THIEZA GRAZIELLA ARAUJO DA SILVA GOES DE MELO ANTIDEPRESSIVOS MODIFICAM A EXTINÇÃO DE UMA MEMÓRIA AVERSIVA EM RATAS Dissertação apresentada à Universidade Federal do Rio Grande do Norte, para obtenção do título de Mestre em Psicobiologia. Natal 2011 1 THIEZA GRAZIELLA ARAUJO DA SILVA GOES DE MELO ANTIDEPRESSIVOS MODIFICAM A EXTINÇÃO DE UMA MEMÓRIA AVERSIVA EM RATAS Dissertação apresentada à Universidade Federal do Rio Grande do Norte, para obtenção do título de Mestre em Psicobiologia. Orientadora: Profª. Drª. Regina Helena da Silva Co-Orientador: MSc PhD Geison de Souza Izídio Natal 2011 2 Título: ANTIDEPRESSIVOS MODIFICAM A EXTINÇÃO DE UMA MEMÓRIA AVERSIVA EM RATAS Autor: Thieza Graziella Araújo da Silva Góes de Melo Data da defesa: 16/05/2011 Banca Examinadora: ___________________________________ Profª. Drª. Flávia Teixeira da Silva Universidade Federal de Sergipe, SE ___________________________________ Profª. Drª. Elaine Cristina Gavioli Universidade Federal do Rio Grande do Norte, RN ___________________________________ Profª. Drª. Regina Helena da Silva Universidade Federal do Rio Grande do Norte, RN 3 AGRADECIMENTOS À minha família e amigos, pela compreensão. Especialmente minha mãe, por estar sempre presente e ter sempre me dado o melhor exemplo a ser seguido. As minhas conquistas são tão minhas quanto dela e, algumas vezes, talvez até mais dela que minhas. Ao meu noivo, Tiago, também sempre presente, inclusive nos finais de semana, em experimento, me dando suporte. Ao meu padrasto, Pai-Tio Guilherme que tem, com toda certeza, ―direito‖ a pelo menos 1 cm² do certificado. À minha avó, meu exemplo de vida, e que me mostrou que tudo pode ser feito com paciência, boa vontade e um pouquinho de ousadia. À professora Regina que me acompanha desde a iniciação científica, dando suporte acadêmico/científico e que verdadeiramente me ensinou a fazer ciência, mesmo sob as circunstâncias mais adversas. Ao LEME, no corpo de seus ICs, mestrandos, doutorandos, pós-docs e professores pela ajuda durante os experimentos e dos quais recebi não menos que amizade. Dentro do LEME agradeço especialmente às duas pessoas que participaram mais diretamente nos experimentos e revisões, Luane e Geison. Aos dois psiquiatras que me forneceram suporte técnico e informações clínicas Drª Nádira Hazboun e Drº Francisco Márcio Pinheiro. À UFRN, CAPES, CNPq, FAPERN e PPG em Psicobiologia pelo apoio financeiro e estrutural. A todos os professores e colegas do programa de pós-graduação em Psicobiologia. Por fim, mas tão importante quanto, agradeço a todos os que não citei, mas sem os quais eu não poderia ter realizado esse trabalho. 4 Resumo Os tratamentos de depressão, transtorno de estresse pós-traumático e outras psicopatologias que se utilizam de antidepressivos podem estar associados à melhora de déficits cognitivos relacionados a esses transtornos. Embora os mecanismos pelos quais a melhora nos déficits cognitivos ocorre não estejam totalmente esclarecidos, alterações na extinção de memórias aversivas podem estar presentes nestas psicopatologias. Além disso, pesquisas com animais de laboratório geralmente são realizadas com indivíduos do sexo masculino, e recentemente verificamos que a extinção de uma tarefa aversiva é diminuída em ratas quando comparada ao desempenho de ratos. No presente estudo, ratas Wistar foram tratadas prolongadamente com antidepressivos utilizados na clínica (nortriptilina, fluoxetina ou mirtazapina) e testadas na esquiva discriminativa em labirinto em cruz elevado e no teste do nado forçado, a fim de avaliar a aprendizagem, a memória, a extinção, a ansiedade e comportamentos relacionados à depressão. A exploração do braço aversivo na sessão de treino foi semelhante em todos os grupos, mostrando que todos os grupos aprenderam a tarefa, havendo, porém, uma melhora no desempenho dos grupos tratados com nortriptilina e mirtazapina. Na sessão teste todos os animais evocaram a tarefa. O tratamento prolongado com a fluoxetina, mas não com os outros antidepressivos, promoveu uma melhora na extinção da memória aversiva da EDLC. No teste de nado forçado, os animais tratados com fluoxetina e mirtazapina apresentaram diminuição na duração da imobilidade, comparados ao veículo. Em conclusão, os antidepressivos podem interferir no aprendizado, mas não na evocação de memórias aversivas. Além disso, ratas tratadas com fluoxetina apresentam um aumento da extinção da tarefa aversiva, em comparação ao veículo, enquanto os demais tratamentos impediram a extinção dessa tarefa. Além disso, tanto a fluoxetina como a mirtazapina foram eficazes no teste de nado forçado, sugerindo dissociação entre os efeitos antidepressivos e extinção de memórias aversivas. Palavras chaves: fluoxetina, nortriptilina, mirtazapina, ratas, memória aversiva, depressão, ansiedade. 5 Abstract Treatment of major depression, posttraumatic stress disorder and other psychopathologies with antidepressants can be associated with improvement of the cognitive deficits related to these disorders. Although the mechanisms of these effects are not completely elucidated, alterations in extinction of aversive memories are believed to be present in these psychopathologies. Moreover, researches with laboratory animals usually focus on male subjects, and we have recently verified that extinction of an aversive task is reduced in female rats when compared to males. In the present study, female rats were long-term treated with clinically used antidepressants (fluoxetine, nortriptyline or mirtazapine) and tested in the plus-maze discriminative avoidance and forced swimming tests in order to evaluate learning, memory, extinction, anxiety and depression-related behaviors. All groups learned the task, but learning was somewhat faster in nortriptyline and mirtazapine-treated animals . Task retrieval was also showed by all experimental groups. Chronic treatment with fluoxetine, but not with the other antidepressants, increased extinction of the discriminative task. In the forced swimming test, animals treated with fluoxetine and mirtazapine showed decreased immobility duration. In conclusion, antidepressants interfere with learning and female rats treated with fluoxetine presented increased extinction of the aversive memory task. On the other hand, both fluoxetine and mirtazapine were effective in the forced swimming test, suggesting dissociation between the antidepressant effects and the extinction of aversive memories. Keywords: discriminative avoidance task, sex differences, forced swimming test, aversive memory, depression, anxiety. 