step (SFE or PLE) or two steps extraction can be effectively carried out using this apparatus. 4.1 Introduction Increasing reports of health hazards and toxicity of synthetic pigments are driving the food industry towards application of natural colorants in an increasing number 44 of processed food products. Commonly, conventional extraction methods are used to extract these compounds from natural sources, nevertheless, these methods are, in general, time and solvent consuming and may promote the degradation of these compounds. In order to overcome these drawbacks short time extraction conditions using pressurized solvent methods, such as Supercritical Fluid Extraction (SFE) and Pressurized Liquid Extraction (PLE) methods have been used successfully to obtain antioxidant pigments-rich extracts [1, 2]. SFE has important advantages over traditional extraction techniques, mainly considering that low volumes of solvents, if any, are employed and that a solvent free extract can be obtained [3]. On the other hand, the use of PLE employing GRAS (Generally Recognized as Safe) such as ethanol and water as solvent allows the attainment of generally higher extraction yields also limiting the use of toxic organic solvents [4]. Moreover, high pressure extraction has other advantages that should be considered, such as the fact that native enzymes, which degrade some compounds, are inhibited by extraction pressure increasing and/or CO2 addition [5]. Carotenoids and anthocyanins are two of the most widely used dyes in food, pharmaceutical and cosmetic industries. Carotenoids are a diverse group of lipophilic compounds that contribute to the yellow to red colors of many foods. They are polyenes consisting of 3 to 13 conjugated double bonds and in some cases 6 carbon ring structures at one or both ends of the molecule [6]. Anthocyanins belong to the phenolic compound class forming an important class of natural pigments found in flowers, fruits, berries, among others. Anthocyanins can be useful as colorants (red and blue colors), and/or for human health, as they are antioxidants and free radical scavengers [7]. 45 Annatto seed extracts are orange/red natural carotenoid colouring agents obtained from the outer coats of the seeds of Bixa orellana L. The Annatto (Bixa orellana L.) is the fruit from “urucuzeiro”, native plant from the tropical America, also cultivated in Asia and Africa. Although it is produced in many tropical countries, Peru and Brazil are the largest producers of this seed. The major pigment bixin, present only in this plant, is a red carotenoid with high socio-economic potential and is extensively used in textile, pharmaceutical, cosmetic and food industries. Carotenoids of Annatto seeds have proven antioxidant activity against free radicals and also, are capable of blocking the sunlight [8]. Jabuticaba skins extracts are purple natural anthocyanin colouring agents obtained from skins of Myrciaria cauliflora. The Jabuticaba (Myrciaria cauliflora) is the fruit from Jabuticabeira, a tree that grows mainly in Brazil, most frequently in the states of São Paulo, Minas Gerais, Rio de Janeiro, and Espírito Santo. Jabuticaba is grape-like in appearance and texture, although its skin is thicker and tougher. This fruit has a dark purple to almost black skin color due to a high content of anthocyanins that covers a white gelatinous flesh inside. It is 3 to 4 cm in diameter and carries from one to four large seeds. The fruits are born directly on the main trunks and branches of the plant, lending to a distinctive appearance to the fruiting tree [7]. Anthocyanins of Jabuticaba skins obtained by different extraction methods have proven antioxidant activity [9]. In this work a home-made pressurized solvent extraction system was designed and built, in which pure supercritical CO2 (SFE) and GRAS solvent (PLE) can be used independently. SFE was used for obtaining Annatto seed extract and PLE for Jabuticaba skin extract. Home-made SFE results were compared to those obtained using a commercial SFE unit using the same processing conditions. The feasibility of the use of an ultrasonic 46 system to assist supercritical CO2 extraction of carotenoid pigments from Annatto seeds using our home-made system was also studied. Moreover, fractionated extractions of Jabuticaba skins were performed in two steps: i) a first step (PLE), wherein pressurized ethanol was used in order to extract polar compounds like anthocyanin pigments; ii) a second step, wherein supercritical CO2 was used in order to recovery low polarity CO2soluble compounds. The chemical compositions of both extracts were determined. 4.2 Materials and methods 4.2.1 Plant Material 4.2.1 Annatto seeds Annatto seeds (Bixa orellana L.) cultivated in the state of São Paulo (variety Piave) were supplied by Agronomical Institute of Campinas (IAC). The humidity of the dried skins was determined by the AOAC method [10]. The seeds at 12.27 % moisture were stored in the dark in a domestic freezer (-10 ºC) (Double Action, Metalfrio, São Paulo, Brazil) until extraction. 4.2.2 Jabuticaba skins Jabuticaba fruits (Myrciaria cauliflora) harvested from a plantation in the State of São Paulo, Brazil, were acquired from a fruit and vegetable market centre (CEASACampinas, Brazil). Immediately after acquired, the fruits were manually peeled and the Jabuticaba skins were dried for a few hours at 45 ºC in an oven with forced air circulation (Marconi, MA 035/1, Piracicaba, São Paulo, Brazil). The humidity of the dried skins was determined by the AOAC method [10]. The dried skins at 66.52 % moisture were cut into 47 approximately 5 mm cubes and stored in the dark in a domestic freezer (-10 ºC) (Double Action, Metalfrio, São Paulo, Brazil) until extraction. 4.2.2 Extraction Procedures A schematic diagram of the home-made pressurized solvent extraction system is given in Figure 4.2.2.1. The equipment consists of a thermostatic bath (Marconi, MA184, Piracicaba, Brazil), an air driven liquid (CO2 pump) (Maximator Gmbh, PP 111, Zorge, Germany), a HPLC pump (Thermoseparation Products, Model ConstaMetric 3200 P/F, Fremoni, USA) and a stainless steel extraction cell (6.57 mL, Thar Designs, Pittsburg, USA) containing syntherized metal filters at the inlet and outlet. 3 4 2 7 3 3 4 5 4 4 6 12 10 1 4 4 11 8 13 9 Figure 4.2.2.1 - Schematic diagram of the home-made pressurized solvent extraction system. 1 CO2 cylinder; 2 CO2 filter; 3 Manometers; 4 Valves; 5 Thermostatic bath; 6 CO2 Pump; 7 Back pressure regulator; 8 HPLC pump; 9 Solvent resevoir; 10 Extraction cell; 11 Micrometric valve with a heating system; 12 Temperature controller; 13 Sampling bottle. 48 4.51 g of plant material (whole Annatto seeds or dried/cut Jabuticaba skins) was first loaded into the extraction cell, filled with extraction solvent (CO2 or ethanol) and then pressurized. During 5 min the sample was heated to ensure that the extraction cell would be at the desired temperature during filling and pressurization procedures. After pressurization, the sample with pressurized solvent was kept statically at the desired pressure for a desired time (static extraction time). Thereafter, the blocking and micrometric valves were carefully opened keeping the pressure constant to the desired flow rate being the extraction cell rinsed with fresh extraction solvent during a certain time (dynamic extraction time). For SFE process, liquid CO2 99.9 % (Gama Gases Especiais Ltda., Campinas, Brazil) was fed from the cylinder through a thermostatic bath at -10 °C to ensure the liquefaction of the fluid and to prevent cavitation, and then it was pumped by the CO2 pump to the extraction cell containing Annatto seeds or Jabuticaba skins previously extracted with pressurized ethanol. The SFE yields (the total amount of extractable solute) were calculated as the ratio between the total extract mass and the feed mass (dry basis). Using Annatto seeds the processing conditions were: Pressure 31 MPa, Temperature 333 K, Static extraction time 10 min and CO2 flow rate 1.74.10-4 kg/s during 240 min. Experiments also using Annatto seeds at the same processing conditions were performed in a commercial SFE system (Spe-ed SFE unit, Applied Separations, model 7071, Allentown, USA) and in the home-made system (Figure 4.2.2.2) working with the extraction cell immerserd into a Unique Maxi Clean 1400 40 kHz (135 W) ultrasonic water bath (Indaiatuba, Brazil) with or without ultrasound irradiation during the dynamic extraction time. To keep the ultrasonic water bath at a fixed temperature it was used a heating water bath with external recycling (Marconi, MA 127BO, Piracicaba, Brazil). The 49 tubing line was washed with ethanol after extraction to recover the extract deposited on it in order to calculate the percentage of residual extract (%). The total extract mass was determined by the sum of the extract obtained during the extraction and the extract recovered in the cleaning process. The extraction pressure and temperature used were chosen to compare our results with those of Chao et al. [17] study. 3 4 2 7 3 3 4 14 11 5 4 4 10 6 4 13 1 4 12 15 8 9 Figure 4.2.2.2 - Schematic diagram of the home-made pressurized solvent extraction system. 1 CO2 cylinder; 2 CO2 filter; 3 Manometers; 4 Valves; 5 Thermostatic bath; 6 CO2 Pump; 7 Back pressure regulator; 8 HPLC pump; 9 Solvent reservoir; 10 Extraction cell; 11 Ultrasound bath; 12 Heating bath; 13 Micrometric valve with a heating system; 14 Temperature controller; 15 Sampling bottle. For Jabuticaba skins previously extracted with pressurized ethanol the processing conditions were: Pressure 300 bar, Temperature 60 ºC, Static extraction time 5 50 min and CO2 flow rate 1.67.10-4 kg/s (during 20 min). The extraction pressure and temperature employed in this work were selected based on our previous experiments. For PLE process, ethanol 99.5 % (Ecibra, Santo Amaro, Brazil) was pumped directly to the extraction cell containing Jabuticaba skins by the HPLC pump. Based on our previous experiments, extraction pressure, temperature, static extraction time and solvent flow rate were set at 50 bar, 80 ºC, 9 min and 1.67 mL/min (during 12 min), respectively. After PLE, anthocyanin extracts were rapidly cooled to 5 °C in ice water to prevent anthocyanin degradation. Subsequently, the extraction cell was exaustively purged with a flow rate of 0.71 kg/h of carbon dioxide 99.9% (Gama Gases Especiais Ltda., Campinas, Brazil) during 8-9 min to ensure that no residual anthocyanin extract solution would be into the extraction cell. At the end, ethanol from the extract solution was evaporated using a rotary evaporator (Laborota, model 4001, Vertrieb, Germany), with vacuum control (Heidolph Instruments Gmbh, Vertrieb, Germany) and thermostatic bath at 40 °C. All the extracts were stored (- 10 ºC) in the dark until analysis. All extractions were done in duplicate. 4.2.3 Extract Characterization 4.2.3.1 From Jabuticaba skins 4.2.3.1.1 Anthocyanin content The anthocyanin content of the Jabuticaba skin extract obtained by PLE and SFE method was determined using the pH differential method exactly as described by Santos et al. [9], which relies on the structural transformation of the anthocyanin chromophore as a function of pH. 51 4.2.3.1.2 Thin-Layer Chromatography (TLC) The supercritical extracts from Jabuticaba skins previously extracted with pressurized ethanol were fractionated by thin-layer chromatography (TLC). The TLC was performed using silica plates (20 x 20 cm, 1-mm height, Merck, Darmstadt, Germany) and four different sprays to reveal the compounds present in the extracts. The mobile phase used was composed by hexane 70 % v/v (96 %, P.A., Merck, Darmstadt, Germany) and ethyl acetate 30 % v/v (99.5 %, P.A., Merck, Darmstadt, Germany). 2-Diphenylpicrylhydrazyl radical (DPPH) a purple-colored stable free radical is reduced into the yellow colored diphenylpicryl hydrazine. The test was performed with a rapid TLC screening method using a 0.2 % (v/v) DPPH in Methanol. Thirty minutes after spraying active compounds, if the extract has antioxidant activity, yellow spots appear against purple background. To observe compounds as flavonoids on the ultraviolet light (365 nm) the spray solution of 2-aminoethyl diphenylborinate (Sigma, lot 123k2512, U.S.A.) was 1 % in methanol. To observe the compounds of the volatile oil on the visible and ultraviolet (365 nm) light spray of anisaldehyde solution was used. Finally, to observe alkaloids on ultraviolet (254 nm) light no treatment was done and to observe alkaloids on visible light the spray solution of Dragendorff was used [11]. 4.2.4 Statistical Analysis For establishing the statistical significant differences or similarities between the values of extraction yields obtained using different SFE systems/configurations, the Tukey’s test was used. A confidence coefficient of 95 % was used for the comparison of all the mean’s pairs. 52 4.3 Results and discussion 4.3.1 Obtaining Annatto seed extracts SFE was used for obtaining Annatto seed extracts. Home-made SFE results were compared to those obtained using a commercial SFE using the same processing conditions. The feasibility of the use of an ultrasonic system to assist supercritical CO2 extraction of carotenoid pigments from Annatto seeds using our home-made apparatus was also studied. Figure 4.3.1.1 shows that the behavior of the extraction curves was very similar, independently of the system/configuration used. Nobre et al. [12] using a similar SFE apparatus observed analogous extraction curves for pigment extraction using also pure supercritical CO2 and whole Annatto seeds. On the other hand, it seems that the recoveries of pigments obtained were low and decreased with the use of our home-made system (Figure 4.3.1.1). Moreover, the recoveries were even lower with the use of ultrasonic system to assist supercritical CO2 extraction. In order to verify if the ultrasonic irradiation has affected negatively the extraction process a control experiment was done, using the ultrasonic system as only a water bath heating for the extraction cell. It was demonstrated that the recovery of the pigments was not affected by the ultrasonic irradiation. However, apparently the use of a different system to heat the extraction cell leaded to recovery decrease. 53 4 3.5 Yield (%) d.b. 3 2.5 2 1.5 1 0.5 0 0 40 80 120 Time (min) 160 200 240 Figure 4.3.1.1 - Recovery of pigments from Annatto seeds as a function of time using different SFE systems/configurations: ■ Commercial SFE; □ Home-made SFE using electric heating; ● Home-made Ultrasound Assisted SFE; ○ Home-made SFE using water bath heating. When the extraction yields were calculated after 240 min summing the extract obtained during the extractions with the extract recovered in the cleaning of the tubing line after the extraction cell, it was confirmed that the recovery decrease using the home-made system, independently of the configuration, was due to a large amount of residual extract depositated in the exit tubing line and not to the SFE system/configuration employed (Figure 4.3.1.2). Table 4.3.1.1 shows that a significant higher amount of residual extract deposited in the tubing line when using our home-made system, independently of the configuration, compared to those obtained using the commercial SFE apparatus. 54 Home-made SFE using water bath heating Home-made Ultrasound Assisted SFE Home-made SFE using electric heating Comercial SFE 0 0,5 1 1,5 2 2,5 3 3,5 4 Yield (%) Figure 4.3.1.2 - Extraction yields (%) (after 240 min) using different SFE systems/configurations. Comparing the extraction yield values (after 240 min) obtained using our homemade system, independently of the configuration, to those obtained using the commercial SFE apparatus at the same processing conditions, it was verified by Tukey’s test that their differences were not significant, indicating that statistically our home-made system may produce equal extraction yields with similar percentage standard deviation (Table 4.3.1.1), demonstrating that this system also produces experimental data with good reproducibility. Additionally, it was concluded that the use of our ultrasonic system to enhance supercritical CO2 extraction of antioxidant pigments from Annatto seeds have not influenced the extraction process. Table 4.3.1.1 - Percentage of residual extract of total extract (%) deposited in the exit tubing line when using different SFE systems/configurations. Residual Extract (%) Commercial SFE 7.17 ± 1.11 Home-made SFE using electric heating 32.95 ± 4.80 Home-made Ultrasound Assisted SFE 35.24 ± 2.59 Home-made SFE using water bath heating 37.74 ± 5.49 55 In contrast to our findings, some authors have demonstrated that SFE assisted by ultrasound give higher extraction yields than SFE without ultrasound irradiation for extracting diverse bioactive compounds [13-15]. A possible explanation to our results may be related to the low ultrasonic power of our system. Balachandran et al. [13] using similar ultrasonic system (ultrasonic transducer placed outside the extraction cell and inside a water bath) with a 3.7-fold higher ultrasonic power than that used in the present work obtained a significant increase in the extraction process of pungent compounds from ginger sample. Other studies using similar ultrasonic power or even lower than that used in our study succesfully resulted in better extraction yields through integrating the ultrasonic transducer inside the supercritical extractor or in the upper part of the extraction cell [14]. Thus, to have an effective positive influence of the ultrasound irradiation during our SFE processes or the transducer power should be increased or the transducer should be placed inside the extractor. Comparing the results of this study to literature data we observed that the yield differences might be mainly associated to the effects of the origin, year of production, preprocessing storage conditions, treatments of the samples, among others [16]. Chao et al. [17] obtained at the same extraction pressure and temperature and similar CO2 flow rate and extraction dynamic time approximately 1.47-fold lower extraction yields than those obtained in this study. 4.3.2 Obtaining Jabuticaba skin extracts Fractionated extractions of Jabuticaba skins were performed in two steps: i) a first step (PLE), wherein pressurized ethanol was used in order to extract polar compounds like anthocyanin pigments; ii) a second step, wherein supercritical CO2 was used in order to recover low polarity CO2-soluble compounds. The chemical composition the PLE extract was characterized to the presence of anthocyanins. Visually the extract solution presented a purple color. The anthocyanin content of the PLE extract was 2.49 ± 0.54 mg cyanidin-3-glucoside/g dry material. Otherwise, during the re-extraction of the Jabuticaba skins previously extracted by PLE 56 using supercritical CO2 an extract presenting a yellow-green color, with insignificant anthocyanin content, was obtained at the processing conditions employed. Previously we have verified that these yellow-green extracts present antioxidant activity and are only extracted from Jabuticaba skins using pure CO2. Given that SFE experiments using ethanol as co-solvent resulted in a purple extract (rich in anthocyanins) (results not shown), in order to obtain only the yellow-green extract after the first step, CO2 was purged into the extraction cell to eliminate almost all residual ethanol from the vegetable matrix that could act as co-solvent. The SFE extraction yield employing pressure and temperature of 30 MPa and 333 K, respectively, was 1.02 ± 0.15 % and the SFE extracts (second step) were characterized by thin-layer chromatography (TLC). Figure 4.3.2.1 shows that both extracts present similar phytochemical profile in the TLC plates, indicating that this fractionated extraction process is reproducible. Indeed, it might be suggested that the designed home-made system can produce reliable results also to this combined extraction process. In Figure 4.3.2.1-a is shown that the SFE extract presents antioxidant activity. Flavonoid compounds have characteristics to form blue fluorescent zones in UV-365 nm. Natural products (NP) reagent revealed blue fluorescence zones in SFE Jabuticaba skin extracts near the solvent front which can be seen in figure 4.3.2.1-b. According to Wagner and Bladt [11], depending on the structural type, flavonoids show dark yellow, green or blue fluorescence. Since a blue fluorescence has similar Rf values to the yellow spots of the DPPH plate, the antioxidant activity of this extract could be related to the flavonoid content. Essential oils are volatile, odorous principles consisting of terpenes alcohols, aldehydes, ketones and esters (> 90 %) and/or phenylpropane derivatives. The anisaldehide-sulphuric acid reagent revealed (Figure 4.3.2.1-c) two green-violet zones that can be terpenoids, propylpropanoids, pungent and bitter principles and saponins due their coloration characteristics on visible light. According to Wagner and Bladt [11], most of these compounds develop fluorescence under UV-365, which was observed for these 57 extracts (Figure 4.3.2.1-d). Since one of the green-violet zones is placed at a similar length in the TLC place of the yellow spots of the DPPH plate and supercritical CO2 is a good solvent for essential oils extraction [3], probably the antioxidant activity of this extract is associated to the essential oil content.The presence of alkaloids was not detected after treatment with Dragendorff reagent for the Jabuticaba skin extract obtained by SFE. Seabra et al. [5] also observed these yellow-green extracts using elderberry pomace as anthocyanin source using supercritical CO2. It was suggested in their experiments, that these yellow-green extract are rich in phenolic compounds although no antioxidant activity evaluation and chemical characterization were done. Figure 4.3.2.1 - Thin-layer chromatography (TLC) plates of jabuticaba extracts obtained using supercritical CO2 (1 - Extract obtained at 30 MPa/333 K run 1; 2 – Extract obtained at 30 MPa/333 K run 2; a) Revealed using DPPH reagent on visible light; b) Revealed using Natural products (NP) reagent on light (365 nm); c) Revealed using anisaldehidesulphuric acid reagent on visible light; d) Revealed using anisaldehide-sulphuric acid reagent on ultraviolet light (365 nm). 58 4.4 Conclusions In this work we validated a home-made pressurized solvent extraction system that can be used for Supercritical Fluid Extraction (SFE) and Pressurized Liquid Extraction (PLE) processes, independently, using Annatto seed and Jabuticaba skin as model plant materials. The feasibility of the integration of a ultrasonic system to our home-made unit was not succesfully achieved, though with some small modifications Ultrasound-Assisted supercritical Fluid Extraction (USFE) could be carried out using this home-made apparatus. Fractionated extractions of Jabuticaba skins were successfully performed using our apparatus, producing two valuable extracts with antioxidant activities: one rich in anthocyanin pigments; another rich in lipophilic compounds that can be essential oil and less polar flavonoid compounds. Acknowledgements The authors are grateful to CNPq for financial support. Diego T. Santos thanks CNPq (141894/2009-1) for the doctorate fellowship. References [1] G. F. Silva, F. M. C. Gamarra, A. L. Oliveira, F. A. Cabral. Brazilian J. of Chem. Eng., 25 (2008), 419-426. [2] P. Arapitsas, C. Turner. Talanta, 74 (2008) 1218-1223. [3] D. T. Santos, M. A. A. Meireles. Recent Patents on Eng., In press (2010). [4] Z. Y.Ju, L. R. Howard. J. Agric. Food Chem., 51 (2003) 5207-5213. [5] I. J. Seabra, M. E. M. Braga, M. T. Batista, H. C. Sousa. J. Supercrit. Fluids, 54 (2010) 145-152. [6] D. J. McClements, E. A. Decker, Y. Park, J. Weiss. Crit. Rev. Food Sci. Nutrition, 49 (2009) 577-606. [7] D. T. Santos, M. A. A. Meireles. Pharmacog. Rev., 3 (2009) 127-132. 59 [8] C. L. C. Albuquerque, M. A. A. Meireles. Estimate of the Cost of Manufacturing (COM) of Natural Colorants Obtained by Supercritical Fluid Extraction. II Iberoamerican Conference on Supercritical Fluids, Natal, Brazil (2010). [9] D. T. Santos, P. C Veggi, M. A. A. Meireles. J. of Food Eng., 101 (2010) 23-31. [10] AOAC (Association of Official Analytical Chemists) Official analysis. 16ª ed. 3ª rev. Washington, USA (1997). [11] H. Wagner, S. Bladt, S., Plant Drug Analysis: A Thin Layer Chromatography Atlas, 2ª ed., Springer-Verlag Berlin Heidelbeg, New York, USA (2001). [12] B. P. Nobre, R. L. Mendes, E. M. Queiroz, F. L. P. Pessoa, J. P. Coelho, A. F. Palavra. Brazilian J. Chem. Eng., 23 (2006) 251-258. [13] S. Balachandran, S. E. Kentish, R. Mawson, M. Ashokkumar. Ultras. Sonochem., 13 (2006) 471-479. [14] E. Riera, A. Blanco, J. García, J. Benedito, A. Mulet, J. A. Gallego-Juárez, M. Blasco. Ultrasonics, 50 (2010) 306-309. [15] A. Hu, S. Zhao, H. Liang, T. Qiu, G. Chen. Ultras. Sonochem., 14 (2007), 219-224. [16] M. Al-Farsi, C. Alasalvar, A. Morris, M. Baron, F. Shahidi. J. Agric. Food Chem., 53 (2005) 7592-7599. [17] R. R. Chao, S. J. Mulvaney, D. R. Sanson, F. Hsieh, M. S. Tempesta. J. Food Sci., 56 (1991) 80-83. 60 CAPÍTULO 5 - PRESSURIZED LIQUID EXTRACTION OF PHENOLIC COMPOUNDS FROM JABUTICABA SKINS: OPTIMIZATION STUDY Diego T. Santos and M. Angela A. Meireles Trabalho submetido ao periódico Journal of Food Engineering. 61 Key words Anthocyanins, Phenolic compounds, Pressurized Liquid Extraction, Jabuticaba skins, Myrciaria cauliflora Abstract Conventional extraction methods are normally used for anthocyanin extraction, nevertheless, these methods are time and solvent consuming and may promote the degradation of these compounds. In order to overcome these drawbacks high-temperatureshort time extraction conditions have been used successfully to obtain an anthocyanin-rich extract. Optimization of the extraction of anthocyanins and other phenolic compounds from jabuticaba skins, a promising Brazilian source of these compounds, was studied using Pressurized Liquid Extraction. Optimization study was carried out using ethanol as solvent, extraction pressure (50-100 bar), temperature (40-120 ºC) and static extraction time (3-15 min) as independent variables. The optimum PLE conditions for all response variables were estimated, however specific PLE conditions (highest recovery of anthocyanins) were chosen for comparison with a conventional Low Pressure Liquid Extraction (LPLE) method in terms of yield, composition (anthocyanins and phenolic compounds), and economical feasibility. Response surface methodology successfully optimized and modeled our extraction process. 5.1 Introduction Anthocyanins belong to the phenolic compound class forming an important class of natural pigments found in flowers, fruits, berries, among others. Anthocyanins can 62 be useful as colorants (red and blue colors), and/or for human health, as they are antioxidants and free radical scavengers (Santos and Meireles, 2009). Conventional analytical anthocyanin extraction methods depend on solid-liquid extraction, where organic solvents such as methanol, ethanol or acetone are normally used. However, classical extraction methods are time and solvent consuming and may promote the anthocyanin degradation during the extraction process (Santos et al., 2010). Elevated temperatures are reported to improve the efficiency of extraction due to enhanced diffusion rate and solubility of analytes in solvents. Nevertheless, elevated extraction temperatures may simultaneously increase the rate of anthocyanin degradation. Conventional extraction and purification/concentration of anthocyanins is typically conducted at temperatures ranging from 20 to 50 °C, because temperatures > 70 °C have been shown to cause rapid anthocyanin degradation (Ju and Howard, 2003). As the degradation rate of anthocyanins is time and temperature dependent, high-temperature-short time extraction conditions have been used successfully to obtain an anthocyanin-rich extract (Gizir et al., 2008). The use of Pressurized Liquid Extraction (PLE) technique is an attractive alternative, since it allows fast extraction and small solvent consumption. Sometimes referred to as Pressurized Solvent Extraction (PSE®) and Accelerated Solvent Extraction (ASE®), PLE has been successfully used for extraction of thermolabile anthocyanins from various plants (Petersson et al., 2010). PLE enables rapid extraction (less than 30 min) of analytes in a closed and inert environment, under high pressures (no higher than 200 bar) and temperatures (room temperature-200 °C). A major advantage of PLE over conventional solvent extraction 63 methods conducted at atmospheric pressure is that pressurized solvents remain in a liquid state well above their boiling points, allowing for high-temperature extraction. These conditions improve analyte solubilities and the desorption kinetics from the matrices (Richter et al., 1997). Hence, extraction solvents including ethanol and water that are inefficient in extracting phytochemicals at low temperatures may be much more efficient at elevated PLE temperatures (Ju and Howard, 2003). The increasing interest in the health-beneficial properties of phenolic compounds, such as anthocyanins, has prompted researchers to screen plants for phenolic content and antioxidant capacity. Recently, it has been reported by our research group that jabuticaba (Myrciaria cauliflora) skins seem to be a promising source of antioxidant compounds including anthocyanins. Jabuticaba fruit has a dark purple to almost black skin that covers a white gelatinous flesh inside (Santos et al., 2010). This research was undertaken to evaluate PLE of anthocyanins and other phenolic compounds from the skins of a highly pigmented Brazilian fruit, called jabuticaba, (Santos and Meireles, 2009) and to investigate how extraction pressure, temperature and static extraction time affect PLE process using ethanol as solvent. PLE process was optimized by using Response Surface Methodology (RSM) for the extraction yield, anthocyanin and total phenolic compounds extraction. Specific PLE conditions (highest recovery of anthocyanins) were chosen for comparison with a conventional Low Pressure Liquid Extraction (LPLE) method in terms of extraction yield and extract composition (anthocyanins and phenolic compounds). 64 5.2 Material and methods 5.2.1 Plant Material Jabuticaba fruits (Myrciaria cauliflora) harvested from a plantation in the State of São Paulo, Brazil, were acquired from a fruit and vegetable market centre (CEASACampinas, Brazil). Immediately after acquiring, the fruits were manually peeled and the jabuticaba skins were dried for a few hours at 45 ºC in an oven with forced air circulation (Marconi, MA 035/1, Piracicaba, São Paulo, Brazil). The dried skins (66.52 % moisture) were cut into approximately 5 mm cubes and stored in the dark in a domestic freezer (-10 ºC) (Double Action, Metalfrio, São Paulo, Brazil) until extraction. 5.2.2 Extraction Procedures 5.2.2.1 Pressurized Liquid Extraction (PLE) The pressurized liquid extraction set up is given in Figure 5.2.2.1. The solvent was pumped by a HPLC pump (Thermoseparation Products, Model ConstaMetric 3200 P/F, Fremoni, USA) into the extraction cell placed in an electrical heating jacket at the desired temperature until the required pressure was obtained. All connections within the system were made of stainless steel tubes (1/16” and 1/8”). After PLE, anthocyanin extracts were rapidly cooled to 5 °C in ice water to prevent anthocyanin degradation. Subsequently, the extraction cell was exaustively purged with a flow rate of 0.71 kg/h of carbon dioxide 99.9% (Gama Gases Especiais Ltda., Campinas, Brazil) during 8-9 min to ensure that no residual anthocyanin extract solution would be into the extraction cell. At the end, ethanol 99.5 % (Ecibra, Santo Amaro, Brazil) from the extract solution was evaporated using a rotary evaporator (Laborota, model 4001, Vertrieb, Germany), with vacuum control (Heidolph Instruments Gmbh, Vertrieb, 65 Germany) and thermostatic bath at 40 °C. All the extracts were stored (- 10 ºC) in the dark until being used in the encapsulation processes. Solvent reservoir HPLC Pump CO2 reservoir Extractor Column Blocking valve Micrometric valve Sampling bottle Figure 5.2.2.1 - Pressurized liquid extraction set-up. To determine the effects of extraction pressure, temperature and static extraction time on extraction yield, recovery of anthocyanins and phenolic compounds, the 13 experiments listed in Table 5.2.2.1 were performed as described above. All the extractions were performed in duplicate. Experiments 9 and 13, central points of the 23 and complementary 22 full factorial designs, respectively, were done in triplicate. Table 5.2.2.1 - The experimental design of phenolic compound extraction from jabuticaba skins Experiment Pressure (bar) Temperature (ºC) Static extraction time (min) 1 50 40 3 2 100 40 3 3 50 80 3 4 100 80 3 66 5 50 40 9 6 100 40 9 7 50 80 9 8 100 80 9 9 75 60 6 10 50 80 15 11 50 120 9 12 50 120 15 13 50 100 12 5.2.2.2 Conventional Low Pressure Liquid Extraction (LPLE) Conventional solid-liquid extraction was performed in the percolation regime at room temperature (22-23 ºC), with the solvent/solution pumped continuously through the biomass to increase the efficiency of intraparticle mass transfer. 10 g of dried jabuticaba skin pieces were packed in a bed column and 100 mL of ethanol 99.5 % (Ecibra, Santo Amaro, Brazil)/solution (solvent plus extract) passed through the packed bed slowly making sure that the plant material to be extracted was always covered with the remaining extraction solvent (flow rate of 28.02 cm3/min) towards the bottom of the column under gravity for 2 hours. After extraction, the solvent was evaporated and the extract was stored, exactly as described before. 5.2.3 Extract Characterization 5.2.3.1 Anthocyanin content The Total Monomeric Anthocyanin (TMA) content was determined using the pH differential method described by Giusti and Wrolstad (2001), which relies on the 67 structural transformation of the anthocyanin chromophore as a function of pH. A UV–Vis spectrophotometer (Hitachi, model U-3010, Tokyo, Japan) was used for spectral measurements at maximum absorbance wavelength (approximately 512 nm) and 700 nm, using distilled water as blank. For this purpose, 20 mg of extract were dissolved in 10 cm3 of distilled water. Two dilutions of the sample were prepared: one with hydrochloric acid/potassium chloride buffer pH = 1.0 and the other with sodium acetate/acetic acid buffer pH = 4.5. The pH values of the buffers were measured using a pH-meter (Digimed, model DM-22, São Paulo, Brazil) calibrated with buffers at pH 4.01 and 6.86 and they were adjusted with HCl (99.5 % Ecibra, Santo Amaro, Brazil). Aliquots of extract were brought to pH 1.0 and 4.5; 15 min later, the absorbance of each equilibrated solution was measured at the maximum absorption wavelength and 700 nm for haze correction using a 1 cm path length glass cells (l). The dilution factor (DF) was determined (final volume per original sample volume). The difference in absorbance values at pH 1.0 and 4.5 is directly proportional to the TMA concentration. The anthocyanin content was calculated as cyanidin-3-glucoside (MW = 449.2 g/mol and ε = 26.900 L/mol.cm) and the results were expressed as mg Cy-3-glucoside/g dry material. The absorbance of the diluted sample (A) and the TMA were calculated with Equations (1) and (2): A = ( A max − A 700 ) pH 1, 0 − ( A max − A 700 ) pH 4,5 TMA ( mg / L ) = ( A x MW x DF x 1000 ) / (ε x l ) (1) (2) 5.2.3.2 Total Phenolic Compounds content Total phenolic content was estimated using the Folin-Ciocalteau method for total phenolics, based on a colorimetric oxidation/reduction reaction of phenols (Singleton and Rossi, 1965). Briefly, 1 cm3 of sample (1 mg of extract/1 cm3) was mixed with 1 cm3 68 of Folin and Ciocalteu’s phenol reagent. After 3 min, 1 cm3 of saturated sodium carbonate solution (50 % w/w) was added to the mixture and the volume adjusted to 10 cm3 with distilled water. The reaction was kept in the dark for 90 min at room temperature, after which the absorbance was measured at 725 nm with a UV–Vis Spectrophotometer Hitachi model U-3010 (Tokyo, Japan). For control sample, 1 cm3 of distilled water was taken. The results were calculated on the basis of the calibration curve of gallic acid (GA) and expressed as milligrams of gallic acid equivalents (GAEs)/g dry material. 5.2.4 Statistical Analysis Statistical analyses were performed using Pareto analysis with consequent Experimental Design. ‘Statistica’ software (release 7, StatSoft, Tulsa, USA) was first used to calculate the effects of the extraction conditions (pressure, temperature and static extraction time) by a 23 full factorial design on extraction yield, on the recovery of anthocyanins and phenolic compounds employing pressure, temperature and static extraction time ranges of 50-100 bar, 40-80 ºC and 3-9 min, respectively (experiments 1-9 in Table 5.2.2.1). As the optimum extraction conditions were not achieved a complementary 22 full factorial design at constant pressure (50 bar) employing larger temperature (80-120 ºC) and static extraction time (9-15 min) ranges (experiments 10-13 in Table 5.2.2.1) was carried out. The selected optimum extraction process conditions were estimated through three dimensional response surface plots of the independent variables and each dependent variable. Response Surface Methodology (RSM) analysis was also applied on the data for prediction of optimum conditions of PLE for extraction yield, anthocyanins and total phenols from jabuticaba skins. 69 5.3 Results and discussion 5.3.1 Effects of process variables on the extraction yield The effects of extraction pressure, temperature and static extraction time on the extraction yield were evaluated. At a variable range of 50-100 bar, 40-80 ºC and 3-9 min this response variable was significantly (95 % confidence level, p<0.05) affected only by the extraction temperature. On the other hand, at a variable range of 80-120 ºC and 9-15 min at a fixed extraction pressure of 50 bar both variables were statistically insignificant (95 % confidence level, p<0.05) for extraction yield. The relationship between the extraction yield, extraction temperature and static extraction time is depicted in Figure 5.3.1. An increase in extraction temperature is reported to improve the efficiency of extraction due to enhanced diffusion rate and solubility of analytes in solvents, nevertheless, high extraction temperatures may simultaneously increase the degradation rate of some interest compounds, such as anthocyanins, due to its high thermolability (Ju and Howard, 2003), thus reducing the overall extraction yield. Figure 5.3.1 - Three-dimensional response surfaces of the influence of extraction temperature and static extraction time on the extraction yield. 70 5.3.2 Effects of process variables on the recovery of anthocyanins The effects of extraction pressure, temperature and static extraction time on the recovery of anthocyanins from jabuticaba skins were also evaluated. At a variable range of 50-100 bar, 40-80 ºC and 3-9 min, as occurred to the response variable extraction yield, the extraction of anthocyanins was significantly (95 % confidence level, p<0.05) affected only by the temperature. Figure 5.3.2.1a and 5.3.2.1b present the Pareto chart concerning the effect (95% confidence level, p<0.05) of extraction variables on the recovery of anthocyanins, where one can see that at 50-100 bar, 40-80 ºC and 3-9 min the extraction temperature had a positive significant effect on this response variable, while at 80-120 ºC and 9-15 min (at a fixed pressure of 50 bar) temperature and interaction between temperature and static time affected negatively the extraction of anthocyanin pigments. The relationship of the recovery of anthocyanins, extraction temperature and static extraction time is depicted in Figure 5.3.2.2. Arapitsas and Turner (2008) observed similar results for the extraction of anthocyanins from red cabbage using also pressurized liquid extraction (PLE). Extraction temperature and static extraction time ranges of 80-120 ºC and 6-11 min (at a fixed pressure of 50 bar) were employed in their study; the optimal anthocyanin extraction was achieved using short extraction time (7 min) and medium temperature (99 ºC). In agreement with our results, according to the authors temperature seems to highly influence the anthocyanin extraction. The temperature range employed (80-120 ºC) by Arapitsas and Turner was decided after preliminary studies that had shown that higher temperatures (> 120 ºC) caused anthocyanin degradation, and lower temperatures (< 80 ºC) gave poor extraction efficiency of these pigments. In the present work, using a larger temperature range (40-120 ºC) it was observed analogous results (Figure 5.3.2.2). As the degradation rate of 71 anthocyanins is also time-dependent, high-temperature-short time extraction conditions have been used successfully to obtain an anthocyanin-rich extract (Gizir et al., 2008). Figure 5.3.2.1 - Effect (p<0.05) of extraction variables on the recovery of anthocyanins: a) at 50-100 bar, 40-80 ºC and 3-9 min; b) at 80-120 ºC and 9-15 min at a fixed extraction pressure of 50 bar (1, pressure; 2, temperature; 3, static time). 72 Figure 5.3.2.2 - Three-dimensional response surfaces of the influence of temperature and static extraction time on recovery of anthocyanins. Corroborating our results, Pompeu et al. (2009) have also concluded that extraction temperature should not be increased indefinitely due to degradation of heat sensitive phenolic compounds present in fruits of Euterpe oleracea as vegetable source, such as anthocyanins. Thus, a maximum limit of temperature should be fixed and this will depend on other factors (mainly time). Usually, in the studies about the recovery of anthocyanins, a compromise between high temperature and long time, that would increase the extraction, and low temperature and short time, that would avoid the possibility of thermodegradation of anthocyanins, is searched. Based on the achievements of Petersson et al. (2010) studying the extraction/degradation of anthocyanins from red onion during the pressurized liquid 73 extraction procedure we can elucidate what may have occurred in our study. Petersson and co-authors verified that during all the extraction process, anthocyanin degradation and extraction occur at the same time. Thus, it is suggested that in our work after a certain static extraction time, a maximum level of anthocyanins will be reached, then degradation effects would overcome the extraction effects, thus decreasing the anthocyanin level and consequently the overall extraction yield. 5.3.3 Effects of process variables on the recovery of phenolic compounds The effects of extraction pressure, temperature and static extraction time were also studied for the extraction of other phenolic compounds. At 50-100 bar, 40-80 ºC and 39 min, extraction temperature exerted a significant influence again. Otherwise, extraction pressure, static extraction time, their interaction, interaction between extraction pressure and temperature and interaction between all three variables were as well statistically significant. Figure 5.3.3.1a and 5.3.3.1b present the Pareto chart concerning the effect (95% confidence level, p<0.05) of extraction variables on the recovery of total phenolic compounds, where it is shown that at 50-100 bar, 40-80 ºC and 3-9 min the extraction temperature, static extraction time, interaction between extraction pressure and static extraction time and interaction between all three variables had a positive significant effect on this response variable, while extraction temperature and interaction between extraction temperature and pressure affected negatively the extraction of all phenolic compounds. At 80-120 ºC and 9-15 min (at a fixed extraction pressure of 50 bar) extraction temperature and static extraction time continuously influenced positively the recovery of total phenolic compounds, but their interaction affected negatively this response variable. The relationship 74 between the recovery of total phenolic compounds, extraction temperature and static extraction time is depicted in Figure 5.3.3.2. Figure 5.3.3.1 - Effect (p<0.05) of extraction variables on the recovery of total phenolic compounds: a) at 50-100 bar, 40-80 ºC and 3-9 min; b) at 80-120 ºC and 9-15 min at a fixed extraction pressure of 50 bar (1, pressure; 2, temperature; 3, static time). 