THIEZA GRAZIELLA ARAUJO DA SILVA GOES DE MELO
ANTIDEPRESSIVOS MODIFICAM A EXTINÇÃO DE UMA MEMÓRIA
AVERSIVA EM RATAS
Dissertação
apresentada
à
Universidade Federal do Rio Grande
do Norte, para obtenção do título de
Mestre em Psicobiologia.
Natal
2011
1
THIEZA GRAZIELLA ARAUJO DA SILVA GOES DE MELO
ANTIDEPRESSIVOS MODIFICAM A EXTINÇÃO DE UMA MEMÓRIA
AVERSIVA EM RATAS
Dissertação
apresentada
à
Universidade Federal do Rio Grande do
Norte, para obtenção do título de
Mestre em Psicobiologia.
Orientadora: Profª. Drª. Regina Helena da Silva
Co-Orientador: MSc PhD Geison de Souza
Izídio
Natal
2011
2
Título: ANTIDEPRESSIVOS MODIFICAM A EXTINÇÃO DE UMA MEMÓRIA
AVERSIVA EM RATAS
Autor: Thieza Graziella Araújo da Silva Góes de Melo
Data da defesa: 16/05/2011
Banca Examinadora:
___________________________________
Profª. Drª. Flávia Teixeira da Silva
Universidade Federal de Sergipe, SE
___________________________________
Profª. Drª. Elaine Cristina Gavioli
Universidade Federal do Rio Grande do Norte, RN
___________________________________
Profª. Drª. Regina Helena da Silva
Universidade Federal do Rio Grande do Norte, RN
3
AGRADECIMENTOS
À minha família e amigos, pela compreensão. Especialmente minha mãe, por
estar sempre presente e ter sempre me dado o melhor exemplo a ser seguido. As
minhas conquistas são tão minhas quanto dela e, algumas vezes, talvez até mais
dela que minhas. Ao meu noivo, Tiago, também sempre presente, inclusive nos
finais de semana, em experimento, me dando suporte. Ao meu padrasto, Pai-Tio
Guilherme que tem, com toda certeza, ―direito‖ a pelo menos 1 cm² do certificado. À
minha avó, meu exemplo de vida, e que me mostrou que tudo pode ser feito com
paciência, boa vontade e um pouquinho de ousadia.
À professora Regina que me acompanha desde a iniciação científica, dando
suporte acadêmico/científico e que verdadeiramente me ensinou a fazer ciência,
mesmo sob as circunstâncias mais adversas.
Ao LEME, no corpo de seus ICs, mestrandos, doutorandos, pós-docs e
professores pela ajuda durante os experimentos e dos quais recebi não menos que
amizade. Dentro do LEME agradeço especialmente às duas pessoas que
participaram mais diretamente nos experimentos e revisões, Luane e Geison.
Aos dois psiquiatras que me forneceram suporte técnico e informações
clínicas Drª Nádira Hazboun e Drº Francisco Márcio Pinheiro.
À UFRN, CAPES, CNPq, FAPERN e PPG em Psicobiologia pelo apoio
financeiro e estrutural.
A todos os professores e colegas do programa de pós-graduação em
Psicobiologia.
Por fim, mas tão importante quanto, agradeço a todos os que não citei, mas
sem os quais eu não poderia ter realizado esse trabalho.
4
Resumo
Os tratamentos de depressão, transtorno de estresse pós-traumático e outras
psicopatologias que se utilizam de antidepressivos podem estar associados à
melhora de déficits cognitivos relacionados a esses transtornos. Embora os
mecanismos pelos quais a melhora nos déficits cognitivos ocorre não estejam
totalmente esclarecidos, alterações na extinção de memórias aversivas podem estar
presentes nestas psicopatologias. Além disso, pesquisas com animais de laboratório
geralmente são realizadas com indivíduos do sexo masculino, e recentemente
verificamos que a extinção de uma tarefa aversiva é diminuída em ratas quando
comparada ao desempenho de ratos. No presente estudo, ratas Wistar foram
tratadas prolongadamente com antidepressivos utilizados na clínica (nortriptilina,
fluoxetina ou mirtazapina) e testadas na esquiva discriminativa em labirinto em cruz
elevado e no teste do nado forçado, a fim de avaliar a aprendizagem, a memória, a
extinção, a ansiedade e comportamentos relacionados à depressão. A exploração
do braço aversivo na sessão de treino foi semelhante em todos os grupos,
mostrando que todos os grupos aprenderam a tarefa, havendo, porém, uma melhora
no desempenho dos grupos tratados com nortriptilina e mirtazapina. Na sessão teste
todos os animais evocaram a tarefa. O tratamento prolongado com a fluoxetina, mas
não com os outros antidepressivos, promoveu uma melhora na extinção da memória
aversiva da EDLC. No teste de nado forçado, os animais tratados com fluoxetina e
mirtazapina apresentaram diminuição na duração da imobilidade, comparados ao
veículo. Em conclusão, os antidepressivos podem interferir no aprendizado, mas não
na evocação de memórias aversivas. Além disso, ratas tratadas com fluoxetina
apresentam um aumento da extinção da tarefa aversiva, em comparação ao veículo,
enquanto os demais tratamentos impediram a extinção dessa tarefa. Além disso,
tanto a fluoxetina como a mirtazapina foram eficazes no teste de nado forçado,
sugerindo dissociação entre os efeitos antidepressivos e extinção de memórias
aversivas.
Palavras chaves: fluoxetina, nortriptilina, mirtazapina, ratas, memória aversiva,
depressão, ansiedade.
5
Abstract
Treatment of major depression, posttraumatic stress disorder and other
psychopathologies with antidepressants can be associated with improvement of the
cognitive deficits related to these disorders. Although the mechanisms of these
effects are not completely elucidated, alterations in extinction of aversive memories
are believed to be present in these psychopathologies. Moreover, researches with
laboratory animals usually focus on male subjects, and we have recently verified that
extinction of an aversive task is reduced in female rats when compared to males. In
the present study, female rats were long-term treated with clinically used
antidepressants (fluoxetine, nortriptyline or mirtazapine) and tested in the plus-maze
discriminative avoidance and forced swimming tests in order to evaluate learning,
memory, extinction, anxiety and depression-related behaviors. All groups learned the
task, but learning was somewhat faster in nortriptyline and mirtazapine-treated
animals . Task retrieval was also showed by all experimental groups. Chronic
treatment with fluoxetine, but not with the other antidepressants, increased extinction
of the discriminative task. In the forced swimming test, animals treated with fluoxetine
and mirtazapine showed decreased immobility duration. In conclusion,
antidepressants interfere with learning and female rats treated with fluoxetine
presented increased extinction of the aversive memory task. On the other hand, both
fluoxetine and mirtazapine were effective in the forced swimming test, suggesting
dissociation between the antidepressant effects and the extinction of aversive
memories.
Keywords: discriminative avoidance task, sex differences, forced swimming test,
aversive memory, depression, anxiety.
6
Sumário
I.
INTRODUÇÃO ............................................................................................ 8
II.
OBJETIVOS .............................................................................................. 20
III.
ARTIGO PARA SUBMISSÃO................................................................... 21
IV.
CONCLUSÃO E CONSIDERAÇÕES FINAIS........................................... 55
V.
REFERÊNCIAS ......................................................................................... 57
7
I.
Introdução
O uso de antidepressivos, sozinhos ou em combinação com a psicoterapia, é
largamente
difundido.
Além
da
grande
indicação
para
o
tratamento
de
psicopatologias como transtornos de humor e ansiedade (Marks et al. 1998; Brunello
et al. 2001; Nandam et al. 2007), eles são também indicados como uma opção
alternativa para doenças debilitantes funcionais como, por exemplo, a síndrome da
fadiga crônica, a fibromialgia, enxaquecas ou dores de cabeça crônicas e dores
faciais atípicas (Marks et al. 2008; Mao et al. 2010).
A depressão é uma psicopatologia já devidamente classificada no Manual de
Diagnóstico e Estatística de Doenças Mentais (em inglês Diagnostic and Statistical
Manual of Mental Disorders), com suas últimas modificações na classificação para
diagnóstico em sua quarta edição e no Texto Revisado (2000). Também consta na
Classificação Estatística Internacional de Doenças e Problemas Relacionados (CID10) na sessão de transtornos mentais e comportamentais. Estima-se que o
transtorno depressivo acometa aproximadamente 10% da população mundial e é
considerado um dos maiores males da atualidade. A sua incidência também é
destacada incorrendo até duas vezes mais em mulheres que em homens (Fava &
Kendler 2000; Mahendran & Yap 2005; Bekker & van Mens-Verhulst 2007). A
depressão pode se apresentar como um episódio único (episódio depressivo),
caracterizado por ser um período mínimo de duas semanas, durante as quais há um
humor deprimido ou perda de interesse ou prazer por quase todas as atividades. Em
crianças e adolescentes o humor pode ser irritável ao invés de triste. Nesse período
é comum que se apresentem pelo menos quatro sintomas adicionais, extraídos de
uma lista que inclui: alterações no apetite ou peso, no sono e na atividade
8
psicomotora; diminuição da energia; sentimentos de desvalia ou culpa; dificuldades
para pensar, concentrar-se ou tomar decisões, ou pensamentos recorrentes sobre
morte ou ideação suicida; planos ou tentativas de suicídio. Sintomas físicos são
comumente encontrados no episódio depressivo maior: propensão ao choro,
irritabilidade, ruminação obsessiva, ansiedade, fobias, preocupação com a saúde
física e queixas de dores, tanto de cabeça, quanto no corpo (APA 2000; Fava &
Kendler 2000). Alguns indivíduos podem apresentar ataques de pânico que ocorrem
segundo um padrão que satisfaz os critérios para transtorno de pânico. Em crianças
pode ocorrer ansiedade de separação. Alguns indivíduos observam dificuldade nos
relacionamentos íntimos, diminuição das interações sociais satisfatórias ou
dificuldades no funcionamento sexual (APA 2000). A manifestação de episódios
depressivos pode ainda vir como um transtorno depressivo maior, o qual é
caracterizado pela ocorrência de um ou mais episódios depressivos, sem história de
episódios maníacos, mistos ou hipomaníacos.
Usualmente, pacientes diagnosticados com depressão apresentam também
sintomas de ansiedade, com variadas intensidades, tais como: preocupação,
nervosismo, ataques de pânico, sintomas de fobia, transtornos obsessivocompulsivos, entre outros (APA 2000). Os pacientes depressivos que possuem
elevados níveis de ansiedade podem apresentar quadros mais severos e
recuperação mais demorada. Além disso, a depressão pode ainda se apresentar
comorbidamente com outros transtornos de ansiedade (Marques 2001; Aragonès et
al. 2009) e transtornos relacionados a substâncias, transtorno de pânico, transtorno
obsessivo-compulsivo,
anorexia
nervosa,
bulimia
nervosa
e
transtorno
da
personalidade borderline (APA 2000). Assim, não é surpreendente que se aplique o
9
uso de antidepressivos também ao tratamento de outros transtornos como os da
ansiedade (APA 2000; Marques 2001).
A incidência desses demais transtornos também pode ser relacionada à
comorbidade deles com a depressão. Os transtornos de ansiedade mais comuns em
mulheres, em sua grande maioria (Bekker & van Mens-Verhulst 2007) são os de
maiores índices de comorbidade com a depressão. Dessa forma é imperativa a
necessidade de uma maior atenção à sintomatologia diferenciada apresentada pelos
indivíduos do sexo feminino. Mulheres e crianças podem apresentar mais
comumente o humor irritado (APA 2000) e essa alteração no humor pode ser
sintoma apenas da depressão e não ter nenhuma relação com outros transtornos de
humor ou ansiedade. Paralelamente, a perda de peso pode estar associada mais
facilmente aos transtornos alimentares, que podem ser a causa da depressão (APA
2000; Mischoulon et al. 2010; Modrzejewska 2010).
O tratamento de transtornos do humor é geralmente complexo, prolongado e
adequado a cada indivíduo. Estudos com indivíduos saudáveis sugerem que a
percepção de faces com expressões negativas começam a aparecer após o 7º dia
de tratamento (Harmer et al. 2010), diminuição de perceptção essa, associada aos
efeitos terapêuticos do uso contínuo de antidepressivos. Existem várias classes de
drogas
antidepressivas
disponíveis
farmacodinâmicas distintas. De
forma
na
atualidade,
geral,
com
propriedades
tais fármacos aumentam as
concentrações de monoaminas na fenda sináptica, mas apenas esse aumento,
embora necessário, não é suficiente para explicar a remissão dos sintomas
(Arantes-Gonçalves & Coelho 2006).
As primeiras teorias para explicar as bases fisiológicas da depressão surgiram
em torno da hipótese da redução das concentrações de serotonina (5-HT) e
10
noradrenalina (NA) na fenda sináptica, visto que drogas que depletam as reservas
desses neurotransmissores são indutoras de quadros depressivos (Freis 1954; Guay
2010; Tian et al 2010; Aia et al 2011; Ghia et al 2011), e o mecanismo de ação dos
agentes depressivos mais utilizados envolve aumento da disponibilidade desses
neurotransmissores (Kent 2000). Contudo, uma hipótese mais recente sobre a
fisiopatologia e tratamento da depressão envolve também adaptação e plasticidade
neural. De acordo com essa hipótese, a depressão seria resultado de uma falha na
execução de respostas adaptativas apropriadas ao estresse e a estímulos aversivos,
ou seja, perda da plasticidade sináptica. A isso pode se associar o fato de que a
exposição crônica a situações de estresse induz um quadro semelhante à
depressão, com redução dos níveis hipocampais de fator neurotrófico derivado do
encéfalo (BDNF – do inglês brain-derived neutrophic factor) (Gould et al. 1999; Sen
et al. 2003; Arantes-Gonçalves & Coelho 2006), componente da família das
neurotrofinas,
que,
entre
várias
outras
moléculas,
apresenta
um
papel
reconhecidamente importante na plasticidade sináptica (Arantes-Gonçalves &
Coelho 2006; Monfils 2007; Kalueff 2007).
Essa plasticidade em adultos também pode ocorrer através da neurogênese
(Gould & Gross 2002), que também é regulada pelos antidepressivos (Santarelli et
al. 2003). Normalmente é restrita ao hipocampo, nas zonas subventricular e
subgranular do giro denteado (Garcia-Vendugo et al. 1998; Santarelli et al. 2003).
Isso corrobora os estudos que mostram hipocampo diminuído em indivíduos
deprimidos (Manji et al. 2002; Nestler & Carlezon Jr. 2006) e atividade aumentada
na amígdala (Drevets 2001). Existe também a evidência de que o estresse impede a
neurogênese e estaria relacionado a essa diminuição hipocampal (Kloet et al. 2005;
Gerritsen et al. 2011).
11
Dentre as várias opções de antidepressivos os mais prescritos são os
inibidores seletivos de recaptação de serotonina (ISRS) tanto para adultos como
para crianças (Dunlop & Davis 2008; Denizot et al. 2009). Introduzidos na clínica no
final da década de 80 (Kent 2000), os ISRS agem bloqueando a ação do
transportador de serotonina. Dessa forma eles impedem a recaptação do
neurotransmissor, o que prolonga a sua exposição ao receptor, (Vázquez-Palacios
2004) e aumentando a atividade do sistema monoaminérgico no cérebro (Tsai et al.
2009). Dentre os antidepressivos dessa classe a fluoxetina é o mais prescrito
(Dunlop & Davis 2008). É importante ressaltar que a serotonina (5-HT) possui
também um papel regulador na divisão celular e um papel crítico no controle da
proliferação das células adultas neurais, fato que explicaria sua eficácia na melhora
dos sintomas depressivos considerando o papel da neurogênese hipocampal na
fisiopatologia da depressão (Santarelli et al. 2003; Paizanis et al. 2007)
Os antidepressivos tricíclicos são uma classe mais antiga de fármacos
utilizados no tratamento da depressão. Eles agem inibindo a recaptação
monoaminérgica não seletivamente. Alguns fármacos mais conhecidos dessa classe
são a amitriptilina, clomipramina, desipramina, imipramina, nortriptilina e a doxepina.
De interesse para o presente estudo, a nortriptilina inibe a recaptação de
noradrenalina e menos potencialmente da serotonina, sendo também agonista do
receptor 5-HT2 (Sanchez & Hyttel 1999; Wing & Shoaib 2007). Além disso, ela age
induzindo uma diminuição na expressão (downregulation) dos receptores βadrenérgicos (Morishita & Aoki 2002). Apesar de não ser largamente prescrita, a
nortriptilina continua sendo uma opção para indivíduos não responsivos a outros
antidepressivos e para sujeitos suscetíveis à síndrome de serotonina, um efeito
12
colateral importante decorrente do tratamento com ISRS (Dagtekin et al. 2010; Diaz
& Maroteaux 2011).
Os antidepressivos tetracíclicos são uma nova classe de drogas utilizadas no
tratamento da depressão, também chamados de atípicos, introduzidos depois da
década de 80 (Kent 2000). Dentre estes, o antidepressivo atípico mirtazapina atua
especificamente
sobre
as
transmissões
noradrenérgica
e
serotonérgica
(noradrenergic and serotonergic specific antidepressants, NaSSA, em inglês) e é
usado para tratar transtornos de humor e ansiedade (Gambi et al. 2005; Rauggi et
al. 2005). A mirtazapina aumenta as transmissões noradrenérgica e serotonérgica
central
através
da
inibição
dos
autoreceptores
α2
e
heteroreceptores
noradrenérgicos α2 em sinapses serotonérgicas (Bengtsson et al. 2000; Gambi et al.
2005). Além disso, é um agonista do receptor 5-HT1A (Rogóz et al. 2005) e também
age bloqueando receptores, 5-HT2A, 5-HT2C e 5-HT3 e histaminérgicos H1 (Haddjeri
1998; Davis & Wilde 1996; Arnone 2009; de Boer 1995; Rauggi et al. 2005). A
mirtazapina não possui efeitos na recaptação de monoaminas, além de apresentar
baixa afinidade para receptores dopaminérgicos e alguns subtipos de receptores
serotonérgicos.
Apesar dos efeitos clínicos de antidepressivos serem semelhantes entre os
sexos, aspectos farmacocinéticos e farmacodinâmicos de sua ação podem ser
distintos entre os sexos. Uma evidência dessa diferenciação para as respostas aos
antidepressivos é a melhor responsividade do sexo feminino aos ISRS e as altas
taxas de abandono do tratamento com tricíclicos (Dalla et al. 2009), comparando-se
aos homens. Já em modelos animais, alguns estudos mostram não haver diminuição
da imobilidade no nado forçado em fêmeas tratadas com um antidepressivo
13
tricíclico, enquanto machos respondem positivamente ao mesmo tratamento e com a
mesma dose (Barros & Ferigolo 1998).