6 Sumário I. INTRODUÇÃO ............................................................................................ 8 II. OBJETIVOS .............................................................................................. 20 III. ARTIGO PARA SUBMISSÃO................................................................... 21 IV. CONCLUSÃO E CONSIDERAÇÕES FINAIS........................................... 55 V. REFERÊNCIAS ......................................................................................... 57 7 I. Introdução O uso de antidepressivos, sozinhos ou em combinação com a psicoterapia, é largamente difundido. Além da grande indicação para o tratamento de psicopatologias como transtornos de humor e ansiedade (Marks et al. 1998; Brunello et al. 2001; Nandam et al. 2007), eles são também indicados como uma opção alternativa para doenças debilitantes funcionais como, por exemplo, a síndrome da fadiga crônica, a fibromialgia, enxaquecas ou dores de cabeça crônicas e dores faciais atípicas (Marks et al. 2008; Mao et al. 2010). A depressão é uma psicopatologia já devidamente classificada no Manual de Diagnóstico e Estatística de Doenças Mentais (em inglês Diagnostic and Statistical Manual of Mental Disorders), com suas últimas modificações na classificação para diagnóstico em sua quarta edição e no Texto Revisado (2000). Também consta na Classificação Estatística Internacional de Doenças e Problemas Relacionados (CID10) na sessão de transtornos mentais e comportamentais. Estima-se que o transtorno depressivo acometa aproximadamente 10% da população mundial e é considerado um dos maiores males da atualidade. A sua incidência também é destacada incorrendo até duas vezes mais em mulheres que em homens (Fava & Kendler 2000; Mahendran & Yap 2005; Bekker & van Mens-Verhulst 2007). A depressão pode se apresentar como um episódio único (episódio depressivo), caracterizado por ser um período mínimo de duas semanas, durante as quais há um humor deprimido ou perda de interesse ou prazer por quase todas as atividades. Em crianças e adolescentes o humor pode ser irritável ao invés de triste. Nesse período é comum que se apresentem pelo menos quatro sintomas adicionais, extraídos de uma lista que inclui: alterações no apetite ou peso, no sono e na atividade 8 psicomotora; diminuição da energia; sentimentos de desvalia ou culpa; dificuldades para pensar, concentrar-se ou tomar decisões, ou pensamentos recorrentes sobre morte ou ideação suicida; planos ou tentativas de suicídio. Sintomas físicos são comumente encontrados no episódio depressivo maior: propensão ao choro, irritabilidade, ruminação obsessiva, ansiedade, fobias, preocupação com a saúde física e queixas de dores, tanto de cabeça, quanto no corpo (APA 2000; Fava & Kendler 2000). Alguns indivíduos podem apresentar ataques de pânico que ocorrem segundo um padrão que satisfaz os critérios para transtorno de pânico. Em crianças pode ocorrer ansiedade de separação. Alguns indivíduos observam dificuldade nos relacionamentos íntimos, diminuição das interações sociais satisfatórias ou dificuldades no funcionamento sexual (APA 2000). A manifestação de episódios depressivos pode ainda vir como um transtorno depressivo maior, o qual é caracterizado pela ocorrência de um ou mais episódios depressivos, sem história de episódios maníacos, mistos ou hipomaníacos. Usualmente, pacientes diagnosticados com depressão apresentam também sintomas de ansiedade, com variadas intensidades, tais como: preocupação, nervosismo, ataques de pânico, sintomas de fobia, transtornos obsessivocompulsivos, entre outros (APA 2000). Os pacientes depressivos que possuem elevados níveis de ansiedade podem apresentar quadros mais severos e recuperação mais demorada. Além disso, a depressão pode ainda se apresentar comorbidamente com outros transtornos de ansiedade (Marques 2001; Aragonès et al. 2009) e transtornos relacionados a substâncias, transtorno de pânico, transtorno obsessivo-compulsivo, anorexia nervosa, bulimia nervosa e transtorno da personalidade borderline (APA 2000). Assim, não é surpreendente que se aplique o 9 uso de antidepressivos também ao tratamento de outros transtornos como os da ansiedade (APA 2000; Marques 2001). A incidência desses demais transtornos também pode ser relacionada à comorbidade deles com a depressão. Os transtornos de ansiedade mais comuns em mulheres, em sua grande maioria (Bekker & van Mens-Verhulst 2007) são os de maiores índices de comorbidade com a depressão. Dessa forma é imperativa a necessidade de uma maior atenção à sintomatologia diferenciada apresentada pelos indivíduos do sexo feminino. Mulheres e crianças podem apresentar mais comumente o humor irritado (APA 2000) e essa alteração no humor pode ser sintoma apenas da depressão e não ter nenhuma relação com outros transtornos de humor ou ansiedade. Paralelamente, a perda de peso pode estar associada mais facilmente aos transtornos alimentares, que podem ser a causa da depressão (APA 2000; Mischoulon et al. 2010; Modrzejewska 2010). O tratamento de transtornos do humor é geralmente complexo, prolongado e adequado a cada indivíduo. Estudos com indivíduos saudáveis sugerem que a percepção de faces com expressões negativas começam a aparecer após o 7º dia de tratamento (Harmer et al. 2010), diminuição de perceptção essa, associada aos efeitos terapêuticos do uso contínuo de antidepressivos. Existem várias classes de drogas antidepressivas disponíveis farmacodinâmicas distintas. De forma na atualidade, geral, com propriedades tais fármacos aumentam as concentrações de monoaminas na fenda sináptica, mas apenas esse aumento, embora necessário, não é suficiente para explicar a remissão dos sintomas (Arantes-Gonçalves & Coelho 2006). As primeiras teorias para explicar as bases fisiológicas da depressão surgiram em torno da hipótese da redução das concentrações de serotonina (5-HT) e 10 noradrenalina (NA) na fenda sináptica, visto que drogas que depletam as reservas desses neurotransmissores são indutoras de quadros depressivos (Freis 1954; Guay 2010; Tian et al 2010; Aia et al 2011; Ghia et al 2011), e o mecanismo de ação dos agentes depressivos mais utilizados envolve aumento da disponibilidade desses neurotransmissores (Kent 2000). Contudo, uma hipótese