75 Figure 5.3.3.2 - Three-dimensional response surfaces of the influence of temperature and static extraction time on recovery of total phenolic compounds. The results obtained in this work seem to be consistent with current scientific literature. Herrero et al. (2010) extracting phenolic compounds from rosemary using PLE and ethanol as solvent also verified that the highest the extraction temperature, the highest the phenolic compounds extraction. Four temperatures (50, 100, 150 and 200 ºC) were investigated at a constant extraction time and pressure. However, no significant difference was observed between the total phenols extracted at 150 and 200 ºC, indicating that the optimal extraction temperature is near 150 ºC. Indeed, Howard and Pandjaitan (2008) found that near 150 ºC the extraction temperature should be set to effectively extract phenolic compounds from Spinach by PLE method using ethanolic solvent (mixture of ethanol and water; 70:30 v/v). 76 Differences in behavior between total phenolics and anthocyanins could be explained by a higher susceptibility of the specific class of phenolic compounds anthocyanins to high temperature (Cacace and Mazza, 2003). As in our work the main objective is to find the PLE conditions that are more effective for extraction of thermolabile anthocyanins, no higher temperature extraction level than 120 ºC were employed in order to achieve the optimal extraction temperature for total phenolic compounds, which probably could be as well near 150 ºC. 5.3.4 Optimization of the extraction process The optimum PLE conditions for the extraction yields, anthocyanins and total phenols from jabuticaba skins within the experimental variable ranges employed are presented in the Table 5.3.4.1. Table 5.3.4.1 - Optimum PLE conditions for the extraction yields, anthocyanins and total phenols from jabuticaba skins Optimum PLE conditions Response Variables Pressure (bar) Temperature Static (ºC) Extraction Time (min) Extraction yield (%) Anthocyanins (mg Cy-3-glucoside/g 48-52 75-87 8-11 dry 48-51 78-82 8-10 118-120 14-15 material) Total phenols (mg of GAEs/g dry material) 48-50 77 Considering the informations regarding the extraction yield and anthocyanin extraction, the use PLE extraction pressure of 50 bar, temperature of 80 °C and static extraction time of 9 min can result in optimal extraction yield (13.263 %) and anthocyanins (2.139 mg Cy-3-glucoside/g dry material). On the other hand, at these conditions the total phenols was 7.976 mg of gallic acid equivalents (GAEs)/g dry material; 2.34-fold lower than the maximum total phenols (obtained at PLE extraction pressure of 50 bar, temperature of 120 ºC and static extraction time of 15 min). The use of these PLE conditions could be the most appropriate processing conditions to obtain a great amount of extract with a high content of anthocyanins from jabuticaba skins. It is well known that the performance of each technique in terms of anthocyanin and other phenolic compounds extraction and yield produced could be effectively compared minimizing the possible strong effects of the origin, year of production, preprocessing storage conditions and treatments of the sample (Al-Farsi et al., 2005; Dourtoglou et al., 2006; Gizir et al., 2008). Thus, the extraction process at the selected optimum PLE conditions was compared to conventional Low Pressure Liquid Extraction (LPLE) using the same raw material and solvent. The experimental results demonstrated that Pressurized Liquid Extraction procedure was much more effective in extracting anthocyanins and other phenolic compounds from jabuticaba skins (Table 5.3.4.2). Similar values of extraction yield were obtained by both extraction methods, however 2.15 and 1.66-fold more anthocyanins and phenolic compounds, respectively, were extracted using PLE, compared to conventional LPLE. In both extraction processes the solid is stationary and the solvent flows through the bed containing jabuticaba skins, hence for a better comparison we have preferred this conventional LPLE. Even though, in the LPLE process 78 the solvent/solution is pumped continuously through the biomass to increase the efficiency of intraparticle mass transfer of the phenolic compounds extraction was lower than when using PLE process. This fact can be attributed to the use of combined pressure and temperature during the PLE extraction process. Several authors have demonstrated that this combination enhances the extraction of anthocyanins and other phenolic compounds from different sources (Ju and Howard, 2003; Seabra et al., 2010; Corrales et al., 2009; Xu et al., 2010). Table 5.3.4.2 - Predicted and experimental values of responses under optimum PLE conditions (50 bar, temperature of 80 °C and static extraction time of 9 min) and experimental values responses obtained by Conventional Low Pressure Liquid Extraction (LPLE) PLE Values Response Variables Extraction yield (%) LPLE Values Experimental Experimental (mean ± SD) (mean ± SD) 13.26 13.0 ± 0.9 12.1 ± 0.8 2.14 2.4 ± 0.5 1.2 ± 0.2 7.98 7.8 ± 0.4 4.8 ± 0.1 Predicted Anthocyanins (mg Cy3-glucoside/g dry material) Total phenols (mg of GAEs/g dry material) According to our previous studies using the same extraction solvent and raw material (fresh), the recovery of anthocyanins and other phenolic compounds using other extraction methods, such as soxhlet, ultrasound-assisted and agitated solvent extraction, 79 were lower than of those obtained in this work (Santos et al., 2010). This might be due to the adverse effects of drying (pre-processing treatment) of the sample on anthocyanins and other phenolic compounds present in the jabuticaba skins. Gizir et al. (2008), comparing the anthocyanin content of dried black carrot, verified that the anthocyanin content of dried samples was lower than of fresh samples, indicating that during the drying process significant anthocyanin degradation occurred. Since this variation was identified, Gizir and co-authors also focused on comparing their PLE extracts with extracts obtained by other extraction methods using the same dried carrot sample. Herrero et al. (2010) have adopted identical procedure in their studies as well due to the similar reasons. In another previous study by our research group anthocyanins and other phenolic compounds were extracted from fresh jabuticaba skins using the same LPLE apparatus and solvent used in this work, although the results in terms of anthocyanin and total phenolic compounds extraction were 88.15 and 58.84 % higher than those obtained here, respectively (Santos et al., 2009), strengthening our hypothesis. The promising use of pressurized ethanol for the extraction of anthocyanins and phenolic compounds from jabuticaba skins gives the possibility to use a faster, more efficient and more environmentally friendly technique. In fact, the optimized PLE extraction was carried out in less than 21 min using small amounts of solvent (20 mL), while the other low pressure conventional extraction methods took at least 2 h and used 2.25 times more ethanol in each run. By analysis of the experimental extraction kinetics curves (Figure 5.3.4.1) it was possible to further reduce the PLE extraction time (reducing the dynamic extraction time) and consequently reducing the amount of solvent used. 80 Figure 5.3.4.1 - Kinetics curves: a) overall extraction yield; b) recovery of anthocyanins; c) recovery of total phenolic compounds under optimum PLE conditions (50 bar, temperature of 80 °C and 9 min of static extraction time). 81 Figure 5.3.4.1 shows that at the beginning the anthocyanin and total phenolic compounds extraction increases with increasing time, reflecting a faster solubility of anthocyanins and other phenolic compounds into the unsaturated extraction solutions. After a period of time the extraction was maximized into a steady-state extraction, indicating that the mobility of anthocyanins and other phenolic compounds from jabuticaba skins into extraction solution approaches zero in the remaining time. From an industrial point of view, the operational time plays an important role also in the manufacturing cost estimative, once it is related to the number of extraction cycles that can be performed by the extraction unit (Rosa and Meireles, 2005). 5.4 Conclusions The results presented on this contribution show the possibility to recover phenolic compounds, such as anthocyanins, from jabuticaba skins using an environmentally clean extraction technique. The results showed that extraction yield, anthocyanin and other phenolic compounds extraction were most positively affected by extraction temperature. Anthocyanin extraction was also affected by static extraction time indicating that higher temperatures (> 80 ºC) and higher static extraction time (> 9min) caused anthocyanin degradation, and lower temperatures and static extraction times gave poor extraction efficiency of the pigments. Total phenolic compounds extraction was also affected by other variables and their interactions, nevertheless optimum variable conditions were not achieved using the variable ranges employed in this work. The use of PLE conditions set at 50 bar and 80 °C under a static extraction time of 9 min was selected for further economical evaluation analysis since it produce the highest amount of extract with the highest content 82 of anthocyanins. Similar values of extraction yields were obtained by LPLE and PLE at optimized conditions, however 2.15 and 1.66 more anthocyanins and total phenolic compounds, respectively, were extracted using PLE. The experimental values agreed with the predicted values, thus indicating suitability of the model employed and the success of Response Surface Methodology (RSM) in optimizing the extraction conditions. Acknowledgements The authors are grateful to CNPq for financial support. Diego T. Santos thanks CNPq (141894/2009-1) for the doctorate fellowship. References Al-Farsi, M., Alasalvar, C., Morris, A., Baron, M., & Shahidi, F. (2005). Comparison of Antioxidant Activity, Anthocyanins, Carotenoids, and Phenolics of Three Native Fresh and Sun-Dried Date (Phoenix dactylifera L.) Varieties Grown in Oman. Journal of Agricultural and Food Chemistry, 53 (19), 7592-7599. Arapitsas, P., & Turner, C. (2008). Pressurized solvent extraction and monolithic columnHPLC/DAD analysis of anthocyanins in red cabbage. Talanta, 74, 1218-1223. Cacace, J.E., & Mazza, G. (2003). Optimization of Extraction of Anthocyanins from Black Currants with Aqueous Ethanol. Journal of food science, 68(1), 240-248. Corrales, M., García, A.F., Butz, P., & Tauscher, B. (2009). Extraction of anthocyanins from grape skins assisted by high hydrostatic pressure. Journal of Food Engineering, 90, 415-421. 83 Dourtoglou, V.G., Mamalos A., & Makris, D.P. (2006). Storage of olives (Olea europaea) under CO2 atmosphere: Effect on anthocyanins, phenolics, sensory attributes and in vitro antioxidant properties. Food Chemistry, 99(2), 342-349. Giusti, M., & Wrolstad, R.E. (2001). Characterization and measurement of Anthocyanins by UV–visible spectroscopy. In R. E. Wrolstad (Ed.) Current protocols in food analytical chemistry. John Wiley & Sons, New York. Gizir, A.M., Turker, N., & Artuvan, E. (2008). Pressurized acidified water extraction of black carrot [Daucus carota ssp sativus var. atrorubens Alef.] anthocyanins. European Food Research and Technology, 226, 363-370. Herrero, M., Plaza, M., Cifuentes, A., & Ibáñez, E. (2010). Green processes for the extraction of bioactives from Rosemary: Chemical and functional characterization via ultraperformance liquid chromatography-tandem mass spectrometry and in-vitro assays. Journal of Chromatography A, 1217, 2512-2520. Howard, L., & Pandjaitan, N. (2008). Pressurized Liquid Extraction of Flavonoids from Spinach. Journal of food science, 73(3), C151-C157. Ju, Z.Y., & Howard, L.R. (2003). Effects of solvent and temperature on pressurized liquid extraction of anthocyanins and total phenolics from dried red grape skin. Journal of Agricultural and Food Chemistry, 51, 5207-5213. Petersson, E.V., Liu, J., Sjöberg, P.J.R., Danielsson, R., & Turner, C. (2010). Pressurized Hot Water Extraction of anthocyanins from red onion: A study on extraction and degradation rates. Analytica Chimica Acta, 663, 27-32. 84 Pompeu, D.R., Silva, E.M., & Rogez H. (2009). Optimisation of the solvent extraction of phenolic antioxidants from fruits of Euterpe oleracea using Response Surface Methodology. Bioresource Technology, 100, 6076-6082. Richter, B.E., Jones, B.A., Ezzell, J.L., & Porter, N.L. (1997). Accelerated solvent extraction: a new technique for sample preparation. Analytical Chemistry, 68, 1033-1039. Rosa, P.T.V., & Meireles, M.A.M. (2005). Rapid estimation of manufacturing cost of extracts obtained by supercritical fluid extraction. Journal of Food Engineering, 67, 235240. Santos, D.T., & Meireles, M.A.A. (2009). Jabuticaba as a source of functional pigments. Pharmacognosy Reviews, 3 (5), 127–132. Santos, D.T., Veggi, P.C, & Meireles, M.A.A. (2010). Extraction of antioxidant compounds from Jabuticaba (Myrciaria cauliflora) skins: Yield, composition and economical evaluation. Journal of Food Engineering, 101, 23-31. Santos, D.T., Veggi, P.C, & Meireles, M.A.A. (2009). Avaliação Técnico-Econômica da Extração de Antocianinas por Percolação em Leito Fixo. In Proceedings of the XXXIV Brazilian Congress on Particulate Systems, Campinas, Brazil. Seabra I.J., Braga, M.E.M., Batista, M.T., & Sousa, H. C. (2010). Effect of solvent (CO2/ethanol/H2O) on the fractionated enhanced solvent extraction of anthocyanins from elder berry pomace. Journal of Supercritical Fluids, 54, 145-152. Singleton, V.,L., & Rossi, J.A.J. (1965). Colorimetry of total phenolics with phosphomolybdic–phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144-158. 85 86 CAPÍTULO 6 - OPTIMIZATION OF BIOACTIVE COMPOUNDS EXTRACTION FROM JABUTICABA (MYRCIARIA CAULIFLORA) SKINS ASSISTED BY HIGH PRESSURE CO2 Diego T. Santos and M. Angela A. Meireles Trabalho submetido ao periódico Innovative Food Science and Emerging Technologies. 87 Key words Anthocyanins, Phenolic compounds, Jabuticaba skins, Myrciaria cauliflora, Optimization, High Pressure Carbon Dioxide Assisted Extraction Abstract Important bioactive compounds from Brazilian jabuticaba skins were effectively extracted by High Pressure Carbon Dioxide Assisted Extraction (HPCDAE). Statistical design was used to optimize the extraction variables: extraction pressure (65-135 bar), temperature (4080 ºC) and volume ratio of solid–liquid mixture/pressurized CO2 ( RS − L / CO2 (%) (20-80 %). The analysis performed to predict the optimum values for the extraction variables, in order to obtain the conditions that results in an extract with high anthocyanin (2.2 ± 0.3 mg cyanidin-3-glucoside/g dry skins) and phenolic compounds contents (13 ± 1 mg gallic acid equivalents/g dry skins), gave as best conditions 117 bar extraction pressure, 80 ºC extraction temperature and 20% volume ratio of solid–liquid mixture/pressurized CO2 ( R S−L / CO 2 (%) ). Compared to Pressurized Liquid Extraction (PLE) and to control experiment the results obtained using optimum HPCD Assisted-Extraction conditions was much more effective and faster in extracting total anthocyanins and phenolic compounds. Industrial relevance: Industrially, there is an increasing demand for faster extraction procedures with reduced organic solvent consumption to lower pollution burden. HPCD Assisted-Extraction combines the advantages of enhanced mass transfer rates increasing secondary metabolite diffusion from the vegetable matrix into the environmentally friendly solvent extraction. High pressure extraction methods, such as HPCD Assisted-Extraction, has other advantages that should be considered, such as the fact that native enzymes, which degrade phenolic compounds, are inhibited by extraction pressure increase and CO2 addition, and that processed vegetable materials do not require additional sterilization steps. 88 6.1 Introduction In recent years, the desire for a healthier diet allied with the increasing concern of consumers over the use of synthetic additives in food has pushed the food industry to search for new sources of natural pigments (Montes, Vicário, Raymundo, Fett, & Heredia, 2005). In Brazil a potential source of natural pigments is jabuticaba skins. Jabuticaba (Myrciaria cauliflora) is grape-like in appearance and texture, although its skin is thicker and tougher. This fruit has a dark purple to almost black skin color due to a high content of anthocyanins that cover a white gelatinous flesh inside (Santos, Veggi, & Meireles, 2010). Anthocyanins, coloured natural compounds can be considered potential replacements for the synthetic food dyes. Moreover, the proved biological activities of anthocyanins, related to the prevention of a number of degenerative diseases (Santos & Meireles, 2009), provide added benefits to food products dyed with these compounds. Anthocyanins are traditionally extracted from plant materials by conventional methods, such as solid–liquid extraction, using sometimes large amounts of organic solvent, for example methanol, ethanol and acetone or their aqueous solutions containing a small amount of acid to maintain a low pH, where anthocyanins are in their most stable flavylium form (Gizir, Turker, & Artuvan, 2008). Nevertheless, there is an increasing demand for faster extraction procedures with reduced organic solvent consumption and lower pollution burden (Wang & Weller, 2006). Anthocyanins are particularly unstable, being especially sensitive to light, alkaline pH, and heat (Stintzing, Stintzing, Carle, Frei, & Wrolstad, 2002). Therefore, to avoid degradation during anthocyanin extraction, high-temperature-short time extraction conditions have been successfully employed (Arapitsas & Turner, 2008). Thus, it is a key focus to develop novel extraction methods with faster extraction rates and higher anthocyanin extraction yields. An efficient extraction should maximize anthocyanin recovery with minimal degradation using environmentally friendly technologies. In this way, the use of Pressurized Liquid Extraction (PLE®), sometimes referred to as Pressurized Solvent Extraction (PSE®) and Accelerated Solvent Extraction 89 (ASE®) using acidified water or an acidified alcohol and their mixtures (Petersson, Liu, Sjöberg, Danielsson, & Turner, 2010; Ju & Howard, 2003), Supercritical Fluid Extraction (SFE) using carbon dioxide in combination with water and/or an alcohol as co-solvent (Seabra, Braga, Batista, & Sousa, 2010; Ghafoor, Park, & Choi, 2010), High Hydrostatic Pressure Assisted-Extraction (HHPAE), Pulsed Electric Fields Assisted-Extraction (PEFAE) using water/ethanol mixture (Corrales, Toepfl, Butz, Knorr, & Tauscher, 2008), High Pressure Carbon Dioxide Assisted-Extraction (HPCDAE) using acidified water (Xu et al., 2010), among others, is an attractive alternative. In this study, two different emerging novel technologies, HPCDAE and PLE, were used for the extraction of anthocyanin-based pigment and other phenolic compounds from jabuticaba skins. Xu et al. (2010) have demonstrated for the first time that the explosive effect of high pressure CO2 (HPCD), besides inactivate microorganisms and enzymes, can also strengthen anthocyanin extraction process by its superior abilities in cell membrane modification, intracellular pH decrease, disordering of the intracellular electrolyte balance and removal of vital constituents from cells and cell membranes. As the quality of an extract is related to its chemical composition, and then, to its functional properties, an efficient extraction method should maximize the extraction of anthocyanins and other phenolic compounds synchronously (Santos, Veggi, & Meireles, 2010). Therefore, the aim of this work was to optimize HPCDAE variables such as extraction pressure, temperature and volume ratio of solid–liquid mixture/pressurized CO2 ( RS − L / CO2 (%)) for the maximum recovery of anthocyanins and total phenolic compounds by acidified water. HPCDAE process was optimized by using Response Surface Methodology (RSM) and compared to PLE at the optimum extraction pressure and temperature conditions. 90 6.2 Material and methods 6.2.1 Plant material Jabuticaba fruits (Myrciaria cauliflora), harvested from a plantation in the State of São Paulo, Brazil, were acquired from a fruit and vegetable market centre (CEASACampinas, Brazil). Immediately after acquiring, the fruits were manually peeled and the jabuticaba skins were dried for a few hours at 45 ºC in an oven with forced air circulation (Marconi, MA 035/1, Piracicaba, São Paulo, Brazil). The dried skins (59.17 % moisture) were stored in the dark in a domestic freezer (-10 ºC) (Double Action, Metalfrio, São Paulo, Brazil) until extraction. 6.2.2 High Pressure Carbon Dioxide Assisted-Extraction (HPCDAE) system The diagram of the HPCDAE system is shown in Figure 6.2.1. The HPCDAE system was designed and assembled at LASEFI/DEA/FEA (School of Food Engineering)/UNICAMP (University of Campinas). All connections within the system were made of stainless steel tubes (1/16” and 1/8”). The stainless steel pressure vessel with a volume of 500 mL (6.8 cm internal diameter) was designed to withstand a pressure of 200 bar and temperature of 250 ºC. The vessel temperature was maintained by a heating water bath (Marconi, MA 127BO, Piracicaba, Brazil). One thermocouple with a digital temperature display (Autonics, T4WM, Bucheon, South Korea) was fixed in the vessel lid to monitor the CO2 temperature in the upper part of the vessel. A Bourbon type manometer (250 ± 1 bar, Record, Classe:A2, São Paulo, Brazil) was connected by 1/8” tubes to the vessel to monitor the vessel pressure. Pressure was controlled by a back pressure regulator (Tescom, model # 26-1761-24-161, ELK River, USA). Before reaching the air driven liquid pump (Maximator Gmbh, PP 111, Zorge, Germany), the CO2 was cooled under -10 °C by a thermostatic bath (Marconi, MA-184, Piracicaba, Brazil). The system also includes a micrometric valve with a heating system with a digital temperature controller (Novus, 91 N480D, Porto Alegre, Brazil) to avoid Joule-Thomson freezing effect during rapid depressurization that can lead to clogging of the throttling device; a CO2 glass float rotameter (0.15-2.2 kg/h of CO2 at 1.013bar/20 ºC, ABB, 16/286A/2, Warminster, USA); a flow totalizer (LAO, model G0,6, Osasco, Brazil); an online filter (0.5 μm, Swagelok, Solon, USA); a safety valve (400 bar, Swagelok, R3A-G, Solon, USA); 2 Bourbon type manometers of 500 ± 3 bar and 1 of 100 ± 0.5 bar (Record, Classe:A2, São Paulo, Brazil). 3 4 2 7 3 3 4 11 5 4 4 6 1 4 12 3 10 11 9 8 Figure 6.2.1 - Diagram of High Pressure Carbon Dioxide Assisted-Extraction (HPCDAE) system. 1 CO2 cylinder; 2 CO2 filter; 3 Manometers; 4 Valves; 5 Thermostatic bath; 6 Pump; 7 Back pressure regulator; 8 Heating bath; 9 High pressure vessel; 10 Thermocouple; 11 Temperature controllers; 12 Micrometric valve with a heating system. 6.2.3 Extraction Procedures 6.2.3.1 High Pressure Carbon Dioxide Assisted-Extraction (HPCDAE) 92 First, the pressure vessel was heated to the required temperature (40-80 ºC). A volume (90-360 cm3) of acidified distilled water [pH 2.5 ± 0.2 by hydrochloric acid (Synth, Diadema, Brazil)] preheated using a heating plate (Fisaton, model 752A, São Paulo, Brazil) was filled into the vessel. Afterwards a given weight of jabuticaba skins (9-36 g) was placed into the vessel and the cover of the vessel was tightened. The vessel was pressurized with CO2 (99.9 %, Gama Gases Especiais Ltda., Campinas, Brazil) by the pump to the required pressure (65-135 bar), which was held for the determined time (5, 10, 20, 30 or 45 min). Then the depressurization was performed by releasing CO2 into the atmosphere using the pressure relief micrometric valve with a heating system (80 ºC). After completion of HPCD Assisted-Extraction, a sample (10 cm3) of the aqueous extract was collected into a sample bottle immersed in ice water (5 °C) to prevent anthocyanin and phenolic compounds degradation. All the aqueous extracts were stored (- 10 ºC) in the dark until analysis. The vessel covering and uncovering time were 7 and 4 min, respectively; the pressurization and depressurization time were in the range of 1–4 and 7-8 min, respectively, depending of the pressure employed. The value change of the volume of solid–liquid mixture (S-L) at the experimental conditions evaluated was neglected since the density of water varied slightly (from 0.97464 to 0.99801 g/mL) (http://webbook.nist.gov/chemistry/fluid). To determine the effects of extraction pressure, temperature and volume ratio of solid–liquid mixture/pressurized CO2 ( R S−L / CO 2 (%) ) on the recovery of anthocyanins and phenolic compounds, twenty extractions in random order were carried out. All the extractions were performed in duplicate. An extraction under atmospheric pressure as a control was performed at 80 oC using the HPCDAE system without pressurizing it. A sample (1 mL) was taken out at 5, 10, 20, 30 or 45 min of extraction. No calculations were made to compensate for volume loss 93 due to sample collection, since the volume change of the extraction solvent had no effect on the concentration of the extract. For both HPCDAE and control experiment, the ratio of solid vs. liquid ratio was 1:10 (1 g of jabuticaba skins:10 mL acidified water). 6.2.3.2 Pressurized Liquid Extraction (PLE) Four and one half grams of jabuticaba skin pieces were placed in the 6.57 mL extraction cell (Thar Designs, Pittsburg, USA) containing a syntherized metal filter at the cell inlet and outlet. The cell containing the sample was heated by an electrical heating jacket at a desired temperature, filled with extraction solvent [acidified distilled water pH 2.5 ± 0.2 by hydrochloric acid (Synth, Diadema, Brazil)] and then pressurized. The extraction solvent was pumped by a HPLC pump (Thermoseparation Products, Model ConstaMetric 3200 P/F, San Jose, USA) into the extraction cell until the required pressure was obtained. All connections within the system were made of stainless steel tubes (1/16” and 1/8”). During 5 min the plant material was placed in the heating system to ensure that the extraction cell would be at the desired temperature (80 ºC) at the filling and pressurization steps. After pressurization, the jabuticaba skins with pressurized solvent were kept statically at the desired pressure (117 bar) for a desired time (5 min). The static extraction time of 5 min was decided after preliminary studies that had shown that higher times caused anthocyanin degradation, and lower times (< 5 min) gave poor extraction efficiency of the desired compounds (anthocyanins and other phenolic compounds). Thereafter, carefully the blocking and micrometric valve were opened keeping the pressure constant to the desired flow rate (1 mL/min); the extraction cell was rinsed with fresh extraction solvent during 45 min. Samples were collected at 5, 10, 15, 20, 30 and 45 min in 94 glass flasks. After PLE, aqueous extracts were rapidly cooled to 5 °C in ice water to prevent anthocyanin and phenolic compounds degradation. All aqueous extracts were stored (- 10 ºC) in the dark until analysis. 6.2.4 Extract Characterization 6.2.4.1 Total Monomeric Anthocyanins (TMA) content The Total Monomeric Anthocyanin (TMA) content was determined using the pH differential method described by Giusti & Wrolstad (2001), which relies on the structural transformation of the anthocyanin chromophore as a function of pH. A UV–Vis spectrophotometer (Hitachi, model U-3010, Tokyo, Japan) was used for spectral measurements at maximum absorbance wavelength (approximately 512 nm) and 700 nm, using distilled water as blank. Two dilutions of the same sample were prepared: one with hydrochloric acid/potassium chloride buffer pH = 1.0 and the other with sodium acetate/acetic acid buffer pH = 4.5. The pH values of the buffers were measured using a pH-meter (Digimed, model DM-22, São Paulo, Brazil) calibrated with buffers at pH 4.01 and 6.86 and they were adjusted with HCl (99.5 % Ecibra, Santo Amaro, Brazil). Aliquots of aqueous extract were brought to pH 1.0 and 4.5; 15 min later, the absorbance of each equilibrated solution was measured at the maximum absorption wavelength and 700 nm for haze correction using a 1 cm path length glass cells (l). The dilution factor (DF) was determined (final volume per original sample volume). The difference in absorbance values at pH 1.0 and 4.5 is directly proportional to the TMA concentration. The anthocyanin content was calculated as cyanidin-3-glucoside (MW = 449.2 g/mol and ε = 26.900 L/mol.cm) and the results were expressed as mg Cy-3-glucoside/g dry material. The 95 absorbance of the diluted sample (A) and the TMA were calculated with Equations (1) and (2). The anthocyanin content (mg Cyanidin-3-glucoside/g dry weight) was calculated with the Equation (3), where V (L) is the final volume of the aqueous extracts, m (g) is the weight of jabuticaba skins (0 % moisture). A = ( A max − A 700 ) pH 1, 0 − ( A max − A 700 ) pH 4,5 TMA ( mg / L ) = A x MW x DF X 1000 εxl (1) (2) Anthocyanin content (mg Cyanidin − 3 − glu cos ide / g dry weight ) = TMA x V m (3) 6.2.4.2 Total phenolic content Total phenolic content was estimated using the Folin-Ciocalteau method for total phenolics, based on a colorimetric oxidation/reduction reaction of phenols (Singleton & Rossi, 1965). Briefly, 1 cm3 of sample (the sample preparation was done by diluting the aqueous extract in distillated water) was mixed with 1 cm3 of Folin and Ciocalteu’s phenol reagent. After 3 min, 1 cm3 of saturated sodium carbonate solution (50 % w/w) was added to the mixture and the volume adjusted to 10 cm3 with distilled water. The reaction was kept in the dark for 90 min at room temperature, after which the absorbance was read at 725 nm with a UV–Vis Spectrophotometer Hitachi, model U-3010 (Tokyo, Japan). For control sample, 1 cm3 of distilled water was taken. The results were calculated on the basis of the calibration curve of gallic acid (GAE, milligrams of gallic acid equivalents/mL) and expressed as milligrams of gallic acid equivalents/g dry material (Equation 4), where V (mL) is the final volume of the aqueous extracts, m (g) is the weight of jabuticaba skins (0 % moisture), DF is the dilution factor (final volume per original sample volume). Phenolic content (mg gallic acid equivalents / g dry weight ) = 96 GAE (mg / mL) x DF x V m (4) 6.2.5 Statistical analysis All the experimental results obtained were expressed as means ± SD. Statistical analyses were performed using analyses of variance (ANOVA) with consequent experimental design. The mean values were considered significantly different when p<0.05. ‘Statistica’ software (release 7, StatSoft, Tulsa, USA) was used to calculate the effects of the extraction pressure, temperature and volume ratio of solid–liquid mixture/pressurized CO2 ( R S−L / CO 2 (%) ) by a 23 full factorial design on the recovery of anthocyanins and phenolic compounds employing extraction pressure, temperature and volume ratio of solid– liquid mixture/pressurized CO2 ( R S−L / CO 2 (%) ) ranges of 65-135 bar, 40-80 ºC and 20-80 %, respectively. The 23 full factorial design to optimize the HPCD Assisted-Extraction of total anthocyanins and phenolic compounds from jabuticaba skins is represented in Table 6.3.1.1. The optimum extraction conditions were estimated through regression analysis and three dimensional response surface plots of the independent variables and each dependent variable. Response surface analysis was also applied on the data from 23 full factorial design for modeling and prediction of optimum conditions of HPCD Assisted-Extraction for total anthocyanins and total phenols from jabuticaba skins. 6.2.6 Determination of experimental extraction kinetics curves and parameters The experimental extraction kinetics curves plotting and the determination of experimental values of the steady-state extraction Y*, the time t* to reach the Y* and the M* (the mass transfer rate) for the recovery of anthocyanins and phenolic compounds were performed with Office 2003 Excel (Microsoft Co., Redmond, USA). 6.3 Results and discussion 6.3.1 Effects of process variables on recovery of anthocyanins The experimental values of anthocyanin content of the extracts at various experimental conditions are presented in Table 6.3.1.1. Regression analysis was performed on the experimental data and the coefficients of model were evaluated for significance. The 97 regression analysis of the data showed that the recovery of anthocyanins was significantly (p<0.05) affected by the extraction pressure, temperature and their interactions, while the effect of volume ratio of solid–liquid mixture/pressurized CO2 ( R S−L / CO 2 (%) ) was not significant. The relationship of the anthocyanin content, extraction pressure and temperature is depicted in Figure 6.3.1.1 and it was linear with R2 value of 0.981. An increase in either pressure or temperature, while the second variable remains constant, results in enhancement of the anthocyanin extraction (Figure 6.3.1.2). Nevertheless, the interaction between them had a negative effect on the recovery of anthocyanins. The synchronous increase of the extraction pressure and temperature possibly might enhance the degradation of the anthocyanins extracted. Combined temperature/pressure treatments have enhanced the anthocyanin degradation and formation of condensation products in wines which contribute to colour, organoleptic and nutritional changes (loss of antioxidant capacity) (Corrales, Butz, & Tauscher, 2008). The relationship between process variables and the anthocyanin content (mg cyaniding-3-glucoside/g dry material) is presented in Equation (5) by omitting all regression coefficients that were insignificant. Y1 = − 3.46311 + 0.03743.X 1 + 0.07766.X 2 − 0.00049.X 1 .X 2 (5) In Equation 5, Y1 is the anthocyanin content (mg cyaniding-3-glucoside/g dry material) in jabuticaba skins extract, X1 is the extraction pressure (bar), X2 is the extraction temperature (º C). The equation was based on the data of regression coefficients presented in Table 6.3.1.2. A positive effect of the high extraction pressure and temperature, combined or not, on the recovery of anthocyanins using other kinds of static (batch) extraction was also observed. Corrales, Toepfl, Butz, Knorr, & Tauscher (2008) using a mixture of water and ethanol (50:50, v/v) as extraction solvent under High Hydrostatic Pressure (HHP) (6000 bar) at 70 °C have proposed that HHP combined with temperature possibly leaded to a decrease in the dielectric constant of water and in the pH of the solvent during the extraction, enhancing the extraction of anthocyanins from grape by-products. Using a 98 closed reactor vessel under agitation using a mixture of acidified water and ethanol (95:5 v/v) at 110 °C as extraction solvent for the anthocyanin recovery from red onion, Petersson, Liu, Sjöberg, Danielsson, & Turner (2010) have observed, even though extraction and degradation effects compete during the extraction process, that high temperature can exert a higher influence on the extraction rate than on the degradation rate, improving anthocyanin extraction. Table 6.3.1.1 - 23 full factorial design for HPCD Assisted-Extraction from jabuticaba skins and the total anthocyanin and phenolic contents of the extracts HPCD Assisted-Extraction conditions Experiment Pressure Temperature R S−L / CO 2 (%) Analytical results Anthocyanin Phenolic content content (bar) (ºC) 1 65 40 20 0.8 ± 0.1 3.5 ± 0.2 2 135 40 20 2.04 ± 0.08 3.94 ± 0.07 3 65 80 20 2.55 ± 0.01 14.0 ± 0.7 4 135 80 20 2.6 ± 0.7 14.4 ± 0.3 5 65 40 80 0.6 ± 0.1 2.6 ± 0.3 6 135 40 80 1.81 ± 0.01 4.81 ± 0.01 7 65 80 80 2.1 ± 0.1 12.3 ± 0.9 8 135 80 80 2.5 ± 0.3 12.4 ± 0.2 9 100 60 50 1.33 ± 0.01 4.6 ± 0.7 10 100 60 50 1.34 ± 0.01 4.3 ± 0.6 99 Figure 6.3.1.1 - Three-dimensional response surfaces of the influence of extraction pressure and temperature on recovery of anthocyanins. Figure 6.3.1.2 - Two-dimensional response surfaces of the influence of extraction pressure and temperature on recovery of anthocyanins. 100 Table 6.3.1.2 - Regression coefficients of the model for the response variables Factor Regression coefficients Anthocyanin content Phenolic content Mean -3.46311 -8.51056 (1) Pressure (bar) 0.03743 0.00253 (2) Temperature (º C) 0.07766 0.27832 (3) R S−L / CO 2 (%) 0.00682 -0.04071 1 by 2 -0.00049 0.00005 1 by 3 -0.00010 0.00077 2 by 3 -0.00025 0.00022 1*2*3 0.00000 -0.00001 The pH decrease that occurs due to the generation of “in situ” carbonic acid and/or alkyl carbonic acid, when the CO2, which is a relatively soluble gas in water (Enomoto, Nakamura, Nagai, Hashimoto, & Hakoda, 1997), is inserted into the HPCDAssisted Extraction system modifying the extracting solvent (acidified water), can have had a positive impact on the anthocyanin extraction and stability from jabuticaba skins, besides increasing cell membranes permeability, which leads to higher diffusivities (Türker & Erdogdu, 2006). According to Xu et al. (2010), in HPCD-Assisted Extraction process, there are five forms associated with CO2, including supercritical CO2, H2CO3 and its dissociated products, H+, HCO3-3, and CO3-2, which possibly play different roles in the extraction of anthocyanins, until now not fully understood. 6.3.2 Effects of process variables on recovery of phenolic compounds The analytical results of phenolic content in jabuticaba skins extract are shown in Table 6.3.1.1. The effect of extraction temperature was highly significant (p<0.001) on the extraction of phenolic compounds, indicating that the main extraction variable for 101 phenolic compounds from this vegetable source is extraction temperature. The effects of extraction pressure, volume ratio of solid–liquid mixture/pressurized CO2 ( R S−L / CO 2 (%) ) and the interaction between extraction temperature and volume ratio of solid–liquid mixture/pressurized CO2 ( R S−L / CO 2 (%) ) were also significant (p<0.05). The relationship between phenolic content (mg gallic acid equivalents/g dry material), extraction pressure and temperature is depicted in Figure 6.3.2.1 and it was linear with R2 value of 0.996. As occurred to anthocyanin recovery, an increase in either the pressure or the temperature, while the second variable remains constant, results in enhancement of the phenolic compounds extraction (Figure 6.3.2.2). The interaction between extraction temperature and volume ratio of solid–liquid mixture/pressurized CO2 ( R S−L / CO 2 (%) ) had a negative effect on the recovery of phenolic compounds. Equation (6) shows the relationship between process variables for the extraction of total phenolic compounds by omitting all regression coefficients that were insignificant. Y2 = − 8.51056 + 0.00253.X1 + 0.27832.X 2 − 0.04071.X 3 + 0.00022.X 2 .X 3 (6) In Equation 6, Y2 is the phenolic content (mg gallic acid equivalents/g dry material) in jabuticaba skins extract, X1 is the extraction pressure (bar), X2 is the extraction temperature (º C), X3 is the volume ratio of solid–liquid mixture/pressurized CO2 ( R S−L / CO 2 (%) ). Equation (6) is based on the regression coefficients presented in Table 6.3.1.2. 102 Figure 6.3.2.1 - Three-dimensional response surfaces of the influence of extraction pressure and temperature on the recovery of phenolic compounds. Xu et al. (2010), using HPCD Assisted-Extraction and acidified water (pH 2.0 ± 0.2) for anthocyanin extraction from red cabbage observed similar results to those obtained in the present study. For the extraction of this specific phenolic compound higher temperature (40-60 °C) also increased its recovery. Moreover, it was observed that increasing the volume of pressurized CO2 (decreasing the volume ratio of solid–liquid mixture/pressurized CO2 ( R S−L / CO 2 (%) ) (16.5-81.2 %) also benefited the extraction process. Xu et al. (2010) reported that higher volume of pressurized CO2 produced stronger explosive effect during the fast decompression step, which probably can cause faster and more effective mass transfer of the solutes from the plant matrix to the extracting solvent by plant cell destruction in these processes (Enomoto, Nakamura, Nagai, Hashimoto, & Hakoda, 1997). No different pressures were evaluated in their study, however comparing 103 the extraction under 100 bar to the extraction under atmospheric pressure (control experiment) at the same extraction temperature, the results indicate that raising pressure increased the extraction of phenolic compounds, corroborating our results. Figure 6.3.2.2 - Two-dimensional response surfaces of the influence of extraction pressure and temperature on the recovery of phenolic compounds. High pressure extraction methods, such as HPCD Assisted-Extraction, have other advantages that should be considered, such as the fact that native enzymes, which degrade phenolic compounds, are inhibited by extraction pressure increasing and CO2 addition, and that processed vegetable materials do not require additional sterilization steps. Furthermore, the absence of oxygen in the extraction cell is other advantage of this process, because its presence can lead to structural changes in phenolic compounds that can, in turn, result in altered properties (Seabra, Braga, Batista, & Sousa, 2010). 104 6.3.3 Optimization of the extraction process As demonstrated before, extraction pressure, temperature and volume ratio of solid–liquid mixture/pressurized CO2 ( R S−L / CO 2 (%) ) have different effects on each response variable evaluated. As the quality of an extract is related to its chemical composition, and then, to its functional properties, an efficient extraction method should maximize the extraction of phenolic compounds with acceptable degradation of anthocyanin pigments (Santos, Veggi, & Meireles, 2010). The prediction of one set of optimal conditions for both response variables was done by using desirability function approach. Figure 6.3.3.1 shows that all variables (extraction pressure, extraction temperature and volume ratio of solid–liquid mixture/pressurized CO2 ( R S−L / CO 2 (%) ) seem to influence the desirability to obtain the desired extract (high anthocyanin and phenolic contents). In particular, these graphs show that high desirability, within the experimental design values, has been achieved under medium pressure, high temperature and low volume ratio of solid–liquid mixture/pressurized CO2 ( R S−L / CO 2 (%) ). The analysis performed to predict the optimum values for the extraction variables, in order to obtain the conditions that result in an extract with simultaneously high anthocyanin and phenolic contents, gave as best conditions, 117 bar extraction pressure, 80 ºC extraction temperature and 20% volume ratio of solid–liquid mixture/pressurized CO2 ( R S−L / CO 2 (%) ) (Figure 6.3.3.2). HPCD Assisted-Extraction pressures in the range of 115-120 bar, extraction temperatures of 79-80 °C, volume ratio of solid–liquid mixture/pressurized CO2 ( R S−L / CO 2 (%) ) of 20 %, can result in optimal total anthocyanins (2.543 mg of Cy-3glucoside/g dry material) and total phenolic compounds (13.589 mg of gallic acid equivalents/g dry material) from jabuticaba skins. The predicted results matched well with the experimental results obtained using optimum extraction conditions which validated the response surface methodology model with a good correlation (Table 6.3.3.1). 105 Figure 6.3.3.1 - Three-dimensional response surfaces of the influence of the extraction variables on the desirability. Figure 6.3.3.2 - Profiles of the predicted values and desirability of the extraction variables. 