Assim como em grande parte dos casos
de diversos transtornos
psicopatológicos, pacientes com diagnóstico de depressão, não raramente
apresentam prejuízos cognitivos, além de todo quadro afetivo característico (Yaffe
1999; Ravnkilde 2002; Pardo 2006). Dentre esses prejuízos incluem-se alterações
nas funções de memória e aprendizado (Burt 1995; Weiland-Fiedler 2004). Esses
prejuízos cognitivos seriam revertidos através do tratamento com antidepressivos
(Austin et al. 2001; Castaneda et al. 2007) e evidências sugerem que essa melhora
está associada ao aumento de neurogênese (Duman & Monteggia 2006; Dranovsky
& Hen 2006; Nandam et al. 2007; Paizanis et al. 2007; Sahay & Hen 2007; Pittenger
& Duman 2008) e a modificações no sistema monoaminérgico (Lee et al. 2010).
Independente da presença de outros tipos de prejuízos cognitivos,
comumente as psicopatologias estão relacionadas a experiências e memórias
emocionais aversivas (APA 2000; Phelps & LeDoux 2005) e há muito se preconiza
que as vítimas desses transtornos poderiam se beneficiar com a diminuição dos
sintomas através de uma ressignificação da memória aversiva formada (Freud
1914). Sugere-se que a ressignificação dessas memórias ocorreria através de um
processo de extinção, que é dependente de mecanismos plásticos (Gabriele &
Packard, 2006). Extinção seria a formação de uma nova memória relacionada à
anteriormente formada, sem, contudo, substituir a memória anterior, passando a
existir paralelamente (Gabriele & Packard, 2006). Sendo assim, alterações no
processo normal de extinção de memórias aversivas poderiam estar relacionadas
com a fisiopatologia de alguns transtornos neuropsiquiátricos. Enquanto essa
relação já foi bem estudada para o transtorno do estresse pós-traumático (Rauch et
14
al. 2006; Krystal & Neumeister 2009), a participação de processos relacionados à
memória emocional e a fisiopatologia da depressão não está bem estabelecida
(Blaney 1986; Newman & Sweet 1992; Ilsley et al. 1995; Veiel 1997; Fava & Kendler
2000; Ravnkilde 2002). Apesar de prejuízos na memória serem comuns em diversos
transtornos
de
ansiedade
e
relatados
na
depressão,
a
conexão
entre
antidepressivos e memória permanece ainda não completamente elucidada (Austin
et al. 2001). Os resultados dos estudos prévios são bastante controversos, mesmo
em machos. Estudos que avaliam a extinção de memórias aversivas após a
administração
de
drogas
com
efeito
antidepressivo
mostram
resultados
contraditórios. Dentre estes estudos, alguns, utilizando machos, verificam os efeitos
do rolipram, uma droga com efeitos ansiolíticos e antidepressivos. Essa droga
diminuiu a extinção em um teste de medo condicionado e em um paradigma de
resposta de sobressalto potencializada pelo medo (Monti et al. 2006; Mueller et al.,
2010). Além disso, este fármaco melhorou o desempenho no labirinto aquático de
Morris, aumentando a distância e o tempo em que os animais nadam no quadrante
no qual previamente havia uma plataforma submersa; e ainda impediu a extinção
relacionada a uma tarefa de esquiva passiva (Cheng et al, 2010). Um outro estudo
foi realizado com um modelo animal para transtorno de estresse pós-traumático,
característico pela ausência de extinção da memória do evento traumático (APA
2000). Nesse estudo, a cicloserina-D (DCS), droga utilizada como auxiliar em
tratamentos antidepressivos, melhorou a extinção em testes de condicionamento de
medo em machos (Yamamoto et al. 2008).
Sabe-se que o mecanismo psicofisiológico de várias doenças (a depressão,
por exemplo) é diferente entre os sexos (Bekker & van Mens-Verhulst 2007; Kim et
al. 2010; Wooley et al. 2010). Em humanos, as mulheres são o gênero mais afetado
15
pelas doenças debilitantes funcionais e em grande parte dos transtornos
psicopatológicos a proporção dos indivíduos atingidos é de duas mulheres para cada
homem (Mahedran & Yap 2005; Bekker & van Mens-Verhulst 2007). Apesar de não
se descartar fatores culturais e sociais, diversas evidências indicam que a principal
origem dessas diferenças está relacionada aos hormônios esteróides gonadais
(Toufexis et al. 2006; Solomon & Herman 2009), que podem ter efeitos nas vias
neuroquímicas (Kelly et al. 1999). Além disso, aspectos do dimorfismo sexual no
funcionamento do sistema nervoso também podem estar relacionados a estas
diferenças (Bruder et al. 2001; Esel et al. 2005; Monteggia et al 2007; Elaković et al.
2011).
Apesar dos estudos sugerirem que diferenças sexuais são importantes, a
maioria dos estudos pré-clínicos utiliza somente machos ao invés de ambos os
sexos (Kim et al. 2010; Zucker & Beery 2010). Alguns estudos que comparam efeitos
entre machos e fêmeas no teste do nado forçado têm mostrado resultados
contraditórios. Dependendo da droga utilizada, machos respondem ao tratamento,
diminuindo o tempo de imobilidade, seguindo o esperado para o modelo, e fêmeas
não (Barros & Ferigolo 1998). Também foi demonstrado que a fase do ciclo pode ser
uma importante característica levando as fêmeas a ter desempenhos diferentes de
acordo com a fase do ciclo estral na qual se encontram (Gouveia Jr. et al 2008).
Deve-se também ressaltar que não apenas condições patológicas podem ser
diferentes entre os sexos, mas também mecanismos de atividades cognitivas
fisiológicas normais como a memória e a ansiedade. Ribeiro et al. (2010), por
exemplo, encontraram diferenças na extinção de uma tarefa de memória aversiva
entre machos e fêmeas, mostrando uma diminuição da extinção em fêmeas, que
16
pode ter relação com a predominância de psicopatologias em seres humanos do
sexo feminino.
No presente estudo, nós utilizamos o modelo utilizado por Ribeiro et al.
(2010): a esquiva discriminativa em labirinto em cruz elevado (EDLC). A EDLC é um
método adequado para estudos concomitantes de memória/aprendizado e
medo/ansiedade em modelos animais. Consiste em um labirinto em cruz elevado
modificado, onde um dos braços fechados possui dois estímulos aversivos (sendo
um sonoro de intensidade equivalente a 80dB e um luminoso de 100W). Os animais
são submetidos a uma sessão de treino, na qual uma vez colocados individualmente
no centro do labirinto por 10 min, poderão explorar os braços, recebendo os
estímulos aversivos cada vez que o animal entrar com as quatro patas no braço
aversivo, até a saída do braço em questão. O tempo de permanência e o total de
entradas nos braços abertos e em cada braço fechado são quantificados. Decorridas
24 horas da sessão de treino é efetuada uma sessão de teste, na qual não se aplica
o estímulo aversivo. Dessa forma, ao longo da sessão pode-se também avaliar a
extinção da tarefa previamente aprendida, uma vez que os animais agora aprendem
que não há mais estímulos aversivos naquela localização. Este modelo foi
inicialmente descrito por Silva (1997) e Silva & Frussa-Filho (2000), que
padronizaram o modelo com machos e averiguaram que, usualmente os três
minutos iniciais são referentes à evocação da memória adquirida e os demais à
extinção.
Da mesma forma em que ocorre no labirinto em cruz elevado convencional, a
exploração dos braços abertos na EDLC reflete os níveis de ansiedade (Pellow et al.
1985; Pellow & File 1986), pois os ratos possuem medo inato de ambientes abertos
e de altura, o que fará com que eles evitem esses braços. De acordo com os níveis
17
de ansiedade a exploração desses braços poderá aumentar ou diminuir.
Considerando que alterações nos níveis de ansiedade podem afetar o perfil
comportamental dos animais em modelos animais de estudo de memória, o modelo
da EDLC apresenta a grande vantagem de permitir a avaliação simultânea destes
dois parâmetros (Calzavara et al. 2004; Silva & Frussa-Filho 2000). A diferenciação
entre os braços fechados (aversivo e não-aversivo) serve como parâmetro para
avaliação de memória e aprendizado. Esse modelo permite ainda a avaliação da
atividade locomotora que pode ser realizada por meio da exploração de todos os
braços e do centro, pelo total de passagens entre os braços (Silva et al. 2002) ou,
ainda, quantificando-se a distância total percorrida (Ribeiro et al., 2010).
Para avaliação do efeito de antidepressivos sobre a memória, o aprendizado,
a ansiedade e a atividade locomotora simultaneamente à depressão é preciso
associar a EDLC a um teste que possa avaliar comportamentos relacionados à
depressão. Dentre estes, o teste do nado forçado (TNF) é um modelo experimental
amplamente utilizado na comunidade científica mundial. O TNF tem sido utilizado
como modelo experimental em estudos sobre depressão, onde a imobilidade do
animal é interpretada como forma de desamparo aprendido, ou seja, o animal não
tenta mais escapar da situação aversiva (Porsolt 1977; 1978). Ou seja,
classicamente neste teste comportamental, antidepressivos causam a diminuição da
imobilidade dos animais no teste (Porsolt 1977). A escalada (climbing) é outra
medida que pode ser avaliada neste modelo comportamental. O tempo de escalada
ainda não está tão bem validada quanto o tempo de imobilidade, mas alguns autores
sugerem que antidepressivos tendem a aumentar este parâmetro comportamental,
como uma tentativa de fuga da situação (neste caso o cilindro com água). De
relevância para o presente trabalho, já foi observada uma diferença na ocorrência da
18
tentativa de fuga de situações aversivas, entre machos e fêmeas (Ribeiro et al.
2010), embora em outro tipo de tarefa comportamental. A diminuição da duração da
imobilidade e o aumento do tempo de escalada podem estar relacionados a uma
melhora dos sintomas tipo depressivos através da transmissão noradrenérgica
(Detke et al. 1995, 1997; Reneric & Lucki 1998; Page et al. 1999; Cryan & Lucki
2000; Lopez-Rubalcava & Lucki 2000; Cryan et al. 2002a; Reneric et al. 2002;
Consoni et al. 2006).
Com base em todas as evidências expostas, neste estudo, ratas foram
tratadas com três tipos diferentes de antidepressivos (fluoxetina, nortriptilina e
mirtazapina) de três classes farmacológicas diferentes (antidepressivos ISRS,
tricíclicos e atípicos) e testadas na EDLC. Até o presente momento, não existem
artigos
publicados
avaliando
a
ação
de
antidepressivos
nesse
aparato
comportamental. Adicionalmente, as ratas foram testadas no TNF, a fim de avaliar
comportamentos relacionados à depressão após o tratamento prolongado com
antidepressivos.
19
II.
Objetivos
Objetivo Geral
O presente estudo propôs-se a averiguar os efeitos de três antidepressivos
provenientes de classes farmacológicas distintas no aprendizado, memória,
extinção, ansiedade/emocionalidade e comportamento de desamparo aprendido em
ratas. Tendo em vista a prevalência dos transtornos relacionados à depressão e
ansiedade em mulheres e a pequena quantidade de pesquisas relacionando os
efeitos desses fármacos em processos cognitivos em indivíduos do sexo feminino, a
nossa proposta pretende contribuir no avanço da compreensão dos efeitos destas
classes de drogas em fêmeas.
Objetivos específicos
(a) Avaliar as diferentes etapas de memória (aquisição, consolidação, evocação e
extinção) em fêmeas tratadas com os antidepressivos na EDLC;
(b) Avaliar os comportamentos relacionados à ansiedade em fêmeas tratadas com
os antidepressivos na EDLC;
(c) Avaliar possíveis efeitos locomotores dos fármacos utilizados;
(d) Avaliar o efeito antidepressivo em ratas das drogas utilizadas nos esquemas de
tratamento e doses específicos aqui utilizados.
20
III.
Artigo para submissão
Date of submission:
ANTIDEPRESSANTS FLUOXETINE, NORTRIPTYLINE AND MIRTAZAPINE
MODIFIES THE EXTINCTION OF AN AVERSIVE MEMORY AND THE ANXIETY IN
FEMALE RATS
Thieza G. Melo, Geison S. Izídio, Luane S. Ferreira, Diego S. Silveira, Priscila
T. Macedo, Alícia Cabral, Alessandra M. Ribeiro, Regina H. Silva
Memory Studies Laboratory
Department of Physiology
Universidade Federal do Rio Grande do Norte
59.078-970, Natal, RN, Brazil·.
*Corresponding author: Regina H. Silva
Laboratório de Estudos da Memória
Departamento de Fisiologia - Centro de Biociências
Universidade Federal do Rio Grande do Norte
Av. Salgado Filho, s/n - Caixa Postal 1511 - CEP 59078-970 - Natal, RN, Brazil
fax: (55) 84 3211 9206
e-mail: [email protected]
Progress In Neuropsychopharmacology & Biological Psychiatry (Classificação
Qualis A2, em Fevereiro de 2011)
Keywords: discriminative avoidance task, sex differences, forced swimming
test, aversive memory, depression, anxiety.
21
Abstract
Treatment of major depression, posttraumatic stress disorder and other
psychopathologies with antidepressants can be associated with improvement of the
cognitive deficits related to these disorders. Although the mechanisms of these
effects are not completely elucidated, alterations in extinction of aversive memories
are believed to be present in these psychopathologies. Moreover, researches with
laboratory animals usually focus on male subjects, and we have recently verified that
extinction of an aversive task is reduced in female rats when compared to males. In
the present study, female rats were long-term treated with clinically used
antidepressants (fluoxetine, nortriptyline or mirtazapine) and tested in the plus-maze
discriminative avoidance and forced swimming tests in order to evaluate learning,
memory, extinction, anxiety and depression-related behaviors. All groups learned the
task, but learning was somewhat faster in nortriptyline and mirtazapine-treated
animals. Task retrieval was also showed by all experimental groups. Chronic
treatment with fluoxetine, but not with the other antidepressants, increased extinction
of the discriminative task. In the forced swimming test, animals treated with fluoxetine
and
mirtazapine
showed
decreased
immobility
duration.
In
conclusion,
antidepressants interfere with learning and female rats treated with fluoxetine
presented increased extinction of the aversive memory task. On the other hand, both
fluoxetine and mirtazapine were effective in the forced swimming test, suggesting
dissociation between the antidepressant effects and the extinction of aversive
memories.
22
1. Introduction
Psychopathological conditions such mood and anxiety disorders are frequently
related to aversive emotional experiences (APA, 2000) that could benefit from a
reframing of the aversive memory formatted, which is usually attempted in
psychotherapeutic procedures (Freud, 1914). It has also been suggested that the
cognitive deficits present in these disorders are reversed by treatment with
antidepressants (Austin et al., 2001; Castaneda et al., 2007), which are largely
indicated for both anxiety and mood disorders (Marks et al., 1998; Brunello et al.,
2001; Nandam et al., 2007). Several studies indicate that the improvement of these
cognitive deficits is associated with hippocampal neurogenesis (Santarelli et al.,
2003; Duman and Monteggia, 2006; Dranovsky and Hen, 2006; Nandam et al., 2007;
Paizanis et al., 2007; Sahay and Hen, 2007; Pittenger and Duman, 2008), which
would explain the delay of amelioration of depressive symptoms after the beginning
of clinical treatment. Despite memory deficits being common in many anxiety and
depression- related disorders the relationship between the improvement of
depression or anxiety symptoms by antidepressants treatment, as well as their effect
on memory, remains to be elucidated (Austin et al., 2001).
It is known that both the prevalence (Mahedran et al., 2006; Bekker and van
Mens-Verhulst,
2007)
and
the
psychophysiological
mechanisms
of
some
psychopathologies, including depression, differ between the sexes, being the
females the most affected gender (Kim et al., 2010; Wooley et al., 2010). The source
of these differences can be gonadal steroids (Toufexis et al., 2006; Solomon and
Herman, 2009) and their possible effects on neurochemical pathways (Kelly et al.,
1999).
23
Regardless the mentioned relevant gender differences, most of the preclinical
studies use males instead of females (Olivier et al., 2008; Kim et al., 2010; Zucker
and Beery, 2010). In this respect, it is important to mention that not only mechanisms
related to diseases, but also normal cognition has been shown to differ between
sexes. Specifically, studies with animal models usually show better spatial learning in
males and stronger emotional memory in females (Canli et al., 2002; Astur et al.,
2004; Rilea et al., 2004; Hamann, 2005; Jonassom, 2005; Blokland et al., 2006).
Interestingly, in a recent work, Ribeiro et al. (2010) found decreased extinction of an
aversive memory task in female rats when compared to males. It was suggested that
a diminished capacity of extinction of aversive memories could be related to the
predominance of certain psychopathological disorders in this gender. Although
several animal studies were held to investigate the effects of antidepressants on
memory (Marks et al., 1998; Austin et al., 2001; MacQueen et al., 2002; Nestler et
al., 2002; Castaneda et al., 2007; Schulz et al., 2007; Paizanis et al., 2007), they
were mostly conducted with male subjects. In addition, few studies have aimed to
study the effects of antidepressants specifically on the extinction of aversive
memories. Some studies were conducted investigating the effects of rolipram (which
has both antidepressant and anxiolytic effects) on male rodents. In these studies,
decrements in extinction of conditioned fear and in fear-potentiated startle paradigms
were shown (Monti et al. 2006; Mueller et al., 2010). The same drug also had
improved cognition related to the Morris water maze and impaired extinction in a
passive avoidance task (Cheng et al., 2010). In another animal study, D-cycloserine
(used as an adjuvant in antidepressant therapy), enhanced extinction in a
conditioned fear task (Yamamoto et al., 2008).
24
In the present study, we investigated the effects of three antidepressants
(fluoxetine, nortriptyline and mirtazapine) of different pharmacological classes on
learning, memory and extinction of an aversive task in female rats, as well as anxiety
and depression-related behaviors in the same subjects. Fluoxetine is a selective
serotonin reuptake inhibitor (SSRI), the most prescribed class of antidepressants
(Dunlop and Davis, 2008). Nortriptyline is a tricyclic antidepressant, an older class of
drugs, and act by nonselective inhibition of monoaminergic reuptake. Although these
compounds are no longer largely prescribed, they are still an option to individuals
which are non-responsive to other antidepressants and to subjects susceptible to the
serotonin syndrome (Dagtekin et al., 2010). Finally, the atypical antidepressant
mirtazapine is used to treat both mood and anxiety disorders (Rauggi et al., 2005;
Gambi et al., 2005) and enhances central noradrenergic and serotonergic
neurotransmission through inhibition of the noradrenergic α2-autoreceptor and α2heteroreceptor in serotonergic synapses (Bengtsson et al., 2000; Gambi et al., 2005).