mais recente sobre a fisiopatologia e tratamento da depressão envolve também adaptação e plasticidade neural. De acordo com essa hipótese, a depressão seria resultado de uma falha na execução de respostas adaptativas apropriadas ao estresse e a estímulos aversivos, ou seja, perda da plasticidade sináptica. A isso pode se associar o fato de que a exposição crônica a situações de estresse induz um quadro semelhante à depressão, com redução dos níveis hipocampais de fator neurotrófico derivado do encéfalo (BDNF – do inglês brain-derived neutrophic factor) (Gould et al. 1999; Sen et al. 2003; Arantes-Gonçalves & Coelho 2006), componente da família das neurotrofinas, que, entre várias outras moléculas, apresenta um papel reconhecidamente importante na plasticidade sináptica (Arantes-Gonçalves & Coelho 2006; Monfils 2007; Kalueff 2007). Essa plasticidade em adultos também pode ocorrer através da neurogênese (Gould & Gross 2002), que também é regulada pelos antidepressivos (Santarelli et al. 2003). Normalmente é restrita ao hipocampo, nas zonas subventricular e subgranular do giro denteado (Garcia-Vendugo et al. 1998; Santarelli et al. 2003). Isso corrobora os estudos que mostram hipocampo diminuído em indivíduos deprimidos (Manji et al. 2002; Nestler & Carlezon Jr. 2006) e atividade aumentada na amígdala (Drevets 2001). Existe também a evidência de que o estresse impede a neurogênese e estaria relacionado a essa diminuição hipocampal (Kloet et al. 2005; Gerritsen et al. 2011). 11 Dentre as várias opções de antidepressivos os mais prescritos são os inibidores seletivos de recaptação de serotonina (ISRS) tanto para adultos como para crianças (Dunlop & Davis 2008; Denizot et al. 2009). Introduzidos na clínica no final da década de 80 (Kent 2000), os ISRS agem bloqueando a ação do transportador de serotonina. Dessa forma eles impedem a recaptação do neurotransmissor, o que prolonga a sua exposição ao receptor, (Vázquez-Palacios 2004) e aumentando a atividade do sistema monoaminérgico no cérebro (Tsai et al. 2009). Dentre os antidepressivos dessa classe a fluoxetina é o mais prescrito (Dunlop & Davis 2008). É importante ressaltar que a serotonina (5-HT) possui também um papel regulador na divisão celular e um papel crítico no controle da proliferação das células adultas neurais, fato que explicaria sua eficácia na melhora dos sintomas depressivos considerando o papel da neurogênese hipocampal na fisiopatologia da depressão (Santarelli et al. 2003; Paizanis et al. 2007) Os antidepressivos tricíclicos são uma classe mais antiga de fármacos utilizados no tratamento da depressão. Eles agem inibindo a recaptação monoaminérgica não seletivamente. Alguns fármacos mais conhecidos dessa classe são a amitriptilina, clomipramina, desipramina, imipramina, nortriptilina e a doxepina. De interesse para o presente estudo, a nortriptilina inibe a recaptação de noradrenalina e menos potencialmente da serotonina, sendo também agonista do receptor 5-HT2 (Sanchez & Hyttel 1999; Wing & Shoaib 2007). Além disso, ela age induzindo uma diminuição na expressão (downregulation) dos receptores βadrenérgicos (Morishita & Aoki 2002). Apesar de não ser largamente prescrita, a nortriptilina continua sendo uma opção para indivíduos não responsivos a outros antidepressivos e para sujeitos suscetíveis à síndrome de serotonina, um efeito 12 colateral importante decorrente do tratamento com ISRS (Dagtekin et al. 2010; Diaz & Maroteaux 2011). Os antidepressivos tetracíclicos são uma nova classe de drogas utilizadas no tratamento da depressão, também chamados de atípicos, introduzidos depois da década de 80 (Kent 2000). Dentre estes, o antidepressivo atípico mirtazapina atua especificamente sobre as transmissões noradrenérgica e serotonérgica (noradrenergic and serotonergic specific antidepressants, NaSSA, em inglês) e é usado para tratar transtornos de humor e ansiedade (Gambi et al. 2005; Rauggi et al. 2005). A mirtazapina aumenta as transmissões noradrenérgica e serotonérgica central através da inibição dos autoreceptores α2 e heteroreceptores noradrenérgicos α2 em sinapses serotonérgicas (Bengtsson et al. 2000; Gambi et al. 2005). Além disso, é um agonista do receptor 5-HT1A (Rogóz et al. 2005) e também age bloqueando receptores, 5-HT2A, 5-HT2C e 5-HT3 e histaminérgicos H1 (Haddjeri 1998; Davis & Wilde 1996; Arnone 2009; de Boer 1995; Rauggi et al. 2005). A mirtazapina não possui efeitos na recaptação de monoaminas, além de apresentar baixa afinidade para receptores dopaminérgicos e alguns subtipos de receptores serotonérgicos. Apesar dos efeitos clínicos de antidepressivos serem semelhantes entre os sexos, aspectos farmacocinéticos e farmacodinâmicos de sua ação podem ser distintos entre os sexos. Uma evidência dessa diferenciação para as respostas aos antidepressivos é a melhor responsividade do sexo feminino aos ISRS e as altas taxas de abandono do tratamento com tricíclicos (Dalla et al. 2009), comparando-se aos homens. Já em modelos animais, alguns estudos mostram não haver diminuição da imobilidade no nado forçado em fêmeas tratadas com um antidepressivo 13 tricíclico, enquanto machos respondem positivamente ao mesmo tratamento e com a mesma dose (Barros & Ferigolo 1998). Assim como em grande parte dos casos de diversos transtornos psicopatológicos, pacientes com diagnóstico de depressão, não raramente apresentam prejuízos cognitivos, além de todo quadro afetivo característico (Yaffe 1999; Ravnkilde 2002; Pardo 2006). Dentre esses prejuízos incluem-se alterações nas funções de memória e aprendizado (Burt 1995; Weiland-Fiedler 2004). Esses prejuízos cognitivos seriam revertidos através do tratamento com antidepressivos (Austin et al. 2001; Castaneda et al. 2007) e evidências sugerem que essa melhora está associada ao aumento de neurogênese (Duman & Monteggia 2006; Dranovsky & Hen 2006; Nandam et al. 2007; Paizanis et al. 2007; Sahay & Hen 2007; Pittenger & Duman 2008) e a modificações no sistema monoaminérgico (Lee et al. 2010). Independente da presença de outros tipos de prejuízos cognitivos, comumente as psicopatologias estão relacionadas a experiências e memórias emocionais aversivas (APA 2000; Phelps & LeDoux 2005) e há muito se preconiza que as vítimas desses transtornos poderiam se beneficiar com a diminuição dos sintomas através de uma ressignificação da memória aversiva formada (Freud 1914). Sugere-se que a ressignificação dessas memórias