106 The positive characteristics of using HPCD for anthocyanin and phenolic compounds extraction synchronously seem irrefutable when the results obtained using this novel technique are compared to that obtained using others extraction methods and to literature data. Compared to Pressurized Liquid Extraction (PLE) with the same solvent at the same extraction pressure, temperature and time and to control experiment (using HPCDAE system at the same extraction temperature and time; without pressurization) the experimental results obtained using optimum HPCD Assisted-Extraction conditions was much more effective in extracting anthocyanins and phenolic compounds from jabuticaba skins (Table 6.3.3.1). Montes, Vicário, Raymundo, Fett, & Heredia (2005), aiming to optimize the conventional solvent extraction conditions (24 h at 4 ºC) for the maximum recovery of anthocyanins from jabuticaba skins, using different solvents acidified with different types of acids at different pHs, obtained a maximum extraction of anthocyanins of 92.920 mg/kg wet material, while our study found at the optimum HPCD AssistedExtraction conditions an experimental value 9.83-fold higher (913.529 mg/kg wet material, i.e. 2.237 mg/g dry material). Cacace & Mazza (2002) have suggested that the reduction of the dielectric constant of water into the range of intermediate-behavior solvents such as methanol or ethanol, good solvents for the extraction of anthocyanins and other phenolic compounds, can be achieved not only by modifying pressure and temperature, but also with the addition of ions in acidified water. A lower dielectric constant reduces the energy required to separate the solvent molecules and allows the solute molecules to enter between them (Mackay & Mackay, 1981). Based on these research results it is suggested that the addition 107 of CO2 into the water during the HPCD Assisted-Extraction may improve the extraction by modifying the solvent, thus resulting in increased solubility of the target compounds. Table 6.3.3.1 - Predicted and experimental values of response variables under optimum HPCDAE conditions (at 117 bar, temperature of 80 °C, of 20 % and 20 minutes of extraction) and experimental values of response variables obtained by control HPCDAE experiment (at atmospheric pressure, temperature of 80 ºC and 20 minutes of extraction) and by PLE experiment (at 117 bar, temperature of 80 ºC, 20 minutes of extraction and flow rate of 1 mL of acidified water/min) Response Variables HPCDAE Values HPCDAE (control) Values PLE Values Predicted Experimental Experimental Experimental 2.543 2.24 ± 0.3 1.6 ± 0.1 0.58 ± 0.02 13.589 12.90 ± 1.46 8.3 ± 0.6 3.6 ± 0.1 Recovery of anthocyanins (mg of Cy-3-Glucoside/g dry material) Recovery of phenolic compounds (mg of GAEs/g dry material) 6.3.4 Experimental extraction kinetics curves using optimum conditions Figure 6.3.4.1 and 6.3.4.2, respectively, confirm that HPCD effectively increases the extraction of anthocyanins and phenolic compounds. In general, the experimental extraction kinetics curves for all extraction methods were characterized with two distinct phases. In the first phase, at the beginning the bioactive compounds extraction 108 increases with increasing extraction time, reflecting a faster solubility of anthocyanins and phenolic compounds into the unsaturated extraction solutions. In the second phase, the extraction was maximized into the steady-state extraction Y*, indicating that the mobility of anthocyanins and phenolic compounds from jabuticaba skins into extraction solution approaches zero ((starting at t*) in the remaining time. An exception is observed to the extraction kinetics curve of phenolic compounds by PLE (Figure 6.3.4.2); in the extraction time range evaluated the steady-state extraction Y* is not reached. 4 mg Cyanidin-3-glucoside / g dry material 3.5 3 2.5 2 1.5 1 0.5 0 0 5 10 HPCD Assisted-Extraction 15 20 25 Extraction time (min) 30 35 HPCD Assisted-Extraction (Control) 40 45 PLE Figure 6.3.4.1 - Kinetics curves for the recovery of anthocyanins a) under optimum HPCDAE conditions (117 bar, temperature of 80 °C and of 20 %; b) obtained by control HPCDAE experiment (at atmospheric pressure, temperature of 80 ºC and 20 minutes of extraction) and c) PLE experiment (at 117 bar, temperature of 80 ºC, 20 minutes of extraction and flow rate of 1 mL/min of acidified water/min). 109 mg gallic acid equivalents / g dry material 25 20 15 10 5 0 0 5 10 HPCD Assisted-Extraction 15 20 25 Extraction time (min) 30 35 HPCD Assisted-Extraction (Control) 40 45 PLE Figure 6.3.4.2 - Kinetics curves for the recovery of phenolic compounds a) under optimum HPCDAE conditions (117 bar, temperature of 80 °C and of 20 %; b) obtained by control HPCDAE experiment (at atmospheric pressure, temperature of 80 ºC and 20 minutes of extraction) and c) PLE experiment (at 117 bar, temperature of 80 ºC, 20 minutes of extraction and flow rate of 1 mL/min of acidified water/min). It is also observed that HPCD can accelerate the extraction process of anthocyanins and phenolic compounds. The amount of anthocyanin and phenolic compounds extracted during the same extraction time by HPCD Assisted-Extraction under optimum conditions is higher than that of the PLE and extraction under atmospheric pressure (control HPCDAE experiment) in the first phase, as well as the Y* of the HPCD Assisted-Extraction in the second phase (Table 6.3.4.1). The mass transfer rates (M*) in the first phase of the extraction kinetics curves for the recovery of anthocyanins and phenolic compounds using HPCDAE were, respectively, 1.52- and 2.13- fold higher than those 110 obtained by HPCDAE (control) and 4.70- and not determinated- fold higher than those obtained by PLE (Table 6.3.4.1). Table 6.3.4.1 - Experimental values of the steady-state extraction Y*, the time t* to reach the Y* and the mass transfer rate M* for the recovery of anthocyanins and phenolic compounds Extraction method HPCDAE under optimum conditions (117 bar, For the Y* (mg/g t* M* (mg/g recovery of dry material) (min) dry material.s) anthocyanins 3.360 37 5.448 20.660 33 37.564 1.973 33 3.587 10.869 37 17.625 0.753 39 1.158 *n.d *n.d *n.d temperature of 80 °C and R S−L / CO 2 (%) phenolic of 20 %; compounds HPCDAE (control) (at atmospheric pressure and temperature of 80 ºC) anthocyanins phenolic compounds PLE (at 117 bar, temperature of 80 ºC, anthocyanins and flow rate of 1 mL of acidified water/min). phenolic compounds *n.d – not determinate The increase in the extraction efficiency and in the mass transfer rates (M*), which accelerates the extraction process of anthocyanins and other phenolic compounds, is 111 probably also associated to the solvent extraction viscosity modification, which can change the solubilities of the desired compounds in the extraction solvent. The viscosity value in this study varied from 0.35603 to 0.65424 cP (http://webbook.nist.gov/chemistry/fluid). In agreement with previous studies (Ju & Howard, 2003; Cacace & Mazza, 2002) the decrease of the viscosity coefficient increases the extraction efficiency and accelerates the extraction process. HPCD Assisted-Extraction optimum conditions resulted in a water viscosity coefficient (0.35741 cP) very low, which might produce an increase of the diffusion of the analytes from the sample matrix into the extraction solvent. According to Yamaguchi & Kimura (2000) a decrease of the viscosity coefficient significantly increases solutes diffusivities. As the extraction solvent of the proposed extraction method for anthocyanins and other phenolic compounds synchronously is carbonated water with small quantities of HCl, this emerging pressure extraction method may be considered a promising environment-friendly technology for this class of bioactive compounds from other sources. To our knowledge, there are rare studies about the use of HPCD system for bioactive compounds extraction purpose. 6.4 Conclusions Process variables had significant effect on the extraction of functional components with extraction pressure, temperature and their interactions being significant for the extraction of anthocyanins and extraction temperature being highly significant for the extraction of phenolic compounds. The effects of extraction pressure, volume ratio of solid–liquid mixture/pressurized CO2 ( R S−L / CO 2 (%) ) and the interaction between extraction 112 temperature and volume ratio of solid–liquid mixture/pressurized CO2 ( R S−L / CO 2 (%) ) were also significant for the extraction of phenolic compounds. The optimum HPCD Assisted-Extraction conditions for the extraction of the bioactive compounds (anthocyanins and phenolic compounds synchronously) from jabuticaba skins were determined by an optimization method that combined Response Surface Methodology (RSM) with desirability function and the predicted values for the recovery of these bioactive compounds were well consistent to the experimental ones. The optimum conditions include 117 bar extraction pressure, 80 ºC extraction temperature and 20% volume ratio of solid–liquid mixture/pressurized CO2 ( R S−L / CO 2 (%) ) for the total anthocyanin and phenolic compounds contents of 2.24 ± 0.31 mg cyanidin-3-glucoside/g dry skins and 12.90 ± 1.46 mg gallic acid equivalents/g dry skins, respectively. Compared to PLE and to control experiment (without pressurization) the experimental results obtained using optimum HPCD Assisted-Extraction conditions was much more effective and faster in extracting anthocyanins and phenolic compounds from jabuticaba skins. Extraction of anthocyanins and other phenolic compounds using carbonated water by High Pressure CO2 with small amounts of HCl is probably related to: (1) disruption of the vegetable matrix by rapid CO2 depressurization, (2) pH decrease that occurs due to the generation of “in situ” carbonic acid and/or alkyl carbonic acid, when the CO2 is solubilized in water, (3) reduction of the dielectric constant of the extraction solvent into the range of intermediate-behavior solvents such as methanol or ethanol by modifying pressure and temperature, and possibly with the formation of ions HCO3-3, and CO3-2 in acidified water, (4) increase of anthocyanin and phenolic compounds solubilities, (5) reduction of solvent viscosity, and (6) increase of diffusion rate of the analytes from the vegetable matrix to the solvent. 113 Acknowledgements The authors are grateful to CNPq for financial support. Diego T. Santos thanks CNPq (141894/2009-1) for the doctorate fellowship. References Arapitsas, P., & Turner, C. (2008). Pressurized solvent extraction and monolithic columnHPLC/DAD analysis of anthocyanins in red cabbage. Talanta, 74, 1218–1223. Cacace, J. E., & Mazza, G. (2002). Extraction of Anthocyanins and Other Phenolics from Black Currants with Sulfured Water. Journal of Agricultural and Food Chemistry, 50, 5939–5946. Corrales, M., Butz, P., & Tauscher, B. (2008). Anthocyanin condensation reactions under high hydrostatic pressure. Food Chemistry, 110, 627–635. Corrales, M., Toepfl, S., Butz, P., Knorr, D., & Tauscher, B. (2008). Extraction of anthocyanins from grape by-products assisted by ultrasonics, high hydrostatic pressure or pulsed electric fields: A comparison. Innovative Food Science and Emerging Technologies, 9, 85–91. Enomoto, A., Nakamura, K., Nagai, K., Hashimoto, T., & Hakoda, M. (1997). Inactivation of food microorganisms by high-pressure carbon dioxide treatment with or without explosive decompression. Bioscience, Biotechnology, and Biochemistry, 61, 1133–1137. Ghafoor, K., Park, J., & Choi, Y-H. (2010). Optimization of supercritical fluid extraction of bioactive compounds from grape (Vitis labrusca B.) peel by using response surface methodology. Innovative Food Science and Emerging Technologies, 11, 485–490. 114 Giusti, M., & Wrolstad, R. E. (2001). Characterization and measurement of Anthocyanins by UV–visible spectroscopy. In R. E. Wrolstad (Ed.) Current protocols in food analytical chemistry (pp. F1.2.1-F1.2.13). New York: John Wiley & Sons. Gizir, A. M., Turker, N., & Artuvan, E. (2008). Pressurized acidified water extraction of black carrot [Daucus carota ssp sativus var. atrorubens Alef.] anthocyanins. European Food Research and Technology, 226, 363–370. Ju, Z. Y., & Howard, L. R. (2003). Effects of solvent and temperature on pressurized liquid extraction of anthocyanins and total phenolics from dried red grape skin. Journal of Agricultural and Food Chemistry, 51, 5207–5213. Mackay, K. M., & Mackay, R. A. (1981). Introduction to Modern Inorganic Chemistry. (3rd ed.). London: International Textbook, (Chapter 6). Montes, C., Vicário, I. M., Raymundo, M., Fett, R., & Heredia, F. J. (2005). Application of tristimulus colorimetry to optimize the extraction of anthocyanins from Jaboticaba (Myricia jaboticaba Berg.). Food Research International, 38, 983–988. Petersson, E. V., Liu, J., Sjöberg, P. J. R., Danielsson, R., & Turner, C. (2010). Pressurized Hot Water Extraction of anthocyanins from red onion: A study on extraction and degradation rates. Analytica Chimica Acta, 663, 27–32. Santos, D. T., & Meireles, M. A. A. (2009). Jabuticaba as a source of functional pigments. Pharmacognosy Reviews, 3, 127–132. Santos, D. T., Veggi, P. C, & Meireles, M. A. A. (2010). Extraction of antioxidant compounds from Jabuticaba (Myrciaria cauliflora) skins: Yield, composition and economical evaluation. Journal of Food Engineering, 101, 23-31. 115 Seabra, I. J., Braga, M. E. M., Batista, M. T., & Sousa, H. C. (2010). Effect of solvent (CO2/ethanol/H2O) on the fractionated enhanced solvent extraction of anthocyanins from elder berry pomace. Journal of Supercritical Fluids, 54, 145-152. Singleton, V. L., & Rossi, J. A. J. (1965). Colorimetry of total phenolics with phosphomolybdic–phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144–158. Stintzing, F. C., Stintzing, A. S., Carle, R., Frei, B., & Wrolstad, R. E. (2002). Color and antioxidant properties of cyanidin-based anthocyanin pigments. Journal of Agricultural and Food Chemistry, 50 , 6172–6181. Türker, N., & Erdogdu, F. (2006) Effects of pH and temperature of extraction medium on effective diffusion coefficient of anthocyanin pigments of black carrot (Daucus carota var. L.). Journal of Food Engineering, 76, 579–583. Wang, L., & Weller, C. L. (2006). Recent advances in extraction of nutraceuticals from plants. Trends in Food Science and Technology, 17, 300–312. Xu, Z., Wu, J., Zhang, Y., Hu, X., Liao, X., & Wang, Z. (2010). Extraction of anthocyanins from red cabbage using high pressure CO2. Bioresource Technology, 101, 7151-7157. Yamaguchi, T., & Kimura, Y. (2000). Effects of solute-solvent and solvent-solvent attractive interactions on solute diffusion. Molecular Physics, 98, 1553–1563. 116 CAPÍTULO 7 - MICRONIZATION AND ENCAPSULATION OF FUNCTIONAL PIGMENTS USING SUPERCRITICAL CARBON DIOXIDE Diego T. Santos and M. Angela A. Meireles Trabalho submetido ao periódico Journal of Food Process Engineering. 117 Key words Particle Formation, Functional Pigments, Rapid Expansion of Supercritical Solution (RESS), Sensitive Compounds, Supercritical Anti-Solvent (SAS) Abstract This research involves experimental studies of supercritical fluids-based micronization and encapsulation processes exploiting both solvent and anti-solvent properties of supercritical CO2 for diverse functional pigments, in order to asses the reliability of home-made experimental apparatuses and to validate the experimental data obtained with these equipments. Quercetin and β-carotene were used as model substances in the micronization process via SAS (Supercritical Anti-solvent). Bixin-rich extract with PolyEthylene Glycol (PEG) 10000 as encapsulant material were used in the encapsulation process via SAS, while rutin and anthocyanin-rich extract with PEG 10000 and ethanol as co-solvent were applied to the formation of polymeric microcapsules via RESS (Rapid Expansion of Supercritical Solutions). The processing parameters and the levels used were based on earlier results achieved from other research groups. Core material:encapsulant material ratio, core material physical properties such as solubility in supercritical CO2 and in CO2 + ethanol and viscosity were key parameters for these processes. Practical Applications: The application of natural food colorants with relevant antioxidant activities, such as carotenoids and flavonoids, as food additives in various food products is seriously hampered by their fast degradation triggered by light, temperature, presence of oxygen, insolubility in aqueous systems, low dispersibility, among others. Their particle size reduction and/or their encapsulation have been successfully used to overcome all these drawbacks. Supercritical fluids (SCFs) have become an attractive alternative due to be considered environmentally friendly solvents. SCFs may be conveniently used for various 118 applications such as extraction, reactions, micronization, encapsulation, among others. Studies showing the use of SCFs and/or the construction of apparatuses that use these green solvents for solubility enhancement of functional pigments with poor water solubility and/or avoiding degradation of these compounds are extremely important. 7.1 Introduction Supercritical fluids (SCFs) have become an attractive alternative due to be considered environmentally friendly solvents (Prado et al. 2010). The methods that use supercritical fluids can be conveniently used for various applications such as extraction, micronization, encapsulation, etc. (Santos and Meireles 2010). In recent years, novel particle formation techniques utilizing supercritical fluids have been developed in order to overcome some of the disadvantages of the conventional techniques. Some of these drawbacks are: a) poor control of particle size and morphology; b) degradation of thermo sensitive compounds; c) low encapsulation efficiency; d) low precipitation yield. Additionally, the use of supercritical fluids as phase separating agents has been intensively studied also to minimize the amount of potentially harmful residues in the capsules (Santos and Meireles 2010). According to Cocero and coworkers carbon dioxide (CO2) is the most commonly solvent used for micronization and encapsulation purposes because the supercritical region can be achieved at moderate pressures and temperatures (Tc = 304.2 K, Pc = 7.38 MPa); therefore, working with supercritical CO2 it is possible to carry out processes at nearambient temperatures, avoiding the degradation of thermolabile substances (Cocero et al. 2009). The great interest in processes that use supercritical CO2 is the result of the easy removal of it from the final product, non-toxicity and non-flammability (Pereira et al. 2007). For extraction purposes due to similar reasons supercritical CO2 also is the most widely used solvent (Braga et al. 2007). 119 Currently there is a trend towards a healthier way of living, which includes a growing awareness by consumers for what they eat and what benefits certain ingredients have in maintaining good health. The application of pigments extracted from plants cells with several biological activities as food additives in various formulations is seriously hampered by their fast degradation triggered by light, temperature, presence of oxygen, insolubility in aqueous systems, low dispersibility, among others (Özen et al. 2009; Mattea et al. 2009). Their particle size reduction and/or their encapsulation in general is used to overcome all these challenges (Suo et al. 2005; Mattea et al. 2009). Several precipitation processes of micro to nano range of particles both in pure and encapsulated forms using SCFs have been developed. These processes can be classified according to the role of the supercritical fluid in the process: solvent [Rapid Expansion of Supercritical Solutions (RESS)]; Supercritical Solvent Impregnation (SSI), solute [Particles from Gas Saturated Solutions (PGSS)] or anti-solvent [Supercritical Anti-Solvent (SAS); Supercritical Fluid Extraction of Emulsions (SFEE)] (Martín and Cocero 2008). Recent developments in functional pigments particle formation and co-precipitation with biodegradable polymers using supercritical carbon dioxide as solvent or anti-solvent have been successfully employed. The reproducibility of these results using physically different apparatuses and on both laboratory and semi-industrial scale is extremely important. Thus, the present study involves experimental studies of SCF-based micronization and encapsulation processes exploiting both solvent and anti-solvent properties of supercritical CO2 for diverse functional pigments in order to asses the reliability of home-made experimental apparatuses and to validate the experimental data obtained with these equipments. Based on the solubility of the compound in supercritical CO2, two different approaches were applied. Quercetin, a plant pigment with antioxidant properties that belongs to the genre known as flavonoids (Hertog et al. 1992); β-carotene, a type of carotenoid used as natural colorants in food products that acts as precursor of Vitamin A and as antioxidant (Priamo et al. 2010) were used as model substances in the micronization process via SAS. Bixin-rich extract, an extract with high concentration of the thermolabile 120 carotenoid type bixin, widely used in the food, pharmacological and cosmetic industries due to the intensity of its color (Silva et al. 2008) with a biopolymer as encapsulant material were used in the encapsulation process via SAS. In the RESS process, rutin, a yellow flavonoid pigment with strong antioxidant activity (Nishikawa et al. 2007) and anthocyanin-rich extract, an extract with high content of a type of colorful flavonoids easily susceptible to degradation that shows several health promoting benefits (Santos and Meireles 2009), with a biopolymer and a co-solvent were applied to the formation of polymeric microcapsules. 7.2 Materials and methods 7.2.1 Materials Quercetin dihydrate with a minimum purity of 98 % was purchased from Sigma–Aldrich (St. Louis, USA). β-carotene (minimum purity of 97 %) was purchased from Fluka (Buchs, Switzerland). Figures 7.2.1.1 and 7.2.1.2 show, respectively, the quercetin and β-carotene crystals prior to subjecting them to the micronization process via SAS (using SC-CO2 as anti-solvent). Both Scanning Eletronic Microscope (SEM) micrographs presented flake-like crystals with mean width of 7.590 μm for quercetin and 3.288 μm for β-carotene. Quercetin is soluble in ethyl acetate (EA); β-carotene is soluble in dichloromethane (DCM); EA and DCM are both highly miscible in supercritical CO2 resulting in high volumetric expansion in SC-CO2. Therefore, EA and DCM (analytical grade) purchased from Merck (Darmstadt, Germany) were used to prepare the solutions. 121 Figure 7.2.1.1 - SEM micrograph of unprocessed quercetin sample. Figure 7.2.1.2 - SEM micrograph of unprocessed β-carotene sample. 122 Bixin-rich extract was obtained from annatto (Bixa orellana L.) seeds using pure supercritical CO2 at 31 MPa and 333 K. Bixin-rich extract and PolyEthylene Glycol (PEG) with a mean molecular weight of 10000 g/mol (melting point: 63–65 ºC) (Sigma– Aldrich, Steinhein, Germany) are both soluble in DCM, hence this solvent was used to prepare the solutions. Quercetin and β-carotene micronization processes and encapsulation process of bixin-rich extract in PEG were carried out employing carbon dioxide as anti-solvent due to its very low solubility as a compressed fluid in the temperature and pressure ranges investigated. Rutin hydrate with a minimum purity of 95 % was purchased from Sigma– Aldrich (St. Louis, USA). Anthocyanin-rich extract was obtained from jabuticaba (Myrciaria cauliflora) skins using pressurized ethanol at 0.5 MPa and 353 K. Figure 7.2.1.3 shows the rutin crystals prior to subjecting them to the encapsulation process via RESS (using SC-CO2 as solvent), which are flake-like, bar-like and agglomerated crystals with mean particle size of 9.254 μm. 123 Figure 7.2.1.3 - SEM micrograph of unprocessed rutin sample. Ethanol with analytical grade purchased from Ecibra (Santo Amaro, Brazil) was used in the encapsulation process of rutin and anthocyanin-rich extract via RESS as cosolvent to enhance the solubility of the polymer in the supercritical CO2. Additionally, ethanol was chosen also due its nonsolvent property to the produced polymeric microcapsules, avoiding any agglomeration after encapsulation procedure. PEG with a mean molecular weight of 10000 g/mol (melting point: 63–65 ◦C) (Sigma–Aldrich, Steinhein, Germany) was used as encapsulant material. Dry carbon dioxide, 99.9% purity (Gama Gases Especiais Ltda., Campinas, Brazil) used in all experiments was supplied in the liquid phase. For the construction of the standand curves of absorbance vs. concentration in the solvent chloroform (Ecibra, Santo Amaro, Brazil), distilled water and hydrochloric acid/potassium chloride buffer pH 1.0 were used for the determination of bixin-rich extract, rutin and anthocyanin-rich encapsulation efficiencies, respectively. 7.2.2 Micronization process via SAS The experiments for quercetin and β-carotene micronization via supercritical fluid were performed in the home-made SAS equipment; a schematic diagram of which is shown in Figure 7.2.2.1. Liquid CO2, anti-solvent, was fed from the cylinder through a thermostatic bath (Marconi, MA-184, Piracicaba, Brazil) at -10 °C to ensure the liquefaction of the fluid and to prevent cavitation, and then it was pumped by an air driven liquid pump (Maximator Gmbh, PP 111, Zorge, Germany) to the high-pressure vessel (volume of 500 mL; 6.8 cm internal diameter) via a nozzle. The nozzle consists in a 1/16 in. tube (inner diameter (i.d.): 177.8 μm) for the solution, placed inside a 1/8 in. tube for the CO2. Once the particle formation vessel reached steady state (temperature, pressure and 124 CO2 flow rate), the solution was introduced into the vessel by a HPLC pump (Thermoseparation Products, Model ConstaMetric 3200 P/F, Fremoni, USA) through the coaxial annular passage of the atomizer. Pressure was controlled by a back pressure regulator (Tesco, model nº 26-1761-24-161, ELK River, USA). The vessel temperature was kept constant by a heating water bath (Marconi, MA 127BO, Piracicaba, Brazil). CO2 flow rate was measured using a glass float rotameter (0.15-2.2 kg/h of CO2 at 1.013bar/20 ºC, ABB, 16/286A/2, Warminster, USA) coupled to a flow totalizer (LAO, model G0,6, Osasco, Brazil). When the desired amount of solution (quercetin in ethyl acetate or βcarotene in dichloromethane) had been injected, which enabled the collection of sufficient amount of precipitated powder for analysis, the HPLC pump was stopped and only pure CO2 was fed. The flow of CO2 was maintained during 20 minutes for the complete removal of solvent from the precipitator, which was proved necessary by the preliminary experimental results. Quercetin and β-carotene precipitates were trapped by a paper filter fixed at the bottom of the vessel, while the fluid mixture (SC-CO2 plus solvent) exited the vessel and flowed to a second vessel (100 mL glass flask) connected after the micrometric valve used to collect the particles carried with the effluent solution that leaves the precipitation vessel. At the end, the precipitation vessel was slowly depressurized to atmospheric pressure and particles were collected and stored in the dark in a domestic freezer (-10 ºC) (Double Action, Metalfrio, São Paulo, Brazil) until subsequent analysis and characterization. A heating system mantained at 120 ºC was used to heat the micrometric valve to avoid Joule-Thomson freezing effect that can lead to clogging of the throttling device during particle formation procedure. 125 4 3 4 2 3 8 9 7 3 17 5 13 4 4 3 6 16 1 13 10 4 14 Solution CO2 11 CO2 15 12 Figure 7.2.2.1 - Schematic diagram of the SAS apparatus. 1 CO2 cylinder; 2 CO2 filter; 3 manometers; 4 valves; 5 thermostatic bath; 6 CO2 pump; 7 back pressure regulator; 8 solution reservoir; 9 solution pump; 10 thermocouple; 11 precipitation vessel; 12 heating bath; 13 temperature controllers; 14 micrometric valve with a heating system; 15 glass flask; 16 glass float rotameter; 17 flow totalizer. For quecetin micronization the flow rate of CO2 and quercetin solution (1.4 mg.mL-1) were 0.6 kg.h-1 and 0.2 mL.min-1, respectively, and the precipitation pressure and temperature were 10 MPa 313.15 K, respectively. Conventional micronization of quercetin was also carried out, which was used as a reference process to compare with the supercritical fluid technique. Ten milliliters of quercetin in ethyl acetate solution (1.4 mg.mL-1) was prepared and then the solvent was evaporated using a rotary evaporator (Laborota, model 4001, Vertrieb, Germany), with vacuum control (Heidolph Instruments 126 Gmbh, Vertrieb, Germany) and thermostatic bath at 313.15 K. The quercetin precipitates were collected from the precipitation vessel (50 mL glass flask) and stored in the dark in a domestic freezer (-10 ºC) (Double Action, Metalfrio, São Paulo, Brazil) until subsequent analysis and characterization. For β-carotene micronization the flow rate of CO2 and β-carotene solution (8 mg.mL-1) were 1.5 kg.h-1 and 1 mL.min-1, respectively, and the precipitation pressure and temperature were 0.8 MPa 313.15 K, respectively. The experimental conditions and procedures applied is this study were employed in order to compare the results obtained in this work with the results obtained by other research groups (Can et al. 2009; Franceschi et al. 2009) at the same operational conditions using similar apparatuses. All experiments were done in duplicate. 7.2.3 Encapsulation process via SAS The experiments for bixin-rich extract encapsulation in PEG via supercritical fluid were performed in the SAS equipment described before. The encapsulation procedure was very similar to the micronization procedure described differing that an encapsulant material was added to the solution containing the core material dissolved in a solvent. PEG in this case was the encapsulant material, Bixin-rich extract the core material and dichloromethane the solvent. Dichloromethane was the selected solvent because it is a good solvent for bixin-rich extract and PEG. The solution flow rate, precipitation pressure and temperature were fixed at 1 mL.min-1, 10 MPa and 313.15 K, respectively. The CO2 flow rate and mass ratio between 127 bixin-rich extract and PEG investigated were 0.6 and 1.5 kg.h-1; 1:2 and 1:10, respectively. All experiments were done in duplicate. 7.2.4 Encapsulation process via RESS A schematic diagram of the home-made RESS equipment is given in Figure 7.2.4.1. The RESS equipment consists of a CO2 pump (Maximator Gmbh, PP 111, Zorge, Germany), a stainless steel pre-expansion vessel (6.57 mL, Thar Designs, Pittsburg, USA) containing syntherized metal filters at the inlet and outlet, a spray nozzle and an expansion vessel. A certain amount of core material (rutin or anthocyanin-rich extract), encapsulant material (PEG) and co-solvent (ethanol) was first loaded into the pre-expansion vessel. After being carefully sealed, liquid carbon dioxide cooled to around -10 °C by a thermostatic bath (Marconi, MA-184, Piracicaba, Brazil) was delivered into the preexpansion vessel. Simultaneously, with the addition and pressurization of CO2 the preexpansion vessel was heated by an electric jacket until the desired supercritical conditions were achieved. Pressure was controlled by a back pressure regulator (Tesco, model nº 261761-24-161, ELK River, USA). After achieving equilibrium, the mixture was kept for about 30 min to ensure that the core and coating materials were dissolved in the supercritical CO2. The prepared supercritical solution (a solution or suspension of core material in a CO2-containing co-solvent and the dissolved polymer) was then sprayed through a stainless steel capillary nozzle for a short time (< 4 s) to atmospheric pressure by the opening of the valve placed before the nozzle. The nozzle consists in a 1/16 in. tube (inner diameter (i.d.): 0.51 mm). The nozzle was maintained at 333 K with an electric heater to allow its rapid expansion avoiding Joule-Thomson freezing effect that can lead to 128 clogging of the throttling device during the rapid expansion. The distance from the orifice exit to the expansion target (the internal wall of the expansion vessel) was approximately 3 cm. 3 4 2 3 7 3 4 5 4 6 4 10 8 1 4 9 11 12 Figure 7.2.4.1 - Schematic diagram of the RESS apparatus. 1 CO2 cylinder; 2 CO2 filter; 3 manometers; 4 valves; 5 thermostatic bath; 6 CO2 pump; 7 back pressure regulator; 8 preexpansion vessel; 9 micrometric valve with a heating system; 10 temperature controller; 11 nozzle; 12 expansion vessel. The residual solvent (ethanol) in the particles was measured by the recording of the weight loss after the heating of a known amount of sample at 363.15 K for 24 hours. Based on the results of previous works (Matsuyama et al. 2003; Kongsombut et al. 2009) using similar apparatuses, core material and encapsulant material the 129 experimental conditions were selected. For both encapsulation processes the same operational conditions were employed: pre-expansion pressure and temperature of 20 MPa and 313.15 K, ethanol and PEG concentration of 27.1 % (w/w) and 8.1 % (w/w), respectively. Two mass ratios between core material and PEG of 1:2 and 1:10 were used for rutin encapsulation process. The amount of CO2 required for filling the RESS system is 8.43 g. All experiments were done in duplicate. 7.2.5 Characterization and Analysis 7.2.5.1 Particle characterization Micronized and encapsulated particles were analyzed by Scanning Electron Microscopy (SEM) (LEO 440i, Leica, Cambridge, USA) after coated with a thin gold film with the aid of a sputter coater (Polaron, SC 7620, Ringmer, England) to determine particle morphology, particle size and particle size distribution. The particle size distribution was obtained according to the following procedures. Initially, with the aid of a software (Micro Image Analysis Software, version 2.2, Eletronic Eyepiece, Zhejiang, China), 100 randomly selected, well-separated particles from the SEM images were measured in zoom-in mode, in which individual particles can be recognized clearly. Secondly, the particle size was calculated based on the ratio of their width or length to the SEM magnification scale. And finally, a histogram for particle size distribution was drawn, the mean particle size, PS (μm), and the standard deviation, SD (μm), in normal distribution mode N (PS, SD) were estimated. Other two ways to characterize the size distribution of the produced particles were also used alternatively: (1) 130 by plotting the particle size of the particles as cumulative distribution; (2) by calculating the variation coefficient (VC) by the Equation 1: VC (%) = s tan dard deviation ( SD) X 100 mean particle size ( PS ) (1) The color of PEG is obviously different from that of core materials, so the characteristics of dispersion of the core materials (bixin-rich extract, rutin and anthocyaninrich extract) in the polymeric encapsulant material was analyzed by color difference between them using optical micrographs (Nikon, mod Eclipse E200, Tokyo, Japan). 7.2.5.1.1 Determination of Precipitation Yield - PY (%) The precipitation yield – PY (%) was evaluated considering the amount of micronized powder collected in the precipitation vessel. The percentage of precipitation yield was calculated by the ratio between the mass of quercetin and β-carotene collected in the precipitation vessel after each assay and the mass of them present in the organic solution added to the precipitation vessel at each experiment. 7.2.5.1.2 Determination of Encapsulation Efficiency (EE (%)) The encapsulation efficiency was verified by a UV–Vis spectrophotometer (Hitachi, model U-3010, Tokyo, Japan). First, a sample of core material encapsulated in PEG was weighed. It was assumed that the ratio between core material and encapsulant material remained constant after the precipitation. Afterwards, the sample was dissolved in a suitable solvent for both substances (core material and PEG) and the absorbance was measured at maximum absorbance wavelengths. For bixin-rich extract, rutin and anthocyanin-rich extract different solvents were used: dichloromethane, distilled water and hydrochloric acid/potassium chloride buffer pH 1.0, and at different wavelengths 438, 352 and 512 nm, respectively. Comparing the results with a standard curve of absorbance vs. 131 concentration of free core material in the solvent, the amount of bixin-rich extract, rutin and anthocyanin-rich extract encapsulated were evaluated by a straight forward calculation of the encapsulation efficiency (EE (%)) by the Equation 2: EE (%) = mass of core material encapsulated X 100 theoretical mass of core material encapsulated (2) 7.3 Results and discussion 7.3.1 Micronization process via SAS 7.3.1.1 Quercetin micronization In Figure 7.3.1.1.1, the SEM micrograph shows the change in morphology and size of quercetin particles obtained using our home-made SAS equipment. The precipitates obtained under the experimental condition employed were needle-like particles with mean length of 1.872 μm. Comparing the sizes of micronized particles by SAS with that of unprocessed quercetin crystals (Figure 7.2.1.1), it can be concluded that the SAS equipment used in this study could be used to make micronized quercetin particles. In this study, the particle size from micronized quercetin by SAS was 4.1 times smaller than unprocessed quercetin. Quercetin was also micronized by conventional solvent evaporation method to obtain the reference materials for comparison. SEM micrograph of the micronized quercetin is shown in Figure 7.3.1.1.2. It was not observed a change in particle morphology. The morphology of flake-like of the quercetin crystals remained after conventional micronization process. On the other hand, the particle size from micronized quercetin by this technique was only 1.8 times smaller than unprocessed quercetin. 132 Figure 7.3.1.1.1 - SEM micrograph of quercetin micronized particles obtained by SAS process. Figure 7.3.1.1.2 - SEM micrograph of quercetin micronized particles obtained by conventional process. 133 Similar results were observed by Can et al. (2009) using a similar SAS apparatus for quercetin micronization. A significant reduction of the quercetin particles (3.2 times) was also observed under the same experimental condition employed in this study, though no change in morphology occurred to quercetin particles that remained at their initial form. The slightly difference (21.1 %) between the size reduction results can be associated mainly to two factors: (1) the inner diameter of the coaxial annular passage of the nozzle; (2) the size and geometry characteristics of the precipitation vessel. Since no information about these factors is provided by the authors, no conclusions can be inferred. Moreover, the same study also shows that quercetin micronized particles made by SAS process is much smaller than those obtained by conventional solvent evaporation method. It was suggested by the authors that the reason may be that at high velocity of supercritical CO2 the solution is broken into very small droplets in the SAS process, resulting in the formation of fine particles. Regarding the size distribution of the micronized particles, Figure 7.3.1.1.3 shows in terms of cumulative distribution the size distribution of the quercetin particles micronized by SAS and by conventional technique. The technique employed had no significant effect on the particle size distribution of the micronized precipitates. On the other hand, the technique employed has influenced the precipitation yield - PY (%). Different PYs, depending on the experimental method were obtained. A higher PY (99.5 %) was obtained using conventional micronization process than using SAS process (81.9 %). Franceschi et al. (2009) found comparable precipitation yields (in the range of 71-94 %) depending on the process parameter values for β-carotene micronization via SAS. 134 Nevertheless, other previous studies have obtained higher PYs for diverse particles. Miguel et al. (2008) for lutein micronization from also ethyl acetate solutions via SAS have obtained precipitation yields above 95 %. The amount of lutein precipitated and the precipitation yield were calculated by Miguel and coauthors as the difference between the amount of lutein in the feed, and the amount of lutein collected in the liquid effluent, while in our study and in the study of Franceschi and coauthors a direct calculation with the weight of the product in the precipitation vessel was done. As the last procedure seems to be greatly influenced by the collection efficiency of the particles, probably the lower value Cumulative distribution (%) of PY observed in this study is mainly related to the procedure employed. 100 90 80 70 60 50 40 30 20 10 0 0,1 1 10 100 1000 Particle size (μm) Micronized particles by SAS Micronized particles by conventional process Figure 7.3.1.1.3 - Size distribution of quercetin particles obtained by SAS and conventional processes. 7.3.1.2 β-carotene micronization 135 The morphology of β-carotene after SAS process as occurred with quercetin also changed. The unprocessed β-carotene presented a flake-like form (Figure 7.2.1.2), while the precipitated β-carotene a leaf-like form (Figure 7.3.1.2.1). Moreover, a change in the size of particles obtained by SAS process was also observed. An increase in the particle size was observed: starting from unprocessed β-carotene with mean particle size of 3.288 μm, the mean particle size of precipitated β-carotene was 16.090 μm. Figure 7.3.1.2.1 - SEM micrograph of β-carotene micronized particles obtained by SAS process. Although, the objective of reducing β-carotene particles was not achieved, the results obtained in this work seem to be consistent with current scientific literature. Franceschi et al. (2008) noted that most of the experimental runs of their work produced larger particles, in a wide size range dependent on the process conditions used, compared to 136 the unprocessed β-carotene particles. Using a different precipitation vessel in another study for micronization of β-carotene from dichloromethane solutions as well, Franceschi and coauthors observed a reduction in the mean particle size at the same operational conditions (Franceschi et al. 2009). It was suggested that the verified behavior might be explained by the enlargement of the precipitation vessel. In the first work, the inner diameter and height of the precipitation vessel were smaller than of the one used in the second work (resulting in a much smaller volume), thus the larger precipitation vessel possibly allowed an efficient removal of the solvent before particle deposition in the bottom or walls of the vessel, producing smaller particles. Since the precipitation vessel used in this study is slightly smaller than of the used by Francheschi and coauthors in the second work (16.7 %), it might be affected the recrystalization of β-carotene via SAS process. Concerning the inner diameter of the coaxial annular passage, a size decrease leads to a particle size decrease. According to Boutin et al. (2009) a smaller inner diameter favors the organic solution dispersion (particularly by increasing the injection speed for the same flow rate) and therefore the formation of smaller particles. In this way, the large difference between the precipitated β-carotene size obtained in our study (16.090 μm) and the obtained by Francheschi and coauthors (3.2 μm) using the same processing conditions might be highly linked to the much lower inner diameter of the coaxial annular passage used in by Francheschi et al. (2009) (100 μm). From these research results it is suggested that the combination of the use of a smaller precipitation vessel (500 mL) and a larger inner diameter of the coaxial annular passage (177.8 μm) produced larger β-carotene particle size. 137 Comparing the morphology of β-carotene precipitated particles obtained in this work with that obtained by Francheschi et al. (2009) at the same operational conditions, it was observed a strong similarity. Both of them presented leaf-like forms. It was demonstrated that the particle morphology is extremely dependent on the operational process conditions employed, being the justification for obtaining leaf-like β-carotene form by SAS process is the high anti-solvent flow rate used. The use of high CO2 flow rate causes a pronounced turbulence inside the precipitation vessel leading to an increase in the kinetic energy of the atomizing CO2. Thus, the mass transfer rates between CO2 and the organic solvent are increased; with CO2 diffusing more rapidly into the droplet and the solvent evaporating from droplets instantaneously causing accelerated supersaturation and nucleation (Francheschi et al. 2008; 2009), which might affect the recrystallization process generating a modification of the particle morphology. Likewise, our results on β-carotene precipitation yield (87.7 %) are in agreement with those of Francheschi et al. (2009) (87.0 %). 