We used the plus-maze discriminative avoidance task (PMDAT) to evaluate
concomitantly memory and anxiety-related behaviors. Several studies performed with
this task have shown the effects of memory-enhancing or amnestic drugs,
procedures that modify anxiety-like behaviors and/or locomotor activity (Silva et al.,
1997; Silva and Frussa-Filho, 2000; Silva et al., 2002a; Silva et al., 2002b). It also fits
for the evaluation of learning and extinction processes, by the evaluation of aversive
arm avoidance across the behavioral sessions (Silva et al., 2004; Ribeiro et al., 2010;
see Methods). Additionally, female rats were also tested in the forced swimming test
(FST) in order to evaluate depression-related behaviors.
2. Materials and Methods
25
2.1 Animals
Three-month-old female Wistar rats (120–230g), from our own colony were
housed in groups of 4 animals in plastic cages (30 x 37 x 16 cm) in a room with
acoustic isolation, airflow and controlled conditions of temperature (24 – 26 °C),
humidity and luminosity (12h light: 12h dark, lights on 06h30). Food and water were
available ad libitum throughout the experiments. Animal care was according to
Brazilian law nº 11.794/2008 for the use of animals in research, and all experiments
were approved by the local ethical committee (CEUA-UFRN). All efforts were made
to minimize animal pain, suffering or discomfort as well as the number of animals
used.
2.2 Procedures and drugs
Animals were allocated to one of four groups (n=8 - 10): (a) treated with
fluoxetine (20mg/ml/kg daily; Medley, Brazil), (b) nortriptyline (20mg/ml/kg daily;
Novartis, Brazil), (c) mirtazapine (10mg/ml/kg daily; Torrent, India), or (d) vehicle
(physiological saline with Tween 20%), all injected intraperitoneally, once a day, for
20 days. The drugs were dilluted in physiological saline containing three drops of
Tween-20 per 1ml. The duration of treatments and doses were chosen based on
previous studies (Dazzi et al., 2001; Dulawa et al., 2003; Rauggi et al., 2005; Gambi,
2005; Rógòz, 2005; Consoni et al., 2006; Miyamoto et al., 2010; McNamara et al.,
2010; Rógòz, 2010). During the treatment period, injections were held simultaneously
with estrous cycle control (through vaginal smears) at 6 p.m. There was no
26
predominance of any stage among the experimental groups during the experiments
(data not shown). Rats were handled for the whole injection period, for 5 minutes per
day. From the 17th day of treatment onwards, behavioral tests started at 1:30 p.m.
and injections and cycle control continued at 6 p.m., after the behavioral procedure.
2.3 Plus-maze discriminative avoidance task (PMDAT)
In order to evaluate the effects of the antidepressants on learning, memory,
extinction and anxiety, we used the PMDAT. The apparatus is a modified elevated
plus-maze made of wood with two open arms (50 cm lenght x 15 cm width) and two
closed arms (50 cm lenght x 15 cm width x 40 cm high), in one of which aversive
stimuli (light and noise) were presented in the training session, as described
previously (Ribeiro et al., 2010). The animals were placed individually in the center of
the maze, for 10 minutes in each session, with the head turned to the intersection
between the open arms, to explore the maze. In the training session the aversive
stimuli (100-watt light and an 80 dB noise applied through a lamp and a speaker
placed over the aversive enclosed arm) were given every time the animal entered
this closed arm, remaining until the animal left the arm. In the testing/extinction
session, 24h later, the animal was allowed to explore the apparatus without the
stimuli (the lamp and the speaker were still present over the aversive arm, but turned
off). In both sessions the animals were also evaluated for other measures related to
anxiety. The other parameters used were risk assessment and head dipping. The risk
assessment behavior is defined by body stretching to look into the locations of the
apparatus before entering (or not) them (Rodgers et al., 1997). The head dipping was
characterized by an attempt to look ―under‖ the maze with the head pointing the floor
27
(Rodgers et al., 1997). A decrease in risk assessment behavior and an increase in
head dipping indicate less anxious behavior (Rodgers and Dalvi, 1997; Rodgers et
al., 1997). Distance traveled in the apparatus, percent time spent in the aversive
enclosed arm (time spent in aversive enclosed arm / time spent in both enclosed
arms) and percent time spent in open arms (time spent in open arms / time spent in
both open and enclosed arms) were registered min by min throughout the sessions
and used to evaluate motor activity, learning/memory/extinction and anxiety,
respectively. The behavior of the animals was monitored and analyzed by the videotracking software ANY-maze, Stoelting, USA.
2.4 Forced Swimming Test (FST)
For evaluation of the depression-related behaviors we used the FST (Porsolt
et al., 1977). This test consists in placing the animal in a cylinder (40 cm high, 25 cm
diameter) with water (30 cm deep) in a temperature of 24 to 27°C, for two
consecutive days. On the first day, animals were submitted to 15 min of forced
exposure (pre-test session) with no behavioral observation. In the second day, 24 h
after the pre-test session, rats were placed once again in the water tank (test
session) in the same conditions described above and total immobility duration,
climbing behavior and the latency to engage in immobility were registered for 5 min.
2.5 Statistical Analyses
Data from behavioral tests were analyzed with one- or two-way analysis of
variance (ANOVA) with Bonferroni‘s tests for post-hoc comparisons. In addition to the
28
total length of the sessions in the PMDAT, behavioral sessions were divided in 5
blocks of 2 minutes each. Comparison among these blocks was used to evaluate
learning (training) or extinction (test) of the task. ANOVAs with repeated measures
were used to compare the percent time spent in the aversive and open arm
throughout PMDAT sessions and pairwise comparisons was used. We used the
software SPSS (version 17) to perform the statistical analysis. Differences were
considered significant at p<0.05.
3. Results
Plus-maze discriminative avoidance task:
Groups of all treatments presented similar percentage of time spent in the
aversive enclosed arm in the training session, suggesting that all groups learned the
task [F (3,34) = 0.32; p = 0.811] (Fig. 1A). The analysis of the percent time in the
aversive arm with repeated measures ANOVA revealed a time (2 minutes session
blocks) effect [F (2,87) = 20.80; p < 0.001], but not treatment [F (3,31) = 0.73; p =
0.54] or time x treatment interaction effects [F (8,63) = 1.34; p = 0.226] (Fig. 1B).
Indeed, paired samples t-test showed that all groups presented significant
decrements in aversive arm exploration (comparing to first block), starting in the
second block for nortriptyline (t = 4.93; p = 0.002) and mirtazapine (t = 4.92; p =
0.002). From the third block onwards all groups showed significant decrements
(Block 3: vehicle t = 4.77, p < 0.001; fluoxetine t = 3.58, p = 0.007; nortriptyline t =
4.17, p = 0.004; mirtazapine t = 3.74, p = 0.007. Block 4: vehicle t = 3.56, p = 0.006;
fluoxetine t = 1.95, p = 0.08; nortriptyline t = 3.86, p = 0.006; mirtazapine t = 4.80, p =
0.002. Block 5: vehicle t = 5.05, p < 0.001; fluoxetine t = 2.33, p = 0.04; nortriptyline t
= 4.71, p < 0.002; mirtazapine t = 4.60, p = 0.002) compared to the percent time in
29
the aversive arm during the first session block (paired samples t-test) (Fig. 1B). The
ANOVA for the 2 minutes session blocks showed no difference between the groups
for each session (for the first block [F (3,34) = 0.58; p = 0.62], second [F (3,34) =
1.00; p = 0.40], third [F (3,34) = 1.04; p = 0.38], fourth [F (3,34) = 1.30; p = 0.29] and
fifth [F (3,34) = 2.03; p = 0.13]).
Comparison of the exploration of the aversive arm was marginally significant in
the test session [F (3,34) = 2.52; p = 0.07], and pos hoc analysis with Bonferroni‘s
test indicated no difference between the groups (p > 0.05) (Fig. 1C). The analysis of
the percent time in the aversive arm in two-minute session blocks throughout the test
session with repeated measures ANOVA revealed a time effect [F (3,68) = 3.57; p =
0.01] and time x treatment interaction [F (3, 31) = 53.72; p < 0.001] , but not a
treatment effect [F (8,63) = 1.34; p = 0.22] (Fig. 1D). Only vehicle- and fluoxetinetreated groups presented significant increases in aversive arm exploration compared
to the first block throughout the session [fluoxetine from the third block onwards
(block 3: t = -3.22, p = 0.01; block 4: t = -2.54, p = 0.03; block 5: t = -3.28, p = 0.01
and vehicle in the fourth and fifth blocks (t = -2.78, p = 0.02 and t = -3.32, p = 0.009,
respectively)]. None of the groups have shown significant changes in the second
block, and nortriptyline- mirtazapine-treated animals did not modify aversive arm
exploration across the session blocks (Block 2: vehicle t = -0.96, p = 0.35; fluoxetine t
= -1.74, p = 0.12; nortriptyline t = 0.42, p = 0.68; mirtazapine t = 1.60, p = 0.15. Block
3: vehicle t = -1.67, p = 0.12; nortriptyline t = 0.56, p = 0.58; mirtazapine t = 1.37, p =
0.21. Block 4: nortriptyline t = 0.29, p = 0.77; mirtazapine t = 0.49, p = 0.63. Block 5:
(nortriptyline t = -0.95, p = 0.37; mirtazapine t = 0.61, p = 0.56) compared to the
percent time in the aversive arm during the first session block (paired samples t-test)
(Fig. 1D).
30
Percentage of time spent in the open arms did not differ between different
treatments, suggesting that animals did not present anxiety-related differences
[training session: F (3,34) = 0.060; p = 0.98; test session: F (3,34) = 0.50; p = 0.68]
(Fig. 2). Similarly, no differences were found in the frequency of head dipping
[training session: F (3,34) = 1.352; p = 0.276; test session: F (3,34) = 0.060; p = 0.98]
(Fig.3C and D). A treatment effect was found for time spent in risk assessment in the
test [F (3,34) = 3.876; p = 0.018] (Fig. 3B), but not in the training session [F (3,34) =
0.278; p = 0.841] (Fig. 3A). In the test session, the post hoc with Bonferroni‘s test
showed a significant difference between vehicle and fluoxetine (p = 0.04), while the
comparison between vehicle and nortriptyline almost reached significance (p = 0.05).
When the whole sessions were considered for analysis, ANOVA revealed a
treatment effect in the distance traveled in the apparatus [F (3,34) = 4.56; p < 0.01]
and [F (3,34) = 3.86; p < 0.05] in training and test, respectively. Post hoc with
Bonferroni‘s test showed that animals treated with mirtazapine exhibited a
significantly decreased locomotor activity compared to the other groups (Table 1).
In the forced swimming test, ANOVA revealed a treatment effect in immobility
duration [F (3,33) = 13.64; p < 0.001]. Post hoc with Bonferroni‘s test showed that
animals treated with fluoxetine and mirtazapine had decreased immobility duration
compared with the control and nortriptyline groups (Fig. 4A). The latency to start
immobility was not different among the groups (data not shown). Moreover, ANOVA
revealed a treatment effect on climbing behavior [F (3,33) = 4.17; p = 0.014]. Post
hoc with Bonferroni‘s test showed that fluoxetine group had an increased time in
climbing behavior (p = 0.009) compared with nortriptyline group (Fig. 4B).
31
32
Figure 1. Percent time spent in the aversive arm (%TAV) of the plus-maze
discriminative avoidance task by female rats repeatedly treated with vehicle (vehi),
20mg/kg fluoxetine (fluox), 20 mg/kg nortriptyline (nort) or 10 mg/kg mirtazapine
(mirt): (A) The whole training session; (B) Blocks of two minutes across the training
session; (C) The whole test session; (D) Blocks of two minutes across the test
session. ANOVA with repeated measures revealed time effects (session blocks) in
training and test sessions; #p < 0.05 compared to first block (paired samples t-test).
33
Figure 2. Percent time spent in the open arms (%TAB) of the plus-maze
discriminative avoidance task by female rats repeatedly treated with vehicle (vehi),
20mg/kg fluoxetine (fluox), 20 mg/kg nortriptyline (nort) or 10 mg/kg mirtazapine
(mirt): (A) Training session; (B) Test session.
34
35
Figure 3. Time spent in risk assessment and frequency of head dipping on the plusmaze discriminative avoidance task by female rats repeatedly treated with vehicle
(vehi), 20mg/kg fluoxetine (fluox), 20 mg/kg nortriptyline (nort) or 10 mg/kg
mirtazapine (mirt): (A) Training session for risk assessment; (B) Test session for risk
assessment; (C) Training session for head dipping behavior; (D) Test session for
head dipping behavior. ANOVA revealed a treatment effect on risk assessment test
session; *p < 0.05 compared to vehicle; +p = 0.05 compared to vehicle (ANOVA
followed by Bonferroni‘s test).
36
Figure 4. Time spent in immobility and climbing behavior on the forced swim test by
female rats repeatedly treated with vehicle (vehi), 20mg/kg fluoxetine (fluox), 20
mg/kg nortriptyline (nort) or 10 mg/kg mirtazapine (mirt): (A) The time spent in
immobility on test session; (B) The time spent in climbing behavior on test session; *p
< 0.05 compared to vehi; §p < 0.05 compared to fluox and mirt; ¥p < 0.05 compared
to nort (ANOVA followed by Bonferroni‘s test).
37
Treatment
Training
Test
Vehicle
19,0±2,4
21,1±1,9
Fluoxetine
20,0±3,0
21,6±4,4
Nortriptyline
22,9±3,1
16,8±4,4
Mirtazapine
10,4±0,5*
8,5±2,3*
Table 1. Distance travelled in meters in both training and test session by female rats
repeatedly treated with vehicle, 20mg/kg fluoxetine, 20 mg/kg nortriptyline or 10
mg/kg mirtazapine; *p<0.05 compared to all other groups (ANOVA followed by
Bonferroni‘s test).
4. Discussion
In summary, our data showed that some antidepressants could interfere on
both learning and memory processes, more specifically on the acquisition and, more
importantly, extinction of an aversive task. The nortriptyline- and mirtazapine-treated
groups learned the task faster than the vehicle and fluoxetine counterparts, as
demonstrated by a significant decrease in the aversive arm exploration earlier in the
training session (see figure 1B). During the test session, vehicle and fluoxetine
groups have shown extinction of the task, i.e., significant increases in aversive arm
exploration across the session blocks, what did not occur in the other groups (see
figure 1D). Moreover, the extinction was anticipated by treatment with fluoxetine. The
treatment with fluoxetine and nortriptyline also reduced one of the anxiety-related
behaviors in the elevated plus-maze discriminative avoidance task (risk assessment
behavior, see figure 3B). Results obtained in the forced swimming test showed that
38
treatment with fluoxetine and mirtazapine reduced the immobility time, which is
consistent with the antidepressant-like effects of these drugs (see figure 4A).
As mentioned above, the analysis of the aversive arm exploration throughout
the test session of the PMDAT provides indication of both task retrieval (beginning of
session) and extinction (subsequent session blocks) (Ribeiro et al., 2010). Indeed,
with the aversive stimuli no longer present, the animals avoid the aversive arm at
first, but eventually realize the arm is now safe and increase its exploration, reaching
the amount they would explore a regular enclosed arm by chance (or even more,
since this arm is almost novel for them in the test session). This pattern is usually
observed in males, but in a previous study we have shown that female rats keep
avoiding the aversive arm until the end of the test, or even at a subsequent retest
(Ribeiro et al., 2010). The lack of extinction by females points out to stronger
consolidation and/or impaired extinction of aversive memories, which is in line with
the better emotional memory usually reported for women (Canli et al., 2002;
Hamann, 2005). In particularly, this lack of extinction is similar to what occur in some
anxiety disorders, as for example, the posttraumatic stress disorder (PTSD), and it
could be related to the greater prevalence of depression and anxiety disorders
among female gender (Kendler et al., 2001; Mahedran, 2005; Rauch et al., 2006;
Bekker and van Mens-Verhulst, 2007).
In the present study, however, females did show extinction of the task. The
amount of aversive arm exploration by the end of the test was still lower than that
previously observed for males, but this result suggests that the lack of extinction of
this task by females may not be unequivocal. Further, and more importantly, the
presented data indicated that the SSRI fluoxetine was capable of increasing or
speeding up the process of extinction in females. Although speculative, one might
39
raise the hypothesis that fluoxetine could exert its therapeutic action by modulating
the extinction of aversive memories. In line with this reasoning, this drug has been
shown potential benefits in the treatment of PTSD, which has a close relationship
with deficits in extinction of traumatic memories (APA, 2000; Quirk et al., 2006;
Yamamoto et al., 2008; 2009). Moreover, despite the effects of fluoxetine treatment
on males in the same test has not been investigated yet, these results, taking
together with previous extinction studies performed with males (see Introduction)
suggest an important role of gender in the ability of antidepressants in modifying
extinction.
The SSRIs are one of most commonly prescribed drugs for treating mood and
anxiety disorders (Marks et al., 1998; Brunello et al., 2001; Nandam et al., 2007).
Their action includes an improvement on cognitive deficits caused by the disease
(Austin et al., 2001; Castaneda et al., 2007) through the stimulation of the
neurogenesis in males (Duman and Monteggia, 2006; Dranovsky and Hen, 2006;
Nandam et al., 2007; Paizanis et al., 2007; Sahay and Hen, 2007; Pittenger and
Duman, 2008), which is also needed for the extinction process (Gabriele and
Packard., 2006). Treatment with fluoxetine also induces an increase in BDNF
releasing, which may cause reactivation of the neuronal plasticity (Castrén and
Rantamäki, 2010).
In addition, another study has shown that brain-derived
neurotrophic factor (BDNF) is also needed for the extinction of a memory (Gabriele
and Packard, 2006). However, further clarification is needed about the role of BDNF
in depression, because antidepressant effects of nortriptyline and escitalopram
appear to be unrelated to hippocampal BDNF expression in female rats, (Hansson et
al., 2011). Previous studies have demonstrated that antidepressants may induce
synaptic reorganization in the amygdala (McEwen and Chattarji, 2004). For example,
40
fluoxetine administered chronically to adult rats reduces, in the amygdala, the
polysialylated form of the neural cell adhesion molecule (PSA-NCAM), a molecule
involved in the synaptogenesis (Varea et al. 2007; Homberg et al., 2011). It has also
been proposed that some types of antidepressants could elicit an increase on the
perception of the threat cues and improve the trace of the formatted memory
avoiding or decreasing its extinction (Rawlings et al., 2010). In summary, it seems
plausible that the clinical action of antidepressants could be related to a modulation
of plastic processes related to extinction of aversive memories.
