Aula no 4 e 5 Limites a) A figura representa o gráfico da função f . y 3 y = f (x) 2 1 −2 −1 −1 1 2 3 x −2 Calcule, caso existam, os seguintes limites: (a) lim f (x) (b) x→−∞ lim f (x) (c) x→−1 lim f (x) (d) lim f (x) (e) x→2 x→2− lim f (x) x→+∞ b) Determine, caso existam, os seguintes limites : x3 − 1 x→1 x − 1 (b) lim (a) lim (d) x→1 2x2 + 1 x→+∞ 3x2 + 5x (e) x2 − 3x x→3 5x − 15 (h) lim lim (g) lim 2 4 − x2 (c) lim x→0 x3 x−2 − 10x + 31x − 30 5x3 − 2x x→+∞ −2x2 + 10 (f ) 5x4 − 2x3 + 3 x→+∞ x5 − 2x + 1 x4 − 16 x→2 (x − 2)2 (i) lim lim lim x→−2 x3 x2 + x − 2 + 2x2 + x + 2 c) Considere a função f definida por: ⎧ ⎪ 3s3 − 3s se s > 1 ⎪ ⎪ ⎨ f (s) = 3 se s = 1 ⎪ ⎪ ⎪ 1 ⎩ se s < 1 s2 Calcule, caso existam, os seguintes limites: (a) lim f (s) s→1 (b) lim f (s) s→0 (c) lim f (s) s→1+ (d) lim f (s) s→−∞ d) Use as informações que se seguem para calcular os limites pedidos. lim f (x) = 2 x→c lim g(x) = 3 x→c 5 lim h(x) = 27 x→c (e) lim s→+∞ f (s) s−1 (a) lim 5g(x) x→c (e) lim x→c 3 h(x) (b) lim [f (x) + g(x)] x→c (d) lim (g) lim [h(x)]2 (h) lim [h(x)]2/3 x→c h(x) x→c 18 (f ) lim x→c 6 f (x) g(x) (c) lim [f (x)g(x)] x→c x→c