ocorreria através de um processo de extinção, que é dependente de mecanismos plásticos (Gabriele & Packard, 2006). Extinção seria a formação de uma nova memória relacionada à anteriormente formada, sem, contudo, substituir a memória anterior, passando a existir paralelamente (Gabriele & Packard, 2006). Sendo assim, alterações no processo normal de extinção de memórias aversivas poderiam estar relacionadas com a fisiopatologia de alguns transtornos neuropsiquiátricos. Enquanto essa relação já foi bem estudada para o transtorno do estresse pós-traumático (Rauch et 14 al. 2006; Krystal & Neumeister 2009), a participação de processos relacionados à memória emocional e a fisiopatologia da depressão não está bem estabelecida (Blaney 1986; Newman & Sweet 1992; Ilsley et al. 1995; Veiel 1997; Fava & Kendler 2000; Ravnkilde 2002). Apesar de prejuízos na memória serem comuns em diversos transtornos de ansiedade e relatados na depressão, a conexão entre antidepressivos e memória permanece ainda não completamente elucidada (Austin et al. 2001). Os resultados dos estudos prévios são bastante controversos, mesmo em machos. Estudos que avaliam a extinção de memórias aversivas após a administração de drogas com efeito antidepressivo mostram resultados contraditórios. Dentre estes estudos, alguns, utilizando machos, verificam os efeitos do rolipram, uma droga com efeitos ansiolíticos e antidepressivos. Essa droga diminuiu a extinção em um teste de medo condicionado e em um paradigma de resposta de sobressalto potencializada pelo medo (Monti et al. 2006; Mueller et al., 2010). Além disso, este fármaco melhorou o desempenho no labirinto aquático de Morris, aumentando a distância e o tempo em que os animais nadam no quadrante no qual previamente havia uma plataforma submersa; e ainda impediu a extinção relacionada a uma tarefa de esquiva passiva (Cheng et al, 2010). Um outro estudo foi realizado com um modelo animal para transtorno de estresse pós-traumático, característico pela ausência de extinção da memória do evento traumático (APA 2000). Nesse estudo, a cicloserina-D (DCS), droga utilizada como auxiliar em tratamentos antidepressivos, melhorou a extinção em testes de condicionamento de medo em machos (Yamamoto et al. 2008). Sabe-se que o mecanismo psicofisiológico de várias doenças (a depressão, por exemplo) é diferente entre os sexos (Bekker & van Mens-Verhulst 2007; Kim et al. 2010; Wooley et al. 2010). Em humanos, as mulheres são o gênero mais afetado 15 pelas doenças debilitantes funcionais e em grande parte dos transtornos psicopatológicos a proporção dos indivíduos atingidos é de duas mulheres para cada homem (Mahedran & Yap 2005; Bekker & van Mens-Verhulst 2007). Apesar de não se descartar fatores culturais e sociais, diversas evidências indicam que a principal origem dessas diferenças está relacionada aos hormônios esteróides gonadais (Toufexis et al. 2006; Solomon & Herman 2009), que podem ter efeitos nas vias neuroquímicas (Kelly et al. 1999). Além disso, aspectos do dimorfismo sexual no funcionamento do sistema nervoso também podem estar relacionados a estas diferenças (Bruder et al. 2001; Esel et al. 2005; Monteggia et al 2007; Elaković et al. 2011). Apesar dos estudos sugerirem que diferenças sexuais são importantes, a maioria dos estudos pré-clínicos utiliza somente machos ao invés de ambos os sexos (Kim et al. 2010; Zucker & Beery 2010). Alguns estudos que comparam efeitos entre machos e fêmeas no teste do nado forçado têm mostrado resultados contraditórios. Dependendo da droga utilizada, machos respondem ao tratamento, diminuindo o tempo de imobilidade, seguindo o esperado para o modelo, e fêmeas não (Barros & Ferigolo 1998). Também foi demonstrado que a fase do ciclo pode ser uma importante característica levando as fêmeas a ter desempenhos diferentes de acordo com a fase do ciclo estral na qual se encontram (Gouveia Jr. et al 2008). Deve-se também ressaltar que não apenas condições patológicas podem ser diferentes entre os sexos, mas também mecanismos de atividades cognitivas fisiológicas normais como a memória e a ansiedade. Ribeiro et al. (2010), por exemplo, encontraram diferenças na extinção de uma tarefa de memória aversiva entre machos e fêmeas, mostrando uma diminuição da extinção em fêmeas, que 16 pode ter relação com a predominância de psicopatologias em seres humanos do sexo feminino. No presente estudo, nós utilizamos o modelo utilizado por Ribeiro et al. (2010): a esquiva discriminativa em labirinto em cruz elevado (EDLC). A EDLC é um método adequado para estudos concomitantes de memória/aprendizado e medo/ansiedade em modelos animais. Consiste em um labirinto em cruz elevado modificado, onde um dos braços fechados possui dois estímulos aversivos (sendo um sonoro de intensidade equivalente a 80dB e um luminoso de 100W). Os animais são submetidos a uma sessão de treino, na qual uma vez colocados individualmente no centro do labirinto por 10 min, poderão explorar os braços, recebendo os estímulos aversivos cada vez que o animal entrar com as quatro patas no braço aversivo, até a saída do braço em questão. O tempo de permanência e o total de entradas nos braços abertos e em cada braço fechado são quantificados. Decorridas 24 horas da sessão de treino é efetuada uma sessão de teste, na qual não se aplica o estímulo aversivo. Dessa forma, ao longo da sessão pode-se também avaliar a extinção da tarefa previamente aprendida, uma vez que os animais agora aprendem que não há mais estímulos aversivos naquela localização. Este modelo foi inicialmente descrito por Silva (1997) e Silva & Frussa-Filho (2000), que padronizaram o modelo com machos e averiguaram que, usualmente os três minutos iniciais são referentes à evocação da memória adquirida e os demais à extinção. Da mesma forma em que ocorre no labirinto em cruz elevado convencional, a exploração dos braços abertos na EDLC reflete os níveis de ansiedade (Pellow et al. 1985; Pellow & File 1986), pois os ratos possuem medo inato de ambientes abertos e de altura, o que fará com que eles evitem esses braços. De acordo com os níveis 17 de ansiedade a exploração desses braços poderá aumentar ou diminuir. Considerando que alterações nos níveis de ansiedade podem afetar o perfil comportamental dos animais em modelos animais de estudo de memória, o modelo da EDLC apresenta a grande vantagem de permitir a avaliação simultânea destes dois parâmetros (Calzavara et al. 