On the other hand, in the present study, both mirtazapine and nortriptyline
groups were not able to extinguish the task. This lack of extinction of the aversive
memory could be related to the disturbance on emotional processing and persistence
of the negative events instead of the neutral and good events (Beck et al., 1979;
Harmer, 2010). That could be due to the modulation promoted by these drugs of the
perception of the threat cues (Rawlings et al., 2010) and to the decrease of
perception of aversive and rewarding stimuli seen in clinical studies (Harmer et al.,
2006; McGabe et al., 2010). One of the effects of mirtazapine and nortriptyline is a
decrease on HPA axis activity (Schüle et al., 2002; 2006), which we expected would
improve the extinction, oppositely to what happened. An increase in HPA axis activity
could damage the extinction process, as shown in a study with post-sepsis rats which
received dexamethasone in low doses, and were tested on the inhibitory avoidance
task (Cassol-Jr et al., 2010). In addition, it is known that the higher the sensitivity to
cortisol, higher is the response to stressful events in the amygdala (Morgan and
LeDoux, 1995), and lower is the activation of hippocampus and prefrontal cortex
(Lebrón et al., 2004). As a result of these effects, a damage of the extinction of any
41
aversive memory formatted could appear (Morgan and LeDoux, 1995; Lebrón et al.,
2004; Quirk et al., 2006).
The hypolocomotor effects observed here in females treated with mirtazapine
have already been found in other studies in this same dose range (Reneric et al.,
2002) or not (Rauggi et al., 2005). It is interesting to note that, in the present study,
the hypolocomotor effects were specifically found in the plus-maze discriminative
avoidance task, i.e. they were not present in the forced swimming test. It is known
that mirtazapine enhances both 5-HT and NA neurotransmissions, yet differently
from monoamine reuptake inhibitors since its antidepressant effects are mediated
through the direct antagonism of both α2 and 5-HT2C receptors (de Boer et al., 1996;
Haddjeri et al., 1996). It has been shown that this mediation can cause
hypolocomotor effects (Franowicz et al., 2002). Mirtazapine also induces blockage of
histamine-H1 receptors, other possible mechanism that may produce sedation and
decrease the exploratory activity (Schüle et al., 2003; 2006; Gambi et al., 2005).
Usually, the clinical treatment with antidepressants, although possibly inducing
an increase in anxiety at the beginning of the treatment, has overall an anxiolytic
effect (for a review see Borsini et al., 2002; Drapier et al., 2006). Studies with male
rodents also have shown that the antidepressants could have an anxiolytic effect
acutely (Silva et al., 1999; Kurt et al., 2000; Holmes and Rodgers 2003; Drapier et
al., 2006). The treatment with antidepressants fluoxetine and nortriptyline reduced
the anxiety-related behaviors at least in one of the evaluated ethological parameters.
However, this effect was observed only in the test session. A possible explanation
would be that the presence of a stressful context (the aversive stimuli) in the training
session would interfere with evaluation of the anxiety-like behavior. Indeed, in the
test session the animals could explore more freely the apparatus and we could have
42
a better evaluation of the parameters. On the other hand, some authors argue that
the evaluation of anxiety-related behaviors in a re-exposition to the conventional
elevated plus-maze is not adequate, because the reasoning of the paradigm implies
novelty (File, 1990).
Still regarding possible anxiolytic effects of antidepressant drugs in animal
models, despite the fact that most of anxiety and mood disorders are twice more
frequent in females than in males (Bekker and van Mens-Verhulst, 2007) there is a
strong bias towards the use of male animals to study these phenotypes (Wald and
Wu, 2010; Zucker and Beery, 2010). This type of bias is not rare once most of drugs
are tested in males and most of behavioral apparatus were developed using male
rats. Thus it, is very important taking into account not only classical variables, but
also the ethopharmacological parameters, when studying females in elevated plusmaze and their derived apparatus Cruz et al. (1994) showed that classical variables,
like time spent in and number of entries into the open arms, which express ―anxiety‖
levels, loaded together with end-exploring, head dipping and risk assessment in a
principal components analysis. In addition, Carobrez and Bertoglio (2005)
emphasized the advantages of using this ethopharmacological measures for the
purpose of avoid false negative results, what normally occur if we consider only
classical parameters. To our knowledge, there were a few studies evaluating the
effects of chronic treatment with nortriptyline in behavioral tests related to anxiety.
For example, Brocco et al. (2002) showed that mice exposed to a novel environment
failed to elevate the locomotion suggesting absence of anxiolytic effect. In opposite,
the effects of chronic fluoxetine treatment were already been evaluated in the
literature with some studies demonstrating anxiolytic (Griebel et al., 1995; Durand et
43
al. 1999; Mirza et al., 2007) while others showed anxiogenic effects (File et al., 1999;
Robert et al., 2011).
The forced swimming test is normally used in the screening of antidepressant
drugs, with immobility duration levels being used to measure indices of ―behavioral
despair‖ (Borsini and Meli, 1988). Moreover, the immobility presented by the animal
is reversed by repeated antidepressant treatment and for this reason it is used as an
index of ‗depressive-like‘ state (Cryan et al., 2005; Porsolt et al., 1978). In the present
study, animals treated with fluoxetine and mirtazapine, as expected, showed
decreased time of immobility duration in the forced swimming test. However, females
treated with nortriptyline did not exhibit this decrease, at a dose that was previously
shown to be effective in a study with males (Consoni et al., 2006). They also showed
less climbing behavior than fluoxetine–treated animals, suggesting that nortriptyline
group were less active in this behavioral test. However, the possibility that these
effects were only due to alterations in locomotion seems unlikely, because in the
plus-maze discriminative avoidance task there were no significant decreases in
ambulation of nortriptyline-treated animals.
An important issue to consider when studying female rodents behavior is the
significant variation across the phases of the estrous cycle (Marcondes et al., 2001;
Milad et al., 2009). In the present study, the estrous cycle stage was determined daily
throughout treatment and behavioral procedures. In the behavioral test days, we did
not found any predominance of phase in the experimental groups. In this respect, it is
known that females in proestrous present low immobility duration in the forced
swimming test (Contreras et al., 1998). In addition, progesterone chronically
administered
at
low
doses
reverted
depressive-like
behaviors
and
had
antidepressant effects during the diestrous phase (Andrade et al., 2010). In the
44
present study it was not possible to separate the animals according to the cycle
phase in each behavioral experiment. Moreover, the relevance of this separation
would be jeopardized by the fact that a prolonged drug treatment was performed, i.e.,
all rats received drug treatment at all phases. Even so, more experiments are needed
to investigate if the lack of effect of nortriptyline group could be dependent on the
estrous cycle stage. In conclusion, data reported in the present study showed that
the treatment with antidepressant drugs modified the learning and extinction of an
aversive task of females. Groups treated with nortriptyline and mirtazapine
accelerated the learning of an aversive task compared to fluoxetine and vehicle. The
fluoxetine promoted an improvement on extinction of the discriminative task,
antecipating the process when compared to the vehicle counterparts. These results
contribute to the investigation of sex differences in the neurobiology of anxiety and
depression-related
disorders,
as
well
as
the
possibitily
of
gender-based
pharmacotherapy in the near future.
45
5. References
American Psychiatric Association. Diagnostic and Statistical Manual of Mental
Disorders. 2000. 4th ed. Washington, DC: American Psychatric Association.
Andrade, S., Silveira, S.L., Arbo, B.D., Batista, B.A., Gomez, R., Barros, H.M.,
Ribeiro, M.F. 2010. Sex-dependent antidepressant effects of lower doses of
progesterone in rats. Physiol Behav. Apr 19; 99(5):687-90.
Astur, R.S., Tropp, J., Sava, S., Constable, R.T. & Marku, E.J. 2004. Sex
differences and correlations in a virtual Morris water task, a virtual radial arm maze,
and mental rotation. Behavioral Brain Research, 151, 103-115.
Austin, M.-P., Mitchell, P., Goodwin, G.M. 2001. Cognitive deficits in
depression: Possible implications for functional neuropathology, British Journal of
Psychiatry 178, 200-206.
Babbini, M., Gaiardi, M., Bartoletti, M. 1976. Effects of combined treatment
with nortriptiline and lorazepam on conflict behavior and motility of rats.
Psychopharmacology (Berl). Aug 17;48(3):251-4.
Beck, A.T., Rush, A.J., Shaw, B.F., Emery, G. 1979. Cognitive Therapy of
Depression. Guilford.
Bengtsson, H.J., Kele, J., Johansson, J. Hjorth, S. 2000. Interaction of the
antidepressant mirtazapine with α2-adrenoceptors modulating the release of 5-HT in
different rat brain regions in vivo, Naunyn-Schmiedeberg‘s Arch Pharmacol 362
:406–412.
Bekker, M.H.J., Mens-Verhulst, J. van, 2007. Anxiety Disorders: Sex
Differences in Prevalence, Degree, and Background, But Gender-Neutral Treatment,
Gender Medicine/VoL 4, SUPPL. B, 2007.
Bigos, K.L., Pollock, B.G., Stankevich, B.A., Bies, R.R. 2009. Sex differences
in the pharmacokinetics and pharmacodynamics of antidepressants: an updated
review. Gend Med. Dec;6(4):522-43. Review. Nature 465 10 June.
Blokland, A., Rutten, K., Prickaerts, J. 2006. Analysis of spatial orientation
strategies of male and female Wistar rats in a Morris water escape task. Behav. Brain
Res., 171, 216-224.
Borsini, F., Meli, A. 1988. Is the forced swimming test a suitable model for
revealing antidepressant activity? Psychopharmacology (Berl);94(2):147-60.
Borsini, F., Podhorna, J., Marazziti, D. 2002. Do animal models of anxiety
predict anxiolytic-like effects of antidepressants? Psychopharmacology, 163:121–
141.
Brocco, M., Dekeyne, A., Veiga, S., Girardon, S., Millan, M.J. 2002. Induction
of hyperlocomotion in mice exposed to a novel environment by inhibition of serotonin
46
reuptake. A pharmacological characterization of diverse classes of antidepressant
agents. Pharmacol Biochem Behav. Apr;71(4):667-80.
Brunello, N., Davidson, J.R., Deahl, M., Kessler, R.C., Mendlewicz, J.,
Racagni, G., Shalev, A.Y., Zohar, J. 2001. Posttraumatic stress disorder: diagnosis
and epidemiology, comorbidity and social consequences, biology and treatment.
Neuropsychobiology ;43(3):150-62.
Cassol-Jr., O.J., Comim, C.M., Petronilho, F., Constantino, L.S., Streck, E.L.,
Quevedo, J., Dal-Pizzol, F. 2010. Low dose dexamethasone reverses depressive-like
parameters and memory impairment in rats submitted to sepsis. Neuroscience
Letters 473; 126–130
Canli, T., Desmond, J., Zhao, A., Gabrielli, J.D.E. 2002. Sex differences in the
neural basis of emotional memories. PNAS, 99(16), 10789-10794.
Castaneda, A.E., Tuulio-Henriksson, A., Marttunen, M., Suvisaari, J,
Lönnqvist, J. 2007. A review on cognitive impairments in depressive and anxiety
disorders with a focus on young adults. J. Affect. Disord.
Castrén, E., Rantamaki, T. 2010. The Role of BDNF and Its Receptors in
Depression and Antidepressant Drug Action: Reactivation of Developmental
Plasticity. Dev Neurobiol. Apr;70(5):289-97.
Cheng, Y.F., Wang, C., Lin, H.B., Li, Y.F., Huang, Y., Xu, J.P., Zhang, H.T.
2010. Inhibition of phosphodiesterase-4 reverses memory deficits produced by Aβ2535 or Aβ1-40 peptide in rats. Psychopharmacology (Berl). Oct; 212(2):181-91.
Consoni, F.T., Vital, M.A., Andreatini, R. 2006. Dual monoamine modulation
for the antidepressant-like effect of lamotrigine in the modified forced swimming test.
Eur Neuropsychopharmacol, v 16(6), p. 451-458.
Contreras, C.M., Martinez-Mota, L., Saavedra, M. 1998. Desipramine restricts
estral cycle oscillations in swimming. Prog Neuropsychopharmacol Biol Psychiatry, v.
22, p. 1121-1128,
Cryan, J.F., Valentino, R.J., Lucki, I. 2005. Assessing substrates underlying
the behavioral effects of antidepressants using the modified rat forced swimming test.
Neurosci Biobehav Rev ;29:547–69.
Dagtekin, O., Marcus, H., Müller, C., Böttinger, B.W., Spöhr, F. 2010. Liquid
therapy for serotonin syndrome after intoxication with venlafaxine, lamotrigine and
diazepam, Minerva Anestesiologica, v. 76.
Dalla, C., Pitychoutis, P.M., Kokras, N., Papadopoulou-Daifoti, Z. 2009. Sex
Differences in Animal Models of Depression and Antidepressant Response. Basic &
Clinical Pharmacology & Toxicology, 106, 226–233.
Dazzi, L., Spiga, F., Pira, L., Ladu, S., Vacca, G., Rivano, A., Jentsch, J.D.,
Biggio, G. 2001. Inhibition of stress- or anxiogenic-drug-induced increases in
47
dopamine release in the rat prefrontal cortex by long-term treatment with
antidepressant drugs. Journal of Neurochemistry, 76, 1212±1220.
De Boer, T.H., Nefkens, F., van Helvoirt, A. and Delft, A.M. van. 1996.
Differences in modulation of noradrenergic and serotonergic transmission by the
alpha-2 adrenoceptor antagonists, mirtazapine, mianserin and idazoxan, J.
Pharmacol. Exp. Ther. 277, pp. 852–860.
Dranovsky, A., Hen, R. 2006. Hippocampal Neurogenesis: Regulation by
Stress and Antidepressants, Biol Psychiatry;59:1136–1143.
Drapier, D., Bentué-Ferrer, D., Laviolle, B., Millet, B., Allain, H., Bourin,
M., Reymann, J.M. 2007. Effects of acute fluoxetine, paroxetine and desipramine on
rats tested on the elevated plus-maze. Behav Brain Res, Jan 25;176(2):202-9.
Dulawa, S.C., Holick, K.A., Gundersen, B., Hen, H. 2004. Effects of Chronic
Fluoxetine in Animal Models of Anxiety and Depression. Neuropsychopharmacology
29, 1321–1330.
Duman, R.S., Monteggia L.M. 2006. A Neurotrophic Model for Stress-Related
Mood Disorders, Biol Psychiatry;59:1116–1127.
Dunlop, B.W., & Davis, P.G. 2008. Combination Treatment With
Benzodiazepines and SSRIs for Comorbid Anxiety and Depression: A Review, Prim
Care Companion J Clin Psychiatry;10:222–228.
File, S.E. 1990. One-trial tolerance to the anxiolytic effects of chlordiazepoxide
in the plus-maze. Psychopharmacology (Berl), 100(2):281-2.
File, S.E., Ouagazzal, A.M., Gonzalez, L.E., Overstreet, D.H. 1999. Chronic
fluoxetine in tests of anxiety in rat lines selectively bred for differential 5-HT1A
receptor function. Pharmacol Biochem Behav. Apr;62(4):695-701.
Franowicz, J.S., Kessler, L.E., Borja, C.M.D., Kobilka, B.K., Limbird, L.E.,
Arnsten, A.F.T. 2002. Mutation of the 2A-Adrenoceptor Impairs Working Memory
Performance and Annuls Cognitive Enhancement by Guanfacine. The Journal of
Neuroscience, October 1, 22(19):8771–8777.
Freud, S. Recordar, repetir e elaborar. 1914, reediction of 1976.
Gabriele, A., Packard, M.G. 2006. Evidence of a role for multiple memory
systems in behavioral extinction. Neurobiology of Learning and Memory, v.85 p.289–
299.
Gambi, F., De Berardis, D., Campanella, D., Carano, A., Sepede, G., Salini,
G., Mezzano, D., Cicconetti, A., Penna, L., Salerno, R.M., Ferro, F.M. 2005.
Mirtazapine treatment of Generalized Anxiety Disorder: a fixed dose, open label
study. Journal of Psychopharmacology. v.19, p.483-487.
48
Griebel, G., Blanchard, D.C., Agnes, R.S., Blanchard, R.J. 1995. Differential
modulation of antipredator defensive behavior in Swiss-Webster mice following acute
or chronic administration of imipramine and fluoxetine. Psychopharmacology (Berl).
Jul;120(1):57-66.
Haddjeri, N., Blier, P., Montigny, C. de. 1996. Effect of the alpha-2
adrenoceptor antagonist mirtazapine on the 5-hydroxytryptamine system in the rat
brain, J. Pharmacol. Exp. Ther. 277 pp. 861–871)
Hamann, S. 2005. Sex differences in the responses of the human amygdala.
The neuroscientist, 11, 288-293.
Hansson, A.C., Rimondini, R., Heilig, M., Mathé, A.A., Sommer, W.H. 2011.
Dissociation of antidepressant-like activity of escitalopram and nortriptyline on
behaviour and hippocampal BDNF expression in female rats. J Psychopharmacol.
Jan 24.
Harmer, C.J., Mackay, C.E., Reid, C.B., Cowen, P.J., Goodwin, G.M. 2006.
Antidepressant Drug Treatment Modifies the Neural Processing of Nonconscious
Threat Cues. Biol Psychiatry;59:816–820.
Harmer, C.J. 2010. Antidepressant drug action: a neuropsychological
perspective. Depression and Anxiety 27: 231–233.
Heim, C., Nemeroff, C.B. 2009. Neurobiology of posttraumatic stress disorder.
CNS Spectr. Jan;14(1 Suppl 1):13-24.
Hildebrandt, M.G., Steyerberg, E.W., Stage, K.B., Passchier, J., KraghSoerensen P. 2003. Are gender differences important for the clinical effects of
antidepressants? Am J Psychiatry ;160:1643–50.
Holmes A, Rodgers RJ. 2003. Prior exposure to the elevated plus-maze
sensitizes mice to the acute behavioral effects of fluoxetine and phenelzine. Eur J
Pharmacol, 459:221–30.
Homberg JR, Olivier JD, Blom T, Arentsen T, van Brunschot C, Schipper
P, Korte-Bouws G, van Luijtelaar G, Reneman L. 2011. Fluoxetine exerts agedependent effects on behavior and amygdala neuroplasticity in the rat. PLoS One.
Jan 31;6(1):e16646.
Jonasson, Z. 2005. Meta-analysis of sex differences in rodent models of
learning and memory: a review of behavioral and biological data. Neurosci.
Biobehav. Rev., 28, 811- 825.
Kelly, S.J., Ostrowski, N.L., Wilson, M.A. 1999. Gender Differences in Brain
and Behavior: Hormonal and Neural Bases, Pharmacology Biochemistry and
Behavior, Vol. 64, No. 4, pp. 655–664.
49
Kendler, K.S., Thornton, L.M., Prescott, C.A. 2001. Gender differences in the
rates of exposure to stressful life events and sensitivity to their depressogenic
effects. Am. J. Psychiatry, 158, 587-93.
Kim, J.H., Richardson, R. 2010. New Findings on Extinction of Conditioned
Fear Early in Development: Theoretical and Clinical Implications, Biol Psychiatry
;67:297–303.
Krystal, J.H., Neumeister, A. 2009. Noradrenergic and serotonergic
mechanisms in the neurobiology of posttraumatic stress disorder and resilience,
Brain Research 1293 13-23.