7.3.2 Encapsulation process via SAS 7.3.2.1 Bixin-rich extract encapsulation Two different CO2 flow rates were investigated. The higher CO2 flow rate employed resulted in an excessive loss of particles. It was visually observed in the downstream connections of the precipitation vessel and in the 100 mL glass flask the presence of bixin-rich extract. Since the bixin-rich extract was produced using supercritical CO2 at 31 MPa and 333 K, during SAS process part of the extract, which is soluble in CO2 at 10 MPa and 313 K, was carried with the effluent solution (CO2 plus dichloromethane). 138 Using the lower CO2 flow rate the loss of bixin-rich extract encapsulated was reduced, thus the lower CO2 flow rate (0.6 kg.h-1) would be preferred for further experiments. The effect of mass ratio between bixin-rich extract and PEG on the encapsulation process was also evaluated. According to our findings and corroborating the literature data, a decrease in the mass ratio between core material and encapsulant material led to the production of less agglomerated particles (Martín et al. 2007). Then, the smaller (1:10) mass ratio between bixin-rich extract and PEG was chosen. For the mass ratio of 1:2 probably the amount of polymer was not sufficient to effectively encapsulate the amount of bixin-rich extract. Microparticles of polymer PEG with other carotenoids loaded within have been successfully produced using supercritical CO2 as anti-solvent, such as β-carotene (Martín et al. 2007; He et al. 2007; Mattea et al. 2008) and lutein (Martín et al. 2007). In agreement with those studies, bixin-rich extract was loaded into the PEG matrix with success. Unprocessed PEG powders, demonstrated in Figure 7.3.2.1.1-1, are gray and transparent slice-like particles with sizes about 2–5 mm. With color difference between bixin-rich extract (orange) and PEG there is a clear evidence of the presence of well dispersed bixin-rich extract inside the polymer matrix obtained by SAS process (CO2 flow rate of 0.6 kg.h-1; mass ratio between core material and PEG of 1:10) (Figure 7.3.2.1.1-2). The SEM micrograph (Figure 7.3.2.1.2-1) shows the morphology of the microparticles of bixin-rich extract encapsulated in PEG. Diverse morphologies were observed, such as flake-like, bar-like, etc. He et al. (2006) also produced β-carotene/PEG particles using similar SAS equipment, and verified a variety of morphologies. 139 Figure 7.3.2.1.1 - Optical micrographs of: 1) PEG sample; 2) bixin-rich extract encapsulated in PEG by SAS process (CO2 flow rate of 0.6 kg.h-1; mass ratio between core material and PEG of 1:10); 3) rutin encapsulated in PEG by RESS process (mass ratio between core material and PEG of 1:10); 4) anthocyanin-rich extract encapsulated in PEG by RESS process (mass ratio between core material and PEG of 1:10). Bixin-rich extract/PEG particle size of 33.02 ± 2.17 µm was produced in this study. Mattea et al. (2008) employing similar SAS processing conditions produced βcarotene/PEG particle sizes in the range of 15-200 μm, corroborating our results. 140 Figure 7.3.2.1.2 - SEM micrographs of: 1) bixin-rich extract encapsulated in PEG by SAS process (CO2 flow rate of 0.6 kg.h-1; mass ratio between core material and PEG of 1:10); 2) rutin encapsulated in PEG by RESS process (mass ratio between core material and PEG of 1:2); 3) rutin encapsulated in PEG by RESS process (mass ratio between core material and PEG of 1:10); 4) anthocyanin-rich extract encapsulated in PEG by RESS process (mass ratio between core material and PEG of 1:10). The encapsulation efficiency (EE (%)) for bixin-rich extract in PEG under the SAS condition investigated in this work was determined and compared to literature data. An EE value of 62.23 ± 4.32 % was obtained. Encapsulation efficiencies ranging around 5141 80 % have been reported for other functional pigments, depending on SAS processing conditions, such as mass ratio between core material and encapsulant material, precipitation pressure and temperature, etc. (He et al. 2006; Francheschi et al. 2009). Furthermore, the procedure for the determination of the EE may influence its value. The procedure that takes into account the minor amount of core material adsorbed onto the polymer surface results obviously in a EE slightly higher than the EE determinated using a procedure that does not do this consideration (Priamo et al. 2010). Due to the simplicity of the last procedure we decided to use it in this work. 7.3.3 Encapsulation process via RESS 7.3.3.1 Rutin encapsulation The Rutin/PEG particles (Figures 7.3.2.1.2-2; 7.3.2.1.2-3) had an apparently amorphous morphology, very different from the crystalline morphology of rutin crystals prior to subjecting them to the encapsulation process (Figure 7.2.1.3), indicating that rutin particles had been successfully encapsulated in PEG matrix using our home-made RESS equipment using ethanol as co-solvent. The effect of mass ratio between rutin and PEG on the encapsulation efficiency (EE (%)) and rutin/PEG particle size was investigated. For the mass ratio between rutin and PEG of 1:2 the encapsulation efficiency was 44.18 ± 0.59, while for the mass ratio of 1:10 the EE was 21.19 ± 2.67. A decrease in the concentration of core material resulted in a decrease in the encapsulation efficiency and in the particle size (Figures 7.3.2.1.2-2; 7.3.2.1.2-3), keeping fixed PEG content, as expected. Whereas Matsuyama et al. (2003) using similar RESS apparatus, core material and experimental conditions have not 142 estimated the EE values for their microcapsules it was suggested that most of the feed flavone particles were well coated with PEG being mainly located in the center of the polymeric microcapsules. Figure 7.3.2.1.1-3 shows that the rutin particles (mass ratio of 1:10) were well distributed in the microcapsules, corroborating the findings of Matsuyama’s research group. According to Matsuyama et al. (2003) the key of the encapsulation via RESS using co-solvents is the ability to control the thickness and particle size distribution of the microcapsules with the feed concentration of the polymer. Since the mean particle size of the rutin/PEG obtained in this study was 42.944 µm (mass ratio of 1:10), while of unprocessed rutin particles was 9.254 µm, it can be suggested that, or there is a large thickness of PEG on each rutin particle, or each rutin/PEG particle is an agglomerate of rutin and PEG particles. Based on the Kongsombut et al. (2009) theory is suggested that probably the flow turbulence and friction loss generated during the rapid expansion of supercritical solution process would not be sufficient to disintegrate all of agglomerates into totally separated particles. In contrast, after expansion as expected the produced rutin/PEG particles did not tend to agglomerate because the residual co-solvent (ethanol) acts as a good nonsolvent for the polymer. The amount of residual ethanol in the microcapsules was 0.40 % (w/w). Matsuyama et al. (2003) obtained an amount of residual ethanol in their microcapsules less than 1 % (w/w) for different polymers. Regarding the size distribution of the rutin/PEG particles, due to the experimental discrepancies observed for particle size and particle distribution, it was decided to characterize the size distribution by the variation coefficient (VC). Several 143 research groups have employing the same criterion to determine the dispersion of particle size in the precipitation using supercritical CO2 (Tenório et al. 2007; Franceschi et al. 2008; 2009; Priamo et al. 2010). For the mass ratio between rutin and PEG of 1:2 the variation coefficient (VC) was 10.93 %, while for the mass ratio of 1:10 the VC was 22.85 %. Depending on the application of the produced particles it will be required a process that can produce microparticles with a desired mean particle size with an acceptable particle size dispersion and with a significant core material encapsulated (high encapsulation efficiency), hence it is extremely important the determination of all this response variables for optimization studies. 7.3.3.2 Anthocyanin-rich extract encapsulation The anthocyanin-rich extract/PEG particles (Figure 7.3.2.1.2-4) had also an apparently amorphous morphology, indicating that anthocyanin-rich extract had been successfully encapsulated in PEG matrix via RESS using ethanol as co-solvent. With color difference between anthocyanin-rich extract (purple) and PEG (gray and transparent) it was confirmed that anthocyanin-rich extract is located inside the polymer matrix obtained by RESS process (mass ratio between core material and PEG of 1:10) (Figure 7.3.2.1.1-4), but its dispersion into the PEG matrix was not good using the operational conditions used in this study. Vatai et al. (2009) and Seabra et al. (2010) have demonstrated that anthocyanin pigments have high solubility in supercritical CO2-ethanol. Given that anthocyanins possibly have higher solubility in the mixture supercritical CO2 + ethanol than rutin due to the attached sugar moiety of the anthocyanin molecule (Santos et al. 2010), when rutin was employed as core material a process more similar to a rapid expansion of a suspension of 144 supercritical CO2-insoluble particles in the supercritical CO2 solution was carried out. According to Tsutsumi et al. (2003) in this process the core material is not dissolved but suspended in a single homogeneous mixture of CO2, co-solvent, and the dissolved encapsulant material, leading to a homogeneous deposition of the encapsulant material on the surface of the suspended particles, thereby generating a polymer encapsulating layer on the particle surfaces. Kongsombut et al. (2009) using SiO2 particles concluded that the dispersion and segregation of SiO2 powder contributed to the low agglomeration tendency of the encapsulated particles. Since that anthocyanin-rich extract is a thick and viscous extract and not a powder as rutin and SiO2, it would be expected that anthocyanin-rich extract/PEG particles would have a higher agglomeration tendency than rutin/PEG particles. In agreement with this explanation Figure 7.3.2.1.2-4 shows that anthocyanin-rich extract/PEG particles in fact have higher agglomeration tendency than rutin/PEG particles (Figures 7.3.2.1.2-2; 7.3.2.1.2-3). On the contrary, the encapsulation efficiency of anthocyanin-rich extract in PEG matrix (49.42 ± 2.32 %) was higher than that using rutin as core material, possibly due to its sticky characteristic. On the other hand, the amount of the residual ethanol in these microcapsules and the variation coefficient were comparable to rutin microcapsules 0.52 % (w/w) and 11.989 %, respectively. 7.4 Conclusions This work investigated the micronization and encapsulation of diverse functional pigments using supercritical carbon dioxide as solvent or anti-solvent. 145 Experimental results on functional pigments micronization and encapsulation already studied using similar apparatuses were provided demonstrating the reliability of our homemade systems. SAS process successfully reduced the particle size of quercetin by 4.1 times, while conventional micronization process only 1.8 times. Although the objective of reducing β-carotene particles was not achieved the results obtained in this work seem to be consistent with current scientific literature, validating our SAS equipment. Furthermore, it was demonstrated that SAS process can be successfully utilized to co-precipitate microparticles of PEG loaded with bixin-rich extract. The results allow to identify CO2 flow rate, core material:encapsulant material ratio and core material solubility in supercritical CO2 as the key parameters of the co-precipitation. Further experiments will be carried out in order to optimize the processing parameters. RESS process using ethanol as co-solvent was effectively employed to encapsulate rutin and anthocyanin-rich extract in PEG matrix. The data obtained in this study are in good agreement with the previous values reported by several authors using similar operational conditions and equipments. Core material:encapsulant material ratio and core material physical properties such as solubility in supercritical CO2 + ethanol and viscosity were key parameters for this process. In order to better understand this encapsulation technique further experiments will be done. This work is part of a broader project aiming at developing alternative sustainable technologies towards particle formation of sensitive bioactive compounds from vegetable sources, hence the results obtained here may be relevant as a support for the 146 successful design of particles with the desired size, form and morphology, which can be applied mainly in food products. Acknowledgements The authors are grateful to CNPq for financial support. Diego T. Santos thanks CNPq (141894/2009-1) for the doctorate fellowship. References BOUTIN, O., PETIT-GAS, T. and BADENS, E. 2009. Powder Micronization Using a CO2 Supercritical Antisolvent Type Process: Comparison of Different Introduction Devices. Ind. Eng. Chem. Res. 48, 5671-5678. DOI: 10.1021/ie8017803 BRAGA, M.E.M. and MEIRELES, M.A.A. 2007. Accelerated Solvent Extraction And Fractioned Extraction to Obtain the Curcuma Longa Volatile Oil and Oleoresin. J. Food Process Eng. 30, 501-521. DOI: 10.1111/j.1745-4530.2007.00133.x CAN, Q., CARLFORS, J. and TURNER, C. 2009. Carotenoids Particle Formation by Supercritical Fluid Technologies. Chin. J. Chem. Eng. 17, 344-349. 10.1016/S10049541(08)60214-1 COCERO, M.J., MARTÍN, A., MATTEA, F. and VARONA, S. 2009. Encapsulation and co-precipitation processes with supercritical fluids: fundamentals and applications. J. Supercrit. Fluids 47, 546-555. 10.1016/j.supflu.2008.08.015 147 FRANCESCHI, E., DE CESARO, A.M., FEITEN, M., FERREIRA, S.R.S., DARIVA, C., KUNITA, M.H., RUBIRA, A.F., MUNIZ, E.C., CORAZZA, M.L. and OLIVEIRA, J.V. 2008. Precipitation of β-carotene and PHBV and co-precipitation from SEDS technique using supercritical CO2. J. Supercrit. Fluids 47, 259-269. 10.1016/j.supflu.2008.08.002 FRANCESCHI, E., DE CESARO, A.M., FERREIRA, S.R.S. and OLIVEIRA, J.V. 2009. Precipitation of β-carotene microparticles from SEDS technique using supercritical CO2, J. Food Eng. 95, 656-663. DOI: 10.1016/j.jfoodeng.2009.06.034 HE, W.Z., SUO, Q.L., HONG, H.L., LI, G.M., ZHAO, X.H., LI, C.P. and SHAN, A. 2006. Supercritical Antisolvent Micronization of Natural Carotene by the SEDS Process through Prefilming Atomization. Ind. Eng. Chem. Res. 45, 2108-2115. DOI: 10.1021/ie050993f HE, W.Z., SUO, Q.L., HONG, H.L., SHAN, A., LI, C.P., HUANG, Y., LI, Y., ZHU, M. 2007. Production of natural carotene-dispersed polymer microparticles by SEDS-PA coprecipitation. J. Mater Sci. 42, 495-501. 10.1007/s10853-006-1099-z HERTOG, M.G.L., HOLLMAN, P.C.H. and KATAN, M.B. 1992. Content of potentially anticarcinogenic flavonoids of 28 vegetables and 9 fruits commonly consumed in the Netherlands. J. Agric. Food Chem. 40, 2379-2383. DOI: 10.1021/jf00024a011 KONGSOMBUT, B., TSUTSUMI, A., SUANKAEW, N. and CHARINPANITKUL, T. 2009. Encapsulation of SiO2 and TiO2 Fine Powders with Poly(DL-lactic-co-glycolic acid) by Rapid Expansion of Supercritical CO2 Incorporated with Ethanol Cosolvent. Ind. Eng. Chem. Res. 48, 11230-11235. DOI: 10.1021/ie900690v 148 MARTÍN, A. and COCERO, M.J. 2008. Micronization processes with supercritical fluids: Fundamentals and mechanisms. Adv. Drug Deliv. Rev. 60, 339-350. DOI: 10.1016/j.addr.2007.06.019 MARTÍN, A., MATTEA, F., GUTI´ERREZ, L., MIGUEL, F. and COCERO, M.J. 2007. Co-precipitation of carotenoids and bio-polymers with the supercritical anti-solvent process J. Supercrit. Fluids 41, 138-147. 10.1016/j.supflu.2006.08.009 MATSUYAMA, K., MISHIMA, K., HAYASHI, K-I., ISHIKAWA, H., MATSUYAMA, H. and HARADA, T. 2003. Formation of Microcapsules of Medicines by the Rapid Expansion of a Supercritical Solution with a Nonsolvent. J. Appl. Polym. Sci. 89, 742-752. 10.1002/app.12201 MATTEA, F., MARTIN, A. and COCERO, M.J. 2008. Co-Precipitation of β-Carotene and Polyethylene Glycol with Compressed CO2 as an Antisolvent: Effect of Temperature and Concentration. Ind. Eng. Chem. Res. 47, 3900-3906. DOI: 10.1021/ie071326k MATTEA, F., MARTÍN, A. and COCERO, M.J. 2009. Carotenoid processing with supercritical fluids. J. Food Eng. 93, 255-265. 10.1016/j.jfoodeng.2009.01.030 MIGUEL, F., MARTÍN A., MATTEA, F. and COCERO, M.J. 2008. Precipitation of lutein and co-precipitation of lutein and poly-lactic acid with the supercritical anti-solvent process. Chem. Eng. Process. 47, 1594-1602. DOI: 10.1016/j.cep.2007.07.008 NISHIKAWA, D.O., ZAGUE, V., PINTO, C.A.S.O., VIEIRA, R.P., KANEKO, T.M., VELASCO, M.V.R. and BABY, A.R. 2007. Avaliação da estabilidade de máscaras faciais peel-off contendo rutina. Rev. Ciênc. Farm. Básica Apl. 28, 227-232. 149 ÖZEN, G., AKBULUT, M. and ARTIK, N. 2009. Stability of Black Carrot Anthocyanins in the Turkish Delight (Lokum) During Storage. In press. DOI: 10.1111/j.17454530.2009.00412.x PEREIRA, C.G. and MEIRELES, M.A.A. 2007. Evaluation of global yield, composition, antioxidant activity and cost of manufacturing of extracts from lemon verbena (aloysia triphylla[l'hérit.] Britton) and mango (mangifera indica l.) Leaves. J. Food Process Eng. 30, 150-173. DOI: 10.1111/j.1745-4530.2007.00100.x PRADO, J.M., ASSIS, A.R.,. MARÓSTICA-JÚNIOR, M.R. and MEIRELES, M.A.A. 2010. Manufacturing cost of supercritical-extracted oils and carotenoids from amazonian plants. J. Food Process Eng. 33, 348–369. DOI: 10.1111/j.1745-4530.2008.00279.x PRIAMO, W.L., CEZARO A.M., FERREIRA, S.R.S. and OLIVEIRA, J.V. 2010. Precipitation and encapsulation of β-carotene in PHBV using carbon dioxide as antisolvent. J. Supercrit. Fluids 54, 103-109. 10.1016/j.supflu.2010.02.013 SANTOS, D.T. and MEIRELES, M.A.A. 2009. Jabuticaba as a Source of Functional Pigments. Phcog. Rev. 3, 127-132. SANTOS, D.T. and MEIRELES, M.A.A. 2010. Carotenoid Pigments Encapsulation: Fundamentals, Techniques and Recent Trends. The Open Chem. Eng. J. 4, 42-50. DOI: 10.2174/1874123101004020042 SANTOS, D.T., VEGGI, P.C. and MEIRELES, M.A.A. 2010. Extraction of antioxidant compounds from Jabuticaba (Myrciaria cauliflora) skins: Yield, composition and economical evaluation. J. Food Eng. In press. DOI: 10.1016/j.jfoodeng.2010.06.005 150 SEABRA, I.J., BRAGA, M.E.M., BATISTA, M.T. and DE SOUSA, H.C. 2010. Effect of solvent (CO2/ethanol/H2O) on the fractionated enhanced solvent extraction of anthocyanins from elderberry pomace. J. Supercrit. Fluids 54, 145-152. DOI: 10.1016/j.supflu.2010.05.001 SILVA, G.F., GAMARRA, F.M.C., OLIVEIRA, A.L. and CABRAL, F.A. 2008. Extraction of bixin from annatto seeds using supercritical carbon dioxide. Braz. J. Chem. Eng. 25, 419-426. 10.1590/S0104-66322008000200019 SUO, Q.L., HE, W.Z., HUANG, Y.C., LI, C.P., HONG, H.L., LI, Y.X. and ZHU, M.D. 2005 Micronization of the natural pigment-bixin by the SEDS process through prefilming atomization. Powder Technol.154, 110-115. DOI: 10.1016/j.powtec.2005.05.001 TENÓRIO, A., GORDILLO, M.D., PEREYRA, C.M. and MARTÍNEZ DE LA OSSA, E.J., 2007. Relative importance of the operating conditions involved in the formation of nanoparticle of ampicillin by supercritical antisolvent precipitation. Ind. Eng. Chem. Res. 46, 114-123. DOI: 10.1021/ie0606441 TSUTSUMI, A., IKEDA, M., CHEN, W. and IWATSUKI, J. 2003. A Nano-Coating Process by the Rapid Expansion of Supercritical Suspensions in Impinging-Stream Reactors. Powder Technol. 138, 211-215. DOI: 10.1016/j.powtec.2003.09.001 VATAI, T., SKERGET, M. and KNEZ, Z. 2009. Extraction of phenolic compounds from elder berry and different grape marc varieties using organic solvents and/or supercritical carbon dioxide. J. Food Eng. 90, 246-254. DOI: 10.1016/j.jfoodeng.2008.06.028 151 152 CAPÍTULO 8 - STABILIZATION OF ANTHOCYANIN EXTRACT FROM JABUTICABA SKINS BY ENCAPSULATION USING SUPERCRITICAL CO2 AS SOLVENT Diego T. Santos, Juliana Q. Albarelli, Marisa M. Beppu and M. Angela A. Meireles Trabalho submetido ao periódico Industrial & Engineering Chemistry Research. 153 Key words Anthocyanins, Encapsulation, Rapid Expansion of Supercritical Solution (RESS), Caalginate Beads Abstract Supercritical fluids (SCFs) have become an attractive alternative because they are considered environmentally friendly solvents. In the recent years, novel particle formation techniques utilizing supercritical fluids have been developed in order to overcome some of the disadvantages of the conventional techniques. In this context, the present study evaluates the stabilization of anthocyanin extract obtained from jabuticaba (Myrciaria cauliflora) skins in Polyethileneglicol using supercritical CO2 as solvent and ethanol as cosolvent. For comparison, a conventional method called ionic gelification was employed to produce encapsulated particles by entrapment in Ca-alginate beads. 8.1 Introduction Anthocyanins are one of the most important groups of water-soluble and vacuolar pigments in nature. They belong to the flavonoid group responsible for a wide variety of colors of fruits, flowers and leaves ranging from salmon pink through red and violet to dark blue1. This pigment has attracted great interest due to the wide range of biological activities including antioxidant2, anti-inflammatory3,4, anticancer5, antimutagenic6 and chemopreventive activities7. However, the introduction of anthocyanins into food and/or medical field has proved to be a major technological challenge since these compounds have low stability to the environmental conditions during processing, storage and also consumption. They are susceptible to degradation through factors such as light, pH, temperature, presence of 154 sulfite, ascorbic acid, enzymes, among others8. One possible way to effectively protect these compounds, from product processing to consumption, could be the use of encapsulation techniques. Encapsulation facilitates light- and heat-labile molecules to maintain their stability and improve their shelf lives and effects. It is a rapidly expanding technology, highly specific, with affordable costs9,10. Among diverse encapsulation techniques available, only few were evaluated for anthocyanin encapsulation as spray drying using different coating materials11, gelation using polymers as sodium alginate, pectin, curdlan12 and glucan13 and liophilization14. Supercritical fluids (SCFs) have become an attractive alternative because they are considered environmentally friendly solvents. In the recent years, novel particle formation techniques utilizing supercritical fluids have been developed in order to overcome some of the disadvantages of the conventional techniques. Some of these drawbacks are: a) poor control of particle size and morphology; b) degradation and lost of biological activity of thermo sensitive compounds; c) low encapsulation efficiency; d) low precipitation yield. Additionally, the use of supercritical fluids as phase separating agents has been intensively studied also to minimize the amount of potentially harmful residues in the capsules10, 15. In this context, the present study evaluates the encapsulation of anthocyanins extracted from jabuticaba (Myrciaria cauliflora) skins, a Brazilian potential source of anthocyanins1, using supercritical CO2 as solvent, ethanol as co-solvent and Polyethileneglicol as encapsulant material in order to increase and retain this pigment stability, protecting these compounds from environmental conditions and therefore promoting a larger utilization of these natural compounds in industry. For anthocyanin extract stabilization comparison, a conventional method called ionic gelification was employed to produce encapsulated particles by entrapment in Ca-alginate beads. 8.2 Materials and methods 155 8.2.1 Plant Material Jabuticaba fruits (Myrciaria cauliflora) harvested from a plantation in the State of São Paulo, Brazil, were acquired from a fruit and vegetable market centre (CEASACampinas, Brazil). Immediately after acquiring, the fruits were stored in the dark in a domestic freezer (-10 ºC) (Double Action, Metalfrio, São Paulo, Brazil) until sample preparation. Before extraction, the fruits were manually peeled. 8.2.2 Anthocyanin Extraction For the anthocyanin extraction Pressurized Liquid Extraction process was used. Based on our previous experiments extraction pressure, temperature, static extraction time and ethanol flow rate were set at 50 bar, 80 ºC, 9 min and 1.67 mL/min (during 12 min). After PLE, anthocyanin extracts were rapidly cooled to 5 °C in ice water to prevent anthocyanin degradation. Subsequently, the extraction cell was exaustively purged with a flow rate of 0.71 kg/h of carbon dioxide 99.9% (Gama Gases Especiais Ltda., Campinas, Brazil) during 8-9 min to ensure that no residual anthocyanin extract solution would be into the extraction cell. At the end, ethanol from the extract solution was evaporated using a rotary evaporator (Laborota, model 4001, Vertrieb, Germany), with vacuum control (Heidolph Instruments Gmbh, Vertrieb, Germany) and thermostatic bath at 40 °C. All the extracts were stored (- 10 ºC) in the dark until being used in the encapsulation processes. 8.2.3 Encapsulation of Anthocyanin Extract 8.2.3.1 By Rapid Expansion of Supercritical Solution (RESS) process A schematic diagram of the home-made RESS equipment is given in Figure 8.8.2.3.1.1. The RESS equipment consists of a CO2 pump (Maximator Gmbh, PP 111, 156 Zorge, Germany), a stainless steel pre-expansion vessel (6.57 mL, Thar Designs, Pittsburg, USA) containing syntherized metal filters at the inlet and outlet, a spray nozzle and an expansion vessel. A certain amount of anthocyanin extract, encapsulant material (Polyethylene glycol) and co-solvent (ethanol) were first loaded into the pre-expansion vessel. Polyethyleneglycol (PEG) with a mean molecular weight of 10000 g/mol (melting point: 63–65 ◦C) (Sigma–Aldrich, Steinhein, Germany) was used as encapsulant material. Ethanol was used in the encapsulation process as co-solvent to enhance the solubility of the polymer in the supercritical CO2. Additionally, ethanol was chosen due its nonsolvent property to the produced polymeric microcapsules, avoiding any agglomeration after encapsulation procedure. After being carefully sealed, liquid carbon dioxide (99.9% purity, Gama Gases Especiais Ltda., Campinas, Brazil) cooled to around -10 °C by a thermostatic bath (Marconi, MA-184, Piracicaba, Brazil) was delivered into the pre-expansion vessel. Simultaneously, with the addition and pressurization of CO2 the pre-expansion vessel was heated by an electric jacket until the desired supercritical conditions were achieved. Pressure was controlled by a back pressure regulator (Tesco, model nº 26-1761-24-161, ELK River, USA). After achieving equilibrium, the mixture was kept under established condition for about 30 min to ensure that the core and coating materials were dissolved in the supercritical CO2. The prepared supercritical solution (a solution or suspension of core material in a CO2-containing co-solvent and the dissolved polymer) was then sprayed through a stainless steel capillary nozzle for a short time (< 4 s) to atmospheric pressure by the opening of the valve placed before the nozzle. The nozzle consists in a 1/16 in. tube (inner diameter (i.d.): 0.51 mm). The nozzle was maintained at 333 K with an electric heater to allow its rapid expansion avoiding Joule-Thomson freezing effect that can lead to 157 clogging of the throttling device during the rapid expansion. The distance from the orifice exit to the expansion target (the internal wall of the expansion vessel) was approximately 3 cm. 3 4 2 3 7 3 4 5 4 6 1 4 10 8 4 9 11 12 Figure 8.8.2.3.1.1 - Schematic diagram of the RESS apparatus. 1 CO2 cylinder; 2 CO2 filter; 3 manometers; 4 valves; 5 thermostatic bath; 6 CO2 pump; 7 back pressure regulator; 8 pre-expansion vessel; 9 micrometric valve with a heating system; 10 temperature controller; 11 nozzle; 12 expansion vessel. The operational conditions pre-expansion pressure and temperature ranges of 10-35 MPa and 313.15-323.15 K were evaluated. Ethanol concentration of 27.1 % (w/w) was employed in all experiments. Different mass ratios between core material and Polietileneglycol (PEG) of 1:4, 1:6 and 1:10 were tested. The amount of CO2 required for filling the RESS system was 8.43 g. All experiments were done in duplicate. 158 The residual solvent (ethanol) in the particles was measured by the recording of the weight loss after the heating of a known amount of sample at 363.15 K for 24 hours. The encapsulation efficiency was verified by a UV–Vis spectrophotometer (Hitachi, model U-3010, Tokyo, Japan). First, a sample of core material encapsulated into PEG was weighed. It was assumed that the ratio between core material and encapsulant material remained constant after the precipitation. Afterwards, the sample was dissolved in a suitable solvent for both substances (core material and PEG) and the absorbance was measured at maximum absorbance wavelength. For the construction of the standard curves of absorbance vs. concentration in the solvent, hydrochloric acid/potassium chloride buffer pH 1.0 was used for the determination of anthocyanin encapsulation efficiency. Comparing the results with a standard curve of absorbance vs. concentration of anthocyanin encapsulation in the solvent hydrochloric acid/potassium chloride buffer pH 1.0, the Percentage of Encapsulated [PE (%)] and Encapsulation Efficiency [EE (%)] in each assay were evaluated by the following expressions: PE (%) = mass of core material encapsulated X 100 mass of encapsulated extract system (core + encapsulant materials ) EE (%) = mass of core material encapsulated X 100 theoretical mass of core material encapsulated (1) (2) The characteristics of dispersion of the anthocyanin extract in the polymeric encapsulant material PEG was analyzed by color difference between them using optical micrographs (Nikon, mod Eclipse E200, Tokyo, Japan). 8.2.3.1.1 Evaluation of the antioxidant activity of the encapsulated anthocyanin extract after RESS process 159 In order to verify if the evaluated RESS parameters (pressure and temperature) may affect the anthocyanin extract biological activity, the antioxidant activities of encapsulated anthocyanin extracts and the anthocyanin extract were compared. The evaluation of antioxidant activity of these systems was based on the coupled oxidation of β-carotene and linoleic acid. The technique developed by Marco16 consisted of measuring the bleaching of β-carotene resulting from oxidation by the degradation products of linoleic acid. One milligram of β-carotene (97 %, Sigma-Aldrich, St. Louis, USA) was dissolved in 10 cm3 of chloroform (99 %, Ecibra, Santo Amaro, Brazil). The absorbance was tested after adding 0.2 cm3 of the solution to 5 cm3 of chloroform, then measuring the absorbance of this solution at 470 nm using a UV–Vis spectrophotometer (Hitachi, model U-3010, Tokyo, Japan). A measurement between 0.6 and 0.9 indicated a workable concentration of β-carotene. One cm3 of β-carotene chloroform solution was added to a flask that contained 20 mg of linoleic acid (99%, Sigma-Aldrich, St. Louis, USA) and 200 mg Tween 40 (99%, Sigma-Aldrich, St. Louis, USA). Chloroform was removed using a rotary evaporator (Laborota, model 4001, Vertrieb, Germany), with vacuum control (Heidolph Instruments Gmbh, Vertrieb, Germany) and a thermostatic bath at 40 °C; then 50 cm3 of oxygenated distilled water (oxygenation for 30 minutes) was added to the flask with vigorous agitation to form an emulsion. Five cm3 of the emulsion was added to 0.2 cm3 of the antioxidant solution (approximately 7.5 mg of free or encapsulated extract; or pure synthetic BHT/1 cm3 of distilled water) in assay tubes. To the control solution, 0.2 cm3 of pure distilled water was added. A blank consisting of 20 mg of linoleic acid, 200 mg of Tween 40 and 50 cm3 of oxygenated distilled water was used to bring the spectrophotometer to zero. Tubes were manually shaken, and absorbance measurements made at 470 nm immediately after the addition of the emulsion to the antioxidant solution. The tubes were placed in a water bath (model TE 159, Tecnal, Piracicaba, Brazil) at 50 ºC. Absorbance measurements were made at 30 minutes intervals during 2 hours. The average deviation of duplicated experiments never exceeded 8%, therefore, no additional statistical analysis was considered necessary. 160 8.2.3.2 By conventional method The conventional method for encapsulation used in this study was the ionic gelification. The anthocyanin extract was encapsulated by entrapment in Ca-alginate beads (2.7 mm average diameter). Ca-alginate beads containing anthocyanin extract were prepared by dripping an adequate volume of a solution 1.5 % of sodium alginate (CD1125, Vetec Ltda, Rio de Janeiro, Brazil) with an anthocyanin extract concentration of 20 mg/L in a 20 g/L CaCl2 (Cod 11692, Nuclear Ltda, Brazil), using a 19-G needle (1.5 inch) and a 20 mL syringe (Figure 8.2.3.2.1). The beads were left for 30 min in the CaCl2 solution, then the beads were separated from the solution and washed with distilled water. For encapsulation efficiency determination into the beads two methods were employed: 1) a method based on the complete dissolution of the Ca-alginate beads in phosphate buffer solution pH 7.417 or sodium citrate solution18; 2) an alternative method based on the concentration of non encapsulated anthocyanin extract. Samples of the crosslinking solution were taken after encapsulation process. The absorbance of this solution measured by a UV spectrophotometer (Hitachi, model U-3010, Tokyo, Japan) was compared with the absorbance of solutions of known concentration of CaCl2 and anthocyanin extract at maximum absorbance wavelength. A calibration curve was constructed to correlate the measured absorbance with the concentration of non encapsulated anthocyanin extract. The Encapsulation Efficiency [EE (%)] was determined by Equation 3: EE (%) = mg anthocyanin extract added / L − mg non encapsulated anthocyanin extract / L (3) mg anthocyanin extract added / L 161 Figure 8.2.3.2.1 - Encapsulation by entrapment in Ca-alginate beads. 8.2.4 Anthocyanin Stabilization Studies 8.2.4.1 Free and encapsulated extract degradation studies After being accurately weighed, encapsulated and free extracts were placed in 3 different environments: ambient temperature (around 25 º C) with or without light, and at 4 ºC without light. At specific time samples were collected and their absorbances were measured at maximum absorbance wavelength, using distilled water as a blank at a UV spectrophotometer (Hitachi, model U-3010, Tokyo, Japan). The sample preparation for the free extracts consisted in dissolving a known weight of free extract in water in a proportion of 2 mg of extract for 1 mL of distilled water. Two dilutions of the sample were prepared: one with hydrochloric acid/potassium chloride buffer pH = 1.0 and the other with sodium acetate/acetic acid buffer pH = 4.5. The pH values of the buffers were measured using a pH-meter (Digimed, model DM-22, São Paulo, Brazil) calibrated with buffers at pH 4.01 and 6.86 and they were adjusted with HCl (99.5 162 % Ecibra, Santo Amaro, Brazil). Aliquots of extract were brought to pH 1.0 and 4.5; 15 min later, the absorbance of each equilibrated solution was measured at the maximum absorption wavelength and 700 nm for haze correction using a 1 cm path length glass cells (l). The dilution factor (DF) was determined (final volume per original sample volume). The difference in absorbance values (A) at pH 1.0 and 4.5 (Equation 4) is directly proportional to the anthocyanin concentration19. A = (A max − A 700 )pH1,0 − (A max − A 700 )pH 4,5 (4) In Equation 4, Amax is the absorbance at 512 nm (for jabuticaba skin extract), and A700 is the absorbance at 700 nm. For the encapsulated systems a known weight of encapsulated extract was added in hydrochloric acid/potassium chloride buffer (pH = 1.4, stomach pH) in a heated bath at 37 ºC and left for 1.5 h. The dissolved encapsulant materials, when necessary, were separated and the supernatant solution was analyzed by a UV spectrophotometer (Hitachi, model U-3010, Tokyo, Japan) at maximum absorbance wavelength (512 nm) and 700 nm, using distilled water as a blank. The amount of released anthocyanins was analyzed using a calibration curve. In order to investigate the degradation mechanism of free anthocyanin extract a first-order reaction kinetic model was applied. The first-order reaction rate constants (k) and half-lives (t1/2) were calculated according to the following equations: ⎛C ⎞ ln⎜⎜ t ⎟⎟ = − kt + C1 ⎝ C0 ⎠ t1/ 2 = ln 2 k 163 (5) (4) where C0 is the initial anthocyanin content and Ct is the anthocyanin content at the reaction time t. 8.2.4.2 Thermal analysis of free and encapsulated extracts Free anthocyanin extract, Ca-alginate beads, PEG, anthocyanin extract encapsulated in Ca-alginate beads and anthocyanin extract encapsulated in PEG were studied by Differential Scanning Calorimetry (DSC) in order to study the stability of the extract after encapsulation. DSC studies were performed using a Shimadzu Differential Scanning Calorimetry (DSC-50, Shimadzu, Tokyo, Japan). The samples were scanned in sealed aluminium pans. DSC thermograms were scanned in the first heating run at a constant rate of 10 ºC/min and a temperature range of 30-500 ºC. 8.2.5 Anthocyanin Extract Release Studies Similar procedure to the described in section 8.2.4.1 was done for anthocyanin extract release studies, differing that periodically the supernatant solution was analyzed. The average deviation of triplicate experiments never exceeded 8%, therefore, no additional statistical analysis was considered necessary. 8.2.6 Statistical Analysis For establishing the statistical significant differences or similarities between the values of Percentage of Encapsulated [PE (%)], the analysis of variance (Tukey test) was used. A confidence coefficient of 95 % was used for the comparison of all the mean’s pairs. 164 8.3 Results and discussion 8.3.1 Encapsulation of anthocyanin extract by RESS process The color of PEG (transparent gray - Figure 8.3.1.1a) is obviously different from that of anthocyanin extract (red), so we analyzed the characteristics of dispersion of anthocyanin in the encapsulant material by color difference between anthocyanin extract and PEG using optical micrographs. The optical micrographs (Figure 8.3.1.1b and 8.3.1.1c) display the dispersion characteristics of anthocyanin extract in the anthocyanin extract/PEG microparticles obtained by the RESS process. Generally most polymers could absorb a large concentration of CO2 (about 10– 40 wt %) that either swells the polymers or melts them at a temperature much below theirs melting/glass transition temperature (about 10–50 K)20. PEG used in this work has low melting/glass transition temperature (333–335 K), so its precipitates obtained at higher temperature (323.15 K) tend to be soft, sticky and easily agglomerated resulting in formation of bigger coalesced particles, as showed in Figure 8.3.1.1c, than that obtained at 313.15 K (Figure 8.3.1.1b) and with a higher anthocyanin extract loading (Table 8.3.1.1). 165 Figure 8.3.1.1 - Optical micrographs of unprocessed PEG (a), Encapsulated anthocyanin extract – T: 313.15 K; P: 100 bar (b), Encapsulated anthocyanin extract – T: 323.15 K; P: 100 bar (c) 166 In order to explore the effect of temperature and pressure on the anthocyanin extract loading (Percentage of Encapsulated [PE (%)]) we performed experiments in the range of 313.15-323.15 K and 10-35 MPa. With the increase of temperature, PE increases. With the increase of temperature the precipitates of PEG tend to be softened due to the effect of supercritical CO2 on it, i.e. it becomes difficult for PEG to be hardened in the rapid expansion of the supercritical solution (PEG + ethanol + anthocyanin extract + supercritical CO2) resulting in the increase of anthocyanin extract loading in the precipitated particles. Indeed, with the increase of pressure, PE increases, probably due to the increase of CO2 density. Nevertheless, it can be observed that the effect of temperature was more pronounced than that of the pressure: increasing the temperature from 313.15 to 323.15 K promoted an increase in PE greater than that provoked by the increase in pressure. On the other hand, after expansion the produced anthocyanin extract/PEG particles did not tend to agglomerate as expected because the residual co-solvent (ethanol) acts as a good nonsolvent for the polymer. The amount of the residual ethanol in the microcapsules was 0.40 % (w/w). Matsuyama et al.21 obtained an amount of residual ethanol in their microcapsules less than 1 % (w/w) for different polymers. The Tukey test for data in Table 8.3.1.1 demonstrated that for the PE obtained at 323.15 K, the differences were not statistically significant (5%) while for the PE obtained at 313.15 K, the differences were statistically significant only at 10 MPa. Based on this, we can choose as best operating RESS process conditions for anthocyanin extract encapsulation 313.15 K and 20 MPa. Table 8.3.1.1 - Percentage of Encapsulated [PE (%)] of encapsulated anthocyanin extract obtained by RESS process T (K) PE (%) 10 20 313.15 23.86 24.69 24.98 25.17 323.15 24.70 24.87 25.36 25.94 167 30 35 (MPa) The concentration of PEG added was found to be an important factor that influences the Percentage of Encapsulated in the PEG microparticles. At 313.15 K and 20 MPa the RESS process produced different PE and Encapsulation Eficiency [EE (%)] when different proportions of anthocyanin extract:PEG were employed. Figure 8.3.1.2 shows that a reduction in PEG concentration enhances both values (PE and EE), reaching the highest values, 27.65 % and 79.78 %, respectively. Figure 8.3.1.2 - Influence of different proportions of anthocyanin extract:PEG on the percentage of encapsulated (gray bars); encapsulation efficiency (black bars) Anthocyanin extract encapsulated by RESS retained its dark red color, indicating no degradation of the dye during the encapsulation procedure. Since pigment degradation is, according to Mattea et al.22, directly related to color and biological activity loss, the evaluation of the antoxidant activities of encapsulated anthocyanin extracts and the anthocyanin extract were compared. Figure 8.3.1.3 confirms that no degradation, i.e. lost of antioxidant activity has occurred. It can also be noted that recognized pure synthetic BHT presented higher antioxidant activities than anthocyanin extract. 168 Figure 8.3.1.3 - Antioxidant activity of encapsulated anthocyanin extracts obtained using different operating RESS conditions (gray symbols), the anthocyanin extract (♦) and pure synthetic BHT (■); without any antioxidant compound (▲) Corroborating our findings, Jacobson et al.15 also demonstrated that particle formation processes using supercritical CO2 can retain the antioxidative activity of the compound or class of compounds of interest after processing. 8.3.2 Encapsulation of anthocyanin extract by conventional method It was not possible to quantify the encapsulation efficiency using the method based on the complete dissolution of the Ca-alginate beads in phosphate buffer solution pH 7.417 or sodium citrate solution18. In both cases a change of anthocyanin extract color from red to brown was observed indicating anthocyanin degradation. Thus, an alternative method based on the concentration of non encapsulated anthocyanin extract was used. 169 The loss of anthocyanin extract during the encapsulation process was less than 1.33 %, so the Encapsulation Efficiency [EE (%)] was 98.67 %. Most physical encapsulation technologies can give a loading capacity as high as 99 %. Numerous articles report Ca-alginate as a successful carrier for different compounds in its wet or dry form23,24 and usually it demonstrates a high encapsulation efficiency3. 8.3.3 Anthocyanin stabilization by encapsulation The free and encapsulated extract degradation studies demonstrated that different environments as light and temperature interfere in the anthocyanin stability, as expected (Figures 8.3.3.1 and 8.3.3.2). Figure 8.3.3.1 - Degradation of free anthocyanin extract at different environments. 170 The free anthocyanin extract presented a first order decomposition curve for all the samples (Table 8.3.3.1). First order kinetics for degradation of anthocyanins has been reported on different sources as black raspberry, sour cherry, concord grape, red cabbage, radish and strawberry25. Although, the anthocyanin degradation time differs depending on conditions as pH, storage temperature, anthocyanin chemical structure and concentration, light, oxygen and others26. Table 8.3.3.1 - Kinetic parameters of free anthocyanin extract degradation obtained by the first order kinetic model and half-life degradation equation k -1 (days ) C1 R2 t(1/2) (days) Low temperature 0.0442 -0.0115 0.947 15.68 Without Light 0.0440 0.0194 0.914 15.75 Low Temperature 0.0618 0.0083 0.877 11.22 Figure 8.3.3.2 - Degradation of encapsulated anthocyanin extract at different environments by RESS process and conventional method. 