2004; Silva & Frussa-Filho 2000). A diferenciação entre os braços fechados (aversivo e não-aversivo) serve como parâmetro para avaliação de memória e aprendizado. Esse modelo permite ainda a avaliação da atividade locomotora que pode ser realizada por meio da exploração de todos os braços e do centro, pelo total de passagens entre os braços (Silva et al. 2002) ou, ainda, quantificando-se a distância total percorrida (Ribeiro et al., 2010). Para avaliação do efeito de antidepressivos sobre a memória, o aprendizado, a ansiedade e a atividade locomotora simultaneamente à depressão é preciso associar a EDLC a um teste que possa avaliar comportamentos relacionados à depressão. Dentre estes, o teste do nado forçado (TNF) é um modelo experimental amplamente utilizado na comunidade científica mundial. O TNF tem sido utilizado como modelo experimental em estudos sobre depressão, onde a imobilidade do animal é interpretada como forma de desamparo aprendido, ou seja, o animal não tenta mais escapar da situação aversiva (Porsolt 1977; 1978). Ou seja, classicamente neste teste comportamental, antidepressivos causam a diminuição da imobilidade dos animais no teste (Porsolt 1977). A escalada (climbing) é outra medida que pode ser avaliada neste modelo comportamental. O tempo de escalada ainda não está tão bem validada quanto o tempo de imobilidade, mas alguns autores sugerem que antidepressivos tendem a aumentar este parâmetro comportamental, como uma tentativa de fuga da situação (neste caso o cilindro com água). De relevância para o presente trabalho, já foi observada uma diferença na ocorrência da 18 tentativa de fuga de situações aversivas, entre machos e fêmeas (Ribeiro et al. 2010), embora em outro tipo de tarefa comportamental. A diminuição da duração da imobilidade e o aumento do tempo de escalada podem estar relacionados a uma melhora dos sintomas tipo depressivos através da transmissão noradrenérgica (Detke et al. 1995, 1997; Reneric & Lucki 1998; Page et al. 1999; Cryan & Lucki 2000; Lopez-Rubalcava & Lucki 2000; Cryan et al. 2002a; Reneric et al. 2002; Consoni et al. 2006). Com base em todas as evidências expostas, neste estudo, ratas foram tratadas com três tipos diferentes de antidepressivos (fluoxetina, nortriptilina e mirtazapina) de três classes farmacológicas diferentes (antidepressivos ISRS, tricíclicos e atípicos) e testadas na EDLC. Até o presente momento, não existem artigos publicados avaliando a ação de antidepressivos nesse aparato comportamental. Adicionalmente, as ratas foram testadas no TNF, a fim de avaliar comportamentos relacionados à depressão após o tratamento prolongado com antidepressivos. 19 II. Objetivos Objetivo Geral O presente estudo propôs-se a averiguar os efeitos de três antidepressivos provenientes de classes farmacológicas distintas no aprendizado, memória, extinção, ansiedade/emocionalidade e comportamento de desamparo aprendido em ratas. Tendo em vista a prevalência dos transtornos relacionados à depressão e ansiedade em mulheres e a pequena quantidade de pesquisas relacionando os efeitos desses fármacos em processos cognitivos em indivíduos do sexo feminino, a nossa proposta pretende contribuir no avanço da compreensão dos efeitos destas classes de drogas em fêmeas. Objetivos específicos (a) Avaliar as diferentes etapas de memória (aquisição, consolidação, evocação e extinção) em fêmeas tratadas com os antidepressivos na EDLC; (b) Avaliar os comportamentos relacionados à ansiedade em fêmeas tratadas com os antidepressivos na EDLC; (c) Avaliar possíveis efeitos locomotores dos fármacos utilizados; (d) Avaliar o efeito antidepressivo em ratas das drogas utilizadas nos esquemas de tratamento e doses específicos aqui utilizados. 20 III. Artigo para submissão Date of submission: ANTIDEPRESSANTS FLUOXETINE, NORTRIPTYLINE AND MIRTAZAPINE MODIFIES THE EXTINCTION OF AN AVERSIVE MEMORY AND THE ANXIETY IN FEMALE RATS Thieza G. Melo, Geison S. Izídio, Luane S. Ferreira, Diego S. Silveira, Priscila T. Macedo, Alícia Cabral, Alessandra M. Ribeiro, Regina H. Silva Memory Studies Laboratory Department of Physiology Universidade Federal do Rio Grande do Norte 59.078-970, Natal, RN, Brazil·. *Corresponding author: Regina H. Silva Laboratório de Estudos da Memória Departamento de Fisiologia - Centro de Biociências Universidade Federal do Rio Grande do Norte Av. Salgado Filho, s/n - Caixa Postal 1511 - CEP 59078-970 - Natal, RN, Brazil fax: (55) 84 3211 9206 e-mail: [email protected] Progress In Neuropsychopharmacology & Biological Psychiatry (Classificação Qualis A2, em Fevereiro de 2011) Keywords: discriminative avoidance task, sex differences, forced swimming test, aversive memory, depression, anxiety. 21 Abstract Treatment of major depression, posttraumatic stress disorder and other psychopathologies with antidepressants can be associated with improvement of the cognitive deficits related to these disorders. Although the mechanisms of these effects are not completely elucidated, alterations in extinction of aversive memories are believed to be present in these psychopathologies. Moreover, researches with laboratory animals usually focus on male subjects, and we have recently verified that extinction of an aversive task is reduced in female rats when compared to males. In the present study, female rats were long-term treated with clinically used antidepressants (fluoxetine, nortriptyline or mirtazapine) and tested in the plus-maze discriminative avoidance and forced swimming tests in order to evaluate learning, memory, extinction, anxiety and depression-related behaviors. All groups learned the task, but learning was somewhat faster in nortriptyline and mirtazapine-treated animals. Task retrieval was also showed by all experimental groups. Chronic treatment with fluoxetine, but not with the other antidepressants, increased extinction of the discriminative task. In the forced swimming test, animals treated with fluoxetine and mirtazapine showed decreased immobility duration. In conclusion, antidepressants interfere with learning and female rats treated with fluoxetine presented increased extinction of the aversive memory task. On the other hand, both fluoxetine and mirtazapine were effective in the forced swimming test, suggesting dissociation between the antidepressant effects and the extinction of aversive memories. 