Kornstein, S.G., Schatzberg, A.F., Thase, M.E., Yonkers, K.A., McCullough,
J.P., Keitner, G. I. et al. 2000. Gender differences in treatment response to sertraline
versus imipramine in chronic depression. Am J Psychiatry;157:1445–52.
Kubzansky, L.D., Koenen, K.C., Jones, C., Eaton, W.W. 2009. A Prospective
Study of Posttraumatic Stress Disorder Symptoms and Coronary Heart Disease in
Women. Health Psychol. January; 28(1): 125–130.
Kurt, M., Arik, A.C., Celik, S. 2000. The effects of sertraline and fluoxetine on
anxiety in the elevated plus-maze test in mice. J Basic Physiol Pharmacol, 11:173–
80.
Lebrón, K., Milad, M.R., Quirk, G.J. 2004. Delayed Recall of Fear Extinction in
Rats With Lesions of Ventral Medial Prefrontal Cortex. Learn. Mem. 11: 544-548
MacQueen, G.M., Campbell, S., McEwen, B.S., Macdonald, K., Amano, S.,
Joffe, R.T., Nahmias, C., Young, L.T. 2003. Course of illness, hippocampal function,
and hippocampal volume in major depression. PNAS, February 4, vol. 100, no. 3,
1387–1392.
Mahendran, R., Yap, H.L. 2005. Clinical practice guidelines for depression.
Singapore Medical Journal. v.46, n.11, p.610-615.
Marcondes, F.K., Miguel, K.J., Melo, L.L., Spadari-Bratfisch, R.C. 2001.
Estrous cycle influences the response of female rats in the elevated plus-maze test.
Physiol & Behav 74:435– 440.
Marks, I., Lovell, K., Noshirvani, H., Livanou, M., Thrasher, S. 1998. Treatment
of Posttraumatic Stress Disorder by Exposure and/or Cognitive Restructuring, Arch
Gen Psychiatry, 55:317-325.
McCabe, C., Mishor, Z., Cowen, P.J., Harmer, C.J. 2010. Diminished Neural
Processing of Aversive and Rewarding Stimuli During Selective Serotonin Reuptake
Inhibitor Treatment. BIOL PSYCHIATRY;67:439–445.
McEwen, B.S., Chattarji, S. 2004. Molecular mechanisms of neuroplasticity
and
pharmacological
implications:
the
example
of
tianeptine.
Eur
Neuropsychopharmacol. Dec;14.
50
McFarlane, A.C., Papay, P. 1992. Multiple diagnoses in posttraumatic stress
disorder in the victims of a natural disaster. J Nerv Ment Dis;180;498-504.
McNamara, R.K., Able, J.A., Rider, T., Tso, P., Jandacek, R. 2010. Effect of
chronic fluoxetine treatment on male and female rat erythrocyte and prefrontal cortex
fatty acid composition. Prog Neuropsychopharmacol Biol Psychiatry. Oct
1;34(7):1317-21.
Milad, M.R., Igoe, S.A., Lebron-Milad, K., Novales, J.E. 2009. Estrous cycle
phase and gonadal hormones influence conditioned fear extinction. Neuroscience
164:887-895.
Miyamoto, D., Iijima, M., Yamamoto, H., Nomura, H., Matsuki, N. 2010.
Behavioural effects of antidepressants are dependent and independent on the
integrity of the dentate gyrus. Int J Neuropsychopharmacol. Nov 3:1-10.
Mirza NR, Nielsen EØ, Troelsen KB. 2007. Serotonin transporter density and
anxiolytic-like effects of antidepressants in mice. Prog Neuropsychopharmacol Biol
Psychiatry. May 9;31(4):858-66.
Monti, B., Berteotti, C., Contestabile, A. 2006. Subchronic rolipram delivery
activates hippocampal CREB and arc, enhances retention and slows down extinction
of conditioned fear. Neuropsychopharmacology 31, 278 e 286.
Morgan, M.A., LeDoux, J.E. 1995. Differential Contribution of Dorsal and
Ventral Medial Prefrontal Cortex to the Acquisition and Extinction of Conditioned Fear
in Rats. Behavioral Neuroscience, Vol. 109, No. 4, 681-688
Mueller, E.M., Hofmann, S.G., Cherry, J.A. 2010. The type IV
phosphodiesterase inhibitor rolipram disturbs expression and extinction of
conditioned fear in mice. Neuropharmacology 59; 1 e 8.
Nandam, L.S., Jhaveri, D., Bartlett, P. 2007. 5-HT7, neurogenesis and
antidepressants: a promising therapeutic axis for treating depression, Clinical and
Experimental Pharmacology and Physiology 34, 546–551.
Nestler, E.J., Barrot, M., DiLeone, R.J., Eisch, A.J., Gold, S.J., Monteggia,
L.M. 2002. Neurobiology of depression. Neuron; 34:13–25.
Olivier, J.D., Van Der Hart, M.G., Van Swelm, R.P., Dederen, P.J., Homberg,
J.R., Cremers, T., Deen, P.M., Cuppen, E., Cools, A.R., Ellenbroek, B.A. 2008. A
study in male and female 5-HT transporter knockout rats: an animal model for anxiety
and depression disorders. Neuroscience. Mar 27;152(3):573-84.
Paizanis, E., Hamon, M., Lanfumey, L. 2007. Hippocampal Neurogenesis,
Depressive Disorders, and Antidepressant Therapy, Neural Plasticity, v., Article ID
73754, 7 pages.
51
Pittenger, C. & Duman, R.S. Stress, 2008. Depression, and Neuroplasticity: A
Convergence of Mechanisms, Neuropsychopharmacology REVIEWS 33, 88–109.
Porsolt, R.D., Le Pichon, M., Jalfre, M. 1977. Depression: a new animal model
sensitive to antidepressant treatment. Nature, v. 266, p.730-732.
Porsolt, R.D., Anton, G., Blavet, N., Jalfre, M. 1978. Behavioural despair in
rats: a new model sensitive to antidepressant treatments. Eur J Pharmacol ;47:379–
91.
Quirk, G.J., Garcia, R., González-Lima, F. 2006. Prefrontal Mechanisms in
Extinction of Conditioned Fear. BIOL PSYCHIATRY;60:337–343
Rauch, S.L., Shin, L.M., Phelps, E.A. 2006. Neurocircuitry models of
posttraumatic stress disorder and extinction: human neuroimaging research – past,
present, and future. Biol. Psychiatry, 60, 376-382.
Rauggi, R., Cassanelli, A., Raone, A., Tagliamonte, A., Gambarana, C. 2005.
Study of mirtazapine antidepressant effects in rats. International Journal of
Neuropsychopharmacology, v.8, p. 369–379.
Rawlings, N.B., Norbury, R., Cowen, P.J., Harmer C.J. 2010. A single dose of
mirtazapine modulates neural responses to emotional faces in healthy people.
Psychopharmacology 01 September.
Reneric, J.P., Bouvard, M., Stinus, L. 2002. In the rat forced swimming test,
chronic but not subacute administration of dual 5-HT/NA antidepressant treatments
may produce greater effects than selective drugs. Behav Brain Res 136: 521–532.
Ribeiro, A.M, Barbosa, F.F, Godinho, M.R, Fernandes, V.S, Munguba, H.,
Alves, L.M, Melo, T.G, Barbosa, M.T, Silva, R.H. 2010. Sex differences in aversive
memory in rats: possible role of extinction and reactive emotional factors. Brain and
Cognition Volume 74, Issue 2, November, Pages 145-151.
Rilea, S.L., Roskos-Ewoldsen, B., Boles, D. 2004. Sex differences in spatial
ability: a lateralization of function approach. Brain and Cognition, 56, 332-343.
Robert G, Drapier D, Bentué-Ferrer D, Renault A, Reymann JM. 2011. Acute
and chronic anxiogenic-like response to fluoxetine in rats in the elevated plus-maze:
Modulation by stressful handling. Behav Brain Res. Jul 7;220(2):344-8.
Rodgers, R.J., Cao, B.-J., Dalvi, A., Holmes, A. 1997. Animal models of
anxiety: an ethological perspective Braz J Med Biol Res 30(3).
Rodgers, R.J., Dalvi, A. 1997. Anxiety, Defence and the Elevated Plus-maze.
Neuroscience and Biobehavioral Reviews, Vol. 21, No. 6, pp. 801–810.
Rogóz, Z., Skuza, G., Legutko, B. 2005. Repeated treatment with mirtazapine
induces brain derived neurotrophic factor gene expression in rats. Journal of
Physiology and Pharmacology. v.56, n.4, p.661-671.
52
Rogóż, Z. 2010. Effects of co-treatment with mirtazapine and low doses of
risperidone on immobility time in the forced swimming test in mice. Pharmacol Rep.
Nov-Dec;62(6):1191-6.
Sahay, A. & Hen R. 2007. Adult hippocampal neurogenesis in depression,
Nature Neuroscience v.10; 9; september.
Santarelli, L., Saxe, M., Gross, C., Battaglia, F., Dulawa, S., Weisstaub, N.,
Lee, J., Duman, R., Arancio, O., Belzung, C., Hen, R. 2003. Requirement of
hippocampal neurogenesis for the behavioral effectc of antidepressants. Science vol
301, 8 August.
Silva, M.T., Alves, C.R., Santarem, E.M. 1999. Anxiogenic-like effect of acute
and chronic fluoxetine on rats tested on the elevated plus-maze. Braz J Med Biol
Res, 32:333–9.
Silva, R.H., Bellot, R.G., Vital, M.A. & Frussa-Filho, R. 1997. Effects of longterm ganglioside GM1 administration on a new discriminative avoidance test in
normal adult mice. Psychopharmacology, 129, 322-328.
Silva, R.H. & Frussa-Filho, R. 2000. The plus-maze discriminative acoidance
task: a new model to study memory-anxiety interactions. Effects of chlordiazepoxide
and caffeine. J Neurosci. Methods, 102, 117-125.
Silva, R.H., Abílio, V.C., Torres-Leite, D., Bergamo, M., Chinen, C.C., Claro,
F.T., Carvalho, R.C. & Frussa-Filho, R. 2002a. Concomitant development of oral
dyskinesia and memory deficits in reserpine-treated male and female mice. Behav.
Brain. Res., 132, 171-177.
Silva, R.H., Kameda, S.R., Carvalho, R.C., Rigo, G.S., Costa, K.L., Taricano,
I.D. & Frussa-Filho, R. 2002b. Effects of amphetamine on the plus-maze
discriminative avoidance task in mice. Psychopahrmacology, 160, 9-18.
Silva, R.H., Chehin, A.B., Kameda, S.R., Takatsu-Coleman, A.L., Abilio, V.C.,
Tufik, S. & Frussa-Filho, R. 2004. Effects of pre- or post-training paradoxical sleep
deprivation on two animal models of learning and memory in mice. Neurobiol. Learn.
Mem., 82, 90-98.
Solomon, M.B., Herman, J.P. 2009. Sex differences in psychopathology: Of
gonads, adrenals and mental illness, Physiology & Behavior 97 250–258.
Schüle, C., Baghai, T., Goy, J., Bidlingmaier, M., Strasburger, C., Laakmann,
G. 2002. The influence of mirtazapine on anterior pituitary hormone secretion in
healthy male subjects. Psychopharmacology 163:95–101
Schüle, C., Baghai, T., Zwanzger, P., Ella, R., Eser, D., Padberg, F., Möller,
H.-J., Rupprecht, R. 2003. Attenuation of hypothalamic-pituitary-adrenocortical
hyperactivity in depressed patients by mirtazapine. Psychopharmacology 166:271–
275.
53
Schüle, C., Baghai, T.C., Eser, D., Zwanzger, P., Jordan, M., Buechs, R.,
Rupprecht, R. 2006. Time course of hypothalamic-pituitary-adrenocortical axis
activity during treatment with reboxetine and mirtazapine in depressed patients.
Psychopharmacology (Berl). Jul;186(4):601-11.
Schulz, D., Buddenberg, T., Huston, J.P. 2007. Extinction-induced ―despair‖ in
the water maze, exploratory behavior and fear: Effects of chronic antidepressant
treatment. Neurobiology of Learning and Memory 87; 624–634.
Toufexis, D.J., Myers, K.M., Davis, M. 2006. The effect of gonadal hormones
and gender on anxiety and emotional learning, Hormones and Behavior 50 539–549.
Varea,
E., Castillo-Gómez,
E., Gómez-Climent,
M.A., Blasco-Ibáñez,
J.M., Crespo, C., Martínez-Guijarro, F.J., Nàcher, J. 2007. Chronic antidepressant
treatment induces contrasting patterns of synaptophysin and PSA-NCAM expression
in different regions of the adult rat telencephalon. Eur Neuropsychopharmacol.
Jul;17(8):546-57.
Wald, C., & Wu C. 2010. Biomedical research. Of mice and women: the bias in
animal models. Science, Mar 26;327 (5973):1571-2.
Woolley, D.G., Vermaercke, B. Beeck, H. O. de, Wagemans, J., Gantois, I.,
D‘Hooge, R. Swinnen, S. P., Wenderoth, N. 2010. Sex differences in human virtual
water maze performance: Novel measures reveal the relative contribution of
directional responding and spatial knowledge. Behavioural Brain Research 208 408–
414.
Yamamoto, S., Morinobu, S., Fuchikami, M., Kurata, A., Kozuru, T.,
Yamawaki, S. 2008. Effects of Single Prolonged Stress and D-Cycloserine on
Contextual Fear Extinction and Hippocampal NMDA Receptor Expression in a Rat
Model of PTSD. Neuropsychopharmacology, 33, 2108–2116
Yamamoto, S., Morinobu, S., Takei, S., Fuchikami, M., Matsuki, A., Yamawaki,
S., Liberzon, I. 2009. Single prolonged stress: toward an animal model of
posttraumatic stress disorder. Depress Anxiety.;26 (12):1110-7.
Zucker I, Beery AK. 2010. Males still dominate animal studies. Nature, Jun
10;465(7299):690.
54
AUTHOR INFORMATION PACK
6 Jan 2011 www.elsevier.com/locate/pnp 1
PROGRESS
IN
NEUROPSYCHOPHARMACOLOGY
&
BIOLOGICAL
PSYCHIATRY
An International Research, Review, and News Journal
AUTHOR INFORMATION PACK
TABLE OF CONTENTS
• Description
• Audience
• Impact Factor
• Abstracting and Indexing
• Editorial Board
• Guide for Authors
ISSN: 0278-5846
DESCRIPTION
.
Progress in Neuro-Psychopharmacology & Biological Psychiatry is an international
and multidisciplinary research, review and news journal. One of its main aims is to
assure rapid publication of authoritative reviews and research papers dealing with
55
experimental and clinical aspects of neuro-psychopharmacology and biological
psychiatry. Another important aim of the journal is to supply pertinent information,
provided by national and international bodies, that contributes to progress in the
scientific and professional fields. Finally, the journal intends to foster and encourage
communications
between
members
of
the
communities
of
neuro-
psychopharmacology and biological psychiatry.
Progress in Neuro-Psychopharmacology & Biological Psychiatry does not publish
work on the actions of biological extracts unless the pharmacological active
molecular substrate and/or specific receptor binding properties of the extract
compounds are elucidated.
US National Institutes of Health (NIH) voluntary posting ("Public Access")
policy
Progress in Neuropsychopharmacology & Biological Psychiatry and Elsevier facilitate
the author's response to the NIH Public Access Policy. For more details please see
the Guide for authors
Fraudulent 'phishing' e-mails soliciting scholarly papers have been circulating
which claim to originate from Elsevier, Inc. and are directed to prospective
authors and editors. The fraudulent e-mail messages currently in circulation
generally contain "Manuscript Submission" or "Call for Papers" in the subject
line and are typically sent using e-mail accounts supported by Gmail, Hotmail
or by other free e-mail providers. Typically, the body of these messages
contain a "Call for Papers," requesting that authors submit scholarly articles
56
via e-mail for publication by Elsevier in various Elsevier journals and other
publications. Ultimately, these fraudulent e-mails involve a request for the
victims to send "handling fees" to cover the processing of the article that has
been submitted.
Please be assured that Elsevier, Inc. is in no way associated with this
fraudulent e-mail campaign. In addition, please be advised that Elsevier does
not solicit intellectual property from authors in this fashion, and does not
utilize Gmail, Hotmail, or any other free thirdparty e-mail providers in
communications with authors and editors.
AUTHOR INFORMATION PACK 6 Jan 2011 www.elsevier.com/locate/pnp 2
If you receive any e-mail messages that appear to be a part of this fraudulent
solicitation, DO NOT respond to the message and do not open any attachments
contained in the message. Rather, please forward the message to Elsevier's
Fraud Department at [email protected]. We will use the information
included in the message to aid in our investigation.
AUDIENCE
.
Neuroscientists, pharmacologists, psychiatrists, psychologists in both basic and
clinical research.
IMPACT FACTOR
.
2009: 2.823 © Thomson Reuters Journal Citation Reports 2010
57
ABSTRACTING AND INDEXING
.
BIOSIS
Cambridge Scientific Abstracts
Chemical Abstracts
Current Contents/BIOMED Database
Current Contents/Index to Scientific Reviews
Current Contents/Life Sciences
EMBASE
Elsevier BIOBASE
MEDLINE®
Research Alert
SCISEARCH
Science Citation Index
Scopus
EDITORIAL BOARD
.
Editor-in-Chief:
Guy Drolet, Neurosciences, Centre de Recherche du CHUL (CHUQ), RC-9800 2705
Laurier, Quebec, G1V 4G2,
Canada
Assistant Editor:
Sylvie Laforest,
Emeritus Editor:
58
Paul Bédard,
Founding Editor:
C. Radouco-Thomas*,
Editorial Board:
O. Akyol, Ankara, Turkey
H. Belmaker, Beersheva, Israel
P. Blier, Ottawa, Canada
M-H. Bloch, New Haven, CT, USA
C. Davidson, London, UK
S.I. Deutsch, Washington, DC, USA
K. Domschke, Münster, Germany
F. Graeff, Ribeirao Preto SP, Brazil
L. He, Shanghai, China
F. Holsboer, München, Germany
A.V. Kalueff, Tampere, Finland
K. Kasai, Tokyo, Japan
T. Kato, Wako, Japan
Y.-K. Kim, Ansan City, South Korea
AUTHOR INFORMATION PACK 6 Jan 2011 www.elsevier.com/locate/pnp 3
S.K. Kulkarni, Chandigarh, India
P-Y. Lin, Kaohsiung, Taiwan, ROC
M. Maes, Maastricht, Netherlands
K. Melkersson, Sollentuna, Sweden
D. Morilak, San Antonio, TX, USA
D. Muck-Seler, Zagreb, Croatia
59
C. Rouillard, Quebec, QC, Canada
J. Samochowiec, Szczecin, Poland
A. Serretti, Bologna, Italy
R. Silva, Natal, Brazil
H. Singh Duggal, Tecumseh, MI, USA
D. Stein, Cape Town, South Africa
R. Szeszko, Glen Oaks, NY, USA
S. Tsai, Taipei, Taiwan, ROC
P. Vezina, Chicago, IL, USA
M. Xu, Boston, MA, USA
X-Y. Zhang, Houston, TX, USA
AUTHOR INFORMATION PACK 6 Jan 2011 www.elsevier.com/locate/pnp 4
GUIDE FOR AUTHORS
.