171 Both encapsulated systems were less influenced by the environment than the free extract (Figure 8.3.3.2). The degradation of the free extract occurred faster than the encapsulated, possibly due the protection of the anthocyanin molecules when encapsulated by the polymeric matrices preventing oxidation. After 14 days the encapsulated extract by conventional method into Ca-alginate beads stored at low temperature (4 ºC) showed no significant degradation, and the one kept at ambient temperature and light presented around 20% and 50% of degradation rate, respectively. Meanwhile, the encapsulated extract by RESS process into PEG showed degradation rate values a little higher. To better understand these results, DSC analyses of both encapsulated systems, of both encapsulant materials and the free anthocyanin extract were done. The DSC analysis (Figure 8.3.4.3) shows different endothermic peaks for the encapsulated anthocyanin extract/PEG system, which seems to be related to the anthocyanin extract and PEG, indicating that probably this encapsulated system is a not good mixture of both compounds. In contrast, only one endothermic and different peak from the Ca-alginate beads and the anthocyanin extract was observed for the encapsulated anthocyanin extract/Ca-alginate system, indicating that polymer and extract are well mixed27. This also suggests that a chemical interaction between the Ca-alginate beads and the extract can occur instead of a simple physical mixture. Given that the anthocyanin extract/Ca-alginate peak at a higher temperature may confirm the better stability of this encapsulated system under different environments. 172 Figure 8.3.4.3 - DSC thermograms of free anthocyanin extract, Ca-alginate beads, PEG, anthocyanin extract encapsulated in Ca-alginate beads and anthocyanin extract encapsulated in PEG. 8.3.4 Release studies The release of anthocyanin was studied in hydrochloric acid/potassium chloride buffer solution of pH 1.4. Figure 8.3.4.1 shows that colorant is released faster in the first 173 hour and even after 150 min the beads still had the characteristic color of the anthocyanins for the encapsulated particles obtained by conventional method. On the other hand, for the encapsulated particles obtained by RESS process the complete release occur in the first 15 minutes. Figure 8.3.4.1 - The cumulative release of anthocyanin extract from the encapsulated systems obtained by RESS process and conventional method at pH 1.4 and temperature 37 ºC. Sequential release study was performed for the encapsulated particles obtained by conventional method in order to evaluate the influence of the medium saturation in the release of colorant. The higher release occurred at 30 min decreasing until values next to 0 in the period of 2 hours. After that time the beads were still colored but very small release was detected. Similar results were achieved by different authors when studying the release from pure Ca-alginate beads and Ca-alginate beads with small percentage of chitosan in its composition17,28,29. Only around 5 – 20% of the bead content was released in low pH medium at 37 ºC, it was influenced by the chemical composition of the encapsulated compound and the amount of chitosan presented in the Ca-alginate beads. These results 174 probably are associated to the capacity of the Ca-alginate beads to promote controlled release, thus the slower and not complete release of anthocyanin extract from this encapsulant material at the evaluated conditions can be interesting for pharmaceutical and cosmetic purposes. 8.4 Conclusions The encapsulation of anthocyanin extract obtained from jabuticaba skins, a Brazilian potential source of anthocyanins, in PEG by RESS process and Ca-alginate matrix by conventional method were successfully accomplished. The encapsulation efficiency of the extract in Ca-alginate beads was higher (98.67 %) than those obtained by RESS process (79.78 %). Encapsulated particles made by RESS at different pressure and temperature conditions have been tested with this assay, all showing retained biological activity. Pressure, temperature and encapsulant material concentration were operating parametes that affected the RESS process, being this process influenced mainly by temperature. The best operating RESS process condition for anthocyanin extract encapsulation was determinated at 313.15 K and 200 bar. The degradation studies indicated that both encapsulated systems were more stable to the light and temperature than the free extract, and the encapsulated anthocyanin extract obtained by conventional method was more stable to that obtained using supercritical CO2, probably due to a chemical interaction between the extract and the encapsulant material Ca-alginate. The release of the encapsulated anthocyanin extract in Ca-alginate in acid buffer solution was incomplete and slower than in PEG, indicating that Ca-alginate beads can promote controlled release, which is interesting for pharmaceutical and cosmetic purposes. 175 Acknowledgements The authors are grateful to CNPq for the financial support and to the University of Campinas. References (1) Santos, D. T.; Meireles, M. A. A. Jabuticaba as a source of functional pigments. Pharmacognosy Rev. 2009, 3, 127-132. (2) Tsuda, T.; Horio, F.; Uchida, K.; Aoki, H.; Osawa, T. Dietary cyanidin 3-O-β-Dglucoside-rich purple corn color prevents obesity and ameliorates hyperglycemia in mice. J. Nutr. 2003, 133, 2125-2130. (3) Wang, J.; Mazza, G. Effects of anthocyanins and other phenolic compounds on the production of tumor necrosis factor α in LPS/IFN-γ-activated RAW 264.7 macrophages. J. Agric.Food Chem. 2002, 50, 4183-4189. (4) Youdim, K.A.; McDonald, J.; Kalt, W.; Joseph, J.A. Potential role of dietary flavonoids in reducing microvascular endothelium vulnerability to oxidative and inflammatory insults. J. Biol. Chem. 2002, 383, 503-519. (5) Hou, D.-X. Potential mechanisms of cancer chemoprevention by anthocyanins. Curr. Mol. Med. 2003, 3, 149-159. (6) Peterson, J.; Dwyer, J. Flavonoids: Dietary occurrence and biochemical activity. Nutr. Res. 1998, 18, 1995-2018. (7) Zhao, C.; Giusti, M.M.; Malik, M.; Moyer, M.P.; Magnuson, B.A. Effects of commercial anthocyanin-rich on colonic cancer and nontumorigenic colonic cell growth. J. Agric. Food Chem. 2004, 52, 6122-6128. (8) Wesche-Ebeling, P.; Argaiz-Jamet, A. Stabilization mechanisms for Anthocyanin: the case for copolymerization reactions. In: Engineering and food for the 21st century Chap. 10; Welti-Chanes, J.; Barbosa-Cánovas, G.V.; Aguilera, J.M, Eds.: CRC Press, Taylor & Francis Group, Boca Raton, 2002; pp141–150. 176 (9) Jackson, L.S.; Lee, K. Microencapsulation and the food industry. LWT – Food Sci. Technol. 1991, 24, 289-297. (10) Santos, D. T.; Meireles, M. A. A. Carotenoid pigments encapsulation: fundamentals, techniques and recent trends. The Open Chem. Eng. J. 2010, 4, 42-50. (11) Cai, Y.Z.; Corke, H. Production and properties of spray-dried Amaranthus betacyanin pigments. J. Food Sci. 2000, 65, 1248-1252. (12) Ferreira, D.S.; Faria, A.F.; Grosso, C.R.F.; Mercadante, A.Z. Encapsulation of blackberry anthocyanins by thermal gelation of curdlan. J. Braz. Chem. Soc. 2009, 20, 1908-1915. (13) Xiong, S.; Melton, L.D.; Easteal, A.J.; Siew, D. Stability and antioxidant activity of black currant anthocyanins in solution and encapsulated in glucan gel. J. Agric. Food Chem. 2006, 54, 6201-6208. (14) Gradinaru, G.; Biliaderis, C.G.; Kallithraka, S.; Kefalas, P.; Garcia-Viguera, C. Thermal stability of Hibiscus sabdariffa L. anthocyanins in solution and in solid state: Effects of copigmentation and glass transition. Food Chem. 2003, 83, 423-436. (15) Jacobson, G.B.; Shinde, R.; McCullough, R.L.; Cheng,N.J.; Creasman, A.; Beyene, A.; Hickerson, R.P.; Quan, C.; Turner, C.; Kaspar, R.L.; Contag, C.H.; Zare, R. N. Nanoparticle Formation of Organic Compounds With Retained Biological Activity. J. Pharm. Sci. 2010, 99, 2750-2755. (16) Marco, G.J. A rapid method for evaluation of antioxidant. J. Am. Oil Chemist’s Soc. 1968, 45, 594. (17) Shi, J.; Alves, N.M.; Mano, J.F. Chitosan coated alginate beads containing poly(nisopropylacrylamide) for dual-stimuli-responsive drug release. Adv. Funct. Mater. 2007, 17, 3312-3318. (18) Sarrouh, B. F.; Santos D. T.; Silva, S. S. Biotechnology production of xylitol in threephase fluidized bed bioreactor with immobilized yeast cells in ca-alginate bead. Biotechnol. J. 2007, 2, 759-763. 177 (19) Giusti, M.; Wrolstad, R. E. Characterization and measurement of Anthocyanins by UV–visible spectroscopy. Current protocols in food analytical chemistry. New York: John Wiley & Sons. (2001). (20) He, W.Z.; Suo, Q.L.; Hong, H.L.; Shan, A.; Li, C.P.; Huang, Y.; Li, Y.; Zhu, M. Production of natural carotene-dispersed polymer microparticles by SEDS-PA coprecipitation. J. Mater Sci. 2007, 42, 495-501. (21) Matsuyama, K.; Mishima, K.; Hayashi, K-I.; Ishikawa, H.; Matsuyama, H.; Harada, T. Formation of Microcapsules of Medicines by the Rapid Expansion of a Supercritical Solution with a Nonsolvent. J. Appl. Polym. Sci. 2003, 89, 742-752. (22) Mattea, F.; Martín, A.; Cocero, M.J. Co-precipitation of betacarotene and polyethylene glycol with compressed CO2 as an antisolvent: Effect of temperature and concentration. Ind. Eng. Chem. Res. 2008, 47, 3900-3906. (23) Albarelli, J. Q.; Santos, D. T.; Murphy, S.; Oelgemöller, M. Use of Ca–alginate as a novel support for TiO2 immobilization in methylene blue decolorisation. Water Sci. Technol. 2009, 60, 1081-1087. (24) Santos, D. T.; Albarelli, J. Q.; Joyce K.; Oelgemöller M., Sensitizer immobilization in photochemistry: evaluation of a novel green support. J. Chem. Technol. Biotechnol. 2009, 84, 1026-1030. (25) Garzón, G.A.; Wrolstad, R.E. The stability of pelargonidin-based anthocyanins at varying water activity. Food Chem. 2001, 75, 185-196. (26) Patras, A.; Brunton, N.P.; O'Donnell, C.; Tiwari, B.K. Effect of thermal processing on anthocyanin stability in foods; mechanisms and kinetics of degradation. Trends Food Sci. Technol. 2010, 21, 3-11. (27) Brown, M. E.; Gallagher, P. K. Handbook of thermal analysis and calorimetry. Elsevier, Amsterdam, 2003. (28) Crcarevska, M.S.; Dodov, M.G., Goracinova, K. Chitosan coated Ca–alginate microparticles loaded with budesonide for delivery to the inflamed colonic mucosa. Eur. J. Pharm. Biopharm. 2008, 68, 565-57. 178 (29) Hua, S.; Ma, H.; Li, X.; Yang, H.; Wang, A. pH-sensitive sodium alginate/poly(vinyl alcohol) hydrogel beads prepared by combined Ca2+ crosslinking and freeze-thawing cycles for controlled release of diclofenac sodium, Int. J. Biol. Macromol. 2010, 46, 517523. 179 180 CAPÍTULO 9 - CONCLUSÕES GERAIS Os resultados apresentados nesta tese demonstraram que a unidade construída possibilita a extração, micronização e estabilização de pigmentos funcionais por encapsulação em matrizes poliméricas utilizando fluidos pressurizados. Comparando os resultados obtidos utilizando a unidade construída com os obtidos utilizando equipamentos comerciais e equipamentos construídos por outros grupos de pesquisa foi verificado que a unidade construída produz resultados confiáveis e reprodutíveis. Os processos modelos para as etapas de validação escolhidas foram: i) para o processo de extração – extração de pigmentos de sementes de urucum utilizando CO2 supercrítico puro; ii) para o processo de formação de partículas – a formação de partículas não encapsuladas dos pigmentos quercetina e β-caroteno. A viabilidade técnica de se desenvolver processos de extração na unidade construída utilizando-se das técnicas: i) extração assistida por ultrassom; ii) extração fracionada; iii) extração com líquidos pressurizados; iv) e extração assistida por CO2 a alta pressão, foram avaliadas utilizando como fontes vegetais pigmentares cascas de jabuticaba e sementes de urucum. Dentre os quatro processos avaliados somente o processo de extração assistida por ultrassom não foi desenvolvido eficazmente. De acordo com os resultados inferiu-se que a potência ultrassônica do banho de ultrassom utilizado não foi suficientemente alta para poder causar os benefícios que a irradiação ultrassônica propicia no processo extrativo. Portanto, foi sugerido que possivelmente, com pequenas modificações, tais como o aumento da potência das ondas ultrassônicas através da incorporação de mais transdutores, uma vez que a parede da célula extratora reduz a permeação da radiação; ou a realocação dos transdutores visando à redução da distância entre os transdutores e a matéria-prima os processos de extração que utilizam solventes pressurizados assistidos com ultrassom poderiam ser desenvolvidos eficientemente. Uma vez que os outros processos de extração foram possíveis de serem desenvolvidos na unidade construída, a potencialidade dos outros três processos aplicada à 181 extração de pigmentos funcionais sem a sua degradação durante o processo extrativo foi explorada. A extração fracionada de cascas de jabuticaba produziu dois extratos com atividades antioxidantes: um rico em pigmentos antociânicos (utilizando etanol pressurizado) e outro rico em compostos lipofílicos que podem ser compostos da classe dos flavonóides ou dos óleos essenciais (utilizando CO2 supercrítico puro). O rendimento da extração com etanol pressurizado de cascas de jabuticaba na condição otimizada (Pressão de 50 bar, Temperatura de 80 ºC e Tempo de extração estática de 9 minutos) foi significativamente maior do que quando utilizando o método de extração convencional, percolação em leito fixo, utilizando o mesmo solvente sob pressão e temperatura ambientes. As variáveis resposta: rendimento de extração, extração de antocianinas e compostos fenólicos totais foram afetadas positivamente pelo aumento de temperatura, porém o uso de temperaturas maiores que 80 ºC por um maior período de tempo (maior que 9 minutos de extração estática) causou degradação das antocianinas durante o processo extrativo. O rendimento da extração assistida com CO2 a alta pressão na condição otimizada (Pressão de 117 bar, Temperatura de 80 ºC e Relação Volume de CO2/Volume de Solvente+Matéria-Prima de 20 %) foi significativamente maior do que quando utilizando o método de extração com líquido pressurizado com o mesmo solvente (água acidificada em pH 2,5) sob a uma mesma pressão e temperatura. Todos os parâmetros de processo afetaram significativamente a extração de compostos fenólicos totais, enquanto para a extração de antocianinas somente pressão e temperatura tiveram efeitos significativos. Comparando-se os resultados de extração de antocianinas e outros compostos fenólicos de cascas de jabuticaba utilizando o processo de extração com etanol pressurizado com os obtidos utilizando o processo de extração assistida com CO2 a alta pressão, ambos em condições otimizadas, conclui-se que este último é capaz de extrair mais eficientemente estes tipos de compostos. A viabilidade técnica de a unidade construída desenvolver processos de formação de partículas encapsuladas: i) de extrato de sementes de urucum ricos no 182 pigmento funcional bixina; ii) de extrato de cascas de jabuticaba ricos em pigmentos antociânicos; iii) e de pigmento rutina em sua forma pura, empregando CO2 supercrítico como solvente (via RESS) ou anti-solvente (via SAS) foram avaliadas utilizando como material de encapsulação o polímero polietilenoglicol (PEG). Os 3 processos avaliados foram desenvolvidos eficazmente, entretanto, a potencialidade do processo de encapsulação utilizando fluidos pressurizados proporcionar uma maior estabilidade a estes pigmentos instáveis, bem como não os degradar durante o processo de encapsulação foi explorada somente para o caso das antocianinas. Extrato rico em antocianinas obtido através do emprego de etanol pressurizado utilizando a unidade construída foi estabilizado através da sua encapsulação no polímero PEG empregando CO2 supercrítico como solvente (via RESS) e etanol como co-solvente visando aumentar a solubilidade do material de encapsulação no fluido supercrítico. O estudo de degradação indicou que quando encapsulado pelo método RESS o extrato antociânico foi mais estável do que quando não encapsulado e menos estável do que quando encapsulado pelo método convencional de gelificação iônica em alginato de cálcio, possivelmente devido à interação química que este último método propiciou entre o extrato e a matriz polimérica. Adicionalmente, também se verificou que o desenvolvimento do processo de formação de partículas encapsuladas via RESS não afeta a estabilidade do extrato antociânico, mantendo, portanto, as suas atividades biológicas. 183 184 SUGESTÕES PARA TRABALHOS FUTUROS i) Avaliar economicamente os processos de extração e formação de partículas desenvolvidos neste trabalho na unidade construída utilizando simuladores comerciais (SuperPro Designer®, etc.); ii) Otimizar o processo de encapsulação/co-precipitação de extrato rico em carotenóides oriundo de sementes de urucum, com o polímero polietilenoglicol (PEG) via SAS utilizando a unidade construída e CO2 supercrítico como anti-solvente comparando os resultados relacionados à estabilidade com os obtidos por outros métodos; iii) Avaliar a incorporação de um sistema que possibilite um desenvolvimento eficiente de extrações com fluidos pressurizados assistidas com ultrasom na unidade construída; iv) Verificar a viabilidade técnica da utilização da unidade construída na secagem de extratos aquosos pigmentares ou não; v) Verificar a viabilidade técnica da extração com fluidos pressurizados e formação de partículas bioativas não encapsuladas em uma única etapa (“inline”) utilizando a unidade construída; vi) Desenvolver novos dispositivos/atomizadores que melhorem a formação de partículas utilizando fluidos supercríticos como solventes ou anti-solventes na unidade construída. 185 186 MEMÓRIA DO PERÍODO DO DOUTORADO Diego Tresinari dos Santos vem desenvolvendo o presente projeto de pesquisa, com bolsa e auxílio financeiro do CNPq (Edital CNPq 070/2008 e Edital MCT/CNPq 15/2007 Universal - Faixa B, respectivamente). Até o presente momento 23 créditos foram cursados, sendo 17 créditos referentes a disciplinas (Termodinâmica, Fenômenos de Transporte I, Fenômenos de Transporte II, Tópicos Especiais em Físico-Química X e Seminários) e 6 créditos referentes a 3 participações no Programa de Estágio Docente grupo C - PED C (segunda participação com bolsa e com carga didática de 20 %), sendo obtido um Coeficiente de Rendimento (CR) de 3,7391. Os procedimentos experimentais do projeto de pesquisa se iniciaram após participação em treinamentos organizados pelos integrantes com mais experiência no laboratório. O aluno também participou em treinamentos referentes à utilização de softwares para simulação de processos, tais como Tecanalysis e SuperPro Designer® 6.0. Durante seu trabalho acadêmico Diego participou de 4 congressos científicos (CBPOL 2009, ENEMP 2009, SLACA 2009 e PROSCIBA 2010), tendo apresentado 2 trabalhos na forma de painéis e 1 oralmente. Interagiu durante o período do doutorado com pesquisadores: i) da Escola de Engenharia de Lorena da USP no desenvolvimento do projeto intitulado Avaliação da Atividade Antimicrobiana de Produtos Naturais para Obtenção de Novos Biofármacos: Fase 1 - Estudo dos extratos brutos e sua associação financiado pela FAPESP; ii) da Faculdade de Engenharia Química da UNICAMP no estudo da encapsulação e estabilidade das antocianinas, bem como na avaliação do reaproveitamento do resíduo da extração supercrítica cascas de banana para a remoção de metais pesados; iii) do Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas (CPQBA) da UNICAMP no estudo de identificação dos tipos de antocianinas presentes nos extratos de jabuticaba e jambolão por espectrometria de massas, bem como na avaliação da hidrólise de saponinas glicosiladas por água subcrítica + CO2 visando uma melhor identificação destes compostos por espectrometria de massas; iv) da Faculdade de Ciências Farmacêuticas da USP no estudo da micronização de fármacos não encapsulados e encapsulados em ciclodextrinas via RESS e SAS utilizando a unidade 187 multipropósito construída; v) bem como com seus colegas de laboratório em diferentes trabalhos de pesquisa envolvendo a extração de compostos bioativos de fontes vegetais. 188 PRODUÇÃO BIBLIOGRÁFICA Artigos completos publicados/aceitos em periódicos 1) CAVALCANTI, R. N. ; SANTOS, D. T. ; MEIRELES, M. A. A. . Non-thermal Stabilization Mecanisms of Anthocyanins in Model and Food Systems - an overview. Food Research International, In press, 2011. 2) SANTOS, D. T. ; MEIRELES, M. A. A. . Extraction of Volatile Oils by Supercritical Fluid Extraction: Patent Survey. Recent patents in engineering, In press, 2011. 3) SANTOS, D. T. ; VEGGI, P. C. ; MEIRELES, M. A. A. . Extraction of Antioxidant Compounds from Jabuticaba (Myrciaria cauliflora) Skins: Yield, Composition and Economical Evaluation. Journal of Food Engineering, v. 101, p. 23-31, 2010. 4) SANTOS, D. T. ; MEIRELES, M. A. A. . Carotenoid Pigments Encapsulation: Fundamentals, Techniques and Recent Trends. The Open Chemical Engineering Journal, v. 4, p. 42-50, 2010. 5) SANTOS, D. T. ; MEIRELES, M. A. A. . Jabuticaba as a Source of Functional Pigments. Pharmacognosy Reviews, v. 3, p. 127-132, 2009. Trabalhos completos publicados em anais de congressos 1) NAVARRO-DÍAZ, H. J. ; SANTOS, D. T. ; MEIRELES, M. A. A. . Phenolic Compounds Recovery From Punica granatum L. Leaves Using Supercritical CO2. In: II Iberoamerican Conference on Supercritical Fluids (PROSCIBA), 2010, Natal-RN. Full Paper, 2010. p. 1-7. 189 2) VEGGI, P. C. ; SANTOS, D. T. ; MEIRELES, M. A. A. . Extraction of antioxidant from some Brazilian plants. In: 12th European Meeting on Supercritical Fluids, 2010, GrazAustria. Proceedings of the 12th European Meeting on Supercritical Fluids, 2010. 3) ALBUQUERQUE, C. L. C. ; SANTOS, D. T. ; MEIRELES, M. A. A. . Functional properties of supercritical extract from ylang-ylang (Cananga odorata) peel fruit. In: 12th European Meeting on Supercritical Fluids, 2010, Gras-Austria. Proceedings of the 12th European Meeting on Supercritical Fluids, 2010. 4) ALBARELLI, J. Q. ; MACUMOTO, A. ; CARVALHO, L. ; SANTOS, D. T. ; MEIRELES, M. A. A. ; BEPPU, M. M. . Encapsulação de Corantes Funcionais em Matriz de Alginato Puro ou Recoberto por Biopolímeros. In: 10º Congresso Brasileiro de Polímeros, 2009, Foz do Iguaçú-PR. Anais do 10º Congresso Brasileiro de Polímeros, 2009. p. 1-6. Resumos publicados/aceitos em anais de congressos 1) SOUZA, I. P. S. ; CARVALHO, G. H. ; SANTOS, D. T. ; MEIRELES, M. A. A. . Estudo da influência do método de extração na obtenção de extratos de semente de Myrciaria cauliflora. In: XVIII Congresso Interno de Iniciação Científica da UNICAMP, 20010, Campinas-SP. Caderno de Resumos, 2010. p. 136-136. 2) FERREIRA, J. A. ; CARVALHO, G. H. ; SANTOS, D. T. ; MEIRELES, M. A. A. . Caracterização química dos extratos de semente de jabuticaba obtidos por diferentes tecnologias. In: XVIII Congresso Interno de Iniciação Científica da UNICAMP, 20010, Campinas-SP. Caderno de Resumos, 2010. p 137-137. 190 3) SANTOS, D. T. ; VEGGI, P. C. ; MEIRELES, M. A. A. . Obtaining anthocyanin-rich extracts from jabuticaba skins: technical and economical evaluation. In: The 15th World Congress of Food Science and Technology (IUFOST), 2010, Cape Town-Africa do Sul. Proceedings of the 15th World Congress of Food Science and Technology, 2010. 4) SANTOS, D. T. ; VEGGI, P. C. ; MEIRELES, M. A. A. . Avaliação Técnico-Econômica da Extração de Antocianinas por Percolação em Leito Fixo. In: XXXIV Congresso Brasileiro de Sistemas Particulados (ENEMP), 2009, Campinas-SP. Livro de Resumos, 2009. p. 306-306. 5) SOUZA, J. S. B. ; MALVEZZI, C. K. ; FREITAS, J. E. ; MEIRELES, M. A. A. ; SANTOS, D. T. ; SILVA, S. S. . Avaliação Comparativa da Atividade Antimicrobiana do extrato supercrítico das folhas de Psidium guajava frente à Staphylococcus aureus e Escherichia coli. In: I Semana de Biotecnologia Industrial - Inovações e Perspectivas da Biotecnologia Industrial no Brasil, 2009, Lorena-SP. Livro de Resumos, 2009. p. 1-1. 6) VAZ, N. ; SANTOS, D. T. ; MEIRELES, M. A. A. . Composição Química do Extrato de Folhas de Jaca (Artocarpus heterophyllus). In: 8º Simpósio Latino Americano de Ciência de Alimentos (SLACA), 2009, Campinas-SP. Cd..., 2009. p. 1-1. 7) CAVALCANTI, R. N. ; SANTOS, D. T. ; MEIRELES, M. A. A. . Composição Centesimal das Partes Comestíveis do Fruto de Syzygium cumini. In: 8º Simpósio Latino Americano de Ciência de Alimentos (SLACA), 2009, Campinas-SP. Cd..., 2009. p. 1-1. 191 192 APÊNDICE I - ARTIGO DE REVISÃO - JABUTICABA AS A SOURCE OF FUNCTIONAL PIGMENTS Publicado no periódico Pharmacognosy Reviews. 193 194 Phcog Rev. Vol, 3, Issue 5, 127-132, 2009 Available Online : www.phcogrev.com PHCOG REV. : Review Article Jabuticaba as a Source of Functional Pigments Diego T. Santos and M. Angela A. Meireles* Laboratory of Supercritical Technology: Extraction, Fractionation, and Identification of vegetable extracts (LASEFI), Department of Food Engineering (DEA), University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, Cid. Universitária Zeferino Vaz, 13083-862, Campinas - SP, Brazil Author for correspondence*: [email protected]; Phone: 00551935214033 ABSTRACT The relatively high concentration of anthocyanins in the diet is of prospective importance to human health. Anthocyanins contribute greatly to the antioxidant properties of certain colorful foods, such as grapes and cranberries. Many studies in recent years have focused on the study of these functional pigments from different perspectives. The present review highlights recent studies on the health-promoting properties of anthocyanins. It presents latent anthocyanin sources and demonstrates the potentiality of an under-utilized non-conventional source widespread in Brazil called jabuticaba (Myrciaria cauliflora). KEY WORDS: Anthocyanins, functional pigments, health-promoting properties, jabuticaba. INTRODUCTION Oxidative reactions in the human body have been appointed as the cause of diseases initiation and progression. The damage generated by free radicals and reactive oxygen species has been linked to some neurodegenerative disorders and cancers, and oxidation of low-density lipoprotein is a major factor in the promotion of coronary heart disease (CHD) and atherosclerosis (1). Epidemiological evidences suggest that a diet high in fruits and vegetables plays an important hole in reducing the incidence of many oxidative and inflammatory diseases (2, 3). The reason of this accomplishment can be the coloration of these foods, in general, a rich source of many phenolic antioxidants. The wish of a healthier diet allied with the increasingly concern of consumers over the use of synthetic additives in food has pushed the food industry to search for new sources of natural pigments (4). Anthocyanins are a type of functional pigments, responsible for a wide range of colors present in vegetables, flowers, fruits, and derived products. It is known that anthocyanin pigments act as strong antioxidants and antiinflammatory, with antimutagenic and cancer chemopreventative activities (5). These bioactive properties have been already demonstrated in “in vitro” and “in vivo” studies (6) and an increase of publications in this area can be observed in the recent years. Grapes and berries are well known for their antioxidant properties due to the presence of anthocyanins, many studies were done to extract and evaluate these compounds. The challenge for obtaining this class of pigments in industrial scale can be achieved by researching under utilized tropical fruits. Jabuticaba (Myrciaria caulifora) is a Brazilian fruit that can be potentially used as anthocyanins source because of their high content. It is denoted by many different names such as jaboticaba, guaperu, hipavuru, sabará or ybapuru (7). The present work aims to highlight recent studies on the health-promoting properties of anthocyanins. As well as, present new potential anthocyanin sources obtained from © Phcog.Net 2009 | www.phcog.net non-conventional plants, giving special attention to a widespread fruit in Brazil called jabuticaba (Myrciaria cauliflora). ANTHOCYANINS CHEMISTRY Phenolic compounds are part of the secondary metabolism of plants and are of great importance for their survivor in unfavourable environment. They protect the species against adverse factors such as drought, UV radiation, infections or physical damage and regulate their development (8). A class of phenolic compounds easily found in the Plant Kingdom is the anthocyanins. They are water-soluble pigments that confer the bright red, blue, and purple colors of fruits and vegetables such as berries, grapes, apples, purple cabbage, etc (9). The basic structures of anthocyanins are the anthocyanidins (Figure 1). These structures, also known as aglycons, consist of an aromatic ring [A] bonded to an heterocyclic ring [C] that contains oxygen, which is also bonded by a carbon–carbon bond to a third aromatic ring [B] (10). When the anthocyanidins are found in their glycosylated form (bonded to a sugar moiety) via the C3 hydroxyl group in ring C they are known as anthocyanins. In this way, a huge variety of anthocyanins can be observed spread in nature only varying in the basic anthocyanidin skeleton, the position and extent to which the glycosides are attached to the skeleton. The six most common anthocyanidin skeletons are cyanidin (Cy), delphinidin (Dp), pelargonidin (Pg), malvidin (Mv), petunidin (Pt), and peonidin (Pn) (Table 1) (when R1, R2, R3 and R5 are OH). Their distribution in fruits and vegetables is, respectively: 50%, 12%, 12%, 7%, 7% and 12% (11). The most common anthocyanins in nature are the glycosylated derivatives of the three non-methylated anthocyanidins (Cy, Dp and Pg). They are found in 80% of pigmented leaves, 69% in fruits and 50% in flowers being the most common anthocyanin the Cy-3-glucoside (5). ANTHOCYANINS HEALTH-PROMOTING PROPERTIES Several studies show that a consumption of dietary phytochemicals, of which anthocyanins form a considerable 127 Diego and Angela, Phcog Rev. 3(1):127-132 [2009] Figure 1: Structural identification of anthocyanidins (aglycons) Source Baguaçu Bilberry Blackcurrant Black Bean Black Olives Black Rice Blackberry Blueberry Cherry Chokeberry Cranberry Crowberry Eggplant Jambolão Jabuticaba Pomegranate (juice) Port Wine Purple Corn Raspberry Red Cabbage Red Grape Red Onion Red Radish Rhubarb Strawberry Table 1: Sources of anthocyanins Anthocyanins (mg/100g of fresh weight) 596,4-577,7 214.7-698 128-476 24.1-44.5 42-228 10-493 82.5-325.9 25-495 2-450 311.02-1480 19.8-140 360 8-85 108,8-386 310-315 600-765 14-110 1642 19-687 24,2-322 30-750 23.3-48.5 100-154 4-200 19-55 © Phcog.Net 2009 | www.phcog.net References (33) (34-36) (37-39) (40) (36) (41) (42-44) (34, 35, 45-48) (49) (8, 34, 39, 50, 51) (39, 51, 52) (51) (39, 51) (33, 53) (53) (54) (38) (55) (39, 42, 44, 56, 57) (39) (29, 58, 59) (39, 60) (39, 61) (38, 51) (62, 63) 128 Diego and Angela, Phcog Rev. 3(1):127-132 [2009] Table 2: Articles that have mentioned and/or shown the potential of Jabuticaba as a source of functional pigments published in journals indexed in the Web of Science and Scopus database Title Year Reference Carbohydrates, Organic-Acids and Anthocyanins of Myrciaria-Jaboticaba-Berg 1972 (67) Growth Relations and Pigment Changes in Developing Fruit of Myrciaria Jaboticaba 1996 (70) Anthocyanin Antioxidants from Edible Fruits 2004 (1) Application of Tristimulus Colorimetry to Optimize the Extraction of Anthocyanins from Jaboticaba (Myricia 2005 (4) Jaboticaba Berg.) Blue Sensitizers for Solar Cells: Natural Dyes from Calafate and Jaboticaba 2006 (71) Bioactive Depsides and Anthocyanins From Jaboticaba (Myrciaria cauliflora) 2006 (68) Quantitative Analysis af Antiradical Phenolic Constituents from Fourteen Edible Myrtaceae Fruits 2008 (2) part, may promote several health benefits. Due to their injury was induced by the administration of D-galactosamine biological activity, in particular their antioxidant and antithe anthocyanins also demonstrated this protective effect (21). inflammatory activities, a reduction in the risk of Beneficial Effects in Cognitive Performance cardiovascular disease, diabetes, cancer, an increase of the Several studies performed in animals have shown that cognitive performance, and others can be achieved (12-15). anthocyanins can increase the cognitive performance, and also protect the brain function by reducing oxidative ischemic Prevention of Cardiovascular Diseases Prevention of cardiovascular diseases is possibly the most damage and enhancing memory (13, 15, 22). studied effect of anthocyanins in the organism and the one for Protective Effect on Gastric Damage which a great quantity of epidemiological evidence exists. This The protective effect of anthocyanins on gastric damage is class of phenolic compounds is capable of acting on different closely related with the capacity of this group of flavonoids to cells involved in the development of atherosclerosis, one of prevent or diminish the inflammatory process. It is known the leading causes to cardiovascular dysfunction (16). that inflammation implicates, at least initially, in processes of Anti-diabetes Effects gastric injury. Studies have shown that cyanidin protects According to some studies anthocyanins may also prevent gastric mucosa from the damage caused by aspirin (23). Cell Regeneration Properties type 2 diabetes and obesity. They affect the intestinal glucose absorption by retarding the release of glucose during Mucopolysaccharides are important to maintain the integrity of both perivascular tissue and the basal membrane. digestion, insulin level/secretion/action and lipid metabolism “in vitro” and “in vivo”. These phytochemicals were found to Anthocyanins were reported to induce active phagocytosis of be potent inhibitors of starch digestion, and effective pigment material and intense cell regeneration in “in vitro” inhibitors of the a-glucosidase/maltase activity (17). studies using endothelial cells from human umbilical cord (24). Anticancer Activity A growth promoting activity on fibroblasts and on smooth Although it is not certain that anthocyanins intake reduces muscle cells was also reported in the same study. The regeneration of the cellular component of the vessel wall and cancer risk in humans, the antioxidative capacity of these functional pigments is well known. Studies suggest that of the perivascular tissues may be aid by anthocyanins intake, anthocyanins intake may reduce oxidative damage. A study due to their stimulating effect on mucopolysaccharides. performed in Germany showed that individuals who Beneficial Ocular Effects consumed an anthocyanins/polyphenolics-rich fruit juice had Anthocyanins have demonstrated a beneficial impact on the circulatory system improving the microcirculation of the reduced oxidative DNA damage and a significant increase in reduced glutathione when compared to controls (18). blood and consequently improving vision at dusk and at night. Anti-inflammatory Effects Owing to those properties, anthocyanins have been applied in Beneficial immune responses have been shown in human the production of ophthalmic preparations for research endothelial cells upon exposure to anthocyanins. The property purposes (25). of reducing the oxidative damage is the manly reason of these Protective Effect Against Collagen Degradation Elastase is an important proteolytic enzyme involved in the results, as inflammation processes are usually accompanied by degradation of collagen and other components of the excessive production of reactive oxygen and nitrogen metabolites. The anti-inflammatory effects could be confirmed extravascular matrix in certain pathological conditions such as by analyzing the compound metabolites at doses and atherosclerosis, pulmonary emphysema, and rheumatoid comparing to those found in plasma after fruits anthocyaninsarthritis. “In vitro” assays have demonstrated the ability of rich administration (19). anthocyanins to inhibit these enzymes acting as a protection Protective Effect Against Hepatic Damage against collagen degradation. It is believed that anthocyanins Anthocyanins have shown to be effective in liver protection interact with collagen metabolism by cross-linking collagen fibers and making them more resistant to collagenase action from hepatotoxicity induced by tert-butyl hydroperoxide (t(26). BHP) in studies with rats. These pigments decreased the serum levels of alanine and aspartate aminotransferase and SOURCES OF ANTHOCYANINS reduced oxidative liver damage (20). In rats in which hepatic Pigments of plant materials have called the attention of scientists and the food industry in the last decades as source of © Phcog.Net 2009 | www.phcog.net 129 Diego and Angela, Phcog Rev. 3(1):127-132 [2009] extracts with biological properties. The coloration blue, red and purple found in many fruits, vegetables and leaves are of great interest since they are potential sources of anthocyanins extracts. This interest has increased lately, since, these pigments can be used as an alternative to artificial food colorants and also, because they are bioactive compounds. Anthocyanins functions in plants are similar to the general functions of all flavonoids: antioxidant functions, photoprotectors, defence mechanisms, and other ecological functions (symbiotic phenomena). Since they give colour to different parts of plants, they also play an interesting role in the reproductive mechanisms: found in flowers, they serve to attract pollinators and in seeds and fruits to attract seed disseminators (27). Anthocyanins pigments are usually extracted from plant materials with an organic solvent. The most common is ethanol and methanol containing a small amount of acid with the objective of obtaining the flavylium cation form, which is red and stable in a highly acid medium. However, acid may cause partial hydrolysis of the acyl moieties in acylated anthocyanins (28). Recently, new techniques have been introduced for anthocyanins extraction from different sources, such as pressurized liquid extraction (29), sub and supercritical fluid extraction (30), ultrasound assisted extraction, high hydrostatic pressure or pulsed electric fields (31) and others. The main sources of anthocyanins are red fruits, mostly berries and red grapes, cereals, mainly the purple maize, and vegetables (28, 32). Other potential sources of this nutraceutical (Table 1) should be analyzed for commercial proposes, since some plants can be found in great quantities and the extraction of the bioactive compound is facilitated as it is located in the external tissues of the plants. Table 1 presents the concentration of anthocyanins from various sources using different extraction methods employing several solvents, and quantified by different anthocyanins quantification methods. The wide range of anthocyanins concentration obtained from the same source can be associated to the different extraction methods and also to different external and internal factors of the plant growth, such as genetic and agronomic factors, intensity and type of light, temperature and processing and storage of these agricultural matters (17). Environmental conditions are known to induce the accumulation of anthocyanin pigments in the major groups of higher plants, light and temperature factors being the most studied ones. In the fruit of many crops such as grape, peach, strawberry, eggplants and lychee, anthocyanin synthesis is enhanced by sunlight and by cold weather (64, 65). There are many other sources of anthocyanins-rich plants around the world such as fruits (in general their skins), flowers, stems, leaves and roots known and unknown until now. It is interesting to note the relevance of some under industrial utilized tropical fruits as potential source of anthocyanins. One of these is the Brazilian fruit called Jabuticaba (Myrciaria cauliflora). © Phcog.Net 2009 | www.phcog.net JABUTICABA AS A POTENTIAL SOURCE IN BRAZIL Jabuticabeira (Myrciaria cauliflora [Myrtaceae]) is a tree that grows mainly in Brazil, most frequently in the states of São Paulo, Minas Gerais, Rio de Janeiro, and Espírito Santo (66). This specie is often cultivated in home gardens, small-scale agricultural plots, or wild-harvested. They are primarily eaten fresh and can be found in local markets; they are also used to make jams, desserts, wines, liquors, and vinegars due to their short shelf life, usually 3 to 4 days after harvesting the fruits begin to ferment (7). Jabuticaba is grape-like in appearance and texture, although its skin is thicker and tougher. This fruit has a dark purple to almost black skin color due to a high content of anthocyanins (310-315 mg/ 100 g of fresh weight) that covers a white gelatinous flesh inside (53, 67). It is 3 to 4 cm in diameter and carries from one to four large seeds. The fruits are born directly on the main trunks and branches of the plant, lending to a distinctive appearance to the fruiting tree (68). Even with few studies reported in the literature and a yet not well known phytochemistry of this fruit, its sun-dried skins is traditionally used as a treatment for hemoptysis, asthma, diarrhea and chronic inflammation of the tonsils (69). In a careful literature survey it was found only 7 articles that linked the jabuticaba fruit to its anthocyanins pigments published in journals indexed by the Web of Science and Scopus database (Table 2). Of these, only 4 mentioned and/or showed the potential of this Brazilian fruit as a source of functional pigments (Table 2). The first one (reference number 67 of Table 2) was published in 1972 and its aim was to determine the concentration and type of anthocyanins in the jabuticaba jam process. The anthocyaninc extracts were purified and separated using thin layer chromatography. The chromatography and chemical properties (easy degradation) of these pigments supplied the first indication about the structure of the two isolated pigments (Peonidin and Peonidin-3-monoglucoside). The other 2 papers (references 2 and 4 in Table 2) focused on the quantitative analysis of anthocyanins from jabuticaba. In reference number 68 more attention was given to the identification of the anthocyanins present in jabuticaba and their antiradical activities. A new depside, jaboticabin, together with 17 known compounds were isolated from the jabuticaba skin in this study. The last 3 papers (references 70, 1, and 71 in Table 2) focused on different aspects on the development of jabuticaba. The first reference (70) discusses the accentuated increase of anthocyanins concentrations at the end of the fruit growth cycle. The second one (1) evaluates the antioxidant activity of aqueous extract from jabuticaba. And the last paper (71) uses the jabuticaba skin extracts as semiconductor sensitizer for solar energy production. In this paper the results showed a successful conversion of visible light into electricity by using anthocyanins dye as wide band-gap semiconductor sensitizer in dye-sensitized solar cells. 130 Diego and Angela, Phcog Rev. 3(1):127-132 [2009] CONCLUSION This review has summarized some important papers that confirm that besides color, anthocyanins have properties that are beneficial to human health, with potential physiological effects such as anticancer, vasoprotective, anti-inflammatory, hepatoprotective, among others. Tropical under utilized fruits as jabuticaba (Myrciaria cauliflora) in Brazil has demonstrated to be a good option of nonconventional sources of anthocyanins as natural food colorings due to their dark purple skins rich in anthocyanins (310-315 mg/ 100g of weight fresh). However, there is still a lack of information in the literature (just 4 papers published in journals indexed in the Web of Science and Scopus data) to promote this Brazilian fruit as a potential source of functional pigments. ACKNOWLEDGEMENTS The authors gratefully acknowledge the financial support of CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), Brazil. REFERENCES 1. L.S. Einbond, K.A. Reynertson, X. Luo, M.J. Basile and E.J. Kennelly. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. Anthocyanin antioxidants from edible fruits. Food Chemistry. 84(1): 23-28 (2004). K.A. Reynertson, H. Yang, B. Jiang, M.J. Basile and E.J. Kennelly. Quantitative analysis of antiradical phenolic constituents from fourteen edible Myrtaceae fruits. Food Chemistry, 109(4): 883-890 (2008). I.C.W. Arts and P.C.H. Hollman. Polyphenols and disease risk in epidemiologic studies 1-4. American Journal of Clinical Nutrition. 81: 317S 325S (2005). C. Montes, I.M. Vicário, M. Raymundo, R. Fett and F.J. Heredia. Application of tristimulus colorimetry to optimize the extraction of anthocyanins from Jaboticaba (Myricia Jaboticaba Berg.). Food Research International. 38(8-9): 983-988 (2005). J. Kong, L. Chia, N. Goh, T. Chia and R. Brouillard. Analysis and biological activities of anthocyanins. Phytochemistry. 64(5): 923-933 (2003). F. Galvano, L. La Fauci, G. Lazzarino, V. Fogliano, A. Ritieni, S. Ciappellano, N.C. Battistini, B. Tavazzi and G. Galvano. Cyanidins: metabolism and biological properties. The Journal of Nutritional Biochemistry. 15(1): 2-11 (2004). W. Popenoe, Manual of tropical and subtropical fruits, (Macmillan, New York, 1974) 474. S. Benvenuti, F. Paellati, M. Melegari and D. Bertelli. Polyphenols, anthocyanins, ascorbic acid, and radical scavenging activity of Rubus, Ribes, and Aronia. Journal of Food Science. 69: 164-169 (2004). L. Wang and G.D. Stoner. Anthocyanins and their role in cancer prevention. Cancer Letters. 269(2): 281-290 (2008). I. Konczak and and W. Zhang. Anthocyanins-More Than Nature’s Colours. Journal of Biomedicine and Biotechnology. 5: 239-240 (2004). J.B. Harborne and R.J. Grayer, The anthocyanins. In: The flavonoids: advances in research since 1980. Chapmam & Hall, London; 1-20 (1988). R.L. Prior and X. Wu. Anthocyanins: structural characteristics that result in unique metabolic patterns and biological activities. Free Radical Research. 40(10): 1014-1028 (2006). T.H. Kang, J.Y. Hur, H.B. Kim, J.H. Ryu and S.Y. Kim. Neuroprotective effects of the cyanidin-3-O-β-d-glucopyranoside isolated from mulberry fruit against cerebral ischemia. Neuroscience Letters. 391(3): 122-126 (2006). W. Shin, S. Park and E. Kim. Protective effect of anthocyanins in middle cerebral artery occlusion and reperfusion model of cerebral ischemia in rats. Life Sciences. 79(2): 130-137 (2006). D. Barros, O. B. Amaral, I. Izquierdo, L. Geracitano, M.C.B. Raseira, A.T. Henriques and M.R. Ramirez. Behavioral and genoprotective effects of Vaccinium berries intake in mice. Pharmacology Biochemistry and Behavior. 84(2): 229-234 (2006). © Phcog.Net 2009 | www.phcog.net 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. S. Pascual-Teresa and M.T. Sanchez-Ballesta. Anthocyanins: from plant to health. Phytochemistry Reviews. 7(2): 281-299 (2008). A. Dembinska-Kiec, O. Mykkänen and B. Kiec-Wilk. Antioxidant phytochemicals against type 2 diabetes. British Journal of Nutrition. 99: ES109-ES117 (2008). T. Weisel, M. Baum, G. Eisenbrand, H. Dietrich, F. Will, J.P. Stockis, S. Kulling, C. Rüfer, C. Johannes and C. Janzowski. An anthocyanin/polyphenolic-rich fruit juice reduces oxidative DNA damage and increases glutathione level in healthy probands. Biotechnology Journal. 1: 388-397 (2006). K.A. Youdim, J. McDonald, W. Kalt and J.A. Joseph. Potential role of dietary flavonoids in reducing microvascular endothelium vulnerability to oxidative and inflammatory insults. The Journal of Nutritional Biochemistry. 13(5): 282-288 (2002). C. Wang, J. Wang, W. Lin, C. Chu, F. Chou and T. Tseng. Protective effect of Hibiscus anthocyanins against tert-butyl hydroperoxideinduced hepatic toxicity in rats. Food and Chemical Toxicology. 38(5): 411416 (2000). K. Han, M. Sekikawa, K. Shimada, M. Hashimoto, N. Hashimoto, T. Noda, H. Tanaka and M. Fukushima1. Anthocyanin-rich purple potato flake extract has antioxidant capacity and improves antioxidant potential in rats. British Journal of Nutrition. 96: 1125–1133(2006). W. Shin, S. Park and E. Kim. Protective effect of anthocyanins in middle cerebral artery occlusion and reperfusion model of cerebral ischemia in rats. Life Sciences. 79(2): 130-137 (2006). F. Galvano, L.L. Fauci, G. Lazzarino, V. Fogliano, A. Ritieni, S. Ciappellano, N.C. Battistini, B. Tavazzi and G. Galvano. Cyanidins: metabolism and biological properties. The Journal of Nutritional Biochemistry. 15(1): 2-11(2004). F. Piovella, M.M. Ricetti, P. Almasio, C. Castagnola, M.P. Campagnoni, P. Gallotti, F.R. Feoli and E. Ascari. Characterisation and synthesis of some factor VIII related properties in cultured human endothelial cells Haematologica. 64(6): 714-725 (1979). P.H. Canter and E. Ernst. Anthocyanosides of Vaccinium myrtillus (Bilberry) for Night Vision-A Systematic Review of Placebo-Controlled Trials. Survey of Ophthalmology. 49(1): 38-50(2004). M. Jonadet, M.T. Meunier, J. Bastide and P. Bastide. Anthocyanosides extracted from Vitis vinifera, Vaccinium myrtillus and Pinus maritimus. I. Elastase-inhibiting activities “in vitro”. II. Compared angioprotective activities “in vivo”. Journal de Pharmacie de Belgique. 38(1): 41-46 (1983). T. Tsuda, F. Horio and T. Osawa. The role of anthocyanins as an antioxidant under oxidative stress in rats. BioFactors. 13(1-4): 133-139 (2008). M.T. Escribano-Bailón, C. Santos-Buelga and J.C. Rivas-Gonzalo. Anthocyanins in cereals. Journal of Chromatography A. 1054(1-2): 129141(2004). Z.Y. Ju and L.R. Howard. Effects of Solvent and Temperature on Pressurized Liquid Extraction of Anthocyanins and Total Phenolics from Dried Red Grape Skin. Journal of Agricultural and Food Chemistry, 51(18): 5207-5213 (2003). Z.Y. Ju and L.R. Howard. Subcritical water and sulfured water extraction of anthocyanins and other phenolics from dried red grape skin. Journal of Food Science. 70(4): 270-276 (2005). M. Corrales, S. Toepfl, P. Butz, D. Knorr and B. Tauscher. Extraction of anthocyanins from grape by-products assisted by ultrasonics, high hydrostatic pressure or pulsed electric fields: A comparison. Innovative Food Science & Emerging Technologies. 9(1): 85-91(2008). J.B. Harborne (ed.) The flavonoids: Advances in research since 1986, (Chapman and Hall, London, 1993). E.M. Kuskoski, A.G. Asuero, M.T. Morales and R. Fett. Frutos tropicais silvestres e polpas de frutas congeladas: atividade antioxidante, polifenóis e antocianinas. Ciência Rural. 36(4): 1283-1287 (2006). J. Borowska and A. Szajdek. Antioxidant activity of berry fruits and beverages. Polish Journal of Natural Science. 14: 521-528 (2003). R.L. Prior, G. Cao, A. Martin, E. Sofic, J. McEwen, C. O’Brien, N. Lischner, M. Ehlenfeldt, W. Kalt, G. Krewer and C.M. Mainland. Antioxidant capacity as influenced by total phenolic and anthocyanin content, maturity, and variety of Vaccinium species. Journal of Agricultural and Food Chemistry. 46: 2686-2693 (1998). G. Mazza and E. Miniati, Anthocyanins in Fruits, Vegetables and Grains, (CRC Press, Boca Raton, 1993). 131 Diego and Angela, Phcog Rev. 3(1):127-132 [2009] 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. R.A. Moyer, K.E. Hummer, C.E. Finn, B. Frei and R.E. Wrolstad. Anthocyanins, phenolics, and antioxidant capacity in diverse small fruits: Vaccinium, Rubus, and Ribes. Journal of Agricultural and Food Chemistry. 50: 519-525 (2002). C.F. Timberlake and B.S. Henry. Anthocyanins as natural food colorants. Progress in Clinical and Biological Research. 280: 107-121 (1988). X. Wu, G.R. Beecher, J.M. Holden, D.B. Haytowitz, S.E. Gebhardt and R.L. Prior. Concentrations of anthocyanins in common foods and estimation of normal consumption in the United States. Journal of Agriculture and Food Chemistry. 54: 4069-4075 (2006). G.A. Macz-Pop, J.C. Rivas-Gonzalo, J. Perez-Alonso and A.M. González-Paramás. Natural occurrence of free anthocyanin aglycones in beans (Phaseolus vulgaris L.). Food Chemistry. 94: 448–456 (2006). S.N. Ryu, S.Z. Park and C.T. Ho. High performance liquid chromatographic determination of anthocyanin pigments in some varieties of black rice. Journal of Food Drug Analysis. 6: 729-736 (1998). G.E. Pantelidis, Vasilakakis, G.A. Manganaris and G. Diamantidis. Antioxidant capacity, phenol, anthocyanin and ascorbic acid contents in raspberries, blackberries, red currants, gooseberries and Cornelian cherries. Food Chemistry. 102: 777-783 (2007). L.C. Torre and B.H. Barritt. Quantitative evaluation of Rubus fruit anthocyanin pigments. Journal of Food Science. 42: 488–490 (1977). S.Y. Wang and H.S. Lin. Antioxidant activity in fruits and leaves of blackberry, raspberry, and strawberry varies with cultivar and developmental stage. Journal of Agriculture and Food Chemistry. 48: 140-146 (2000). M.K. Ehlenfeldt and R.L. Prior. Oxygen radical absorbance capacity (ORAC) and phenolic and anthocyanin concentrations in fruit and leaf tissues of highbush blueberry. Journal of Agriculture and Food Chemistry. 49: 2222-2227 (2001). A.M. Connor, J.J. Luby, J.F. Hancock, S. Berkheimer and E.J. Hanson. Changes in fruit antioxidant activity among blueberry cultivars during cold-temperature storage. Journal of Agriculture and Food Chemistry. 50: 893898 (2002). W.E. Ballinge, E.P. Maness, L.J. Kushman et al. Anthocyanins of ripe fruit of a pink-fruited hybrid of highbush blueberries, Vaccinium corymbosum L. The American Society for Horticultural Science. 97: 381 (1972). D.J. Makus and W.E. Ballinge. Characterization of anthocyanins during ripening of fruit of Vaccinium corymbosum, L cv Wolcott. The American Society for Horticultural Science. 98: 99-101 (1973). L. Gao and G. Mazza. Characterization, quantification and distribution of anthocyanins and colourless phenolics in sweet cherry. Journal of Agriculture and Food Chemistry. 43: 343-346 (1995). W. Zheng and S.Y. Wang. Oxygen radical absorbing capacity of phenolics in blueberries, cranberries, chokeberries and lingonberries. Journal of Agriculture and Food Chemistry. 51: 502-509 (2003). J.M. Koponen, A.M. Happonen, P.H. Mattila and A.R. Törrönen. Contents of anthocyanins and ellagitannins in selected foods consumed in Finland. Journal of Agriculture and Food Chemistry. 55: 1612-1619 (2007). S.Y. Wang and A.W. Stretch. Antioxidant capacity in cranberry is influenced by cultivar and storage temperature. Journal of Agriculture and Food Chemistry. 49: 969-974 (2001). D.B.L. Terci. Aplicações analíticas e didáticas de antocianinas extraídas de frutas. Pharm. D. Thesis, Institute of chemistry, University of Campinas, Campinas, Brazil. 2004. © Phcog.Net 2009 | www.phcog.net 54. 55. 56. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69. 70. 71. V.I. Kriventsov and N.K. Arendt. Anthocyanins of pomegranate juice. T. Gos. Nikits. Bot. Sad. 83: 110-116 (1981). B.A. Cevallos-Casals and L. Cisneros-Zevallos. Stoichiometric and kinetic studies of phenolic antioxidants from Andean purple corn and red-fleshed sweetpotato. Journal of Agriculture and Food Chemistry. 51: 33133319 (2003). N. Deighton, R. Brennan, C. Finn and Davies H.V. Antioxidant properties of domesticated and wild Rubus species. J Sci Food Agric. 80: 1307-1313 (2000). L. Wada and B. Ou. Antioxidant activity and phenolic content of Oregon caneberries. Journal of Agriculture and Food Chemistry. 50: 34953500 (2002). Lamikanra O. Anthocyanins of Vitis rotundifolia hybrid grapes. Food Chemistry. 33: 225-237 (1989). M. Soares, L. Welter, E.M. Kuskoski, L. Gonzaga and R. Fett. Compostos fenólicos e atividade antioxidante da casca de uvas niágara e isabel. Revista Brasileira de Fruticultura. 30(1): 59-64 (2008). F. Ferreres, M.I. Gil and F.A. Tomas-Barberan. Anthocyanins and flavonoids from shredded red onion and changes during storage in perforated films. Food Research International. 29: 389-395 (1996). M.M. Giusti and R.E. Wrolstad. Characterization of red radish anthocyanins. Journal of Food Sciece. 61: 322-326 (1996). Y. Zheng, S.Y. Wang, C.Y. Wang and W. Zheng. Changes in strawberry phenolics, anthocyanins, and antioxidant capacity in response to high oxygen treatments. LWT - Food Science and Technology. 40: 49-57 (2007). F. Lopes-da-Silva, M.T. Escribano-Bailón, J.J. Perez-Alonso, J.C. RivasGonzalo and C. Santos-Buelga. Anthocyanin pigments in strawberry. LWT - Food Science and Technology. 40: 374-382 (2007). S.E. Spayd, J.M. Tarara, D.L. Mee and J.C. Ferguson. Separation of sunlight and temperature effects on the composition of Vitis vinifera cv. Merlot berries. American Journal of Enology and Viticulture. 53: 171-182. (2002). H. Jia, A. Araki and G. Okamoto. Influence of fruit bagging on aroma volatiles and skin coloration of ‘Hakuho’ peach (Prunus persica Batsch). Postharvest Biology and Technology. 35(1): 61-68 (2005). D.P.R. Ascheri, C.T. Andrade, C.W.P. Carvalho and J.L.R. Ascheri. Efeito da extrusão sobre a adsorção de água de farinhas mistas prégelatinizadas de arroz e bagaço de jabuticaba. Ciência e Tecnologia de Alimentos. 26(2): 325-335 (2006). L.V. Trevisan, P.A. Bobbio and F.O. Bobbio. Anthocyanins organic acids and carbohydrats of Mirciaria jaboticaba, Berg. Journal of Food Science. 37(6): 818-819 (1972). K.A. Reynertson, A.M. Wallace, S. Adachi, R.R. Gil, H. Yang, M.J. Basile, J. D'Armiento, I.B. Weinstein, and E.J. Kennelly. Bioactive Depsides and Anthocyanins from Jaboticaba (Myrciaria cauliflora). Journal of Natural Products. 69: 1228-1230 (2006). J. Morton, Fruits of Warm Climates, (Julia Morton, Winterville, 1987) 386388. M.M. Magalhaes, R.S. Barros and N.F. Lopes. Growth relations and pigment changes in developing fruit of Myrciaria jaboticaba. Journal of Horticultural Science. 71(6): 925-930 (1996). A.S. Polo and N.Y.M. Iha. Blue sensitizers for solar cells: Natural dyes from Calafate and Jaboticaba. Solar Energy Materials and Solar Cells. 90(13): 1936-1944 (2006) 132 APÊNDICE II - DETALHAMENTO DO PROCEDIMENTO DE CÁLCULO DA CONCENTRAÇÃO DE ANTOCIANINAS E FENÓIS Cálculo da concentração de antocianinas A concentração dos extratos antociânicos foi determinada pelo método do pH diferencial, que é fundamentado nas transformações estruturais das antocianinas em função do pH gerando soluções coloridas. O cátion flavílico, de coloração vermelha, é a forma predominante em pH 1,0 enquanto que o carbinol, incolor, predomina em pH 4,5 (Figura A1). Por isso, seguindo-se este método são feitas medidas espectrofotométricas de antocianinas em soluções de pH 1,0 e 4,5, no comprimento de onda em torno de 500-550 nm (máximo de absorção das antocianinas) e 700 nm, para corrigir eventuais erros referentes ao espalhamento da luz, já que os extratos podem apresentar suspensões coloidais. Figura A1 - Esquema das transformações estruturais das antocianinas em função do pH gerando soluções coloridas. 201 Para se determinar o valor exato do comprimento de onda que resulta na máxima absorção das antocianinas, primeiramente se é recomendado estudar o espectro de varredura UV-vis (800 nm a 190 nm) para os extratos a serem analisados. Estes valores conforme mencionado variam geralmente entre 465-550 nm, dependendo da fonte vegetal utilizada. Para antocianinas de casca de jabuticaba foi-se encontrado 517 nm, já para antocininas de jambolão 512 nm, matéria-prima que o grupo da professora Maria Angela de Almeida Meireles também estuda como potencial fonte alternativa de antocianinas. Foi observado que os espectros dos extratos ricos em antocianinas, independente do solvente e do método de extração utilizado, apresenta pelo menos duas bandas de absorção máxima de luz para os extratos, as quais se encontram em aproximadamente 270-280 e 465-550 nm. Em alguns trabalhos é mencionado a presenca de uma terceira banda ao redor de 200 nm, porém no presente trabalho somente foram observados duas, uma em 275 e outra em 512 nm (Figura A2). Segundo a literatura o valor de absorbância máxima entre 465 e 550 nm é exclusivamente dependente da concentração de antocianinas, já o valor de absorbância máxima em torno de 275 nm é dependente também de outros fatores, tais como outros compostos fenólicos: ácidos fenólicos, taninos, dentre outros. 202 1.1 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 Soxhlet Ultra-som Abs Percolação 200 250 300 350 400 450 nm 500 550 600 650 Figura A2 - Espectro de varredura UV-vis para os extratos de casca de jabuticaba obtidos utilizando diferentes métodos de extrações. Para o cálculo da concentração das antocianinas em extratos vegetais, inicialmente, determina-se a absorbância “resultante” das leituras das soluções pela Equação 1. Posteriormente, com a Equação 2 o cálculo da concentração das Antocianinas Monoméricas Totais (AMT) presentes nos extratos é feito. A quantificação do teor de antocianinas presentes em extratos contendo outra antocianina, que não a cianidina-3glicosídeo, como majoritária também pode ser feita pela Equação 2, embora os valores de absortividade molar e massa molar sejam referentes a cianidina 3-glicosídeo (Ci-3-glu). Embora, cianidina-3-glicosídeo seja utilizada como uma espécie de padrão de antocianinas, devido à abundância desta antocianina na natureza, se o pesquisador conhece qual antocianina é a majoritária em sua amostra o melhor é se calcular a concentração de antocianinas em termos desta antocianina e não em termos de Ci-3-gli. Para se fazer este cálculo é só substituir os valores de absortividade molar e massa molar na Equação 2. 203 A = (A max −A 700 ) pH1, 0 − (A max − A 700 ) p 4,5 AMT (mg / L) = ( A x PM x FD x1000) / (ε x l ) (1) (2) Sendo Amax - absorbância no máximo comprimento de onda, A700 - absorbância a 700 nm, PM - Peso Molecular, FD - Fator de Diluição, ε - absortividade molar (para cianidina-3-glicosídeo ε = 26,900 L/mol.cm) e l - comprimento do percurso ótico da cubeta (para a cubeta de vidro utilizada neste trabalho l = 1 cm). Além de quantificar a concentração de antocianinas em extratos vegetais o método descrito pode ser aplicado na determinação do teor destes compostos em amostras como bebidas, doces, etc. Neste trabalho etanol e água acidificada foram utilizados como solventes nos processos de extração de antocianinas de cascas de jabuticaba. Como a evaporação do solvente etanol é um procedimento fácil (através de rotaevaporador) optou-se em todos os experimentos envolvendo etanol proceder com a eliminação do solvente para obtermos um extrato bruto o qual seria, então diluído em água e caracterizado em termos de antocianinas através do método espectofotométrico descrito acima. Devido à dificuldade de eliminação do solvente água através dos utensílios disponibilizados no laboratório a solução aquosa contendo antocianinas extraídas foi diluída também em água e caracterizada em termos de antocianinas diretamente. Uma vez que um dos objetivos deste estudo foi comparar diferentes métodos de extração para a obtenção de extratos ricos em antocianinas padronizou-se expressar os resultados em termo de mg de cianidina-3-glicosídeo/g de casca de jabuticaba seca. Utilizando-se água o procedimento de cálculo foi mais simples, uma vez que somente é necessário multiplicar o valor encontrado de AMT (mg Cianidina-3-glicosíceo/L) pelo volume de água em litros utilizado e dividir pela massa de matéria-prima seca em gramas (Equação 3). Já utilizando etanol o procedimento de cálculo teve duas etapas: i) Dividir o valor encontrado de AMT (mg Cianidina-3-glicosíceo/L) pela concentração do extrato bruto diluído em água inicialmente em mg de extrato/L (em todos os experimentos 204 adotamos diluir 20 mg de extrato bruto (após evaporação do etanol) em 10 mL de água – 0.002 mg de extrato/L) (Equação 4). Posteriormente multiplicou-se este valor pelo massa de extrato bruto obtida em miligramas e dividiu-se pela massa de matéria-prima seca em gramas. mg Ci − 3 − gli / g de material sec o = AMT (mg Ci − 3 − gli / L) x V ( L) (3) m( g de cascas de jabuticaba sec a) mg Ci − 3 − gli / mg de extrato = mg Ci − 3 − gli / g de material sec o = AMT (mg Ci − 3 − gli / L) (4) (mg de extrato / L) AMT ( mg Ci − 3 − gli / L ) x mg de extrato (5) ( mg de extrato / L ) x g de cascas de jabuticaba sec a Cálculo da concentração de compostos fenólicos A concentração de compostos fenólicos totais nos extratos foi estimada utilizando o método de Folin–Ciocalteau, método este baseado na reação colorimétrica de oxidação/redução do ácido fosfomolíbdico-fosfotúngstico pelas hidroxilas fenólicas, originando óxidos azuis de tungstênio (W8O23) e de molibidênio (Mo8O23). Um complexo de coloração azul-esverdeada que absorve luz em comprimentos de onda entre 620 e 770 nm, com um comprimento de onda máximo ao redor de 725 nm. A reação ocorre em meio alcalino e a solução de carbonato de sódio é a mais utilizada. Neste trabalho o teor de fenóis totais foi calculado com base na curva de calibração (Figura A3), previamente construída, de ácido gálico (AG) e foram expressos como mg de ácido gálico equivalentes (AGEs)/g de material seco. O procedimento de cálculo para obtermos a concentração de compostos fenólicos como mg de ácido gálico equivalentes (AGEs)/g de material seco foi bem similar ao adotado para se determinar o conteúdo de antocianinas nos extratos previamente descrito. A Equação 6 foi utilizada para se determinar a concentração de compostos fenólicos presentes nos extratos de casca de jabuticaba utilizando água como solvente, onde FD é o fator de diluição. O valor de FD 205 oscilou entre 5 a 20, dependendo da concentração de compostos fenólicos para o valor de absorbância ficar ente 0-1 (dentro da faixa confiável da curva de calibração (obedecendo a lei de Beer), previamente construída, de ácido gálico (mg de AG/mL). Equações 7 e 8 foram utilizadas quando etanol foi o solvente escolhido. Em todos os experimentos utilizando etanol como solvente adotou-se diluir 10 mg de extrato bruto (após evaporação do etanol) em 10 mL de água – 1 mg de extrato/mL. y = 0,08035x + 0.0105 R2 = 0.997 0.12 mg de AG/mL 0.1 0.08 0.06 0.04 0.02 0 0 0.2 0.4 0.6 0.8 1 1.2 Absorbância Figura A3 - Curva de calibração previamente construída de ácido gálico (AG) mg AGEs / g de material sec o = (mg AGEs / mL) x FD x V(L) m(g de cascas de jabuticaba sec a ) mg AGEs / mg de extrato = mg AGEs / g de material sec o = (mg AGEs / mL) (mg de extrato / mL) (6) (7) (mg AGEs / mL) x mg de extrato (mg de extrato / mL) x g de cascas de jabuticaba sec a 206 (8) APÊNDICE III - ARTIGO DE REVISÃO - CAROTENOID PIGMENTS ENCAPSULATION: FUNDAMENTALS, TECHNIQUES AND RECENT TRENDS Publicado no periódico The Open Chemical Engineering Journal. 207 208 42 The Open Chemical Engineering Journal, 2010, 4, 42-50 Open Access Carotenoid Pigments Encapsulation: Fundamentals, Techniques and Recent Trends Diego T. Santos and M. Angela A. Meireles* LAboratory of Supercritical Technology: Extraction, Fractionation, and Identification of vegetable extracts (LASEFI), Department of Food Engineering (DEA), University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, Cid. Universitária Zeferino Vaz, 13083-862, Campinas - SP, Brazil Abstract: Supercritical fluids have become an attractive alternative due to environmentally friendly solvents. The methods that use supercritical fluids can be conveniently used for various applications such as extraction, reactions, particle formation and encapsulation. For encapsulation purposes, the processing conditions given by supercritical technology have important advantages over other methods that include harsh treatments with regard to pH, temperature, light, the use of organic solvents, etc. Unstable functional pigments such as carotenoids extracted from natural sources have been encapsulated to overcome instability problem. Thus, the most used techniques applicable to this intention are described and discussed in this review as well the recent advances and recent trends in this topic that involves the use of supercritical fluids. Keywords: Encapsulation, unstable functional pigments, carotenoids, supercritical fluids. INTRODUCTION Encapsulation is defined as a technology of packaging solids, liquids, or gaseous materials in matrices that can release their contents at controlled rates under specific conditions. The encapsulation technology has been used by the food industry for more than 60 years [1]. Protective encapsulation of food ingredients, enzymes, cells or other functional compounds may be thus achieved in small capsules of different nature. The main aim of encapsulation in the food area is to protect sensitive food components from moisture, oxidation, heat, light or extreme conditions during processing in an effort to increase their shelf life, or to mask component attributes, as undesirable flavours, to meet consumer requests for organoleptic quality and functionality. Furthermore, an optimized design of capsules, choosing the best encapsulation process and conditions, might provide a controlled release of active compounds during processing or storage [2]. In the last years, encapsulation has received increasingly growing attention resulting in a great number of applications in industry, agriculture, medicine, pharmacy and biotechnology. Diverse techniques have been studied and employed to form the desired capsules, including spray drying, liposome entrapment, coacervation, gelation, emulsion phase separation, etc [3]. Some of the most used techniques are described and discussed in this review. In addition, this paper gives an overview of the recent advances in the various encapsulation techniques applicable for stabilizing unstable functional pigments, such as, carotenoids from natural sources. Finally *Address correspondence to this author at the laboratory of Supercritical Technology: Extraction, Fractionation, and Identification of vegetable extracts (LASEFI), Department of Food Engineering (DEA), University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, Cid. Universitária Zeferino Vaz, 13083-862, Campinas - SP, Brazil; Tel: 00551935214033; E-amil: [email protected] 1874-1231/10 a discussion about the recent trends in this topic that involves the use of supercritical fluids instead of conventional solvents will be debated. ENCAPSULATION CONCEPT In general the purpose of encapsulation is to protect its contents from the environment which can be destructive while allowing small molecules to pass in and out of the membrane. According to Jizomoto and coworkers the encapsulation concept has its origin in the idealization of the cell model, in which the nucleus is involved by a semi-permeable membrane that protects it from the external medium and also controls the entrance and exit of substances. Other natural examples include birds and reptile egg shells, plant seeds, fruit and vegetable skins, seashells, etc [4]. The encapsulation process involves coating or entrapment of a material, usually a liquid but can be a solid or gas, or a mixture into another material. This material is also known as the core material. The coating material can also be called the capsule, wall material, membrane, carrier or shell [5]. The first applications of encapsulation were done in 1954 in the photography industry to produce pressure-sensitive dye capsules for the manufacturing of carbonless copying paper, since then, along the last decades encapsulation processes were developed and used in a variety of industries [6, 7]. In the food industry, diverse encapsulation techniques have been applied to protect unstable compounds, such as, flavours, pigments, vitamins, enzymes, microorganisms, and others [8]. ENCAPSULATION PIGMENTS OF UNSTABLE FUNCIONAL Epidemiological evidences suggest that a diet rich in fruits and vegetables plays an important role in reducing the 2010 Bentham Open Carotenoid Pigments Encapsulation Table 1. The Open Chemical Engineering Journal, 2010, Volume 4 43 Encapsulation Processes Division Forms Adopted by Some Reseachers Number of Categories Criterion 3 According to the dominant structural component used in their assembly Categories References 1) Surfactant-based (emulsion polymerization) 2 According to the encapsulation process 3 According to the encapsulation technique. All encapsulation techniques are modifications of three basic techniques 2) Lipid-based (emulsion phase separation) 3) Biopolymer-based (inclusion coacervation, gelation, spray coating) [14] complexation, 1) Chemical processes (coacervation, cocrystallization, inclusion complexation, emulsion polymerization) 2) Mechanical processes (spray coating, fluidized bed coating) [6] 1) Phase separation (coacervation) 2) Spray drying [18] 3) Solvent extraction/evaporation 1) Physical nature (spray coating, extrusion coating, centrifugal and rotational suspension separation, fluidized bed coating, liophilization, cocrystallization) 3 According to the nature of the combination between coating or entrapment material and core material 2) Chemical nature (inclusion complexation, emulsion polymerization) [8] 3) Physical-chemical nature (coacervation, emulsion phase separation, liposome entrapment) incidence of many diseases. The reason of this accomplishment can be the coloration of these foods, in general, a rich source of many antioxidants [9]. The increasing concern of consumers over the use of synthetic additives in products has pushed the food, pharmaceutical and cosmetic industries toward replacing these synthetic additives by natural products. However, difficulties may be encountered due to the instability of these compounds. An example are natural pigments with functional properties such as carotenoids, the most common group of pigments in nature [10]. In order to overcome the instability problem of these bioactive compounds, which results in restricted commercial applications, encapsulation has become an important tool, helping to increase shelf life and protecting the biological properties of the material [11]. Moreover encapsulation allows the controlled release of these functional pigments under desired conditions, for instance when ingested in the body [5]. CAROTENOIDS Carotenoids significance is not only due to their colorant property, they also are very important for health. This compound is source of vitamin A and a precursor of important chemicals responsible for the flavor of foods and the fragrance of flowers. It shows important biologic activities associated with antioxidant properties, such as strengthening the immune system, decreasing the risk of degenerative illnesses such as cancer, preventing the risk of cardiovascular disease, preventing macular degeneration, and reducing the risk of cataracts [12, 13]. Carotenoid pigments are a diverse group of lipophilic compounds that contribute to the yellow to red colors of many foods. They are polyenes consisting of 3 to 13 conju- gated double bonds and in some cases 6 carbon ring structures at one or both ends of the molecule. The most common carotenoid types are -Carotene, lycopene, lutein, and zeaxanthin [14]. Unstable carotenoids have their oxidative degradation triggered by light, temperature and/or extreme pH in the presence of oxygen. To improve their stability to oxidation different encapsulation techniques have been studied, resulting in a relative success and increasing additionally the dissolution rate of these lipossoluble compounds in water [15, 16]. ENCAPSULATION TECHNIQUES Diverse techniques have been studied and employed to form the capsules in different industries, including spray coating: spray drying, spray chilling, spray cooling; extrusion coating; fluidized bed coating; liposome entrapment; simple and complex coacervation; inclusion complexation; emulsion polymerization; centrifugal and rotational suspension separation; thermal and ionic gelation; emulsion phase separation; liophilization; cocrystallization; etc [1, 3, 17]. For convenience some scientists have divided the structured delivery systems and, consequently, the encapsulation processes in different forms. Table 1 shows the most frequently division forms adopted. In this review paper will be assumed that the capsules can be prepared by various techniques, which feature that partly competing, partly complementary characteristics and many encapsulation processes are modifications of basic conventional techniques. Due to its high coverage the division form based on the nature of the combination between coating or entrapment material (called also as wall material or carrier material) and core material will be adopted in this review. Then, the three encapsulatipon categories: based on 44 The Open Chemical Engineering Journal, 2010, Volume 4 Physical nature, Chemical nature and Physical-chemical nature will be described and discussed below in order to demonstrate the recent advances/modification in some of the various encapsulation techniques that can be applicable for stabilizing unstable carotenoid pigments. ENCAPSULATION TECHNIQUES BASED ON PHYSICAL NATURE COMBINATION BETWEEN COATING MATERIAL AND CORE MATERIAL Among the encapsulation physical methods, some examples are: spray coating: spray drying, spray cooling/chilling; extrusion coating, centrifugal and rotational suspension separation, fluidized bed coating, liophilization, cocrystallization, etc [8]. In this paper, due to their higher aplicability especial attention will be given to the encapsulation techniques spray coating and spray drying. In the section Advantages and Limitations of the Conventional Encapsulation Methods Applicable for Stabilizing Carotenoid Pigments the other techniques will be rapidly discussed. Spray Coating The spray coating process involves the dispersion of the substance to be encapsulated in a coating or entrapment material, followed by atomization and spraying of the mixture into a chamber. When the atomization is done when a hot fluid desiccant (air) is passing into the chamber the spray coating process is called by spray drying and when the air desiccant is cold the process is called by spray cooling/chilling. After pass to the chamber the resulting capsules are then transported to a cyclone separator for recovery [19]. Another difference between spray drying and spray cooling/chilling is that in the last one there is generally no water to be evaporated. There is emulsification of the compounds into molten wall materials, followed by atomization to disperse droplets from the feedstock [20]. Although spray cooling and spray chilling are not the same technique, differing slightly only in the vessel temperature in which the coating material is sprayed [21], due to their similarity in this work they were grouped. Spray drying is a commercial process widely used in large-scale production of encapsulated compounds. The merit of the process is due to several factors: high availability of equipment, low process cost, wide choice of coating or entrapment material, good encapsulation efficiency, good stability of the finished product, and large-scale production in continuous mode [22]. Spray drying is relatively simple and of high throughput but should not be used for highly temperature-sensitive compounds. To this kind of compounds, such as vitamins, enzimes, flavours, pigments, essential oils and others, spray cooling/chilling may be an appropriate method [8, 19]. Moreover, control of the particle size in the spray coating is difficult, and yields for small batches are moderate [23]. Extrusion Coating According to Madene and coworkers the two major encapsulation industrial processes are spray drying and extrusion coating [6]. However, to food compounds the encapsu- Santos and Meireles lation by extrusion is a relatively new process compared to spray drying [1]. The advantage of this method is that the material is totally surrounded by the wall material and that any residual core is washed from the outside. Owing to this benefit this encapsulation method is called by some authors true or glass encapsulation [3]. Extrusion coating can be organized in two types: simple extrusion and centrifugal extrusion. In general, the process involves forcing a core material in a molten wall material mass through a die (laboratory scale) or a series of dies of a desired cross-section into a bath of desiccant liquid. The coating material hardens on contacting the liquid, entrapping the active substances. Then the extruded filaments are separated from the liquid bath, dried, and sized [12]. Basically, the difference between simple extrusion and centrifugal extrusion procedures is that in the last one the nozzle used is not a simple nozzle (the nozzle has a coaxial opening). Centrifugal extrusion is a liquid coextrusion process utilizing nozzles consisting of concentric orifice located on the outer circumference of a rotating cylinder. The core and the carrier materials are fed through, respectively, the inner and outer opening. The core and the coat fluids must be immiscible. At the tip of the coaxial nozzle the two fluids form a unified jet flow by centrifugal force, which is responsible to form the droplets [24]. In order to optimize the centrifugal extrusion coating some researchers are studying the recycle of the excess coating fluid from the centrifugal extrusion, while the resulting capsules are hardened. This modified process has been called by recycling centrifugal extraction [25]. However, the major problem of this method is related to the difficulty of obtaining capsules in extremely viscous carrier material melts [26]. ENCAPSULATION TECHNIQUES BASED ON CHEMICAL NATURE COMBINATION BETWEEN COATING MATERIAL AND CORE MATERIAL According Jackson and Lee (1991) there are only two encapsulation chemical methods: inclusion complexation and emulsion polymerization [8]. The last one, also called by interfacial polymerization, will not be presented in this paper, spite of it been a well established method it is most used to trap inorganic particles and not necessarily improve their stability [27]. Inclusion Complexation Inclusion complexation or molecular inclusion is called the encapsulation process that uses -cyclodextrin molecular conformation to entrap any core material. A typical application is the protection of unstable and high added value specially flavours [28], but recently diverse bioactive compounds have been encapsulated by this technique [29]. The external part of the -cyclodextrin molecule is hydrophilic, whereas the internal part (central cavity) is hydrophobic. Some particular molecules, which are apolar and have suitable molecular dimensions to fit inside the cavity, can be entrapped through a hydrophobic interaction. The mechanism involved in this method is based on the replacement of water molecules by less polar molecules [30]. Carotenoid Pigments Encapsulation Comparing the inclusion complexation procedure to form capsules to the others mentioned before similarities can be observed. The core material is diluted in the coating material (-cyclodextrin) also, but the -cyclodextrin needs to be dissolved first in water to form an aqueous solution to then be mixed to the core material. Afterwards, an inclusion complex is formed between -cyclodextrin and core material, being the precipitate recovered and dried by conventional means [20]. To eliminate the last required step: capsules drying less amount of water can be utilized to disperse the coating material avoiding additional steps and consequently reducing costs [31]. In spite of important progress to improve economical aspects of the encapsulation by inclusion complexation, such as reducing the water content in the final product, still the relatively expensive price of -cyclodextrins and the undesirable release of the formed complex into the mouth are barriers to the industrial development of this technique [3, 21]. ENCAPSULATION TECHNIQUES BASED ON PHYSICAL-CHEMICAL NATURE COMBINATION BETWEEN COATING MATERIAL AND CORE MATERIAL Some examples of the encapsulation physical-chemical methods are: coacervation, emulsion phase separation, liposome entrapment, etc [8]. Coacervation technique is widely used in the industry, therefore it will be described below while the others techniques will be briefly discussed in the section Advantages and Limitations of the Conventional Encapsulation Methods. Coacervation Coacervation is often regarded as the original method of encapsulation [20]. This technique was the first encapsulation process studied and was initially employed by Green and Scheicher in 1955 to produce capsules for the manufacturing of carbonless copying paper as mentionated before. Coacervation technique is the separation into two liquid phases in colloidal systems. The phase more concentrated in colloid component is the coacervate (a polymer rich phase) and the other phase is the equilibrium solution (almost polymer free) [32]. Coacervation in aqueous systems is subdivided into simple and complex coacervation. In the first procedure step, a three-phase system consisting of a liquid manufacturing vehicle phase (solvent), a core material phase, and a coating material phase (formed by one polymer – simple coacervation; by two polymers – complex coacervation) is formed by a direct addition. Afterwards the deposition of the liquid polymer coating around the core material by electrostatic attraction is initialized by controlled physical mixing of the coating material and the core material in the manufacturing vehicle in the liquid phase. After accomplished the deposition it is necessary the stabilization employing toxic chemical agents, such as glutaraldehyde [1]. Due to the ineffective last step required, according Thomasin and coworkers, coacervation is frequently impaired by residual solvents and coacervating agents found in the spheres. Furthermore, it is not well suited for producing The Open Chemical Engineering Journal, 2010, Volume 4 45 spheres in the low size range. Additionally, others drawbacks about this method that is necessary to mention is its very expensive and rather complex process [33]. ADVANTAGES AND LIMITATIONS OF THE CONVENTIONAL ENCAPSULATION METHODS APPLICABLE FOR STABILIZING CAROTENOID PIGMENTS Table 2 summarizes various advantages and limitations of some conventional encapsulation methods applicable for stabilizing unstable carotenoids. Recently alternative technologies and/or even some small modification as change the conventional organic solvent to “greener solvent” such as supercritical fluids have been evaluated to eliminate some limitations of the conventional encapsulation methods [34]. Advantages as elimination of organic solvents, encapsulation under mild conditions and formation of homogeneus micro-nanocapsules can be achieved using supercritical fluid based-techniques. These techniques could avoid carotenoid fast degradation [35]. Thus, the recent trends in this topic will be discussed. ENCAPSULATION USING SUPERCRITICAL FLUIDS In the recent years, new encapsulation techniques utilizing supercritical fluids have been developed in order to overcome some of the disadvantages of the conventional techniques [49]. Some of these drawbacks are: a) poor control of particle size and morphology; b) degradation of thermo sensitive compounds; c) low encapsulation efficiency; d) low yield [50]. The use of supercritical fluids as phase separating agents has been intensively studied also to minimize the amount of potentially harmful residues in the capsules and most effectively control [51, 52]. According to Cocero and coworkers carbon dioxide (CO2) is most solvent used for encapsulation purposes due to the supercritical region can be achieved at moderate pressures and temperatures (Tc = 304.2 K, Pc = 7.38 MPa); therefore, working with supercritical CO2 it is possible to carry out the process at near-ambient temperatures, avoiding the degradation of thermolabile substances [53]. Several encapsulation processes that use supercritical fluids have been developed. These processes can be classified according to the role of the supercritical fluid in the process: solvent [Rapid Expansion of Supercritical Solutions (RESS)]; Supercritical Solvent Impregnation (SSI), solute [Particles from Gas Saturated Solutions (PGSS)] or antisolvent [Supercritical Anti-Solvent (SAS); Supercritical Fluid Extraction of Emulsions (SFEE)] [54]. Given that the two most commonly encapsulation methods employed using supercritical fluids are the Rapid Expansion of Supercritical Solution (RESS) and the Supercritical Anti-Solvent (SAS) methods [54], particular consideration will be given to these techniques. Furthermore the potential application of supercritical fluids in the micro-nanoencapsulation technology with emulsions called by the literature of Supercritical Fluid Extraction of Emulsions (SFEE) will be presented. 