22 1. Introduction Psychopathological conditions such mood and anxiety disorders are frequently related to aversive emotional experiences (APA, 2000) that could benefit from a reframing of the aversive memory formatted, which is usually attempted in psychotherapeutic procedures (Freud, 1914). It has also been suggested that the cognitive deficits present in these disorders are reversed by treatment with antidepressants (Austin et al., 2001; Castaneda et al., 2007), which are largely indicated for both anxiety and mood disorders (Marks et al., 1998; Brunello et al., 2001; Nandam et al., 2007). Several studies indicate that the improvement of these cognitive deficits is associated with hippocampal neurogenesis (Santarelli et al., 2003; Duman and Monteggia, 2006; Dranovsky and Hen, 2006; Nandam et al., 2007; Paizanis et al., 2007; Sahay and Hen, 2007; Pittenger and Duman, 2008), which would explain the delay of amelioration of depressive symptoms after the beginning of clinical treatment. Despite memory deficits being common in many anxiety and depression- related disorders the relationship between the improvement of depression or anxiety symptoms by antidepressants treatment, as well as their effect on memory, remains to be elucidated (Austin et al., 2001). It is known that both the prevalence (Mahedran et al., 2006; Bekker and van Mens-Verhulst, 2007) and the psychophysiological mechanisms of some psychopathologies, including depression, differ between the sexes, being the females the most affected gender (Kim et al., 2010; Wooley et al., 2010). The source of these differences can be gonadal steroids (Toufexis et al., 2006; Solomon and Herman, 2009) and their possible effects on neurochemical pathways (Kelly et al., 1999). 23 Regardless the mentioned relevant gender differences, most of the preclinical studies use males instead of females (Olivier et al., 2008; Kim et al., 2010; Zucker and Beery, 2010). In this respect, it is important to mention that not only mechanisms related to diseases, but also normal cognition has been shown to differ between sexes. Specifically, studies with animal models usually show better spatial learning in males and stronger emotional memory in females (Canli et al., 2002; Astur et al., 2004; Rilea et al., 2004; Hamann, 2005; Jonassom, 2005; Blokland et al., 2006). Interestingly, in a recent work, Ribeiro et al. (2010) found decreased extinction of an aversive memory task in female rats when compared to males. It was suggested that a diminished capacity of extinction of aversive memories could be related to the predominance of certain psychopathological disorders in this gender. Although several animal studies were held to investigate the effects of antidepressants on memory (Marks et al., 1998; Austin et al., 2001; MacQueen et al., 2002; Nestler et al., 2002; Castaneda et al., 2007; Schulz et al., 2007; Paizanis et al., 2007), they were mostly conducted with male subjects. In addition, few studies have aimed to study the effects of antidepressants specifically on the extinction of aversive memories. Some studies were conducted investigating the effects of rolipram (which has both antidepressant and anxiolytic effects) on male rodents. In these studies, decrements in extinction of conditioned fear and in fear-potentiated startle paradigms were shown (Monti et al. 2006; Mueller et al., 2010). The same drug also had improved cognition related to the Morris water maze and impaired extinction in a passive avoidance task (Cheng et al., 2010). In another animal study, D-cycloserine (used as an adjuvant in antidepressant therapy), enhanced extinction in a conditioned fear task (Yamamoto et al., 2008). 24 In the present study, we investigated the effects of three antidepressants (fluoxetine, nortriptyline and mirtazapine) of different pharmacological classes on learning, memory and extinction of an aversive task in female rats, as well as anxiety and depression-related behaviors in the same subjects. Fluoxetine is a selective serotonin reuptake inhibitor (SSRI), the most prescribed class of antidepressants (Dunlop and Davis, 2008). Nortriptyline is a tricyclic antidepressant, an older class of drugs, and act by nonselective inhibition of monoaminergic reuptake. Although these compounds are no longer largely prescribed, they are still an option to individuals which are non-responsive to other antidepressants and to subjects susceptible to the serotonin syndrome (Dagtekin et al., 2010). Finally, the atypical antidepressant mirtazapine is used to treat both mood and anxiety disorders (Rauggi et al., 2005; Gambi et al., 2005) and enhances central noradrenergic and serotonergic neurotransmission through inhibition of the noradrenergic α2-autoreceptor and α2heteroreceptor in serotonergic synapses (Bengtsson et al., 2000; Gambi et al., 2005). We used the plus-maze discriminative avoidance task (PMDAT) to evaluate concomitantly memory and anxiety-related behaviors. Several studies performed with this task have shown the effects of memory-enhancing or amnestic drugs, procedures that modify anxiety-like behaviors and/or locomotor activity (Silva et al., 1997; Silva and Frussa-Filho, 2000; Silva et al., 2002a; Silva et al., 2002b). It also fits for the evaluation of learning and extinction processes, by the evaluation of aversive arm avoidance across the behavioral sessions (Silva et al., 2004; Ribeiro et al., 2010; see Methods). Additionally, female rats were also tested in the forced swimming test (FST) in order to evaluate depression-related behaviors. 2. Materials and Methods 25 2.1 Animals Three-month-old female Wistar rats (120–230g), from our own colony were housed in groups of 4 animals in plastic cages (30 x 37 x 16 cm) in a room with acoustic isolation, airflow and controlled conditions of temperature (24 – 26 °C), humidity and luminosity (12h light: 12h dark, lights on 06h30). Food and water were available ad libitum throughout the experiments. Animal care was according to Brazilian law nº 11.794/2008 for the use of animals in research, and all experiments were approved by the local ethical committee (CEUA-UFRN). All efforts were made to minimize animal pain, suffering or discomfort as well as the number of animals used. 2.2 Procedures and drugs Animals were allocated to one of four groups (n=8 - 10): (a) treated with fluoxetine (20mg/ml/kg daily; Medley, Brazil), (b) nortriptyline (20mg/ml/kg daily; Novartis, Brazil), (c) mirtazapine (10mg/ml/kg daily; Torrent, India), or (d) vehicle (physiological saline with Tween 20%), all injected intraperitoneally, once a day, for 20 days. The drugs were dilluted in physiological saline containing three drops of Tween-20 per 1ml. The duration of treatments and doses were chosen based on previous studies (Dazzi et al., 2001; Dulawa et al., 2003; Rauggi et al., 2005; Gambi, 2005; Rógòz, 2005; Consoni et al., 2006; Miyamoto et al., 2010; McNamara et al., 2010; Rógòz, 2010). During the treatment period, injections were held simultaneously with estrous cycle control (through vaginal smears) at 6 p.m. There was no 26 predominance of any stage among the experimental groups during the experiments (data not shown). Rats were handled for the whole injection period, for 5 minutes per day. From the 17th day of treatment onwards, behavioral tests started at 1:30 p.m. and injections and cycle control continued at 6 p.m., after the behavioral procedure. 