INTRODUCTION
Progress in Neuro-Psychopharmacology & Biological Psychiatry is an international
and multidisciplinary research, review and news journal. One of its main aims is to
assure rapid publication of authoritative reviews and research papers dealing with
experimental and clinical aspects of neuro-psychopharmacology and biological
psychiatry. Another important aim of the journal is to supply pertinent information,
provided by national and international bodies, that contributes to progress in the
scientific and professional fields. Finally, the journal intends to foster and encourage
communications
between
members
of
the
communities
of
neuro-
psychopharmacology and biological psychiatry.
60
Studies on natural products The journal does not publish work on the actions of
biological extracts unless the pharmacological active molecular substrate and/or
specific receptor binding properties of the extract compounds are elucidated.
Types of paper
1. Original research articles
2. Review articles: Mini-reviews or comprehensive reviews of cutting edge work, or
syntheses of cutting edge work that has been done in the past two years
As of 1st December 2010, Letters to the Editor are no longer accepted for publication
in the journal.
Page charges
This journal has no page charges.
BEFORE YOU BEGIN
Ethics in Publishing
For information on Ethics in Publishing and Ethical guidelines for journal publication
see
http://www.elsevier.com/publishingethics
and
http://www.elsevier.com/ethicalguidelines.
Policy and ethics
The work described in your article must have been carried out in accordance with
The Code of Ethics of the World Medical Association (Declaration of Helsinki) for
experiments
involving
http://www.wma.net/en/30publications/10policies/b3/index.html;
humans
EC
Directive
61
86/609/EEC
for
animal
experiments
http://ec.europa.eu/environment/chemicals/lab_animals/legislation_en.htm;
Uniform
Requirements for manuscripts submitted to Biomedical journals http://www.icmje.org.
This must be stated at an appropriate point in the article.
Conflict of interest
All authors are requested to disclose any actual or potential conflict of interest
including any financial, personal or other relationships with other people or
organizations within three years of beginning the submitted work that could
inappropriately influence, or be perceived to influence, their work. See also
http://www.elsevier.com/conflictsofinterest.
Submission declaration
Submission of an article implies that the work described has not been published
previously (except in the form of an abstract or as part of a published lecture or
academic thesis), that it is not under consideration for publication elsewhere, that its
publication is approved by all authors and tacitly or explicitly by the responsible
authorities where the work was carried out, and that, if accepted, it will not be
published elsewhere including electronically in the same form, in English or in any
other language, without the written consent of the copyright-holder.
Contributors
Each author is required to declare his or her individual contribution to the article: all
authors must have materially participated in the research and/or article preparation,
62
so roles for all authors should be described. The statement that all authors have
approved the final article should be true and included in the disclosure.
Changes to authorship
This policy concerns the addition, deletion, or rearrangement of author names in the
authorship of accepted manuscripts:
AUTHOR INFORMATION PACK 6 Jan 2011 www.elsevier.com/locate/pnp 5
Before the accepted manuscript is published in an online issue: Requests to add or
remove an author, or to rearrange the author names, must be sent to the Journal
Manager from the corresponding author of the accepted manuscript and must
include: (a) the reason the name should be added or removed, or the author names
rearranged and (b) written confirmation (e-mail, fax, letter) from all authors that they
agree with the addition, removal or rearrangement. In the case of addition or removal
of authors, this includes confirmation from the author being added or removed.
Requests that are not sent by the corresponding author will be forwarded by the
Journal Manager to the corresponding author, who must follow the procedure as
described above. Note that: (1) Journal Managers will inform the Journal Editors of
any such requests and (2) publication of the accepted manuscript in an online issue
is suspended until authorship has been agreed.
After the accepted manuscript is published in an online issue: Any requests to add,
delete, or rearrange author names in an article published in an online issue will follow
the same policies as noted above and result in a corrigendum.
Copyright
63
Upon acceptance of an article, authors will be asked to complete a 'Journal
Publishing
Agreement'
(for
more
information
on
this
and
copyright
see
http://www.elsevier.com/copyright). Acceptance of the agreement will ensure the
widest possible dissemination of information. An e-mail will be sent to the
corresponding author confirming receipt of the manuscript together with a 'Journal
Publishing Agreement' form or a link to the online version of this agreement.
Subscribers may reproduce tables of contents or prepare lists of articles including
abstracts for internal circulation within their institutions. Permission of the Publisher is
required for resale or distribution outside the institution and for all other derivative
works,
including
compilations
and
translations
(please
consult
http://www.elsevier.com/permissions). If excerpts from other copyrighted works are
included, the author(s) must obtain written permission from the copyright owners and
credit the source(s) in the article. Elsevier has preprinted forms for use by authors in
these cases: please consult http://www.elsevier.com/permissions.
Retained author rights
As an author you (or your employer or institution) retain certain rights; for details you
are referred to: http://www.elsevier.com/authorsrights.
Role of the funding source
You are requested to identify who provided financial support for the conduct of the
research and/or preparation of the article and to briefly describe the role of the
sponsor(s), if any, in study design; in the collection, analysis and interpretation of
data; in the writing of the report; and in the decision to submit the paper for
64
publication. If the funding source(s) had no such involvement then this should be
stated. Please see http://www.elsevier.com/funding.
Funding body agreements and policies
Elsevier has established agreements and developed policies to allow authors whose
articles appear in journals published by Elsevier, to comply with potential manuscript
archiving requirements as specified as conditions of their grant awards. To learn
more
about
existing
agreements
and
policies
please
visit
http://www.elsevier.com/fundingbodies.
Open access
This journal offers you the option of making your article freely available to all via the
ScienceDirect platform. To prevent any conflict of interest, you can only make this
choice after receiving notification that your article has been accepted for publication.
The fee of $3,000 excludes taxes and other potential author fees such as color
charges. In some cases, institutions and funding bodies have entered into agreement
with Elsevier to meet these fees on behalf of their authors. Details of these
agreements are available at http://www.elsevier.com/fundingbodies. Authors of
accepted articles, who wish to take advantage of this option, should complete and
submit
the
order
form
(available
at
http://www.elsevier.com/locate/openaccessform.pdf). Whatever access option you
choose, you retain many rights as an author, including the right to post a revised
personal version of your article on your own website. More information can be found
here: http://www.elsevier.com/authorsrights .
65
Language and language services
Please write your text in good English (American or British usage is accepted, but not
a mixture of these). Authors who require information about language editing and
copyediting
services
pre-
and
post-submission
please
http://webshop.elsevier.com/languageediting or our customer support
visit
site at
http://support.elsevier.com for more information.
AUTHOR INFORMATION PACK 6 Jan 2011 www.elsevier.com/locate/pnp 6
Submission
Submission to this journal proceeds totally online and you will be guided stepwise
through the creation and uploading of your files. The system automatically converts
source files to a single PDF file of the article, which is used in the peer-review
process. Please note that even though manuscript source files are converted to PDF
files at submission for the review process, these source files are needed for further
processing after acceptance. All correspondence, including notification of the Editor's
decision and requests for revision, takes place by e-mail removing the need for a
paper trail.
Submit your article Please submit your article via http://ees.elsevier.com/pnp/
Referees
Please submit, with the manuscript, the names, addresses and e-mail addresses of 3
potential referees. Note that the editor retains the sole right to decide whether or not
the suggested reviewers are used.
66
Genetic Association Studies
Progress in Neuro-Psychopharmacology & Biological Psychiatry is interested in
Genetics/Association studies that are replicable and generalizable. The following
guidelines are offered in pursuit of this goal. (1) Studies need to be sufficiently large.
(2) Information about subject ethnicity, and how it was determined, should be
provided. The use of an analytic strategy that controls for potential stratification, such
as family-controlled association, or structured association, is encouraged. (3) There
must be a clear description of how the phenotype was ascertained. (4) Negative
studies should always include estimates of power. Confirmation of the functional
consequences of a common disease-associated variant is useful information, but
does not substitute for a rigorous demonstration of a statistically significant
association. Analysis of pathways or candidate regional analysis is encouraged over
single gene studies. Candidate gene studies must have strong positional or biological
rationale or precedents in the literature that motivate gene choice. For studies of nonfunctional variants, there should generally be sufficiently dense marker coverage to
allow a relatively comprehensive analysis of common variants within a gene or
genes. Analysis of the extent of marker coverage using standard methods to assess
linkage disequilibrium should be presented. If rare variants are being tested, the
same method of assessment (sequencing, copy number assessment, etc.) should be
used in both case and control groups. We will consider both negative and positive
association studies, as well as large replication studies. Negative studies should be
based on an attempt to replicate previous studies. Power calculations considering
reasonable effect sizes must be provided to show that the study had sufficient power
to be informative.
67
NIH voluntary posting ("Public Access")
US National Institutes of Health (NIH) voluntary posting ("Public Access")
Elsevier facilitates author response to the NIH voluntary posting request (referred to
as
the
NIH
"Public
http://www.nih.gov/about/publicaccess/index.htm)
Access
by
posting
Policy";
the
see
peerreviewed
author's manuscript directly to PubMed Central on request from the author, 12
months after formal publication. Upon notification from Elsevier of acceptance, we will
ask you to confirm via email (by e-mailing us at [email protected])
that your work has received NIH funding and that you intend to respond to the NIH
policy request, along with your NIH award number to facilitate processing. Upon such
confirmation, Elsevier will submit to PubMed Central on your behalf a version of your
manuscript that will include peer-review comments, for posting 12 months after
formal publication. This will ensure that you will have responded fully to the NIH
request policy. There will be no need for you to post your manuscript directly with
PubMed Central, and any such posting is prohibited.
PREPARATION
Use of wordprocessing software
It is important that the file be saved in the native format of the wordprocessor used.
The text should be in single-column format. Keep the layout of the text as simple as
possible. Most formatting codes will be removed and replaced on processing the
article. In particular, do not use the wordprocessor's options to justify text or to
hyphenate words. However, do use bold face, italics, subscripts, superscripts etc.
When preparing tables, if you are using a table grid, use only one grid for each
68
individual table and not a grid for each row. If no grid is used, use tabs, not spaces,
to align columns. The electronic text should be prepared in a way very similar to that
of conventional manuscripts AUTHOR INFORMATION PACK 6 Jan 2011
www.elsevier.com/locate/pnp 7 (see also the Guide to Publishing with Elsevier:
http://www.elsevier.com/guidepublication). Note that source files of figures, tables
and text graphics will be required whether or not you embed your figures in the text.
See also the section on Electronic illustrations. To avoid unnecessary errors you are
strongly advised to use the "spell-check" and "grammar-check" functions of your
wordprocessor.
LaTeX
If the LaTeX file is suitable, proofs will be produced without rekeying the text. The
article should preferably be written using Elsevier's document class "elsarticle", or
alternatively any of the other recognized classes and formats supported in Elsevier's
electronic
submissions
system,
for
further
information
see
http://www.elsevier.com/wps/find/authorsview.authors/latex-ees-supported.
The Elsevier "elsarticle" LaTeX style file package (including detailed instructions for
LaTeX
preparation)
can
be
obtained
from
the
Quickguide:
http://www.elsevier.com/latex. It consists of the file: elsarticle.cls, complete user
documentation for the class file, bibliographic style files in various styles, and
template files for a quick start.
Article structure
Title
The title of the paper should be brief; no longer than 100 characters in length, and
should capture and communicate the key message of your research to a broader
69
audience. To aid this, abbreviations, unless familiar to a broad audience, should be
avoided.
Subdivision - numbered sections
Divide your article into clearly defined and numbered sections. Subsections should
be numbered 1.1 (then 1.1.1, 1.1.2, ...), 1.2, etc. (the abstract is not included in
section numbering). Use this numbering also for internal cross-referencing: do not
just refer to "the text". Any subsection may be given a brief heading. Each heading
should appear on its own separate line.
Original research articles should be organized as follows:
Introduction
State the objectives of the work and provide an adequate background, avoiding a
detailed literature survey or a summary of the results.
Methods
This section should contain explicit, concise descriptions of all procedures, materials
and methods used in the investigation to enable the reader to judge their accuracy,
reproducibility, etc. To increase clarity, headings should be used throughout. For
example, the following subheadings, which should be numbered, could be used:
Experimental articles: Animals, Drugs, Apparatus, Experimental procedure, and
Statistical analysis.
Clinical articles: Patient population, Drug administration, Study design, Assessment
instruments, and Data analysis. Depending on the type of article they are preparing,
authors could introduce any other subheadings they find useful.
Results
This section usually contains the experimental data, but no extended discussion of
their significance. The results should be illustrated (figures and tables); data are
70
usually easier for readers to grasp if they are represented in graphic or tabular form,
rather than discursively. Graphic presentation of data is preferred. Data should not be
needlessly repeated in text. Sufficient data may allow interested but non-expert
readers to judge the variability and reliability of the results. The section should be
well structured using appropriate subheadings.
Discussion
This should be pertinent to the results. Speculative discussion is not discouraged
provided it is based on the data presented. The discussion should be as concise as
possible and well structured, using appropriate subheadings.
Conclusion
A short paragraph of conclusions (5 to 10 lines) should be included.
Essential title page information
• Title. Concise and informative. Titles are often used in information-retrieval
systems. Avoid abbreviations and formulae where possible.
AUTHOR INFORMATION PACK 6 Jan 2011 www.elsevier.com/locate/pnp 8
• Author names and affiliations. Where the family name may be ambiguous (e.g., a
double name), please indicate this clearly. Present the authors' affiliation addresses
(where the actual work was done) below the names. Indicate all affiliations with a
lower-case superscript letter immediately after the author's name and in front of the
appropriate address. Provide the full postal address of each affiliation, including the
country name, and, if available, the e-mail address of each author.
• Corresponding author. Clearly indicate who will handle correspondence at all
stages of refereeing and publication, also post-publication. Ensure that telephone
and fax numbers (with country and area code) are provided in addition to the e-
71
mail address and the complete postal address. Contact details must be kept up
to date by the corresponding author.
• Present/permanent address. If an author has moved since the work described in
the article was done, or was visiting at the time, a "Present address" (or "Permanent
address") may be indicated as a footnote to that author's name. The address at
which the author actually did the work must be retained as the main, affiliation
address. Superscript Arabic numerals are used for such footnotes.
Abstract
A concise and factual abstract is required. The abstract should state briefly the
purpose of the research, the principal results and major conclusions. An abstract is
often presented separately from the article, so it must be able to stand alone. For this
reason, References should be avoided, but if essential, then cite the author(s) and
year(s). Also, non-standard or uncommon abbreviations should be avoided, but if
essential they must be defined at their first mention in the abstract itself.
Graphical abstract
A Graphical abstract is optional and should summarize the contents of the article in a
concise, pictorial form designed to capture the attention of a wide readership online.
Authors must provide images that clearly represent the work described in the article.
Graphical abstracts should be submitted as a separate file in the online submission
system. Image size: Please provide an image with a minimum of 531 × 1328 pixels (h
× w) or proportionally more. Preferred file types: TIFF, EPS, PDF or MS Office files.
See http://www.elsevier.com/graphicalabstracts for examples.
72
Highlights
Highlights are mandatory for this journal. They consist of a short collection of bullet
points that convey the core findings of the article and should be submitted in a
separate file in the online submission system. Please use 'Highlights' in the file name
and include 3 to 5 bullet points (maximum 85 characters per bullet point including
spaces). See http://www.elsevier.com/researchhighlights for examples.
Keywords
Immediately after the abstract, provide a maximum of 6 keywords, using American
spelling and avoiding general and plural terms and multiple concepts (avoid, for
example, "and", "of"). Be sparing with abbreviations: only abbreviations firmly
established in the field may be eligible. These keywords will be used for indexing
purposes.
Abbreviations
Define abbreviations that are not standard in this field in a footnote to be placed on
the first page of the article. Such abbreviations that are unavoidable in the abstract
must be defined at their first mention there, as well as in the footnote. Ensure
consistency of abbreviations throughout the article.
Acknowledgements
Collate acknowledgements in a separate section at the end of the article before the
references and do not, therefore, include them on the title page, as a footnote to the
title or otherwise. List here those individuals who provided help during the research
(e.g., providing language help, writing assistance or proof reading the article, etc.).
73
Units
Follow internationally accepted rules and conventions: use the international system
of units (SI). If other units are mentioned, please give their equivalent in SI.
Drug nomenclature
Generic names should be used in text, tables and figures. Trade names and the
name and city of their manufacturer may be mentioned in parentheses in the first text
reference to the drug, but should not appear in titles, figures or tables. Chemical
names could also be used. Code numbers could be given in brackets. When a trade
name is used, it should be capitalized; general or chemical names are not
capitalized. The chemical nature of new drugs must be given when known. The form
of drug used in calculations of doses (e.g., base or salt) should be indicated.
AUTHOR INFORMATION PACK 6 Jan 2011 www.elsevier.com/locate/pnp 9
Footnotes
Footnotes should be used sparingly. Number them consecutively throughout the
article, using superscript Arabic numbers. Many wordprocessors build footnotes into
the text, and this feature may be used. Should this not be the case, indicate the
position of footnotes in the text and present the footnotes themselves separately at
the end of the article. Do not include footnotes in the Reference list.
Table footnotes
Indicate each footnote in a table with a superscript lowercase letter.
Artwork
Electronic artwork
74
General points
• Make sure you use uniform lettering and sizing of your original artwork.
• Save text in illustrations as "graphics" or enclose the font.
• Only use the following fonts in your illustrations: Arial, Courier, Times, Symbol.
• Number the illustrations according to their sequence in the text.
• Use a logical naming convention for your artwork files.
• Provide captions to illustrations separately.
• Produce images near to the desired size of the printed version.
• Submit each figure as a separate file.
A detailed guide on electronic artwork is available on our website:
http://www.elsevier.com/artworkinstructions
You are urged to visit this site; some excerpts from the detailed information are
given here.
Formats
Regardless of the application used, when your electronic artwork is finalised, please
"save as" or convert the images to one of the following formats (note the resolution
requirements for line drawings, halftones, and line/halftone combinations given
below):
EPS: Vector drawings. Embed the font or save the text as "graphics".
TIFF: color or grayscale photographs (halftones): always use a minimum of 300 dpi.
TIFF: Bitmapped line drawings: use a minimum of 1000 dpi.
TIFF: Combinations bitmapped line/half-tone (color or grayscale): a minimum of 500
dpi is required.
DOC, XLS or PPT: If your electronic artwork is created in any of these Microsoft
Office applications please supply "as is".