46 The Open Chemical Engineering Journal, 2010, Volume 4 Santos and Meireles Table 2. Advantages and Limitations of Some Conventional Encapsulation Methods Applicable for Stabilizing Unstable Carotenoids Conventional Encapsulation Method Principle Advantages Limitations References Dispersion of the core material in a entrapment material, followed by atomization and spraying of the mixture in a hot air desiccant into a chamber Low process cost; wide choice of coating material; good encapsulation efficiency; good stability of the finished product; possibility of large-scale production in continuous mode Can degradate highly temperature-sensitive compounds; control of the particle size is difficult; yields for small batches are moderate [19, 20, 22, 23] The same of the spray drying differing only that the air desiccant is cold Temperature-sensitive compounds can be encapsulated Difficult control of the particle size; moderate yields for small batches; special handling and storage conditions can be required [21, 23, 36] Simple Extrusion Forcing a core material in a molten wall material mass through a die (laboratory scale) or a series of dies of a desired crosssection into a bath of desiccant liquid. The coating material hardens on contacting liquids, entraping the active substances The material is totally surrounded by the wall material; any residual core is washed from the outside; it is a relatively low-temperature entrapping method The capsule must be separated from the liquid bath and dried; is difficult to obtain capsules in extremely viscous carrier material melts [3, 12, 22, 26] Centrifugal Extrusion Similar of simple extrusion differing that the core material and coating material form a unified jet flow only at the end through a nozzle with a coaxial opening (coextrusion) by centrifugal force The same of simple extrusion The same of simple extrusion [24] Ionic Gelation Coating material with dissolved core material is extruded as drops within an ionic solution. The capsules are formed by ionic interaction Organic solvents and extreme condions of temperature and pH are avoided Mainly used on a laboratory scale; the capsules, in general, have high porosity which promotes intensive burst [37, 38] Thermal Gelation The principle is almost the same of ionic gelation’ principle, nonetheless there is no necessity of an ionic solution to form a gelled drop, the gelation is only due to thermal parameters The same of ionic gelation The same of ionic gelation [37, 38] Fluidized Bed Coating This technique relies upon by nozzle spraying the coating material into a fluidized bed of core material in a hot environment Low cost process; it allows specific capsule size distribution and low porosities into the product Degradation of highly temperature-sensitive compounds [28, 39] Lyophilization/Freeze Drying The entrapment occurs by lyophilization of an emulsion solution contaning a core material and a coating material Thermosensitive substances that are unstable in aqueous solutions may be efficiently encapsulated by this technique Long processing time; expensive process costs; expensive storage and transport of the capsules [40] Inclusion Complexation Particular apolar molecules are entrapped through a hydrophobic interaction inside the -Cyclodextrin cavity replacing water molecules Very efficient to protect unstable and high added value apolar compounds such as flavours Encapsulation restricted to apolar compounds with a suitable molecular dimensions; cyclodextrin price is expensive; frequently undesirable release of the formed complex [3, 21, 28, 30] Emulsion Polymerization Core material is dissolved into polymerization sollution. The monomers are polymerized to form capsules in an aqueous solution Micro-nanocapules with narrow size distribution can be obtained Difficult control of the capsule formation (polymerization) [41, 42] Spray Drying Spray Cooling/Chilling Carotenoid Pigments Encapsulation The Open Chemical Engineering Journal, 2010, Volume 4 47 Table 2. contd…. Conventional Encapsulation Method Principle Advantages Limitations References [1, 33, 43, 44] Coacervation The entrapment is due to the deposition of a liquid coating material around the core material by electrostatic attraction Can be used to encapsulate heat-sensitive ingredients due to done at room temperature Toxic chemical agents are used; the complex coacervates are highly unstable; there are residual solvents and coacervating agents on the capsules surfaces; spheres low size range; expensive and complex method Emulsion Phase Separation The core material is added in the polar or apolar layer of an oil-in-water emulsion O/W or water-in-oil - W/O emulsion. The emulsions are prepared using a surfactant Polar, non-polar (apolar), and amphiphilic can be incorporated; emulsions can either be used directly in their “wet” state Instable when exposed to environmental stresses, such as heating, drying, etc; limited number of emulsifiers that can be used [45, 46] Liposome Entrapment Phospholipids are dispersed in an aqueous phase spontaneously formation a liposome. A core material is entrapment into a liposome Either aqueous or lipidsoluble material can be encapsulated; suitable to high water activity applications; efficient controlled delivery Mainly used on a laboratory scale [47, 48] RAPID EXPANSION OF SUPERCRITICAL SOLUTION (RESS) METHOD In the RESS method the solution of core material plus coating material is solubilized in a supercritical fluid and the solution is expanded rapidly through a nozzle. Thus, the solvent power of supercritical fluid dramatically decreases and eventually occurs the co-precipitation of both substances [55]. According to Mishima and Matsuyama (2006) it is difficult to disperse the core material homogenously in the coating material in the absence of surfactants or a high shear condition in the supercritical CO2 [56]. In order to avoid this homogeneity problem mechanical agitation or ultrasonic irradiation apparatus have been added into the high-pressure vessel [56, 57]. RESS technique is environmental friendly because the capsule is completely solvent free. Unfortunately, most wall materials exhibit little or no solubility in supercritical fluids, limiting this technique to restrict applications [55]. To overcome the low solubility limitation of the wall materials in CO2, alternative organic supercritical solvents has been employed. Another procedure by modification the original RESS process has been carried out also for eliminating this solubility problem. This modified process has been named by RESS-non-solvent process (RESS-N). In this process, a liquid antisolvent for the coating material is used as a cosolvent for improving the solubility in the supercritical fluid [58]. According to Cocero and coworkers besides the solubility limitations, another major problem of RESS techniques is the difficulty to control the morphology and loading of the capsules [53]. SUPERCRITICAL ANTI-SOLVENT (SAS) METHOD The encapsulation by SAS technique, also called by Gas Anti-Solvent (GAS) method, is based on the same simple principle of RESS method whereby a core material and a carrier are co-precipitated together. In SAS method the antisolvent (non-solvent) property of supercritical carbon dioxide (CO2) is used, since most wall materials and core material are not soluble in supercritical CO2 [49]. The basic principle of the SAS method is based on a rapid decrease in the solubilization power of a solvent by addition of a second solvent as antisolvent. Upon mixing, the supercritical fluid (antisolvent) saturates the conventional liquid solvent and depletes it by extraction. Particle size distribution can be partially controlled by adjusting the values of temperature, pressure and composition. The high viscosity of the coating material-CO2 solutions during atomization or the solvent extraction process, generally, leads to inconsistency of the particle size, strong particle agglomeration, and also incomplete encapsulation [59]. Another disadvantage of the supercritical antisolvent process is the difficulty to remove the remaining solvent completely because the process generally carries out in a batch discontinuous process [59]. In order to overcome some of the disadvantages mentioned above Chattopadhyay an coworkers have developed and patented a new encapsulation method called Supercritical Fluid Extraction of Emulsions (SFEE). Essentially this method is combines the flexibility of particle engineering using different emulsion systems with the efficiency of large scale, continuous extraction ability, provided by supercritical fluids [52]. According to Perrut and coworkers the application of supercritical fluids in the encapsulation technology with emulsions appears as a natural decision to avoid the main problems of each technology separately. Emulsion phase separation, emulsion polymerization and others emulsion techniques usually involve large quantities of organic solvents, and the removal of them involves additional separation proc- 48 The Open Chemical Engineering Journal, 2010, Volume 4 Santos and Meireles Table 3. Articles Published in Journals Indexed in the Web of Science and Scopus Databases About Carotenoid Encapsulation Using Supercritical Fluids Article Title Encapsulation Method References 1 Carotenoid processing with supercritical fluids SAS and SEDS [66] 2 Precipitation of -carotene and PHBV and co-precipitation from SEDS technique using supercritical CO2 SEDS [50] 3 Precipitation of lutein and co-precipitation of lutein and poly-lactic acid with the supercritical anti-solvent process SAS [68] 4 Co-precipitation of -carotene and polyethylene glycol with compressed CO2 as an antisolvent: effect of temperature and concentration SAS [69] 5 Production of natural carotene-dispersed polymer microparticles by SEDS-PA co-precipitation SEDS [64] 6 Co-precipitation of carotenoids and bio-polymers with the supercritical anti-solvent process SAS [17] 7 Requirements for non-food applications of pea proteins. A Review SFEE [35] ess and the use of high temperatures. On the other hand, supercritical fluids regularly are not able to produce capsules below the micrometer range or the products obtained present agglomeration problems [60]. According Cocero and coworkers the difference from SAS processes and the SFEE, among others, is that an emulsion containing the core materials to be precipitated dissolved in its dispersed phase (conventional liquid solvent) is injected instead of injecting a simple solution of the core materials. Effectively during the “extraction” (encapsulation) it can be expected that first the droplets of the disperse phase become saturated by CO2, and then the solvent is extracted by CO2 from them. Therefore during the saturation with CO2 each droplet behaves as a miniature SAS Anti-Solvent precipitator [53]. ENCAPSULATION OF CAROTENOID PIGMENTS USING SUPERCRITICAL FLUIDS Due to the presented potential advantages of the encapsulation process using supercritical fluids for carotenoid encapsulation these techniques seem to be more appropriate. In a careful literature survey in Web of Science and Scopus databases it was found several articles about carotenoid pigments encapsulation. But, more specifically about carotenoid encapsulation using supercritical fluids this amount was reduced intensively to only 7 articles (Table 3). Conventional encapsulation techniques such as spray drying and inclusion complexation were the most common methods evaluated for encapsulating carotenoids. Other studies, aiming indirectly at the development of alternative technologies towards encapsulating carotenoids in wall materials using supercritical technology were found, but the amount was still scarce. Even though, a significant increase in this amount could be observed since 2006 until now (Fig. 1). Fig. 1 also shows that approximately 80% of the articles that aims for developing supercritical fluids based technologies towards encapsulating carotenoids have been published in the last 4 years. Analyzing the literature about the evolution of encapsulating technologies carotenoids using supercritical fluids Years 2002-2004 13% Years 2004-2006 6% Years 2008-2009 43% Years 2006-2007 38% Fig. (1). Distribution of the published articles that aims for developing supercritical fluids based technologies towards encapsulating carotenoids. could be observed that it can be divided in four sequencial parts. 1) First, a complex study of the precipitation of many solutes, including carotenoids, from supercritical fluids by rapid expansion (RESS process) was done in order to avoid thermal decomposition that generally occurs by milling process [61]; 2) After that, carotenoid precipitation from liquid solvents, with dissolution by high-pressure or supercritical CO2 as an antisolvent to create supersaturation (GAS or SAS processes, respectively) was evaluated as a crystallization process [62]; 3) In this part, the co-precipitation of many solutes such as carotenoids and coating materials towards protect and stabilize them was extensively studied [63, 64]; 4) Finally, carotenoid encapsulation by RESS, GAS and SAS techniques have been better studied (being in some cases also successfully scaled up) and other techniques such as the novel Solution Enhanced Dispersion by Supercritical (SEDS) fluids, based on the principle of SAS, has been applied (Table 3) [64-67]. In SEDS process, a nozzle with two coaxial passages allows introducing supercritical CO2 and a solution with core and coating materials into the particle formation vessel where pressure and temperature are controlled. The high velocity of supercritical CO2 allows breaking up the solution into very small droplets since that the velocity is set up to Carotenoid Pigments Encapsulation extract the solvent from the solution (SAS principle) at the same time as it meets and disperses the solution [65]. The use of a coaxial nozzle for encapsulation purposes is not new. In this review paper was demonstrated that in extrusion coating method the same nozzle type was used to the same purpose [24]. Thus, it can be seen that the recent encapsulation methods are based on modifying conventional techniques. CONCLUSION This review paper has demonstrated the potentiality of the use of supercritical fluids based encapsulation to protect and stabilize unstable pigments. Among the advantages are: form micro- or even nanoparticles with narrow particle distribution, reduce or even eliminate the residual organic solvent in the product, and control product quality. Nowadays alternative technologies based on small modification as change the conventional organic solvent to “greener solvent” such as supercritical fluids have been evaluated successfully to eliminate some limitations of the conventional encapsulation methods. ACKNOWLEDGEMENTS The authors are grateful to CNPq for the doctorate fellowship (141894/2009-1) and for the financial support (580401/2008-1). The Open Chemical Engineering Journal, 2010, Volume 4 [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] REFERENCES [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] K.G.H. Desai and H.J. Park, “Recent developments in microencapsulation of food ingredients”, Dry. Technol., vol. 23, pp.1361-1394, 2005. A. Fernandez and J.M.L. Torres-Giner, “Novel route to stabilization of bioactive antioxidants by encapsulation in electrospun fibers of zein prolamine”, Food Hydrocoll., vol. 23, pp. 1427-1432, 2009. B.F. Gibbs, S. Kermasha, I. Alli and C.N. Mulligan, “Encapsulation in the food industry: a review”, Intern. J. Food Sci. Nutr., vol. 50, pp. 213-224, 1999. H. Jizomoto, E. Kanaoka, K. Sugita and K. Hirano, “Gelatin-acacia microcapsules for trapping micro oil droplets containing lipophilic drugs and ready disintegration in the gastrointestinal tract”, Pharm. Res., vol. 10(8), pp. 115-122, 1993. C. Kibry, “Microencapsulation and controlled delivery of food ingredients”, J. Food Sci. Technol., vol. 5, pp. 74-78, 1991. A. Madene, M. Jacquot, J. Scher and S. Desobry, “Flavour encapsulation and controlled release – a review”, Intern. J. Food Sci. Technol., vol. 41, pp. 1-21, 2006. R.M.Corrêa, “Produção de micropartículas por gelificação iônica para alimentação de larvas de peixe: estudos em sistema - modelo com inclusão de micropartículas lipídicas ou emulsão lipídica e testes in vivo”, Ph.D. Thesis, Univeristy of Campinas, Campinas, SP, Brazil, 2008. L.S. Jackson and K. Lee, “Microencapsulation and the food industry”, LWT - Food Sci. Technol., vol. 24, pp. 289-297, 1991. D.T. Santos and M.A.A. Meireles, “Jabuticaba as a source of functional pigments”. Phycog Rev. vol. 3(5), pp. 127-132, 2009. W. Miki, “Biological functions and activities of carotenoids”, Pure Appl. Chem., vol. 63, pp. 141-146, 1991. F. Shahidi, and X.Q. Han, “Encapsulation of food ingredients”, Crit. Rev. Food Technol., vol. 33(6), pp. 501-504, 1993. L. Gouveia and J. Empis, “Relative stabilities of microalgal carotenoids in microalgal extracts, biomass and fish feed: effect of storage conditions”, Innov. Food Sci. Emerg. Technol., vol. 4, pp. 227233, 2003. P. Robert, R.M. Carlsson, N. Romero and L. Masson, “Stability of spray-dried encapsulated carotenoid pigments from rosa mosqueta (Rosa rubiginosa) oleoresin”, J. Am. Oil Chem. Soc., vol. 80(11), 2003. D.J. McClements, E.A. Decker, Y. Park and J. Weiss, “Structural design principles for delivery of bioactive components in nutraceu- [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] 49 ticals and functional foods”, Crit. Rev. Food Sci. Nutr., vol. 49, pp. 577-606, 2009. K. Selim, M. Tsimidou and C.G. Biliaderis, “Kinetic studies of degradation of saron carotenoids encapsulated in amorphous polymer matrices”, Food Chem., vol. 71, pp. 199-206, 2000. A. Martín, F. Mattea, L. Gutierrez, F. Miguel and M.J. Cocero, “Co-precipitation of carotenoids and biopolymers with the supercritical anti-solvent process”, J. Supercrit. Fluids, vol. 41, pp.138147, 2007. C. Peniche, W. Argüelles-Monal, H. Peniche and N. Acosta, “Chitosan: an attractive biocompatible polymer for microencapsulation”, Macromol. Biosci., vol. 3, pp. 511-520, 2003. S. Freitas, H.P. Merkle and B. Gander, “Microencapsulation by solvent extraction/evaporation: reviewing the state of the art of microsphere preparation process technology”, J. Control. Release, vol. 102, pp. 313-332, 2005. J.D. Dziezak, “Microencapsulation and encapsulation ingredients”, Food Technol., vol. 42, pp. 136-151, 1988. S.J. Risch, “Encapsulation: overview of uses and techniques”, In Encapsulation and Controlled Release of Food Ingredient, S.J. Rish and G. A. Reineccius, Eds. Washington, DC, American Chemical Society, 1995. S. Gouin, “Microencapsulation: industrial appraisal of existing technologies and trends”, Trends Food Sci. Technol., vol. 15, pp. 330-347, 2004. G. A. Reineccius, “Flavor encapsulation”. Food Rev. Intern., vol. 5, pp. 147-176, 1989. P. Johansen, H.P. Merkle and B. Gander, “Technological considerations related to the up-scaling of protein microencapsulation by spray-drying”, Eur. J. Pharm. Biopharm., vol. 50, pp. 413-417, 2000. W. Schlameus, “Centrifugal extrusion encapsulation”, In Encapsulation and Controlled Release of Food Ingredient, S.J. Rish and G. A. Reineccius, Eds. Washington, DC, American Chemical Society, 1995. D.J. Wampler, “Flavor encapsulation: a method for providing maximum stability for dry flavor systems”, Cereal Foods World. vol. 37, pp. 817-820, 1992. S.J. Risch, “Encapsulation of flavours by extrusion”, In Flavour Encapsulation, S.J. Rish and G. A. Reineccius, Eds., Washington, DC, American Chemical Society, 1988, pp. 103-109. I. Sondi, T.H. Fedynyshyn, R. Sinta and E. Matijevic, “Encapsulation of nanosized silica by in situ polymerization of tert-butyl acrylate monomer”, Langmuir, vol. 16, pp. 9031-9034, 2000. J. Uhlemann, B. Schleifenbaum and H.J. Bertram, “Flavor encapsulation technologies: an overview including recent developments”, Perfumer Flavorist, vol. 27, pp. 52-61, 2002. I., Mourtzinos, F. Salta, K. Yannakopoulou, A. Chiou and V.T. Karathanos, “Encapsulation of olive leaf extract in -cyclodextrin”, J. Agri. Food Chem., vol. 55, pp. 8088-8094, 2007. J. Szejtli, “Introduction and general overview of cyclodextrin chemistry”, Chem. Rev., vol. 98, pp. 1743-1753, 1998. J.S. Pagington, “-Cyclodextrin and its uses in the flavour industry” In Developments in Food Flavours, G.G. Birch and M.G. Lindley, Eds, London, Elsevier Applied Science, 1986. C.G. Kruif, F. Weinbrecka and R. Vriesc, “Complex coacervation of proteins and anionic polysaccharides”, Curr. Opin. Colloid Interface Sci., vol. 9, pp. 340-349, 2004. C. Thomasin, P. Johansen, R. Alder, R. Bemsel, G. Hottinger, H. Altorfer, A.D. Wright, E. Wehrli, H.P. Merkle and B. Gander, “A contribution to overcoming the problem of residual solvents in biodegradable microspheres prepared by coacervation” Eur. J. Pharm. Biopharm., vol. 42, pp. 16-24, 1996. G.P. Blanch, M.L.R. Castillo, M.M. Caja, M. Pérez-Méndez and S. Sánchez-Cortés, “Stabilization of all-trans-lycopene from tomato by encapsulation using cyclodextrins” Food Chem., vol. 105, pp. 1335-1341, 2007. L.A. De Graaf, P.F.H. Harmsen, J.M. Vereijken and M. Mönikes, “Requirements for non-food applications of pea proteins, a review”, J. Food Nahrung, vol. 45(6), pp. 408-411, 2001. A. H. Taylor, “Encapsulation systems and their applications in the flavor industry”, Food Flavour Ingredient Process Packaging, vol. 4, pp. 48-52, 1983. C. Heinzen, “Microencapsulation solve time dependent problems for foodmakers”, Eur. Food Drink Rev., vol. 3, pp. 27-30, 2002. 50 The Open Chemical Engineering Journal, 2010, Volume 4 [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] Santos and Meireles R.G. Willaert and G.V. Baron, “Gel entrapment and microencapsulation: methods, applications and engineering principles”, Rev. Chem. Eng., vol. 12, pp. 5-205, 1996. K.J. Chua and S.K. Chou, “Low-cost drying methods for developing countries”, Trends Food Sci. Technol., vol. 14, pp. 519-528, 2003. M. Jacquot and M. Pernetti, “Spray coating and drying processes”, In Cell Immobilization Biotechnology, U. Nedovic and R. Willaert, Eds, Dordrecht, Kluwer Academic Publishers, 2003, pp. 343-356. N. Behan, C. Birkinshaw and N. Clarke, “A study of the factors affecting the formation of poly(n-butylcyanoacrylate) nanoparticles”, In International Symposium on Controlled Release of Bioactive Materials, 1999, pp. 1134-1135. T.K.M. Mabela, J.H. Poupaert, P. Dumont, and A. Haemers, “Development of poly(dialkyl methylidenemalonate) nanoparticles as drug carriers”, Int. J. Pharm., vol. 92, pp. 71-79, 1993. C. Sanchez and D. Renard, “Stability and structure of proteinpolysaccharide coacervates in the presence of protein aggregates”, Intern. J. Pharm., vol. 242, pp. 319-324, 2002. C.J.F. Arneodo, “Microencapsulation by complex coacervation at ambient temperature”, F. R. 2, 732, 240, 1996. D.J. McClements, Food Emulsions: Principles, Practice and Techniques. Boca Raton, FL, CRC Press, 2005. D.J. McClements and E.A. Decker, “Lipid oxidation in oil-inwater emulsions: impact of molecular environment on chemical reactions in heterogeneous food systems” J. Food Sci., vol. 65(8), pp. 12701282, 2000. C.J. Kirby and G. Gregoriadis, “A simple procedure for preparing liposomes capable of high encapsulation efficiency under mild conditions”, In Liposome Technology, G. Gregoriadis, Ed, Boca Raton, FL, CRC Press, 1984. S. Zheng, H. Alkan-Onyuksel, R.L. Beissinger and D.T. Wasan, “Liposome microencapsulation without using any organic solvent”, J. Dispers. Sci. Technol., vol. 20, pp. 1189-1203, 1999. P. Chattopadhyay, R. Huff and B.Y. Shekunov, “Drug encapsulation using supercritical fluid extraction of emulsions”, J. Pharm. Sci., vol. 95, pp. 667-679, 2006. E. Franceschi, A.M. Cesaroa, M. Feiten, S.R.S. Ferreira, C. Dariva, M.H. Kunita, A.F. Rubira, E.C. Muniz, M.L. Corazza and J.V. Oliveira, “Precipitation of -carotene and PHBV and co-precipitation from SEDS technique using supercritical CO2”, J. Supercrit. Fluids., vol. 47, pp. 259-269, 2008. J. Jung and M. Perrut, “Particle design using supercritical fluids: literature and patent survey”, J. Supercrit. Fluids., vol. 20, pp. 179219, 2001. P. Chattopadhyay, B.Y. Shekunov, J.S. Seitzinger and R.W. Huff, “Particles from supercritical fluid extraction of emulsion”, U. S. Patent 004,862, 2004. M.J. Cocero, A. Martín, F. Mattea and S. Varona, “Encapsulation and co-precipitation processes with supercritical fluids: fundamen- Received: October 20, 2009 [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] tals and applications”, J. Supercrit. Fluids., vol. 47, pp. 546-555, 2009. A. Martín and M.J. Cocero, “Micronization processes with supercritical fluids: Fundamentals and mechanisms”, Adv. Drug Deliv. Rev., vol. 60(3), pp. 339-350, 2008. K.S. Soppimath, T.M. Aminabhavia, A.R. Kulkarnia and W.E. Rudzinski, “Biodegradable polymeric nanoparticles as drug delivery devices”, J. Control. Release, vol. 70, pp. 1-20, 2001. K. Mishima and K. Matsuyama, “Method for preparing composite fine particles”, Japan Patent 057,374, 2006. E. Mathiowitz, L. Kundakovic, A.P. Morello, M.W. Harrison and J.J. Reineke, “Particles with high uniform loading of nanoparticles and methods of preparation thereof”, U. S. patent 054,874, 2008. D.D. Yeo and E. Kiran, “Formation of polymer particles with supercritical fluids: A review”, J. Supercrit. Fluids., vol. 34, pp. 287308, 2005. K. Mishima, “Biodegradable particle formation for drug and gene delivery using supercritical fluid and dense gas”, Adv. Drug Deliv. Rev., vol. 60 pp. 411-432, 2008. M. Perrut, J. Jung and F. Leboeuf, “Method for obtaining particles from at least a water soluble product” U. S. patent 110,871, 2004. C.J. Chang and A.D. Randolph, “Precipitation of microsize organic particles from supercritical fluids”, AIChE J., vol. 35(11), pp. 1876-1882, 1989. A.D. Randolph, “Separation of -carotene mixtures precipitated from liquid solvents with high-pressure CO2”, Biotechnol. Progress, vol. 7 (3), pp. 275-278, 1991. H. Ksibi and P. Subra, “Powder coprecipitation by the RESS process”, Adv. Powder, vol. 7(1), pp. 21-28, 1996. C. Domingo, A. Vega, M.A. Fanovich, C. Elvira and P. Subra, “Behavior of poly(methyl methacrylate)-based systems in supercritical CO2 and CO2 plus cosolvent: Solubility measurements and process assessment”, J. Appl. Polymer Sci., vol. 90(13), pp. 36523659, 2003. W. He, Q. Suo, H. Hong, A. Shan, C. Li, Y. Huang, Y. Li and M. Zhu, “Production of natural carotene-dispersed polymer microparticles by SEDS-PA co-precipitation”, J. Mat. Sci., vol. 42(10), pp. 3495-3501, 2007. F. Mattea, A. Martín and M.J. Cocero, “Carotenoid processing with supercritical fluids”, J. Food Eng., vol. 93(3), pp. 255-265, 2009. E. Weidner, “High pressure micronization for food applications”, J. Supercrit. Fluids, vol. 47(3), pp. 556-565, 2009. F. Miguel, A. Martín, F. Mattea and M.J. Cocero, “Precipitation of lutein and co-precipitation of lutein and poly-lactic acid with the supercritical anti-solvent process”, Chem. Eng. Processing: Process Intensification, vol. 47(9-10), pp. 1594-1602, 2008. F. Mattea, A. Martín and M.J. Cocero, “Co-precipitation of betacarotene and polyethylene glycol with compressed CO2 as an antisolvent: Effect of temperature and concentration”, Ind. Eng. Chem. Res., vol. 47(11), pp. 3900-3906, 2008. Revised: November 26, 2009 Accepted: December 08, 2009 © Santos and Meireles; Licensee Bentham Open. This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited. 218 APÊNDICE IV - MANUAL DE OPERAÇÃO DA UNIDADE MULTIPROPÓSITO 219 220 Manual de Operação da Unidade Multipropósito ARADIME® Coordenadora: Profa. Dra. M. Angela A. Meireles Técnico responsável: Ariovaldo Astini *Manual elaborado pelo doutorando Diego Tresinari dos Santos SUMÁRIO APRESENTAÇÃO ............................................................................................................... 1 FLUXOGRAMA GERAL DA UNIDADE MULTIPROPÓSITO ARADIME® .............. 4 ESPECIFICAÇÕES TÉCNICAS DA UNIDADE MULTIPROPÓSITO ARADIME® .... 5 1A. EXTRAÇÃO UTILIZANDO FLUIDOS SUPERCRÍTICOS (SUPERCRITICAL FLUID EXTRACTION – SFE) – PARÂMETROS IMPORTANTES NO PROCESSO 6 1B. HIDRÓLISE COM ÁGUA SUB/SUPERCRÍTICA COM CO2 (MODO BATELADA) – PARÂMETROS IMPORTANTES NO PROCESSO ............................. 8 1.1A SFE sem co-solventes (Procedimento) .................................................................... 10 1.1B Hidrólise com água sub/supercrítica com CO2 (Modo Batelada) (Procedimento) .. 13 FLUXOGRAMA-SFE sem co-solventes/Hidrólise com água sub/supercrítica com CO2 (Modo Batelada) ................................................................................................... 15 1.2 SFE com co-solventes (Procedimento)....................................................................... 16 FLUXOGRAMA-SFE com co-solventes ..................................................................... 19 1.3 SFE com separadores (Procedimento) ........................................................................ 21 FLUXOGRAMA-SFE com separadores ...................................................................... 24 2A. EXTRAÇÃO COM LÍQUIDOS PRESSURIZADOS (PRESSURIZED LIQUID EXTRACTION – PLE) – PARÂMETROS IMPORTANTES NO PROCESSO .......... 26 2B. HIDRÓLISE COM ÁGUA SUB/SUPERCRÍTICA SEM CO2 (MODO SEMICONTÍNUO) – PARÂMETROS IMPORTANTES NO PROCESSO .......................... 27 2.1A PLE (Procedimento) ................................................................................................ 28 FLUXOGRAMA-PLE/Hidrólise com água sub/supercrítica sem CO2 (Modo Semicontínuo) ....................................................................................................................... 31 3A. EXTRAÇÃO ASSISTIDA COM DIÓXIDO DE CARBONO A ALTA PRESSÃO (HIGH PRESSURE CARBON DIOXIDE ASSISTED EXTRACTION-HPCDAE) – PARÂMETROS IMPORTANTES NO PROCESSO ..................................................... 32 3B. PRÉ-HIDRÓLISE COM EXPLOSÃO COM DIÓXIDO DE CARBONO – PARÂMETROS IMPORTANTES NO PROCESSO ..................................................... 33 3.1A HPCDAE (Procedimento) ....................................................................................... 35 FLUXOGRAMA-HPCDAE/Pré-tratamento com explosão com dióxido de carbono . 38 ii 4. FORMAÇÃO DE PARTÍCULAS VIA EXPANSÃO RÁPIDA DE SOLUÇÃO SUPERCRÍTICA (RAPID EXTRACTION OF SUPERCRITICAL SOLUTION – RESS) – PARÂMETROS IMPORTANTES NO PROCESSO ..................................... 40 4.1 RESS (Procedimento) ................................................................................................. 43 FLUXOGRAMA-RESS/RESS-N ................................................................................ 45 5. FORMAÇÃO DE PARTÍCULAS UTILIZANDO FLUIDO SUPERCRÍTICO COMO ANTI-SOLVENTE (SUPERCRITICAL FLUID ANTI-SOLVENT – SAS) – PARÂMETROS IMPORTANTES NO PROCESSO ..................................................... 47 5.1 SAS (Procedimento) ................................................................................................... 50 FLUXOGRAMA-SAS/SAE......................................................................................... 54 ANEXOS ............................................................................................................................. 56 iii APRESENTAÇÃO O design de processos industriais sob a óptica da filosofia da sustentabilidade visa alterações substanciais na indústria atual. Para tanto, é exigido o desenvolvimento de novos processos baseados em matérias-primas renováveis, na utilização mínima necessária de energia e solventes sem restrições ambientais. Neste contexto, as tecnologias baseadas na utilização de fluidos pressurizados parecem oferecer soluções para essas demandas. Tecnologias de extração de compostos bioativos de vegetais podem representar uma alternativa ambientalmente correta e economicamente viável aos métodos convencionais de extração, onde grandes quantidades de solventes, longos tempos de extração e altas temperaturas são requeridas, o que pode adicionalmente promover a degradação destes compostos durante o processo extrativo. O LASEFI (LAboratório de tecnologia Supercrítica: Extração, Fracionamento e Identificação de extratos vegetais) em atividade desde 1984 possui uma vasta experiência no estudo de processos para a produção de extratos de plantas aromáticas, condimentares e medicinais, assim como, o fracionamento de extratos para obtenção de frações concentradas bioativas através do uso de tecnologias de produção limpas, que preservem o meio ambiente e não tragam danos à saúde humana e animal, em todas as etapas de processamento, através do uso de tecnologias inovadoras, como a extração e o fracionamento com fluídos pressurizados. Outro foco do LASEFI também é o design e montagem de extratores supercríticos. O LASEFI possui em suas instalações dois extratores supercríticos construídos: um menor que opera com CO2 supercrítico com ou sem co-solventes e outro maior (células extratoras de 1 L) que opera somente com CO2 supercrítico, porém possibilita o reciclo do solvente, bem como a operação em modo contínuo, pois possui duas células extratoras em paralelo, além de outros dois comerciais (Applied Separations e Thar) e um construído pela equipe do Professor Brunner. Utilizando todo o conhecimento construído pelo grupo de pesquisa da Profa. Dra. Maria Angela de Almeida Meireles visando à extensão da área de 1 atuação do LASEFI uma nova unidade para o desenvolvimento de processos que utilizam fluidos pressurizados foi projetada, montada e testada com sucesso. Batizada de ARADIME®, devido ela ter sido elaborada pelos profissionais ARiovaldo Asitini, DIego Tresinari dos Santos e Maria Angela de Almeida MEireles a inovadora unidade além de possibilitar o desenvolvimento de extrações supercríticas utilizando CO2 supercrítico com ou sem co-solventes, ou somente utilizando solventes líquidos pressurizados, proporciona a possibilidade de desenvolver extrações assistidas com dióxido de carbono a alta pressão, formação de partículas encapsuladas ou não, reação utilizando fluidos supercríticos, além de outros processos. Técnicas de formação de partículas utilizando fluidos pressurizados acima da condição supercrítica (conhecidos como fluidos supercríticos) podem: i) permitir um aumento no poder de dissolução de compostos através da redução do tamanho das partículas; ii) proteção/estabilidade de compostos sem levar o aditivo às condições que podem ocasionar sua degradação, isto é, perda de cor, capacidade antioxidante, etc, condições estas normalmente utilizadas nos processos convencionais. Adicionalmente, processos de precipitação utilizando fluidos supercríticos permitem um fácil controle da formação de partículas através de pequenas variações nas condições de operação (Pressão, Temperatura, etc). Diferentes processos de micronização/encapsulação que usam fluidos supercríticos, bem como equipamentos para a realização destes processos têm sido desenvolvidos. Estes processos podem ser classificados de acordo com a função do fluido supercrítico no processo: solvente [“Rapid Expansion of Supercritical Solutions” (RESS)]; “Supercritical Solvent Impregnation” (SSI); soluto [“Particles from Gas Saturated Solutions” (PGSS)] ou anti-solvente [“Supercritical Anti-Solvent” (SAS); “Supercritical Fluid Extraction of Emulsions” (SFEE). A seguir são descritos os procedimentos de operação da unidade ARADIME® para o desenvolvimento de alguns dos diversos processos que ela pode operar: Processos de extração utilizando Fluidos Supercríticos (Supercritical Fluid Extraction – SFE) com ou sem a adição de co-solventes, com ou sem a utilização de separadores; extração com líquidos pressurizados (Pressurized 2 Liquid Extraction – PLE); extração assistida com dióxido de carbono a alta pressão (High Pressure Carbon Dioxide Assisted Extraction-HPCDAE); pré-hidrólise com explosão com CO2 supercrítico; hidrólise com água subcrítica com ou sem adição de CO2, de modo semi-contínuo ou em batelada; formação de partículas via expansão rápida de solução supercrítica (Rapid Extraction of Supercritical Solution – RESS) e formação de partículas utilizando fluidos supercrítico como antisolvente (Supercritical fluid Anti-Solvent – SAS). Para facilitar o entendimento sobre os processos que a unidade pode desenvolver, um resumo sobre a influência dos parâmetros mais importantes em cada processo é apresentado. Já para facilitar o entendimento de como a unidade multipropósito funciona um fluxograma geral é apresentado a seguir. Neste fluxograma todos os componentes que compõem a unidade estão desenhados. Percebe-se que parte dos componentes estão conectadas a outras, e parte não. As partes que não estão conectadas (exemplo: BL, V-5, V-6, V-7, etc.) foram desenhadas assim, pois elas podem ser conectadas de diferentes formas para possibilitar o desenvolvimento de diferentes processos, através do emprego de alguns acessórios. Já as partes que estão conectadas (exemplo: V-1, FL, M-1, VC, etc.) sempre vão permanecer como estão para o desenvolvimento de todos os processos. Nos fluxogramas dos processos que unidade desenvolve, foi-se adotado que as partes não conectadas serão conectadas aos seus devidos lugares para possibilitar o desenvolvimento do processo desejado através da utilização de uma linha tracejada espessa. Adicionalmente, uma lista dos componentes que não serão utilizados durante o desenvolvimento de cada processo é mencionada para evitar equivocações por parte do operador, bem como imagens de como a unidade deve estar para desenvolver cada um dos processos são apresentadas. Ao final deste manual (Seção ANEXOS), encontram-se tabelas contendo valores da densidade do CO2 em condições sub/supercríticas e em condições encontradas no laboratório, valores da viscosidade da água em condições sub/supercríticas e valores das constantes dielétricas de alguns solventes orgânicos. 3 FLUXOGRAMA GERAL DA UNIDADE MULTIPROPÓSITO ARADIME® CAVM TP M-2 M-1 M-4 VC TO CAVP-1 RT V-6 VM V-2 V-1 FL BG V-7 V-BPR V-AR M-3 VS BR V-3 V-5 V-4 V-BR-1 VP-1 V-BR-2 VP-2 BL BA FL – Filtro de Linha; V-1, V-2, V-3, V-4, V-5, V-6, V-7 – Válvulas de Bloqueio; V-BPR – Válvula Back Pressure Regulator; VC – Válvula Compressor (Controle da Vazão de ar Comprimido); V-AR – Válvula Anti-Retorno; V-BR-1, V-BR-2 – Válvulas Banho de Refrigeração (Controle da Circulação do Fluido Refrigerante); VM – Válvula micrométrica; VS – Válvula de Segurança; M-1, M-2, M3, M-4 – Manômetros; BR – Banho de Resfriamento; BA – Banho de Aquecimento; BG – Bomba para Gases (em condições atmosféricas); BL – Bomba para Líquidos (em condições atmosféricas); VP-1 – Vaso de Pressão pequeno (6,57 mL); VP-2 – Vaso de Pressão Grande (500 mL); CAVP-1 – Controlador do Aquecimento do Vaso de Pressão 1; CAVM – Controlador do Aquecimento da Válvula Micrométrica; TP – Termopar; RT – Rotâmetro; TO – Totalizador. 4 ESPECIFICAÇÕES TÉCNICAS DA UNIDADE MULTIPROPÓSITO ARADIME® Faixa de Temperatura: Vaso de Pressão Pequeno (6,57 mL) – Ambiente a 400 ºC; Vaso de Pressão Grande (500 mL) - -10ºC a 250 ºC; Válvula Micrométrica – Temperatura limite de 120 ºC; Faixa de Pressão: Vaso de Pressão Pequeno (6,57 mL) – Pressão limite de 450 bar; Vaso de Pressão Grande (500 mL) - Pressão limite de 200 bar; Faixa de Vazão: CO2 - 0.15-2.2 kg/h de CO2 a 1.013bar/20 ºC; Líquido – 0.01-9,99 mL/min. Acessórios: 1) Tubulação VP-1/Entrada 2) Tubulação VP-1/Saída 3) Tubulação VM/1 4) Tubulação VM/2 5) Tubulação VP-2 6) Tubulação V-7 7) Tubulação RT 8) Tubulação T Diâmetro interno do capilar interno do sistema coaxial (Tubulação T): 177,8 μm Diâmetro interno do bico expansor (Tubulação VM/2): 0,51 mm 5 1a. Extração utilizando Fluidos Supercríticos (Supercritical Fluid Extraction – SFE) – Parâmetros importantes no Processo - Pressão; - Temperatura; - Vazão do solvente (mais comum é o CO2); - Vazão do co-solvente - Relação entre co-solvente/solvente (co-solventes mais aconselháveis são: etanol, isopropanol e água). A variação na Pressão e Temperatura de extração está diretamente relacionada a variação na densidade do fluido supercrítico. Sendo a seletividade do processo extrativo ajustada através desta mudança. Segundo a experiência do LASEFI, o comportamento do rendimento de extração (massa de extrato/massa de matéria-prima) se assemelha ao da solubilidade de solutos em fluido supercrítico. Portanto, o método dinâmico de determinação de solubilidade dos solutos a serem extraídos pode ser aplicado eficazmente utilizando o mesmo equipamento de extração supercrítica. Tal método avalia a massa de extrato obtida (solutos solubilizados) ao se empregar diferentes pressões e temperaturas. Geralmente 4 ou 5 pressões e duas temperaturas são utilizadas. 6 Para processos de extração e posterior fracionamento dos extratos os parâmetros pressão e temperatura dos vasos separadores, bem como a vazão do fluido supercrítico continuam sendo importantes. O fracionamento dos extratos nos separadores se dá através da modificação da solubilidade dos solutos-alvo, variando os parâmetros dos processos mencionados. Outra forma de se obter extratos fracionados é desenvolver extrações de uma mesma matéria-prima em várias etapas, empregando diferentes solventes pressurizados. O caso mais comum envolve o emprego de CO2 supercrítico puro primeiramente (obtendo um extrato rico em compostos mais apolares), seguido de um posterior emprego de CO2 + etanol (com um teor máximo de etanol de 20% m/m) (obtendo um extrato rico em compostos mais polares). A extração com fluidos supercríticos utilizando altos teores de co-solventes (mais que 20 % m/m) é conhecida como extração acelerada com solvente, extração acelerada por solvente ou extração por solvente acelerado (Accelerated Solvent Extraction (ASE)), uma vez que uma alta concentração de co-solvente (solvente líquido) acelera o procedimento de extração. Tal método extrativo tem se demonstrado promissor para a extração de compostos mais polares como curcuminóides, flavonóides, etc. Mais abrangentemente alguns grupos de pesquisa chamam de “Enhanced Solvent Extraction (ESE)” a extração que utiliza 7 fluidos supercríticos em combinação com um ou mais solventes em quaisquer proporções. Quando CO2 e água são conjuntamente empregados nas extrações se é observado um decréscimo no pH através da geração in situ de ácido carbônico, o que leva a uma melhora na extração de alguns compostos, tais como antocianinas, por exemplo. Dependendo da temperatura empregada (> 150 ºC) concomitantemente com a extração, CO2 e água podem atuar como meio reacional proporcionando uma indesejável hidrólise da matriz vegetal. 1b. Hidrólise com água sub/supercrítica com CO2 (Modo Batelada) – Parâmetros importantes no Processo - Pressão; - Temperatura; - Relação massa de matéria-prima/massa de água na alimentação do reator; - Tempo de reação; - Vazão de saída do CO2. Água a altas temperaturas e pressões apresenta propriedades únicas, como a possibilidade de modificar o produto iônico, a constante dielétrica e a densidade, o 8 que a torna um meio de reação interessante. A água subcrítica apresenta temperaturas entre 150 e 370 °C e pressões entre 4 e 22 MPa. Nestas condições, a água pode agir como um catalisador ácido, acelerando o processo de hidrólise. Valores de temperatura e pressão acima de 374 °C/22 MPa caracterizam água supercrítica. A fim de acidificar o meio aquoso sub/supercrítico para acelerar o processo de hidrólise conforme mencionado anteriormente, dióxido de carbono (CO2) pode ser adicionar ao meio. O CO2 reage com a água formando ácido carbônico, o qual age como catalisador do processo. Palha de trigo, folhas, caule e espiga de milho, bagaço de gengibre, farelo de arroz, bagaço de cana de açúcar, entre outros, têm sido eficazmente hidrolisados utilizando água sub/supercrítica com ou sem CO2 visando a obtenção de produtos de alto valor agregado, tais como etanol, xilitol, sorbitol, vitamina C, polímeros, etc. 9 1.1A SFE sem co-solventes (Procedimento) 1) Ligar o banho de resfriamento (BR) e programá-lo para operar a – 10 ºC; 2) Inserir a célula de extração (VP-1) contendo a matéria-prima rica em compostos bioativos a serem extraídos (geralmente, já devidamente seca e moída) no sistema de aquecimento do VP-1 desligado; 3) Conectar a tubulação VP-1/Entrada entre a válvula V-5 e o topo do VP-1; 4) Conectar a tubulação VP-1/Saída entre o fundo do VP-1 e a válvula V-6; 5) Conectar a tubulação VM/1 na tampa de um frasco coletor lacrado (50 ou 100 mL) de massa conhecida, imerso em um banho de gelo; 6) Conectar a tubulação RT também na tampa do frasco coletor; 7) Verificar se as válvulas V-1, V-2, V-5, V-6 e VM estão fechadas; 8) Abrir a válvula do cilindro de CO2 e a válvula V-1 lentamente, observando se o ponteiro do manômetro M-1 sobe suavemente; 9) Realizar a pressurização do CO2, abrindo a válvula VC (Válvula Compressor) e V-BPR (Válvula Back Pressure Regulator), controlando o aumento da pressão (Medição através do manômetro M-2); 10) Quando a pressão do CO2 for atingida, abrir a válvula V-5 para pressurizar a célula extratora (VP-1); 11) Ligar o controlador do sistema de aquecimento do vaso de pressão 1 (CAVP1) e da válvula micrométrica (CAVM) e programá-los para operar à temperatura 10 requerida do processo e a uma temperatura que evite congelamento da linha de saída, respectivamente (esta temperatura depende da vazão de CO2 utilizada, podendo oscilar entre 70 a 120 ºC); 12) Quando a pressão e temperatura do sistema estiverem estabilizadas, cronometrar o tempo estipulado para o período estático (Este tempo, quando requerido, pode oscilar de 5 a 30 minutos); 13) Anotar o volume indicado no totalizador (TO); 14) Após o tempo do período estático, abrir as válvulas V-6 e VM cuidadosamente até que a vazão desejada seja alcançada (Medição através do rotâmetro); 15) Após o tempo pré-estabelecido de extração, desligar o banho BR e os controladores de aquecimentos CAVP-1 e CAVM e fechar as válvulas V-5, V-1 e VC; 16) Anotar o volume indicado no totalizador (TO) e contabilizar o volume de CO2 que efetivamente foi percolado durante a extração; 17) Despressurizar o vaso VP-1; 18) Limpar a tubulação de saída com um solvente (etanol, por exemplo); 19) Quantificar o teor de extrato residual na tubulação de saída através da evaporação do solvente e pesagem da massa de extrato seca; 20) Quantificar a massa de extrato obtida através da pesagem do frasco coletor (Geralmente, a massa de extrato residual na tubulação de saída é somada a massa de extrato obtida para fins de determinação de rendimento); 11 21) Guardar o frasco coletor em freezer à temperatura igual ou menor que zero para posterior análise. 