75
Please do not:
• Supply files that are optimised for screen use (like GIF, BMP, PICT, WPG); the
resolution is too low;
• Supply files that are too low in resolution;
• Submit graphics that are disproportionately large for the content.
Color artwork
Please make sure that artwork files are in an acceptable format (TIFF, EPS or MS
Office files) and with the correct resolution. If, together with your accepted article, you
submit usable color figures then Elsevier will ensure, at no additional charge, that
these figures will appear in color on the Web (e.g., ScienceDirect and other sites)
regardless of whether or not these illustrations are reproduced in color in the printed
version. For color reproduction in print, you will receive information regarding
the costs from Elsevier after receipt of your accepted article. Please indicate
your preference for color in print or on the Web only. For further information on the
preparation
of
electronic
artwork,
please
see
http://www.elsevier.com/artworkinstructions.
Please note: Because of technical complications which can arise by converting color
figures to "gray scale" (for the printed version should you not opt for color in print)
please submit in addition usable black and white versions of all the color illustrations.
Figure captions
Ensure that each illustration has a caption. Supply captions separately, not attached
to the figure. A caption should comprise a brief title (not on the figure itself) and a
description of the illustration. Keep text in the illustrations themselves to a minimum
but explain all symbols and abbreviations used.
76
Tables
Number tables consecutively in accordance with their appearance in the text. Place
footnotes to tables below the table body and indicate them with superscript
lowercase letters. Avoid vertical rules. Be sparing in the use of tables and ensure that
the data presented in tables do not duplicate results described elsewhere in the
article.
AUTHOR INFORMATION PACK 6 Jan 2011 www.elsevier.com/locate/pnp 10
References
Citation in text
Please ensure that every reference cited in the text is also present in the reference
list (and vice versa). Any references cited in the abstract must be given in full.
Unpublished results and personal communications are not recommended in the
reference list, but may be mentioned in the text. If these references are included in
the reference list they should follow the standard reference style of the journal and
should include a substitution of the publication date with either "Unpublished results"
or "Personal communication" Citation of a reference as "in press" implies that the
item has been accepted for publication.
Web references
As a minimum, the full URL should be given and the date when the reference was
last accessed. Any further information, if known (DOI, author names, dates, reference
to a source publication, etc.), should also be given. Web references can be listed
separately (e.g., after the reference list) under a different heading if desired, or can
be included in the reference list.
References in a special issue
77
Please ensure that the words 'this issue' are added to any references in the list (and
any citations in the text) to other articles in the same Special Issue.
Reference style
Text: All citations in the text should refer to:
1. Single author: the author's name (without initials, unless there is ambiguity) and
the year of publication;
2. Two authors: both authors' names and the year of publication;
3. Three or more authors: first author's name followed by "et al." and the year of
publication.
Citations may be made directly (or parenthetically). Groups of references should be
listed first alphabetically, then chronologically.
Examples: "as demonstrated (Allan, 1996a, 1996b, 1999; Allan and Jones, 1995).
Kramer et al.
(2000) have recently shown ...."
List: References should be arranged first alphabetically and then further sorted
chronologically if necessary. More than one reference from the same author(s) in the
same year must be identified by the letters "a", "b", "c", etc., placed after the year of
publication.
Examples:
Reference to a journal publication:
Van der Geer, J., Hanraads, J.A.J., Lupton, R.A., 2000. The art of writing a scientific
article. J. Sci.
Commun. 163, 51–59.
Reference to a book:
78
Strunk Jr., W., White, E.B., 1979. The Elements of Style, third ed. Macmillan, New
York.
Reference to a chapter in an edited book:
Mettam, G.R., Adams, L.B., 1999. How to prepare an electronic version of your
article, in: Jones, B.S.,
Smith , R.Z. (Eds.), Introduction to the Electronic Age. E-Publishing Inc., New York,
pp. 281–304.
Journal abbreviations source
Journal names should be abbreviated according to
Index Medicus journal abbreviations: http://www.nlm.nih.gov/tsd/serials/lji.html;
List of serial title word abbreviations: http://www.issn.org/2-22661-LTWA-online.php;
CAS (Chemical Abstracts Service): http://www.cas.org/sent.html.
Video data
Elsevier accepts video material and animation sequences to support and enhance
your scientific research. Authors who have video or animation files that they wish to
submit with their article are strongly encouraged to include these within the body of
the article. This can be done in the same way as a figure or table by referring to the
video or animation content and noting in the body text where it should be placed. All
submitted files should be properly labeled so that they directly relate to the video file's
content. In order to ensure that your video or animation material is directly usable,
please provide the files in one of our recommended file formats with a maximum size
of 10 MB. Video and animation files supplied will be published online in the electronic
version of your article in Elsevier Web products, including ScienceDirect:
http://www.sciencedirect.com. Please supply 'stills' with your files: you can choose
79
any frame from the video or animation or make a separate image. These will be used
instead of standard icons and will personalize the link to your video data. For more
detailed
instructions
please
visit
our
video
instruction
pages
at
http://www.elsevier.com/artworkinstructions.
AUTHOR INFORMATION PACK 6 Jan 2011 www.elsevier.com/locate/pnp 11
Note: since video and animation cannot be embedded in the print version of the
journal, please provide text for both the electronic and the print version for the
portions of the article that refer to this content.
Supplementary data
Elsevier accepts electronic supplementary material to support and enhance your
scientific research. Supplementary files offer the author additional possibilities to
publish supporting applications, highresolution images, background datasets, sound
clips and more. Supplementary files supplied will be published online alongside the
electronic version of your article in Elsevier Web products, including ScienceDirect:
http://www.sciencedirect.com. In order to ensure that your submitted material is
directly usable, please provide the data in one of our recommended file formats.
Authors should submit the material in electronic format together with the article and
supply a concise and descriptive caption for each file. For more detailed instructions
please
visit
our
artwork
instruction
pages
at
http://www.elsevier.com/artworkinstructions.
Submission checklist
80
The following list will be useful during the final checking of an article prior to sending
it to the journal for review. Please consult this Guide for Authors for further details of
any item.
Ensure that the following items are present:
One Author designated as corresponding Author:
• E-mail address
• Full postal address
• Telephone and fax numbers All necessary files have been uploaded
• Keywords
• All figure captions
• All tables (including title, description, footnotes) Further considerations
• Manuscript has been "spellchecked" and "grammar-checked"
• References are in the correct format for this journal
• All references mentioned in the Reference list are cited in the text, and vice versa
• Permission has been obtained for use of copyrighted material from other sources
(including the Web)
• Color figures are clearly marked as being intended for color reproduction on the
Web (free of charge) and in print or to be reproduced in color on the Web (free of
charge) and in black-and-white in print
• If only color on the Web is required, black and white versions of the figures are also
supplied for printing purposes
For
any
further
information
please
visit
our
customer
support
site
at
http://support.elsevier.com.
AFTER ACCEPTANCE
81
Use of the Digital Object Identifier
The Digital Object Identifier (DOI) may be used to cite and link to electronic
documents. The DOI consists of a unique alpha-numeric character string which is
assigned to a document by the publisher upon the initial electronic publication. The
assigned DOI never changes. Therefore, it is an ideal medium for citing a document,
particularly 'Articles in press' because they have not yet received their full
bibliographic information. The correct format for citing a DOI is shown as follows
(example
taken
from
a
document
in
the
journal
Physics
Letters
B):
doi:10.1016/j.physletb.2010.09.059
When you use the DOI to create URL hyperlinks to documents on the web, they are
guaranteed never to change.
Proofs
One set of page proofs (as PDF files) will be sent by e-mail to the corresponding
author (if we do not have an e-mail address then paper proofs will be sent by post)
or, a link will be provided in the e-mail so that authors can download the files
themselves. Elsevier now provides authors with PDF proofs which can be annotated;
for this you will need to download Adobe Reader version 7 (or higher) available free
from http://www.adobe.com/products/acrobat/readstep2.html. Instructions on how to
annotate PDF files will accompany the proofs (also given online). The exact system
requirements
are
given
at
the
Adobe
site:
http://www.adobe.com/products/reader/systemreqs. If you do not wish to use the
PDF annotations function, you may list the corrections (including replies to the Query
Form) and return them to Elsevier in an e-mail. Please list your corrections quoting
82
line number. If, for any reason, this is not possible, then mark the corrections and any
other comments
AUTHOR INFORMATION PACK 6 Jan 2011 www.elsevier.com/locate/pnp 12
(including replies to the Query Form) on a printout of your proof and return by fax, or
scan the pages and e-mail, or by post. Please use this proof only for checking the
typesetting, editing, completeness and correctness of the text, tables and figures.
Significant changes to the article as accepted for publication will only be considered
at this stage with permission from the Editor. We will do everything possible to get
your article published quickly and accurately. Therefore, it is important to ensure that
all of your corrections are sent back to us in one communication: please check
carefully before replying, as inclusion of any subsequent corrections cannot be
guaranteed. Proofreading is solely your responsibility. Note that Elsevier may
proceed with the publication of your article if no response is received.
Offprints
The corresponding author, at no cost, will be provided with a PDF file of the article
via e-mail. For an extra charge, paper offprints can be ordered via the offprint order
form which is sent once the article is accepted for publication. The PDF file is a
watermarked version of the published article and includes a cover sheet with the
journal cover image and a disclaimer outlining the terms and conditions of use.
AUTHOR INQUIRIES
For inquiries relating to the submission of articles (including electronic submission
where available) please visit this journal's homepage. You can track accepted articles
at http://www.elsevier.com/trackarticle and set up e-mail alerts to inform you of when
an article's status has changed. Also accessible from here is information on
83
copyright, frequently asked questions and more. Contact details for questions arising
after acceptance of an article, especially those relating to proofs, will be provided by
the publisher.
© Copyright 2010 Elsevier | http://www.elsevier.com
84
IV.
Considerações finais e conclusões
Os presentes resultados demonstraram que o grupo tratado com fluoxetina
manteve o aprendizado e a evocação da tarefa nos mesmos níveis que os
desempenhados pelo grupo veículo; porém exibiu uma aceleração no processo de
extinção da memória aversiva. A nortriptilina e a mirtazapina aumentaram a
velocidade de aprendizado da tarefa aversiva, o que pode ser relacionado a uma
ênfase aos estímulos aversivos, um efeito inesperado resultante do uso de
antidepressivos (Harmer et al. 2006; McGabe et al. 2010; Rawlings et al. 2010). Já
na sessão teste essas drogas impediram a extinção da tarefa. A nortriptilina
demonstrou efeitos na redução da ansiedade apenas sob um dos aspectos
etológicos, o que pode sugerir uma necessidade de maior dosagem para que
possam ser observados efeitos ansiolíticos mais expressivos em fêmeas. Essa
ausência de diferenças nos parâmetros mais clássicos do labirinto em cruz elevado
no tocante a ansiedade atenta para a importância da observação dos aspectos
etológicos no modelo utilizado. Além disso, as fêmeas tratadas com mirtazapina
exibiram uma menor atividade locomotora no treino e teste da EDLC, sugerindo um
efeito hipolocomotor da dose da droga utilizada, apesar de o mesmo não ocorrer
com machos nas mesmas condições (Rauggi 2005). Por fim, no TNF os grupos de
fêmeas tratados com fluoxetina e mirtazapina apresentaram decréscimo de
imobilidade, um resultado que sugere um efeito antidepressivo destas drogas neste
teste comportamental. O grupo tratado com fluoxetina ainda apresentou aumento do
tempo de escalada. Já a nortriptilina apresentou um resultado atípico no TNF,
sugerindo uma possível necessidade de aumento de dosagem para observação de
efeitos antidepressivos.
85
Estes resultados sugerem que a fluoxetina pode exercer sua ação terapêutica
facilitando a extinção de memórias aversivas, correlatas ou não a transtornos de
humor e ansiedade. A mirtazapina apesar de promover um efeito antidepressivo em
animais submetidos ao teste do nado forçado, não foi capaz de promover a extinção
da memória aversiva, o que sugere uma dissociação entre a melhora dos sintomas
depressivos e possíveis efeitos sobre a extinção da memória para esse fármaco.
Estudos como o nosso sugerem que a investigação das diferenças sexuais na
neurobiologia da ansiedade e transtornos associados à depressão pode contribuir
com a melhora na escolha mais adequada para o tratamento farmacológico mais
específico, com melhores efeitos em curto prazo e com menores efeitos colaterais
baseados no gênero. Além disso, nossos dados corroboram a premissa de que os
efeitos terapêuticos de ISRS podem estar relacionados à facilitação da extinção de
memórias aversivas. Mais estudos são necessários para o esclarecimento dos
mecanismos relacionados a esse efeito.
86
V.
Referências
Aia, P. G., Revuelta, G. J., Cloud, L. J., Factor, S. A. 2011. Tardive Dyskinesia.
Curr Treat Options Neurol, Mar 3.
American Psychiatric Association. 2000. Diagnostic and Statistical Manual of
Mental Disorders. Publication Manual. 4th ed. Washington, DC.
Aragonès, E., Piñol, J. L., Labad, A. 2009. Comorbilidad de la depresión mayor con
otros trastornos mentales comunes en pacientes de atención primaria, Aten
Primaria, 41(10):545–551.
Arantes-Gonçalves, F. & Coelho, R. 2006. Depression and treatment. Apoptosis,
neuroplasticity and antidepressants. Acta Médica Portuguesa. v.19, p.9-20.
Arnone D., Horder, J., Cowen, P. J., Harmer, C. J. 2009. Early effects of
mirtazapine on emotional processing. Psychopharmacology, v 203, p.685–691.
Austin, M.-P., Mitchell, P., Goodwin, G. M. 2001. Cognitive deficits in depression:
Possible implications for functional neuropathology, British Journal of
Psychiatry, 178, 200-206.
Barros, H. M. T. & Ferigolo, M. 1998. Ethopharmacology of imipramine in the
forced-swimming test: gender differences. Neuroscience and Biobehavioral
Reviews 23 279–286.
Bengtsson, H. J., Kele, J., Johansson, J. Hjorth, S. 2000. Interaction of the
antidepressant mirtazapine with α2-adrenoceptors modulating the release of 5HT in different rat brain regions in vivo. Naunyn Schmiedeberg’s Arch
Pharmacol, 362:406–412.
Bekker, M. H. J., Mens-Verhulst, J. van. 2007. Anxiety Disorders: Sex Differences
in Prevalence, Degree, and Background, But Gender-Neutral Treatment,
Gender Medicine, VoL 4, Suppl. B.
Blaney, P. H. 1986. Affect and memory: a review. Psychol. Bull. 99, 229– 246.
Bruder, G. E., Stewart, J. W., Tenke, C. E., McGrath, P. J., Leite, P.,
Bhattacharya, N., Quitkin, F. M. 2001. Electroencephalographic and
perceptual asymmetry differences between responders and nonresponders to
an SSRI antidepressant. Biol Psychiatry. Mar 1;49(5):416-25.
Brunello, N., Davidson, J. R., Deahl, M., Kessler, R.C., Mendlewicz, J., Racagni,
G., Shalev, A. Y., Zohar, J. 2001. Posttraumatic stress disorder: diagnosis and
epidemiology, comorbidity and social consequences, biology and treatment.
Neuropsychobiology. 43(3):150-62.
Calzavara, M. B., Medrano, W. A., Levin, R., Kameda, S. R., Andersen, M. L.,
Tufik, S., Silva, R. H., Frussa-Filho, R., Abilio, V. C. 2009. Neuroleptic Drugs
87
Revert the Contextual Fear Conditioning Deficit Presented by Spontaneously
Hypertensive Rats: A Potential Animal Model of Emotional Context Processing
in Schizophrenia. Schizophrenia Bulletin, v. 35, p. 748-759.
Castaneda, A. E., Tuulio-Henriksson, A., Marttunen, M., Suvisaari, J, Lönnqvist,
J. 2007. A review on cognitive impairments in depressive and anxiety disorders
with a focus on young adults. J. Affect. Disord. Feb;106(1-2):1-27.
Cheng, Y. F., Wang, C., Lin, H. B., Li, Y. F., Huang, Y., Xu, J. P., Zhang, H. T.
2010. Inhibition of phosphodiesterase-4 reverses memory deficits produced by
Aβ25-35 or Aβ1-40 peptide in rats. Psychopharmacology (Berl).
Oct;212(2):181-91.
Consoni, F. T., Vital, M. A., Andreatini, R. 2006. Dual monoamine modulation for
the antidepressant-like effect of lamotrigine in the modified forced swimming
test. Eur Neuropsychopharmacol, v 16(6), p. 451-458.
Cryan, J.F. & Lucki, I. 2000. Antidepressant-like behavioral effects mediated by 5hydroxytryptamine (2C) receptors. J. Pharmacol. Exp. Ther. 295, 1120– 1126.
Cryan, J.F., Markou, A., Lucki, I. 2002. Assessing antidepressant activity in rodents:
recent developments and future needs. Trends Pharmacol. Sci..23 (5), 238–
245.
Cryan JF, Valentino RJ, Lucki I. 2005. Assessing substrates underlying the
behavioral effects of antidepressants using the modified rat forced swimming
test. Neurosci Biobehav Rev, 29:547–69.
Dagtekin, O., Marcus, H., Müller, C., Böttinger, B. W., Spöhr, F. 2010. Liquid
therapy for serotonin syndrome after intoxication with venlafaxine, lamotrigine
and diazepam, Minerva Anestesiologica, v. 76.
Davis, R. & Wilde, M. I. 1996. Mirtazapine: A review of its pharmacology and
therapeutic potential in the management of major depression. CNS Drugs, 5,
389–402.
De Boer, T. 1995. The effects of mirtazapine on central noradrenergic and
serotonergic neurotransmission. Int Clin Psychopharmacol, 10: 19–23.
Denizot, H., Laporte, F., Llorca, P.-M. 2009. Traitement psychotrope à long terme
dans les dépressions de l‘enfant. Archives de pédiatrie, 16, 1208–1212.
Detke, M. J., Rickels, M., Lucki, I. 1995. Active behaviors in the rat forced
swimming test differentially produced by serotonergic and noradrenergic
antidepressants. Psychopharmacology 121, 66– 72.
Detke, M. J., Johnson, J., Lucki, I. 1997. Acute and chronic antidepressant drug
treatment in the rat forced swimming test model of depression. Exp. Clin.
Psychopharmacol. 5, 107– 112.
88
Diaz, S. L. & Maroteaux, L. 2011. Implication of 5-HT2B receptors in the serotonin
syndrome. Neuropharmacology. Jan 26.
Dranovsky, A. & Hen, R. 2006. Hippocampal Neurogenesis: Regulation by Stress
and Antidepressants, Biol Psychiatry, 59:1136–1143
Drevets, W. 2001. Neuroimaging and neuropathological studies of depression:
implications for the cognitive-emotional features of mood disorders. Current
Opinion in Neurobiology, 11:240–249.
Duman, R. S. & Monteggia L. M. A. 2006. Neurotrophic Model for Stress-Related
Mood Disorders, Biol Psychiatry, 59:1116–1127.
Dunlop, B. W. & Davis, P. G. 2008. Combination Treatment With Benzodiazepines
and SSRIs for Comorbid Anxiety and Depression: A Review, Prim Care
Companion J Clin Psychiatry;10:222–228.
Elaković, I., Djordjevic, A., Adzic, M., Djordjevic, J., Radojčić, M., Matić, G. 2011.
Gender-specific response of brain corticosteroid receptors to stress and
fluoxetine. Brain Res. Apr 12;1384:61-8.
Esel, E., Ozsoy, S., Tutus, A., Sofuoglu, S., Kartalci, S., Bayram, F., Kokbudak,
Z., Kula, M. 2005. Effects of antidepressant treatment and of gender on serum
leptin levels in patients with major depression. Prog Neuropsychopharmacol
Biol Psychiatry. May;29(4):565-70.
Fava, M. & Kendler, K. S. 2000. Major Depressive Disorder, Neuron, Vol. 28, 335–
341, November.
Findling, R. L. Pagano, M. E., McNamara, N. K., Stansbrey, R. J., Faber, J.
E., Lingler, J., Demeter, C. A., Bedoya, D., Reed, M. D. 2009. The short-term
safety and efficacy of fluoxetine in depressed adolescents with alcohol and
cannabis use disorders: a pilot randomized placebo-controlled trial. Child and
Adolescent Psychiatry and Mental Health, v 3:11.
Freis, E. D. 1954. Mental depression in hypertensive patients treated for long periods
with large doses of reserpine. N Engl J Med. Dec 16;251(25):1006-8.
Freud, S. 1914. Recordar, repetir e elaborar. Reedição de 1976.
Gabriele, A. & Packard, M. G. 2006. Evidence of a role for multiple memory systems
in behavioral extinction. Neurobiology of Learning and Memory, v.85 p.289–
299.
Gambi, F., De Berardis, D., Campanella, D., Carano, A., Sepede, G., Salini, G.,
Mezzano, D., Cicconetti, A., Penna, L., Salerno, R. M., Ferro, F. M. 2005.
Mirtazapine treatment of Generalized Anxiety Disorder: a fixed dose, open label
study. Journal of Psychopharmacology. v.19, p.483-487.
89
Garcia-Vendugo, J. M., Doetsch, F., Wichterle, H., Lim, D. A. 1998. Architecture
and cell types of the adult subventricular zone: in search of the stem cells. J
Neurobiol. Aug;36(2):234-48.
Gerritsen, L., Comijs, H. C., van der Graaf, Y., Knoops, A. J., Penninx, B. W.,
Geerlings, M. I. 2011. Depression, Hypothalamic Pituitary Adrenal Axis, and
Hippocampal and Entorhinal Cortex Volumes-The SMART Medea Study. Biol
Psychiatry. Mar 23.
Ghia, J. E., Park, A. J., Blennerhassett, P., Khan, W. I., Collins, S. M. 2011.
Adoptive transfer of macrophage from mice with depression-like behavior
enhances susceptibility to colitis. Inflamm Bowel Dis. Jan 18.
Glannon, W. 2006. Psychopharmacology and memory. Journal of Medical Ethics.
v.32, n.2, p.74-78.
Gould, E., Beylin, A., Tanapat, P., Reeves, A., Shors, T. J. 1999. Learning
enhances adult neurogenesis in the hippocampal formation, nature
neuroscience, v. 2 no 3, march.
Gould, E. & Gross, C. G. 2002. Neurogenesis in adult mammals: some progress
and problems. J Neurosci. Feb 1;22 (3):619-23.
Gouveia Jr, A., Afonseca, T. L., Maximino, C., Dominguez, R., Morato, S. 2008.
Influence of gender and estrous cycle in the forced swim test in rats.
Psychology & Neuroscience, 1, 2, 191 – 197.
Guay, D. R. 2010. Tetrabenazine, a monoamine-depleting drug used in the treatment
of hyperkinetic movement disorders. Am J Geriatr Pharmacother. Aug;8(4):33173.
Haddjeri, N., Blier, P., De Montigny, C. 1998. Acute and long-term actions of the
antidepressant drug mirtazapine on central 5-HT neurotransmission. Journal of
Affective Disorders. v.51, p.255–266.
Harmer, C.J., Mackay, C.E., Reid, C.B., Cowen, P.J., Goodwin, G.M. 2006.
Antidepressant Drug Treatment Modifies the Neural Processing of
Nonconscious Threat Cues. Biol Psychiatry, 59:816–820.
Harmer, C. J., Goodwin, G. M., Cowen, P. J. 2009. Why do antidepressants take so
long to work? A cognitive neuropsychological model of antidepressant drug
action, The British Journal of Psychiatry 195, 102–108.
Harmer, C. J., Cowen, P. J., Goodwin, G. M. 2010. Efficacy markers in depression.
Journal of Psychopharmacology, June 8.
Ilsley, J. E., Moffoot, A. P., O’Carroll, R. E. 1995. An analysis of memory
dysfunction in major depression. Journal of Affective Disorders, 35, 1–2.
90
Kalueff, A. V. 2007. Neurobiology of Memory and Anxiety: From Genes to Behavior.
Neural Plasticity. p.1-12.
Kelly, S. J., Ostrowski, N. L., Wilson, M. A. 1999. Gender Differences in Brain and
Behavior: Hormonal and Neural Bases, Pharmacology Biochemistry and
Behavior, Vol. 64, No. 4, pp. 655–664.
Kent, J. M. 2000. SNaRIs, NaSSAs, and NaRIs: new agents for the treatment of
depression. The Lancet, v.355, p.911-918, mar.
Kim, J. H. & Richardson, R. 2010. New Findings on Extinction of Conditioned Fear
Early in Development: Theoretical and Clinical Implications, Biol Psychiatry
67:297–303.
Kloet, E. Ron de, Jöels, M., Holsboer, F. 2005. Stress and the brain: from
Adaptation to disease. Nature Reviews Neuroscience, Volume 6, June, 463.
Krystal, J. H. & Neumeister, A. 2009. Noradrenergic and serotonergic mechanisms
in the neurobiology of posttraumatic stress disorder and resilience, Brain
Research 1293; 13-23.
Lee, S. Jeong, J. Kwak, Y. Park S. K. 2010. Depression research: where are we
now? Molecular Brain, 3:8.
Lopez-Rubalcava, C. & Lucki, I. 2000. Strain differences in the behavioral effects of
antidepressant drugs in the rat forced swimming test. Neuropharmacology 22,
191– 199.
Mahendran, R. & Yap, H. L. 2005. Clinical practice guidelines for depression.
Singapore Medical Journal. v.46, n.11, p.610-615.
Manji, H. K., Drevets, W. C., Charney, D. S. 2001. The cellular neurobiology of
depression. Nature Med 7:541–547.
Mao, J., Gold, M. S., Backonja, M. M. 2011. Combination Drug Therapy for Chronic
Pain: A Call for More Clinical Studies, The Journal of Pain, volume 12, Issue 2,
Pages 157-166, February.
Marques, C. 2001. Tratamento farmacológico do transtorno obsessivo-compulsivo.
Revista Brasileira de Psiquiatria, v 23(Supl II), p.49-51.
Marks, D. M. Han, C., Krulewicz, S., Pae, C., Peindl, K., Patkar, A. A., Masand P.
S. 2008. History of depressive and anxiety disorders and paroxetine response
in patients with irritable bowel syndrome: post hoc analysis from a placebocontrolled study. Prim Care Companion J Clin Psychiatry, 10:368-375.
Marks, I., Lovell, K., Noshirvani, H., Livanou, M., Thrasher, S. 1998. Treatment of
Posttraumatic Stress Disorder by Exposure and/or Cognitive Restructuring,
Arch Gen Psychiatry, 55:317-325.
91
McCabe, C., Mishor, Z., Cowen, P.J., Harmer, C.J. 2010. Diminished Neural
Processing of Aversive and Rewarding Stimuli During Selective Serotonin
Reuptake Inhibitor Treatment. Biol Psychiatry, 67:439–445.
Mischoulon D., Eddy, K. T., Keshaviah, A., Dinescu, D., Ross, S. L., Kass, A. E.,
Franko, D. L., Herzog, D. B. 2010. Depression and eating disorders: Treatment
and course. J Affect Disord. Nov 23.
Modrzejewska, R. 2010. Comorbidity in adolescence: simultaneous declaration of
depressive, eating, obsessive-compulsive symptoms and use of psychoactive
substances in the general population of 17 year old students in a big city.
Psychiatr Pol. Sep-Oct;44(5):651-63.
Monfils, M. H., Cowansage, K. K., LeDoux, J. E. 2007. BDNF: linking fear learning
to memory consolidation. Molecular Pharmacology Fast Forward. p, mai.
Morishita, S. & Aoki, S. 2002. Effects of tricyclic antidepressants on protein kinase
C activity in rabbit and human platelets in vivo. Journal of Affective Disorders 70
329–332.
Monteggia, L. M., Luikart, B., Barrot, M., Theobold, D., Malkovska, I., Nef, S.,
Parada, L. F., Nestler, E. J. 2007. Brain-Derived Neurotrophic Factor
Conditional Knockouts Show Gender Differences in Depression-Related
Behaviors. Biol Psychiatry 61:187–197.
Monti, B., Berteotti, C., Contestabile, A. 2006. Subchronic rolipram delivery
activates hippocampal CREB and arc, enhances retention and slows down
extinction of conditioned fear. Neuropsychopharmacology 31, 278 e 286.
Mueller, E. M., Hofmann, S. G., Cherry, J. A. 2010. The type IV phosphodiesterase
inhibitor rolipram disturbs expression and extinction of conditioned fear in mice.
Neuropharmacology 59, 1 e 8.
Nandam, L. S., Jhaveri, D. & Bartlett, P. 2007. 5-HT7, neurogenesis and
antidepressants: a promising therapeutic axis for treating depression, Clinical
and Experimental Pharmacology and Physiology 34, 546–551.
Nestler, E. J. & Carlezon Jr., W. A. 2006. The Mesolimbic Dopamine Reward Circuit
in Depression. Biol Psychiatry 59:1151–1159.
Newman, P. J. & Sweet, J. J. Depressive disorders. In A. E. Puente & R. J.
McCaffrey (Eds.), Handbook of neuropsychological assessment: A
biopsychosocial perspective. (1992) (pp. 263–307). New York: Plenum Press.
Page, M. E., Detke, M. J., Dalvi, A., Kirby, L. G., Lucki, I. 1999. Serotonergic
mediation of the effects of fluoxetine, but not desipramine, in the rat forced
swimming test. Psychopharmacology (Berl.) 147, 162– 167.
92
Paizanis, E., Hamon, M., Lanfumey, L. 2007. Hippocampal Neurogenesis,
Depressive Disorders, and Antidepressant Therapy. Neural Plasticity, v. 2007,
Article ID 73754, 7 pages.
Pardo, J. V., Pardo, P. J., Humes, S. W., Posner, M. I. 2006. Neurocognitive
dysfunction in antidepressant-free, non-elderly patients with unipolar
depression: Alerting and covert orienting of visuospatial attention. Journal of
Affective Disorders. v.92, p,71-78.
Pellow, S., Chopin, P., File, S. E., Briley, M. 1985. Validation of open:closed arm
entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci
Methods. Aug;14(3):149-67.
Pellow, S. & File, S. E. 1986. Anxiolytic and anxiogenic drug effects on exploratory
activity in an elevated plus-maze: a novel test of anxiety in the rat. Pharmacol
Biochem Behav. Mar;24(3):525-9.
Phelps, E. A. & LeDoux, J. E. 2005. Contributions of the Amygdala to Emotion
Processing: From Animal Models to Human Behavior. Neuron, Vol. 48, 175–
187, October 20.
Pittenger, C. & Duman, R. S. 2008. Stress, Depression, and Neuroplasticity: A
Convergence of Mechanisms. Neuropsychopharmacology REVIEWS 33, 88–
109.
Porsolt, R. D., Le Pichon, M., Jalfre, M. 1977. Depression: a new animal model
sensitive to antidepressant treatment. Nature, v. 266, p.730-732.
Porsolt, R. D., Anton, G., Blavet, N., Jalfre, M. 1978. Behavioural despair in rats: a
new model sensitive to antidepressant treatments. Eur J Pharmacol 47:379–91.
Rauggi, R. Cassanelli, A., Raone, A., Tagliamonte, A., Gambarana, C. 2005.
Study of mirtazapine antidepressant effects in rats. International Journal of
Neuropsychopharmacology, v.8, p. 369–379.
Rauch S. L., Shina, L. M., Phelps, E. A. 2006. Neurocircuitry Models of
Posttraumatic Stress Disorder and Extinction: Human Neuroimaging
Research—Past, Present, and Future. Biol Psychiatry, 376-382.
Rawlings, N.B., Norbury, R., Cowen, P.J., Harmer C.J. 2010. A single dose of
mirtazapine modulates neural responses to emotional faces in healthy people.
Psychopharmacology 01 September.
Ravnkilde, B., Videbech. P., Clemmensen, K., Egander, A., Rasmussen, N. A.
Rosenberg, R. 2002. Cognitive deficits in major depression. Scandinavian
Journal of Psychology. 43, 239–251.
Reneric J. P., Bouvard, M., Stinus, L. 2002. In the rat forced swimming test, chronic
but not subacute administration of dual 5-HT/NA antidepressant treatments may
produce greater effects than selective drugs. Behav. Brain Res. 15, 521–532.
93
Reneric, J. P. & Lucki, I. 1998. Antidepressant behavioral effects by dual inhibition
of monoamine reuptake in the rat forced swimming test. Psychopharmacology
(Berl.) 136, 190– 197.
Ribeiro, A. M., Barbosa, F. F., Godinho, M. R., Fernandes, V. S., Munguba, H.
Alves, L. M., Melo, T. G., Barbosa, M. T., Silva, R. H. 2010. Sex differences in
aversive memory in rats: possible role of extinction and reactive emotional
factors. Brain and Cognition Volume 74, Issue 2, November, Pages 145-151.
Rogóz, Z., Skuza, G., Legutko, B. 2005. Repeated treatment with mirtazapine
induces brain derived neurotrophic factor gene expression in rats. Journal of
Physiology and Pharmacology. v.56, n.4, p.661-671.
Sahay, A. & Hen R. 2007. Adult hippocampal neurogenesis in depression, Nature
Neuroscience v.10; 9; September.
Sánchez, C. & Hyttel, J. 1999. Comparison of the Effects of Antidepressants and
Their Metabolites on Reuptake of Biogenic Amines and on Receptor Binding,
Cellular and Molecular Neurobiology, Vol. 19, No. 4.
Sen, S., Nesse, R. M., Stoltenberg, S. F., Li, S., Gleiberman, L., Chakravarti, A.,
Weder, A.B., Burmeister, M. 2003. A BDNF Coding Variant is Associated with
the NEO Personality Inventory Domain Neuroticism, a Risk Factor for
Depression, Neuropsychopharmacology 28, 397–401.
Silva, R. H., Bellot, R. G., Vital, M. A. B. F., Frussa-Filho, R. 1997. Effects of Long
- Term Ganglioside GM1 Administration on a New Discriminative Avoidance
Test in Normal Adult Mice. Psychopharmacology, v. 129, p. 322-328.
Silva, R. H. & Frussa-Filho, R. 2000. The plus-maze discriminative avoidance task:
a new model to study memory–anxiety interactions. Effects of chlordiazepoxide
and caffeine. Journal of Neuroscience Methods. v.102, p.117–125,
Silva, R. H. Kameda, S. R., Carvalho, R. C., Rigo, G. S., Costa, K. L., Taricano, I.
D., Frussa-Filho, R. 2002. Effects of amphetamine on the plus-maze
discriminative avoidance task in mice. Psychopharmacology. v.160, p.9-18.
Solomon, M. B. & Herman, J. P. 2009. Sex differences in psychopathology: Of
gonads, adrenals and mental illness. Physiology & Behavior 97; 250–258.
Tian, J. S., Cui, Y. L., Hu, L. M., Gao, S., Chi, W., Dong, T. J., Liu, L.P. 2010.
Antidepressant-like effect of genipin in mice. Neurosci Lett. Aug 2;479(3):236-9.
Tsai, S.-J., Hong, C.-J., Liou, Y.-J., Chen, T.-J., Chen, M.-L., Hou, S.-J., Yen, F.C., Yu, Y. W.-Y. 2009. Haplotype analysis of single nucleotide polymorphisms
in the vascular endothelial growth factor (VEGFA) gene and antidepressant
treatment response in major depressive disorder. Psychiatry Research 169;
113–117.
94
Toufexis, D. J., Myers, K. M., Davis, M. 2006. The effect of gonadal hormones and
gender on anxiety and emotional learning, Hormones and Behavior 50; 539–
549.
Vázquez-Palacios, G. 2004. Antidepressant-like effects of the acute and chronic
administration of nicotine in the rat forced swimming test and its interaction with
flouxetine. Pharmacology, Biochemistry and Behavior. v.78, p.165–169.
Veiel, H. 1997. A preliminary profile of neuropsychological deficits associated with
major depression. Journal of Clinical and Experimental Neuropsychology. 19,
587–603.
Weiland-Fiedler, P. Erickson, K., Waldeck, T., Luckenbaugh, D. A., Pike,
D., Bonne, O., Charney, D. S., Neumeister, A. 2004.Evidence for continuing
neuropsychological impairments in depression. Journal of Affective Disorders.
v.82, p.253–258.
Wing, V. C. & Shoaib, M. 2007. Examining the clinical efficacy of bupropion and
nortriptyline as smoking cessation agents in a rodent model of nicotine
withdrawal. Psychopharmacology 195:303–313.
Woolley, D. G., Vermaercke, B. Beeck, H. O. de, Wagemans, J., Gantois, I.,
D’Hooge, R. Swinnen, S. P., Wenderoth, N. 2010. Sex differences in human
virtual water maze performance: Novel measures reveal the relative contribution
of directional responding and spatial knowledge. Behavioural Brain Research
208 408–414.
Yaffe, K., Blackwell, T, Gore, R, Sands, L, Reus, V, Browner, W. S. 1999.
Depressive symptons and cognitive decline in nondemented elderly women. A
prospective study. Archives of General Psychiatry. v.56, p.425-430.
Yamamoto, S., Morinobu, S., Takei, S., Fuchikami, M., Matsuki, A., Yamawaki,
S., Liberzon, I. 2009. Single prolonged stress: toward an animal model of
posttraumatic stress disorder. Depress Anxiety. 26 (12):1110-7.
Zucker, I. & Beery, A. K. 2010. Males still dominate animal studies. Nature. Jun
10;465(7299):690.
95
Download

THIEZA GRAZIELLA ARAUJO DA SILVA GOES DE MELO