12 1.1B Hidrólise com água sub/supercrítica com CO2 (Modo Batelada) (Procedimento) 1) Ligar o banho de resfriamento (BR) e programá-lo para operar a – 10 ºC; 2) Inserir o reator de hidrólise (VP-1) contendo a biomassa a ser hidrolisada com uma determinada quantidade de água ou umidade intrínseca no sistema de aquecimento do VP-1 desligado; 3) Conectar a tubulação VP-1/Entrada entre a válvula V-5 e o topo do VP-1; 4) Conectar a tubulação VP-1/Saída entre o fundo do VP-1 e a válvula V-6; 5) Conectar a tubulação VM/1 na tampa de um frasco coletor lacrado (50 ou 100 mL) de massa conhecida, imerso em um banho de gelo; 6) Conectar a tubulação RT também na tampa do frasco coletor; 7) Verificar se as válvulas V-1, V-2, V-5, V-6 e VM estão fechadas; 8) Abrir a válvula do cilindro de CO2 e a válvula V-1 lentamente, observando se o ponteiro do manômetro M-1 sobe suavemente; 9) Realizar a pressurização do CO2, abrindo a válvula VC (Válvula Compressor) e V-BPR (Válvula Back Pressure Regulator), controlando o aumento da pressão (Medição através do manômetro M-2); 10) Ligar o controlador do sistema de aquecimento do vaso de pressão 1 (CAVP1) e programá-lo para operar à temperatura requerida do processo; 13 11) Quando a pressão do CO2 e a temperatura do vaso VP-1 for atingida, abrir a válvula V-5 para pressurizar o reator de hidrólise (VP-1); 12) Quando a pressão e temperatura do sistema estiverem estabilizadas, cronometrar o tempo estipulado para o tempo de reação e fechar a válvula V-5; 13) Decorrido o tempo de hidrólise, abrir as válvulas V-6 e VM cuidadosamente para que os produtos de reação sejam arrastados do reator na vazão desejada (Medição através do rotâmetro); 14) Após a eliminação de todo o hidrolisado, desligar o banho BR e os controladores de aquecimentos CAVP-1 e CAVM e fechar as válvulas V-1 e VC; 15) Utilizar um ventilador para ajudar a resfriar o vaso VP-1 mais rapidamente; 16) Pesar a biomassa residual contida dentro do reator (VP-1); 17) Quantificar a massa de hidrolisado obtida através da pesagem do frasco coletor (Geralmente, a massa de hidrolisado obtido somado a massa da biomassa residual dá valores próximos à massa de biomassa inicial; caso isto não ocorra o experimento deve ser repetido); 18) Guardar o frasco coletor e o material residual em freezer à temperatura igual ou menor que zero para posterior análise. 14 FLUXOGRAMA-SFE sem co-solventes/Hidrólise com água sub/supercrítica com CO2 (Modo Batelada) CAVM TP M-2 M-1 M-4 VC TO CAVP-1 RT V-6 VM V-2 V-1 FL BG V-7 V-BPR V-AR M-3 BR V-3 VS V-5 V-4 V-BR-1 VP-1 V-BR-2 VP-2 BL BA Componentes da unidade que não são utilizados durante o processo SFE sem co-solventes/Hidrólise com água sub/supercrítica com CO2 (Modo Batelada) V-7 – Válvula de Bloqueio; V-BR-1, V-BR-2 – Válvulas Banho de Refrigeração (Controle da Circulação do Fluido Refrigerante); M-4 – Manômetro; BA – Banho de Aquecimento; BL – Bomba para Líquidos (em condições atmosféricas); VP-2 – Vaso de Pressão Grande (500 mL); Termopar. 15 1.2 SFE com co-solventes (Procedimento) 1) Ligar o banho de resfriamento (BR) e programá-lo para operar a – 10 ºC; 2) Inserir a célula de extração (VP-1) contendo a matéria-prima rica em compostos bioativos a serem extraídos (geralmente, já devidamente seca e moída) no sistema de aquecimento do VP-1 desligado; 3) Conectar a bomba para Gases à válvula V-4; 4) Conectar a tubulação VP-1/Entrada entre a válvula V-5 e o topo do VP-1; 5) Conectar a tubulação VP-1/Saída entre o fundo do VP-1 e a válvula V-6; 6) Conectar a tubulação VM/1 na tampa de um frasco coletor lacrado (50 ou 100 mL) de massa conhecida, imerso em um banho de gelo; 7) Conectar a tubulação RT também na tampa do frasco coletor; 8) Verificar se as válvulas V-1, V-2, V-4, V-5, V-6 e VM estão fechadas; 9) Abrir a válvula do cilindro de CO2 e a válvula V-1 lentamente, observando se o ponteiro do manômetro M-1 sobe suavemente; 10) Realizar a pressurização do CO2, abrindo a válvula VC (Válvula Compressor) e V-BPR (Válvula Back Pressure Regulator), controlando o aumento da pressão (Medição através do manômetro M-2); 11) Ligar a bomba para líquidos (BL) e programá-la para operar à vazão requerida do processo; 16 12) Ligar o controlador do sistema de aquecimento do vaso de pressão 1 (CAVP1) e da válvula micrométrica (CAVM) e programá-los para operar à temperatura requerida do processo e a uma temperatura que evite congelamento da linha de saída, respectivamente (esta temperatura depende da vazão de CO2 utilizada, podendo oscilar entre 70 a 120 ºC); 13) Anotar o volume indicado no totalizador (TO); 14) Quando a pressão do CO2 for atingida, simultaneamente, abrir a válvula V-4 e V-5 para pressurizar a célula extratora (VP-1) com a mistura CO2 + co-solvente; 15) Após a pressão e temperatura do sistema estiverem estabilizadas, abrir as válvulas V-6 e VM cuidadosamente até que a vazão do CO2 desejada seja alcançada (Medição através do rotâmetro) (Se assume que a vazão de cosolvente programada permanecerá sempre constante durante o processo de extração); 16) Após o tempo pré-estabelecido de extração, desligar o banho BR, os controladores de aquecimentos CAVP-1 e CAVM e a bomba BL e fechar as válvulas V-5, V-1 e VC; 17) Anotar o volume indicado no totalizador (TO) e contabilizar o volume de CO2 que efetivamente foi percolado durante a extração; 18) Despressurizar o vaso VP-1; 19) Limpar a tubulação de saída com um solvente (etanol, por exemplo); 17 20) Quantificar o teor de extrato residual na tubulação de saída através da evaporação do solvente e pesagem da massa de extrato seca; 21) Quantificar a massa de extrato obtida através da evaporação do solvente e pesagem da massa de extrato seca (Geralmente, a massa de extrato residual na tubulação de saída é somada a massa de extrato obtida para fins de determinação de rendimento); 22) Guardar o frasco coletor em freezer à temperatura igual ou menor que zero para posterior análise. 18 FLUXOGRAMA-SFE com co-solventes CAVM TP M-2 M-1 M-4 VC TO CAVP-1 RT V-6 VM V-2 V-1 FL BG V-7 V-BPR V-AR M-3 BR V-3 VS V-5 V-4 V-BR-1 VP-1 V-BR-2 VP-2 BL BA Componentes da unidade que não são utilizados durante o processo SFE com co-solventes V-7 – Válvula de Bloqueio; V-BR-1, V-BR-2 – Válvulas Banho de Refrigeração (Controle da Circulação do Fluido Refrigerante); M-4 – Manômetro; BA – Banho de Aquecimento; VP-2 – Vaso de Pressão Grande (500 mL); Termopar. 19 20 1.3 SFE com separadores (Procedimento) 1) Ligar o banho de resfriamento (BR) e programá-lo para operar a – 10 ºC; 2) Se a temperatura do vaso separador desejada for: i) -10 ºC, abrir as válvulas banho de refrigeração (V-BR-1 e V-BR-2); ii) maior do que a temperatura ambiente, ligar o banho de aquecimento (BA) e programá-lo para operar na temperatura desejada; iii) entre -10 ºC e a temperatura ambiente, abrir as válvulas banho de refrigeração (V-BR-1 e V-BR-2), ligar o banho de aquecimento (BA) e programá-lo para operar em uma temperatura que possibilite atingir a temperatura desejada do vaso separador; 3) Inserir a célula de extração (VP-1) contendo a matéria-prima rica em compostos bioativos a serem extraídos (geralmente, já devidamente seca e moída) no sistema de aquecimento do VP-1 desligado; 4) Conectar a tubulação VP-1/Entrada entre a válvula V-5 e o topo do VP-1; 5) Conectar a tubulação VP-1/Saída entre o fundo do VP-1 e a válvula V-6; 6) Conectar a tubulação VP-2 entre o orifício lateral (esquerda) do vaso separador (VP-2) e a válvula V-7; 7) Conectar a tubulação V-7 na tampa de um frasco coletor lacrado (50 ou 100 mL) de massa conhecida, imerso em um banho de gelo; 8) Conectar a tubulação RT também na tampa do frasco coletor; 21 9) Conectar a tubulação VM/2 no orifício central do vaso separador (VP-2); 10) Verificar se as válvulas V-1, V-2, V-5, V-6, VM e V-7 estão fechadas; 11) Realizar a pressurização do CO2, abrindo a válvula VC (Válvula Compressor) e V-BPR (Válvula Back Pressure Regulator), controlando o aumento da pressão (Medição através do manômetro M-2); 12) Ligar o controlador do sistema de aquecimento do vaso de pressão 1 (CAVP1) e da válvula micrométrica (CAVM) e programá-los para operar à temperatura requerida do processo e a uma temperatura que evite congelamento da linha de saída, respectivamente (esta temperatura depende da vazão de CO2 utilizada, podendo oscilar entre 70 a 120 ºC); 13) Lacrar o vaso separador (VP-2), conectando o termopar e o manômetro M-4 ao vaso VP-2; 14) Quando a pressão do CO2 for atingida, abrir a válvula V-5 para pressurizar a célula extratora (VP-1); 15) Após a pressão e temperatura da célula extratora estiverem estabilizadas, abrir as válvulas V-6 e VM até que o CO2 preencha o volume do vaso separador (VP-2); 16) Anotar o volume indicado no totalizador (TO); 17) Uma vez que a pressão do vaso separador esteja próxima a desejada (Medição através do manômetro M-4), abrir a válvula V-7 cuidadosamente e controlar a válvula VM até que a vazão do CO2 desejada seja alcançada (Medição 22 através do rotâmetro) e a pressão do vaso separador (VP-2) permaneça constante; 18) Após o tempo pré-estabelecido de extração, desligar os banho BR e BA, os controladores de aquecimentos CAVP-1 e CAVM e a bomba BL e fechar as válvulas V-5, V-1 e VC; 19) Anotar o volume indicado no totalizador (TO) e contabilizar o volume de CO2 que efetivamente foi percolado durante a extração; 20) Despressurizar os vasos VP-1 e VP-2; 21) Quantificar a massa de extrato obtida no vaso separador (VP-2) e no frasco coletor, através da coleta do extrato precipitado no vaso VP-2 e da pesagem do frasco coletor, respectivamente; 22) Guardar ambos os extratos em freezer à temperatura igual ou menor que zero para posterior análise. OBS: Para o desenvolvimento de extrações SFE com separadores e co-solventes, verificar na seção 1.2 que algumas etapas são diferentes, como a evaporação do solvente ao final da extração para se quantificar a massa de extrato obtida, por exemplo. 23 FLUXOGRAMA-SFE com separadores CAVM TP M-2 M-1 M-4 VC TO CAVP-1 RT V-6 VM V-2 V-1 FL BG V-7 V-BPR V-AR M-3 BR V-3 VS V-5 V-4 V-BR-1 VP-1 V-BR-2 VP-2 BL BA Componentes da unidade que não são utilizados durante o processo SFE com co-solventes Todos os componentes são utilizados 24 25 2a. Extração com Líquidos Pressurizados (Pressurized Liquid Extraction – PLE) – Parâmetros importantes no Processo - Temperatura; - Vazão do líquido pressurizado; - Tempo da extração estática. A variação na Temperatura de extração a uma Pressão relativamente baixa (50100 bar) está diretamente relacionada a variação na viscosidade do líquido pressurizado, que permanece no estado líquido bem acima da sua temperatura de ebulição. Sendo a eficiência do processo extrativo ajustada através desta mudança. Segundo a literatura e a experiência do LASEFI no processo PLE um aumento na pressão de extração não afeta significamente o processo extrativo. Portanto, geralmente prefere-se se trabalhar com pressões baixas (50-70 bar). Uma atenção redobrada deve ser dada a vazão do líquido pressurizado e o tempo da extração estática para a extração de compostos termosensíveis, uma vez que elas podem resultar em um tempo excessivamente grande que pode iniciar a degradação destes compostos durante o procedimento de extração. 26 A extração com líquidos pressurizados também é chamada por alguns autores de extração acelerada com solvente, como a extração supercrítica com altos teores de co-solvente, pelos mesmos motivos, isto é, propiciar uma extração rápida dos solutos. 2b. Hidrólise com água sub/supercrítica sem CO2 (Modo Semi-contínuo) – Parâmetros importantes no Processo - Pressão; - Temperatura; - Tempo de reação; - Relação massa de matéria-prima/água percolada; - Vazão de alimentação da água sub/supercrítica. Conforme já mencionado anteriormente, água a altas temperaturas (> 150 ºC) e pressões é considerada um meio reacional muito atrativo para reações de hidrólise. 27 2.1A PLE (Procedimento) 1) Inserir a célula de extração (VP-1) contendo a matéria-prima rica em compostos bioativos a serem extraídos [geralmente, cortada em pedaços pequenos com ou sem a adição de um suporte inerte (areia, celite, etc.)] no sistema de aquecimento do VP-1 desligado; 2) Conectar a tubulação VP-1/Entrada entre a válvula V-5 e o topo do VP-1; 3) Conectar a tubulação VP-1/Saída entre o fundo do VP-1 e a válvula V-6; 4) Conectar a tubulação VM/1 em um frasco coletor 25 ou 50 mL de massa conhecida, imerso em um banho de gelo; 5) Verificar se as válvulas V-4, V-5, V-6 e VM estão fechadas; 6) Ligar a bomba para líquidos (BL) e programá-la para operar à pressão requerida do processo [uma oscilação entre o valor da pressão normalmente é observada durante o processo extrativo, portanto a bomba deve ser programada para operar a uma pressão um pouco maior (10-15 bar maior)]; 7) Ligar o controlador do sistema de aquecimento do vaso de pressão 1 (CAVP-1) e programá-lo para operar à temperatura requerida do processo; 8) Abrir a válvula V-4, verificando o aumento da pressão (Medição através do manômetro M-3); 9) Quando a pressão do líquido for atingida, abrir a válvula V-5 para pressurizar a célula extratora (VP-1); 28 10) Quando a pressão e temperatura do sistema estiverem estabilizadas, cronometrar o tempo estipulado para o período estático (Este tempo pode oscilar de 3 a 15 minutos); 11) Após o tempo do período estático, abrir as válvulas V-6 e VM, muito cuidadosamente, (pois, a pressão pode cair drasticamente) até que a vazão desejada seja alcançada (Medição utilizando proveta e cronômetro); 12) Após o tempo pré-estabelecido de extração, desligar a bomba BL e o controlador de aquecimento CAVP-1 e fechar a válvula V-4; 13) Para eliminar o extrato residual-solvente que ficou na célula extratora, purgar CO2 através da abertura das válvulas: do cilindro, V-1 e V-2. 14) Quantificar o teor de extrato residual na célula extratora através da evaporação do solvente (o qual foi purgado pelo CO2) e pesagem da massa de extrato seca; 15) Quantificar a massa de extrato obtida através da evaporação do solvente e pesagem da massa de extrato seca (Geralmente, a massa de extrato residual na célula extratora é somada a massa de extrato obtida para fins de determinação de rendimento); 16) Guardar o frasco coletor em freezer à temperatura igual ou menor que zero para posterior análise. 29 OBS 1: Para o desenvolvimento de extrações PLE com água como solvente, o procedimento de quantificação da massa do extrato fica mais complexo. Algumas opções são: através de secagem em chapa aquecida, de secagem com nitrogênio a quente, de liofilização do extrato aquoso, entre outras. Em contrapartida, as análises químicas do extrato aquoso podem ser feitas normalmente (Determinação da Atividade Antioxidante, Determinação do Teor de Compostos Fenólicos, etc.). OBS 2: Para o desenvolvimento de processos de hidrólise com água sub/supercrítica sem CO2 (Modo Semi-contínuo), seguir procedimento exatamente igual ao descrito, diferenciando que nunca se deve adicionar um suporte inerte juntamente à biomassa a ser hidrolisada. Diferentemente do processo descrito na seção 1.1b este processo não ocorre em modo batelada e sim em modo semicontínuo, portanto o meio reacional não é alimentado no início do processo e sim continuamente, até o término da reação. “Lembrar que para se conseguir obter hidrolisados a temperatura que a água deve estar deve ser maior que 150 ºC”. 30 FLUXOGRAMA-PLE/Hidrólise com água sub/supercrítica sem CO2 (Modo Semi-contínuo) CAVM TP M-2 M-1 M-4 VC TO CAVP-1 RT V-6 VM V-2 V-1 FL BG V-7 V-BPR V-AR M-3 BR V-3 VS V-5 V-4 V-BR-1 VP-1 V-BR-2 VP-2 BL BA Componentes da unidade que não são utilizados durante o processo PLE/Hidrólise com água sub/supercrítica sem CO2 (Modo Semi-contínuo) V-7 – Válvula de Bloqueio; VC – Válvula Compressor (Controle da Vazão de ar Comprimido); V-BR-1, V-BR-2 – Válvulas Banho de Refrigeração (Controle da Circulação do Fluido Refrigerante); M-4 – Manômetro; BA – Banho de Aquecimento; BG – Bomba para Gases (em condições atmosféricas); VP-2 – Vaso de Pressão Grande (500 mL); CAVM – Controlador do Aquecimento da Válvula Micrométrica; TP – Termopar; RT – Rotâmetro; TO – Totalizador. 31 3a. Extração assistida com dióxido de carbono a alta pressão (High Pressure Carbon Dioxide Assisted Extraction-HPCDAE) – Parâmetros importantes no Processo - Pressão; - Temperatura; - Tempo da extração; - Relação massa de matéria-prima/volume de solvente adicionado ao vaso de pressão; - Relação volume de CO2/volume do solvente+matéria-prima no vaso de pressão; - Velocidade da etapa de despressurização. Devido à similaridade entre os processos que visam à inativação microbiana e os que visam à extração sólido-líquido de compostos bioativos de matrizes vegetais, alguns autores deduziram e confirmaram com seus resultados experimentais que extrações sólido-líquido assistidas com CO2 a alta pressão poderiam propiciar melhores resultados que quando não assistidas. O efeito explosivo do CO2 a alta pressão em primeiro lugar foi demonstrado romper células bacterianas através da rápida liberação de pressão de gás com o objetivo de recolher o conteúdo da célula (lise celular). Numerosos estudos têm 32 mostrado a eficácia do uso de CO2 a alta pressão para inativar microrganismos e enzimas A melhora do processo de extração através do uso de CO2 de alta pressão é atribuída às habilidades do CO2 a alta pressão modificar a membrana celular, diminuir o pH intracelular, desorientar o equilíbrio eletrolítico intracelular, remover os componentes vitais das células e membranas celulares. Quando o solvente empregado nas extrações é a água, o uso de CO2 a alta pressão possibilita um decréscimo no pH através da geração in situ de ácido carbônico, o que leva a uma melhora na extração de alguns compostos, tais como antocianinas, por exemplo. 3b. Pré-hidrólise com explosão com dióxido de carbono – Parâmetros importantes no Processo - Pressão; - Temperatura; - Tempo do pré-tratamento; - Relação volume de CO2/volume da biomassa no vaso de pressão; - Umidade da biomassa; - Velocidade da etapa de despressurização. 33 Diversas técnicas vêm sendo empregadas objetivando-se aumentar a digestibilidade de biomassas (facilitar a hidrólise). O pré-tratamento utilizando explosão com CO2 nas condições supercríticas surge como uma alternativa ao método convencional de explosão com vapor. O processo consiste em submeter às amostras nas condições supercríticas por um tempo determinado, de forma a permitir que o CO2 penetre nas estruturas do material, ocupando assim os espaços vazios. Dessa forma após a rápida despressurização, o CO2 retornaria na forma de gás provocando assim uma alteração na estrutura celular. A umidade da biomassa a ser pré-tratada tem demonstrado exercer importante efeito sobre o material a ser hidrolisado. Visando a posterior aplicação da biomassa para outros objetivos que não a hidrólise, tais como, remoção de metais pesados, imobilização de células microbianas, entre outros, um tratamento mais brando é requerido, isto é utilizando uma biomassa com baixo conteúdo de água. 34 3.1A HPCDAE (Procedimento) 1) Ligar o banho de resfriamento (BR) e programá-lo para operar a – 10 ºC; 2) Conectar a tubulação VP-2 entre a válvula V-5 e o orifício lateral (esquerda) do vaso separador (VP-2); 3) Conectar a tubulação T no orifício central do vaso separador (VP-2) e suas ramificações na válvula V-6 e na bomba BL (a conexão na bomba BL serve somente para estancar o CO2); 4) Verificar se as válvulas V-1, V-2, V-5 e V-6 estão fechadas e se a VM está aberta; 5) Abrir a válvula do cilindro de CO2 e a válvula V-1 lentamente, observando se o ponteiro do manômetro M-1 sobe suavemente; 6) Realizar a pressurização do CO2, abrindo a válvula VC (Válvula Compressor) e V-BPR (Válvula Back Pressure Regulator), controlando o aumento da pressão (Medição através do manômetro M-2); 7) Ligar o controlador do sistema de aquecimento da válvula micrométrica (CAVM) e programá-lo para operar à temperatura que evite congelamento da linha de saída, respectivamente (geralmente, esta temperatura deve estar ao redor de 100120 ºC, pois a descompressão do CO2 neste processo deve ser realizada de forma muito rápida); 35 8) Ligar o banho de aquecimento (BA) e programá-lo para operar na temperatura desejada; 9) Inserir na célula de extração (VP-2) o solvente de extração a ser utilizado e a matéria-prima rica em compostos bioativos a serem extraídos (Diferentes Relações massa de matéria-prima/volume de solvente adicionado ao vaso de pressão e Relações volume de CO2/volume do solvente+matéria-prima no vaso de pressão podem ser avaliadas); 10) Lacrar a célula de extração (VP-2), conectando o termopar e o manômetro M-4 ao vaso VP-2; 11) Quando a pressão e temperatura do sistema estiverem estabilizadas, cronometrar o tempo estipulado para a extração e fechar a válvula V-6 (Este tempo pode oscilar de 5 a 50 minutos); 12) Decorrido o tempo de extração, abrir a válvula V-6 rapidamente, despressurizando o vaso VP-2 (O tempo de despressurização deve ser menor do que 10 minutos); 13) Deslacrar a célula de extração (VP-2), coletar o extrato (aquoso, etanólico, etc) e o refrigerar através da imersão em banho de gelo (para evitar degradação); 14) Desligar os banhos BR e BA e o controlador de aquecimento CAVM e fechar as válvulas V-1 e VC; 36 15) Quantificar a massa de extrato obtida através da evaporação do solvente e pesagem da massa de extrato seca; 16) Guardar o extrato em freezer à temperatura igual ou menor que zero para posterior análise. OBS 1: Para o desenvolvimento de extrações PLE com água como solvente, o procedimento de quantificação da massa do extrato fica mais complexo. Algumas opções são: através de secagem em chapa aquecida, de secagem com nitrogênio a quente, de liofilização do extrato aquoso, entre outras. Em contrapartida, as análises químicas do extrato aquoso podem ser feitas normalmente (Determinação da Atividade Antioxidante, Determinação do Teor de Compostos Fenólicos, etc.). OBS 2: Para o desenvolvimento de processos de pré-hidrólise com explosão com CO2 supercrítico, seguir procedimento exatamente igual ao descrito, diferenciando que nenhum solvente deve ser adicionado juntamente à biomassa a ser hidrolisada. Em alguns casos onde se é desejado uma pré-hidrólise mais efetiva, a umidade da biomassa é aumentada através da impregnação de uma determinada massa de água à biomassa. 37 FLUXOGRAMA-HPCDAE/Pré-tratamento com explosão com dióxido de carbono CAVM TP M-4 M-2 VC M-1 CAVP-1 TO RT V-6 VM V-2 V-1 FL V-7 BG V-BPR V-AR M-3 BR V-3 VS V-5 V-BR-1 V-4 VP-1 V-BR-2 VP-2 BL BA Componentes da unidade que não são utilizados durante o processo HPCDAE/ Pré-tratamento de biomassas com explosão com dióxido de carbono V-7 – Válvula de Bloqueio; V-BR-1, V-BR-2 – Válvulas Banho de Refrigeração (Controle da Circulação do Fluido Refrigerante); VP-1 – Vaso de Pressão pequeno (6,57 mL); BL – Bomba para Líquidos (em condições atmosféricas); RT – Rotâmetro; TO – Totalizador. 38 39 4. Formação de partículas via expansão rápida de solução supercrítica (Rapid Extraction of Supercritical Solution – RESS) – Parâmetros importantes no Processo - Pressão; - Temperatura; - Tempo de solubilização no fluido supercrítico (mais comum é o CO2); - Diâmetro do bico expansor (diâmetro interno do capilar); - Concentração do co-solvente - Relação entre co-solvente/solvente (cosolventes mais aconselháveis são: etanol e isopropanol); - Concentração do material de encapsulação - Relação entre material de recheio/material de encapsulação. A variação na Pressão e Temperatura da câmara de pré-expansão está diretamente relacionada a variação na densidade do fluido supercrítico. Sendo a seletividade do processo de formação de partículas ajustada através desta mudança. Já a variação no diâmetro do bico expansor está diretamente associado ao tamanhos das partículas formadas. Segundo a experiência do LASEFI no processo de formação de partículas encapsuladas via RESS, a temperatura exerce maior influência do que a pressão, pois quando em contato com o CO2 supercrítico o material de encapsulação 40 absorve uma alta concentração do fluido o inchando e o fundindo, através da redução da temperatura de fusão (em 10-15ºC). Uma vez fundido o material de encapsulação, um maior aglomeramento das partículas é propiciado. Portanto, o emprego de menores temperaturas é requerido para se obter partículas não aglomeradas (Até 40 ºC para PEG 10.000, cujo ponto de fusão é 60 ºC). Para processos em que o material de encapsulação possuem limitada solubilidade no fluido supercrítico a adição de um co-solvente é capaz de aumentar a solubilidade deste no fluido, produzindo, então, uma solução supercrítica do material de recheio + material de encapsulação + fluido supercrítico + co-solvente. Este processo é conhecido como RESS-N (Rapid Expansion of Supercritical Solution with a Nonsolvent). O solvente orgânico, que na maioria das vezes é um álcool, deve, além de aumentar a polaridade do fluido supercrítico, ser um não solvente para as partículas formadas [No caso de utilizar PEG 10.000 como material de encapsulação, etanol (em concentrações maiores que 25 % m/m) é um bom não solvente para as partículas de PEG e um excelente co-solvente para CO2 supercrítico, por exemplo]. Para processos de formação de partículas não encapsuladas a condição necessária que as partículas devem obedecer é ser altamente solúveis no fluido supercrítico. Caso tal condição não seja obedecida o processo conhecido como 41 SAS (Supercritical fluid Anti-Solvent – SAS) deve ser utilizado. Os processos de formação de partículas não encapsuladas também são conhecidos como processos de micronização, pois as partículas têm seu tamanho reduzido após a rápida despressurização. 42 4.1 RESS (Procedimento) 1) Ligar o banho de resfriamento (BR) e programá-lo para operar a – 10 ºC; 2) Se o objetivo é: i) formar partículas não encapsuladas de menor tamanho, inserir o material a ser micronizado na câmara de pré-expansão (VP-1); ii) formar partículas encapsuladas, inserir o material a ser encapsulado juntamente com um material de encapsulação (biopolímero, ciclodextrina, etc.) na câmara de préexpansão [como muitos materiais de encapsulação possuem limitada solubilidade em CO2 supercrítico, um determinado volume de co-solvente deve ser adicionado também (RESS-N)]; 3) Posteriormente, deve-se inserir a câmara de pré-expansão (VP-1) no sistema de aquecimento do VP-1 desligado; 4) Conectar a tubulação VP-1/Entrada entre a válvula V-5 e o topo do VP-1; 5) Conectar a tubulação VP-1/Saída entre o fundo do VP-1 e a válvula V-6; 6) Conectar a tubulação VM/2 no orifício central do vaso separador (VP-2); 7) Verificar se as válvulas V-1, V-2, V-5 e V-6 estão fechadas e se a VM está aberta; 8) Abrir a válvula do cilindro de CO2 e a válvula V-1 lentamente, observando se o ponteiro do manômetro M-1 sobe suavemente; 43 9) Realizar a pressurização do CO2, abrindo a válvula VC (Válvula Compressor) e V-BPR (Válvula Back Pressure Regulator), controlando o aumento da pressão (Medição através do manômetro M-2); 10) Quando a pressão do CO2 for atingida, abrir a válvula V-5 para pressurizar a câmara de pré-expansão (VP-1); 11) Ligar o controlador do sistema de aquecimento do vaso de pressão 1 (CAVP1) e da válvula micrométrica (CAVM) e programá-los para operar à temperatura requerida do processo e a uma temperatura que evite congelamento da linha de saída, respectivamente (esta temperatura não precisa ser muito alta (< 70 ºC), pois o tempo de despressurização é muito rápido (menos de 4 segundos); 12) Quando a pressão e temperatura do sistema estiverem estabilizadas, cronometrar o tempo estipulado para a solubilização dos solutos e fechar a válvula V-5 (Este tempo pode oscilar de 20 minutos a 3 horas); 13) Decorrido o tempo de solubilização, abrir a válvula V-6 rapidamente despressurizando o vaso VP-1, formando consequentemente partículas na parede da câmara de precipitação (VP-2) em condições atmosféricas (Pressão e Temperatura); 14) Desligar o banho BR e os controladores de aquecimentos CAVP-1 e CAVM e fechar as válvulas V-1 e VC; 15) Coletar, pesar e guardar as partículas formadas em freezer à temperatura igual ou menor que zero para posterior análise. 44 FLUXOGRAMA-RESS/RESS-N CAVM TP M-2 M-1 M-4 VC TO CAVP-1 RT V-6 VM V-2 V-1 FL V-7 BG V-BPR V-AR M-3 BR V-3 VS V-5 V-4 V-BR-1 VP-1 V-BR-2 VP-2 BL BA Componentes da unidade que não são utilizados durante o processo RESS/RESS-N V-7 – Válvula de Bloqueio; V-BR-1, V-BR-2 – Válvulas Banho de Refrigeração (Controle da Circulação do Fluido Refrigerante); M-4 – Manômetro; BA – Banho de Aquecimento; TP – Termopar; RT – Rotâmetro; TO – Totalizador. 45 46 5. Formação de partículas utilizando fluido supercrítico como anti-solvente (Supercritical fluid Anti-Solvent – SAS) – Parâmetros importantes no Processo - Pressão; - Temperatura; - Vazão do anti-solvente (mais comum é o CO2); - Vazão da solução contendo as partículas; - Diâmetro do capilar coaxial interno (onde a solução contendo as partículas é alimentada); - Concentração do material de encapsulação - Relação entre material de recheio/material de encapsulação. A variação na Pressão e Temperatura da câmara de precipitação está diretamente relacionada a variação na densidade do fluido supercrítico. Sendo a seletividade do processo de formação de partículas ajustada através desta mudança. Segundo a experiência do LASEFI no processo de formação de partículas encapsuladas, os parâmetros: i) Vazão do anti-solvente (mais comum é o CO2); ii) Vazão da solução contendo as partículas; iii) Diâmetro do capilar coaxial interno (onde a solução contendo as partículas é alimentada); iv) Concentração do material de encapsulação - Relação entre material de recheio/material de encapsulação, são de igual importância aos parâmetros pressão e temperatura. 47 Para os processos de formação de partículas encapsuladas tanto o material de recheio, quanto o material de encapsulação, devem ser altamente solúveis em um solvente orgânico, o qual deve possuir uma alta miscibilidade no fluido supercrítico (No caso de utilizar PEG 10.000 como material de encapsulação e CO2 como fluido supercrítico, acetato de etila e diclorometano podem ser utilizados). Assim como ocorre nos processos de formação de partículas via RESS, os processos que produzem partículas não encapsuladas via SAS também são conhecidos como processos de micronização, pois as partículas tem seu tamanho reduzido após a sua precipitação, através da eliminação do solvente orgânico pelo fluido supercrítico (anti-solvente). Um processo muito similar à micronização via SAS, vem sendo desenvolvido atualmente, o Supercritical Anti-solvent Extraction (SAE). Assim como o processo SAS, este processo se utiliza da alta solubilidade de alguns solventes orgânicos em fluidos supercríticos, porém ao invés de partículas em sua forma pura, extratos vegetais contendo várias classes de compostos são empregados. Outra diferença é que diferentemente do processo SAS, informações sobre alterações na morfologia não são relevantes, pois partículas contendo uma mistura de compostos são precipitados e não somente uma única. Aliado ao fato do processo SAE formar partículas não encapsuladas, este processo pode proporcionar um 48 fracionamento de substâncias através de variações nos parâmetros: Pressão, Temperatura, Vazão do anti-solvente (CO2 continua sendo o mais comum) e Vazão da solução contendo a mistura de compostos (extratos metanólicos e etanólicos têm sido utilizados em sua forma bruta ou parcialmente purificada). 49 5.1 SAS (Procedimento) Previamente: Se o objetivo é: i) formar partículas não encapsuladas de menor tamanho, preparar uma solução homogênea contendo o material a ser micronizado em um solvente orgânico; ii) formar partículas encapsuladas, preparar uma solução homogênea contendo o material a ser encapsulado juntamente com um material de encapsulação (biopolímero, ciclodextrina, etc.) em um solvente orgânico. 1) Ligar o banho de resfriamento (BR) e programá-lo para operar a – 10 ºC; 2) Ligar o banho de aquecimento (BA) e programá-lo para operar na temperatura desejada; 3) Conectar a tubulação T no orifício central da câmara de precipitação (VP-2) e suas ramificações na válvula V-5 e na bomba BL; 4) Conectar a tubulação VP-2 entre o orifício lateral (esquerda) da câmara de precipitação (VP-2) e a válvula V-6; 50 5) Elaborar e inserir na extremidade da tubulação VP-2 que está dentro da câmara de precipitação um cartucho de papel de filtro (10 μm) para evitar uma perda por arraste das partículas formadas na câmara de precipitação; 6) Conectar a tubulação VM/1 na tampa de um frasco coletor lacrado (50 ou 100 mL) de massa conhecida, imerso em um banho de gelo; 7) Conectar a tubulação RT também na tampa do frasco coletor; 8) Verificar se as válvulas V-1, V-2, V-5, V-6 e VM estão fechadas; 9) Abrir a válvula do cilindro de CO2 e a válvula V-1 lentamente, observando se o ponteiro do manômetro M-1 sobe suavemente; 10) Realizar a pressurização do CO2, abrindo a válvula VC (Válvula Compressor) e V-BPR (Válvula Back Pressure Regulator), controlando o aumento da pressão (Medição através do manômetro M-2); 11) Lacrar a câmara de precipitação (VP-2), conectando o termopar e o manômetro M-4 ao vaso VP-2; 12) Quando a pressão do CO2 for atingida, abrir a válvula V-5 para pressurizar a câmara de precipitação (VP-2); 13) Ligar o controlador do sistema de aquecimento da válvula micrométrica (CAVM) e programá-los para operar a uma temperatura que evite congelamento da linha de saída (esta temperatura depende da vazão de CO2 utilizada, podendo oscilar entre 70 a 120 ºC); 51 14) Quando a pressão e temperatura do sistema estiverem estabilizadas, abrir as válvulas V-6 e VM cuidadosamente até que a vazão desejada seja alcançada (Medição através do rotâmetro); 15) Estabilizada a vazão desejada, ligar a bomba para líquidos (BL) e programá-la para alimentar a câmara de precipitação com a solução previamente preparada na vazão desejada, pelo capilar interno do sistema coaxial (CO2 supercrítico passa externamente) (Dependendo da pressão utilizada no vaso VP-2, a vazão programada deve ser um pouco maior que a vazão desejada – utilizando uma proveta verificar se há correspondência entre o valor de vazão programado e o efetivamente desenvolvido, corrigindo-o, quando necessário); 16) Após o tempo pré-estabelecido de formação de partículas, desligar a bomba BL para interromper a alimentação da solução; 17) Por um determinado tempo (de 20 minutos a 1 hora), continuar alimentando a câmara de expansão somente com CO2 supercrítico a mesma vazão para eliminar o solvente residual nas partículas formadas; 18) Decorrido o tempo de eliminação do solvente orgânico residual, desligar o banho BR, o banho BA e o controlador de aquecimento CAVM e fechar as válvulas V-5, V-1 e VC; 19) Despressurizar o vaso VP-2 empregando a mesma vazão utilizada no processo de formação de partículas e eliminação do solvente residual, para não 52 provocar uma perda, por arraste, das partículas formadas na câmara de precipitação; 20) Deslacrar a câmara de precipitação (VP-2), coletar, pesar e guardar as partículas formadas em freezer à temperatura igual ou menor que zero para posterior análise. OBS: Quando ao invés de uma substância pura se emprega uma mistura complexa, como, por exemplo, extratos metanólicos e etanólicos, o processo recebe o nome de SAE. Portanto, para o desenvolvimento do processo SAE, deve-se seguir procedimento exatamente igual ao descrito. 53 FLUXOGRAMA-SAS/SAE CAVM TP M-2 M-1 M-4 VC TO CAVP-1 RT V-6 VM V-2 V-1 FL V-7 BG V-BPR V-AR M-3 BR V-3 VS Solução V-5 V-4 V-BR-1 CO2 CO2 VP-1 V-BR-2 VP-2 BL BA Componentes da unidade que não são utilizados durante o processo SAS/SAE V-7 – Válvula de Bloqueio; V-BR-1, V-BR-2 – Válvulas Banho de Refrigeração (Controle da Circulação do Fluido Refrigerante). 54 55 ANEXOS Densidade do CO2 em condições encontradas no laboratório ρCO2 (kg/m3) 20 (ºC) 21 22 23 24 25 26 27 28 29 30 925 (mbar) 1.6784 1.6726 1.6668 1.6611 1.6554 1.6498 1.6442 1.6386 1.6331 1.6276 1.6222 926 1.6802 1.6744 1.6686 1.6629 1.6572 1.6516 1.6460 1.6404 1.6349 1.6294 1.6239 927 1.6820 1.6762 1.6704 1.6647 1.6590 1.6534 1.6477 1.6422 1.6366 1.6311 1.6257 928 1.6838 1.6780 1.6722 1.6665 1.6608 1.6551 1.6495 1.6440 1.6384 1.6329 1.6274 929 1.6857 1.6798 1.6740 1.6683 1.6626 1.6569 1.6513 1.6457 1.6402 1.6347 1.6292 930 1.6875 1.6816 1.6759 1.6701 1.6644 1.6587 1.6531 1.6475 1.6420 1.6364 1.6310 931 1.6893 1.6835 1.6777 1.6719 1.6662 1.6605 1.6549 1.6493 1.6437 1.6382 1.6327 932 1.6911 1.6853 1.6795 1.6737 1.6680 1.6623 1.6567 1.6511 1.6455 1.6400 1.6345 933 1.6929 1.6871 1.6813 1.6755 1.6698 1.6641 1.6585 1.6528 1.6473 1.6417 1.6363 934 1.6948 1.6889 1.6831 1.6773 1.6716 1.6659 1.6602 1.6546 1.6491 1.6435 1.6380 935 1.6966 1.6907 1.6849 1.6791 1.6734 1.6677 1.6620 1.6564 1.6508 1.6453 1.6398 936 1.6984 1.6925 1.6867 1.6809 1.6752 1.6695 1.6638 1.6582 1.6526 1.6470 1.6415 937 1.7002 1.6944 1.6885 1.6827 1.6770 1.6713 1.6656 1.6600 1.6544 1.6488 1.6433 938 1.7021 1.6962 1.6903 1.6845 1.6788 1.6731 1.6674 1.6617 1.6561 1.6506 1.6451 939 1.7039 1.6980 1.6922 1.6863 1.6806 1.6749 1.6692 1.6635 1.6579 1.6524 1.6468 940 1.7057 1.6998 1.6940 1.6882 1.6824 1.6767 1.6710 1.6653 1.6597 1.6541 1.6486 941 1.7075 1.7016 1.6958 1.6900 1.6842 1.6784 1.6727 1.6671 1.6615 1.6559 1.6503 942 1.7094 1.7035 1.6976 1.6918 1.6860 1.6802 1.6745 1.6689 1.6632 1.6577 1.6521 943 1.7112 1.7053 1.6994 1.6936 1.6878 1.6820 1.6763 1.6706 1.6650 1.6594 1.6539 944 1.7130 1.7071 1.7012 1.6954 1.6896 1.6838 1.6781 1.6724 1.6668 1.6612 1.6556 945 1.7148 1.7089 1.7030 1.6972 1.6914 1.6856 1.6799 1.6742 1.6686 1.6630 1.6574 Fonte: NIST (http://webbook.nist.gov) 56 Densidade do CO2 em condições sub/supercríticas (Pc = 73,3 bar; Tc = 31ºC) ρCO2 (kg/m3) 30 (ºC) 35 40 45 50 55 60 70 (bar) 266.56 220.08 198.02 183.20 172.01 163.03 155.53 80 701.72 419.09 277.90 241.05 219.18 203.64 191.62 90 744.31 662.13 485.50 337.51 285.00 255.55 235.39 100 771.50 712.81 628.61 498.25 384.33 325.07 289.95 110 792.10 743.95 683.52 603.15 502.64 414.90 357.79 120 808.93 767.07 717.76 657.74 584.71 504.51 434.43 130 823.25 785.70 743.04 693.65 636.12 571.33 505.35 140 835.79 801.41 763.27 720.47 672.17 618.45 561.37 150 846.98 815.06 780.23 741.97 699.75 653.50 604.09 160 857.12 827.17 794.90 759.98 722.09 681.12 637.50 170 866.41 838.09 807.87 775.53 740.88 703.82 664.59 180 875.00 848.04 819.51 789.24 757.12 723.08 687.25 190 883.00 857.21 830.09 801.53 771.45 739.81 706.68 200 890.50 865.72 839.81 812.69 784.29 754.61 723.68 210 897.56 873.67 848.81 822.91 795.94 767.88 738.78 220 904.23 881.15 857.20 832.36 806.61 779.93 752.38 230 910.57 888.20 865.07 841.16 816.46 790.97 764.73 240 916.61 894.88 872.48 849.39 825.62 801.17 776.07 250 922.38 901.23 879.49 857.14 834.19 810.65 786.55 260 927.91 907.29 886.14 864.46 842.25 819.52 796.30 270 933.22 913.08 892.48 871.40 849.85 827.85 805.42 280 938.32 918.64 898.53 878.00 857.05 835.70 813.98 290 943.24 923.97 904.33 884.30 863.90 843.15 822.06 300 947.98 929.11 909.89 890.33 870.43 850.22 829.71 350 969.56 952.29 934.81 917.12 899.23 881.17 862.94 400 988.31 972.26 956.07 939.75 923.32 906.77 890.14 Fonte: NIST (http://webbook.nist.gov) 57 Viscosidade da água em condições sub/supercríticas (Pc = 221.2 bar; Tc = 374ºC) Viscosidade água (cP) 30 (ºC) 40 50 60 70 80 90 100 120 150 200 250 300 350 400 1 (bar) 0.79735 0.65298 0.54685 0.46640 0.40389 0.35435 0.31441 0.01227 0.01302 0.01418 0.01617 0.01822 0.02029 0.02237 0.02445 20 0.79717 0.65313 0.54718 0.46682 0.40437 0.35485 0.31492 0.28225 0.23253 0.18285 0.13443 0.01785 0.02007 0.02225 0.02440 40 0.79700 0.65330 0.54753 0.46727 0.40487 0.35537 0.31545 0.28279 0.23305 0.18335 0.13493 0.10612 0.01988 0.02216 0.02437 50 0.79692 0.65339 0.54771 0.46750 0.40512 0.35564 0.31572 0.28305 0.23331 0.18360 0.13518 0.10640 0.01979 0.02212 0.02436 60 0.79685 0.65348 0.54789 0.46773 0.40537 0.35590 0.31599 0.28332 0.23357 0.18385 0.13542 0.10668 0.01973 0.02210 0.02437 70 0.79677 0.65357 0.54807 0.46796 0.40563 0.35616 0.31625 0.28359 0.23384 0.18411 0.13567 0.10696 0.01967 0.02209 0.02438 80 0.79671 0.65367 0.54825 0.46818 0.40588 0.35643 0.31652 0.28386 0.23410 0.18436 0.13592 0.10723 0.01965 0.02209 0.02441 90 0.79664 0.65377 0.54844 0.46842 0.40613 0.35669 0.31679 0.28412 0.23436 0.18461 0.13616 0.10751 0.08606 0.02211 0.02444 100 0.79658 0.65387 0.54863 0.46865 0.40639 0.35696 0.31706 0.28439 0.23462 0.18486 0.13641 0.10778 0.08646 0.02215 0.02448 120 0.79648 0.65408 0.54900 0.46911 0.40690 0.35749 0.31760 0.28493 0.23514 0.18536 0.13689 0.10831 0.08723 0.02230 0.02461 150 0.79635 0.65441 0.54958 0.46982 0.40767 0.35829 0.31840 0.28573 0.23592 0.18610 0.13761 0.10910 0.08833 0.02293 0.02493 200 0.79620 0.65500 0.55056 0.47101 0.40896 0.35962 0.31975 0.28707 0.23722 0.18733 0.13880 0.11039 0.09005 0.06930 0.02603 250 0.79615 0.65565 0.55158 0.47222 0.41026 0.36096 0.32109 0.28840 0.23851 0.18856 0.13998 0.11164 0.09164 0.07276 0.02917 300 0.79619 0.65636 0.55264 0.47345 0.41158 0.36231 0.32244 0.28974 0.23980 0.18977 0.14113 0.11285 0.09315 0.07545 0.04393 350 0.79633 0.65712 0.55372 0.47470 0.41291 0.36366 0.32379 0.29107 0.24109 0.19098 0.14227 0.11403 0.09457 0.07773 0.05579 400 0.79655 0.65793 0.55484 0.47597 0.41425 0.36502 0.32515 0.29241 0.24237 0.19218 0.14340 0.11519 0.09593 0.07974 0.05937 Fonte: NIST (http://webbook.nist.gov) 58 Valores da constante dielétrica de alguns solventes orgânicos P = 1 bar 20 (ºC) P = 1 bar 20 (ºC) Água 80.20 25 40 Água 80.20 Metanol 33.64 Etanol 25.16 Acetona 21.13 Butanol 18.19 Hexano 1.8 60 80 100 78.50 73.12 66.62 60.58 55.10 150 200 250 300 350 400 40 35 28 20 18 18 *Valores aproximados (retirados de figuras) Fonte: Sites da internet, artigos e livros. Entre 150 e 300 ºC, em altas pressões, a água é capaz de dissolver muitos compostos polares, pois sua constante dielétrica é similar a dos solventes Metanol e Etanol, em contrapartida acima de 300 oC, a água pressurizada é capaz de dissolver muitos compostos apolares. Mais diferente ainda é a água quando a pressão for igual ou maior de 221.2 bar e a temperatura maior do que 374 ºC (pressão e temperatura críticas): a água se torna um fluído supercrítico, tendo sua constante dielétrica oscilando entre 30 e 2. Nestas condições, a água reúne propriedades de gás (tal como a densidade) e de líquido (capacidade de dissolução). Além de dissolver substâncias polares e iônicas, a água supercrítica é capaz de dissolver praticamente todos os compostos apolares, pois a constante dielétrica é similar a do hexano (1.8). Adicionalmente, nestas condições a água supercrítica é um excelente meio reacional, podendo ser utilizada, por exemplo, na destruição de lixos tóxicos, hidrólise de biomassa, etc. 59