2.3 Plus-maze discriminative avoidance task (PMDAT) In order to evaluate the effects of the antidepressants on learning, memory, extinction and anxiety, we used the PMDAT. The apparatus is a modified elevated plus-maze made of wood with two open arms (50 cm lenght x 15 cm width) and two closed arms (50 cm lenght x 15 cm width x 40 cm high), in one of which aversive stimuli (light and noise) were presented in the training session, as described previously (Ribeiro et al., 2010). The animals were placed individually in the center of the maze, for 10 minutes in each session, with the head turned to the intersection between the open arms, to explore the maze. In the training session the aversive stimuli (100-watt light and an 80 dB noise applied through a lamp and a speaker placed over the aversive enclosed arm) were given every time the animal entered this closed arm, remaining until the animal left the arm. In the testing/extinction session, 24h later, the animal was allowed to explore the apparatus without the stimuli (the lamp and the speaker were still present over the aversive arm, but turned off). In both sessions the animals were also evaluated for other measures related to anxiety. The other parameters used were risk assessment and head dipping. The risk assessment behavior is defined by body stretching to look into the locations of the apparatus before entering (or not) them (Rodgers et al., 1997). The head dipping was characterized by an attempt to look ―under‖ the maze with the head pointing the floor 27 (Rodgers et al., 1997). A decrease in risk assessment behavior and an increase in head dipping indicate less anxious behavior (Rodgers and Dalvi, 1997; Rodgers et al., 1997). Distance traveled in the apparatus, percent time spent in the aversive enclosed arm (time spent in aversive enclosed arm / time spent in both enclosed arms) and percent time spent in open arms (time spent in open arms / time spent in both open and enclosed arms) were registered min by min throughout the sessions and used to evaluate motor activity, learning/memory/extinction and anxiety, respectively. The behavior of the animals was monitored and analyzed by the videotracking software ANY-maze, Stoelting, USA. 2.4 Forced Swimming Test (FST) For evaluation of the depression-related behaviors we used the FST (Porsolt et al., 1977). This test consists in placing the animal in a cylinder (40 cm high, 25 cm diameter) with water (30 cm deep) in a temperature of 24 to 27°C, for two consecutive days. On the first day, animals were submitted to 15 min of forced exposure (pre-test session) with no behavioral observation. In the second day, 24 h after the pre-test session, rats were placed once again in the water tank (test session) in the same conditions described above and total immobility duration, climbing behavior and the latency to engage in immobility were registered for 5 min. 2.5 Statistical Analyses Data from behavioral tests were analyzed with one- or two-way analysis of variance (ANOVA) with Bonferroni‘s tests for post-hoc comparisons. In addition to the 28 total length of the sessions in the PMDAT, behavioral sessions were divided in 5 blocks of 2 minutes each. Comparison among these blocks was used to evaluate learning (training) or extinction (test) of the task. ANOVAs with repeated measures were used to compare the percent time spent in the aversive and open arm throughout PMDAT sessions and pairwise comparisons was used. We used the software SPSS (version 17) to perform the statistical analysis. Differences were considered significant at p<0.05. 3. Results Plus-maze discriminative avoidance task: Groups of all treatments presented similar percentage of time spent in the aversive enclosed arm in the training session, suggesting that all groups learned the task [F (3,34) = 0.32; p = 0.811] (Fig. 1A). The analysis of the percent time in the aversive arm with repeated measures ANOVA revealed a time (2 minutes session blocks) effect [F (2,87) = 20.80; p < 0.001], but not treatment [F (3,31) = 0.73; p = 0.54] or time x treatment interaction effects [F (8,63) = 1.34; p = 0.226] (Fig. 1B). Indeed, paired samples t-test showed that all groups presented significant decrements in aversive arm exploration (comparing to first block), starting in the second block for nortriptyline (t = 4.93; p = 0.002) and mirtazapine (t = 4.92; p = 0.002). From the third block onwards all groups showed significant decrements (Block 3: vehicle t = 4.77, p < 0.001; fluoxetine t = 3.58, p = 0.007; nortriptyline t = 4.17, p = 0.004; mirtazapine t = 3.74, p = 0.007. Block 4: vehicle t = 3.56, p = 0.006; fluoxetine t = 1.95, p = 0.08; nortriptyline t = 3.86, p = 0.006; mirtazapine t = 4.80, p = 0.002. Block 5: vehicle t = 5.05, p < 0.001; fluoxetine t = 2.33, p = 0.04; nortriptyline t = 4.71, p < 0.002; mirtazapine t = 4.60, p = 0.002) compared to the percent time in 29 the aversive arm during the first session block (paired samples t-test) (Fig. 1B). The ANOVA for the 2 minutes session blocks showed no difference between the groups for each session (for the first block [F (3,34) = 0.58; p = 0.62], second [F (3,34) = 1.00; p = 0.40], third [F (3,34) = 1.04; p = 0.38], fourth [F (3,34) = 1.30; p = 0.29] and fifth [F (3,34) = 2.03; p = 0.13]). Comparison of the exploration of the aversive arm was marginally significant in the test session [F (3,34) = 2.52; p = 0.07], and pos hoc analysis with Bonferroni‘s test indicated no difference between the groups (p > 0.05) (Fig. 1C). The analysis of the percent time in the aversive arm in two-minute session blocks throughout the test session with repeated measures ANOVA revealed a time effect [F (3,68) = 3.57; p = 0.01] and time x treatment interaction [F (3, 31) = 53.72; p < 0.001] , but not a treatment effect [F (8,63) = 1.34; p = 0.22] (Fig. 1D). Only vehicle- and fluoxetinetreated groups presented significant increases in aversive arm exploration compared to the first block throughout the session [fluoxetine from the third block onwards (block 3: t = -3.22, p = 0.01; block 4: t = -2.54, p = 0.03; block 5: t = -3.28, p = 0.01 and vehicle in the fourth and fifth blocks (t = -2.78, p = 0.02 and t = -3.32, p = 0.009, respectively)]. None of the groups have shown significant changes in the second block, and nortriptyline- mirtazapine-treated animals did not modify aversive arm exploration across the session blocks (Block 2: vehicle t = -0.96, p = 0.35; fluoxetine t = -1.74, p = 0.12; nortriptyline t = 0.42, p = 0.68; mirtazapine t = 1.60, p = 0.15. Block 3: vehicle t = -1.67, p = 0.12; nortriptyline t = 0.56, p = 0.58; mirtazapine t = 1.37, p = 0.21. Block 4: nortriptyline t = 0.29, p = 0.77; mirtazapine t = 0.49, p = 0.63. Block 5: (nortriptyline t = -0.95, p = 0.37; mirtazapine t = 0.61, p = 0.56) compared to the percent time in the aversive arm during the first session block (paired samples t-test) (Fig. 1D). 30 Percentage of time spent in the open arms did not differ between different treatments, suggesting that animals did not present anxiety-related differences [training session: F (3,34) = 0.060; p = 0.98; test session: F (3,34) = 0.50; p = 0.68] (Fig. 2). Similarly, no differences were found in the frequency of head dipping [training session: F (3,34) = 1.352; p = 0.276; test session: F (3,34) = 0.060; p = 0.98] (Fig.3C and D). A treatment effect was found for time spent in risk assessment in the test [F (3,34) = 3.876; p = 0.018] (Fig. 3B), but not in the training session [F (3,34) = 0.278; p = 0.841] (Fig. 3A). In the test session, the post hoc with Bonferroni‘s test showed a significant difference between vehicle and fluoxetine (p = 0.04), while the comparison between vehicle and nortriptyline almost reached significance (p = 0.05). When the whole sessions were considered for analysis, ANOVA revealed a treatment effect in the distance traveled in the apparatus [F (3,34) = 4.56; p < 0.01] and [F (3,34) = 3.86; p < 0.05] in training and test, respectively. Post hoc with Bonferroni‘s test showed that animals treated with mirtazapine exhibited a significantly decreased locomotor activity compared to the other groups (Table 1). In the forced swimming test, ANOVA revealed a treatment effect in immobility duration [F (3,33) = 13.64; p < 0.001]. Post hoc with Bonferroni‘s test showed that animals treated with fluoxetine and mirtazapine had decreased immobility duration compared with the control and nortriptyline groups (Fig. 4A). The latency to start immobility was not different among the groups (data not shown). Moreover, ANOVA revealed a treatment effect on climbing behavior [F (3,33) = 4.17; p = 0.014]. Post hoc with Bonferroni‘s test showed that fluoxetine group had an increased time in climbing behavior (p = 0.009) compared with nortriptyline group (Fig. 4B). 31 32 Figure 1. Percent time spent in the aversive arm (%TAV) of the plus-maze discriminative avoidance task by female rats repeatedly treated with vehicle (vehi), 20mg/kg fluoxetine (fluox), 20 mg/kg nortriptyline (nort) or 10 mg/kg mirtazapine (mirt): (A) The whole training session; (B) Blocks of two minutes across the training session; (C) The whole test session; (D) Blocks of two minutes across the test session. ANOVA with repeated measures revealed time effects (session blocks) in training and test sessions; #p < 0.05 compared to first block (paired samples t-test). 33 Figure 2. Percent time spent in the open arms (%TAB) of the plus-maze discriminative avoidance task by female rats repeatedly treated with vehicle (vehi), 20mg/kg fluoxetine (fluox), 20 mg/kg nortriptyline (nort) or 10 mg/kg mirtazapine (mirt): (A) Training session; (B) Test session. 34 35 Figure 3. Time spent in risk assessment and frequency of head dipping on the plusmaze discriminative avoidance task by female rats repeatedly treated with vehicle (vehi), 20mg/kg fluoxetine (fluox), 20 mg/kg nortriptyline (nort) or 10 mg/kg mirtazapine (mirt): (A) Training session for risk assessment; (B) Test session for risk assessment; (C) Training session for head dipping behavior; (D) Test session for head dipping behavior. ANOVA revealed a treatment effect on risk assessment test session; *p < 0.05 compared to vehicle; +p = 0.05 compared to vehicle (ANOVA followed by Bonferroni‘s test). 36 Figure 4. Time spent in immobility and climbing behavior on the forced swim test by female rats repeatedly treated with vehicle (vehi), 20mg/kg fluoxetine (fluox), 20 mg/kg nortriptyline (nort) or 10 mg/kg mirtazapine (mirt): (A) The time spent in immobility on test session; (B) The time spent in climbing behavior on test session; *p < 0.05 compared to vehi; §p < 0.05 compared to fluox and mirt; ¥p < 0.05 compared to nort (ANOVA followed by Bonferroni‘s test). 37 Treatment Training Test Vehicle 19,0±2,4 21,1±1,9 Fluoxetine 20,0±3,0 21,6±4,4 Nortriptyline 22,9±3,1 16,8±4,4 Mirtazapine 10,4±0,5* 8,5±2,3* Table 1. Distance travelled in meters in both training and test session by female rats repeatedly treated with vehicle, 20mg/kg fluoxetine, 20 mg/kg nortriptyline or 10 mg/kg mirtazapine; *p<0.05 compared to all other groups (ANOVA followed by Bonferroni‘s test). 4. Discussion In summary, our data showed that some antidepressants could interfere on both learning and memory processes, more specifically on the acquisition and, more importantly, extinction of an aversive task. The nortriptyline- and mirtazapine-treated groups learned the task faster than the vehicle and fluoxetine counterparts, as demonstrated by a significant decrease in the aversive arm exploration earlier in the training session (see figure 1B). During the test session, vehicle and fluoxetine groups have shown extinction of the task, i.e., significant increases in aversive arm exploration across the session blocks, what did not occur in the other groups (see figure 1D). Moreover, the extinction was anticipated by treatment with fluoxetine. The treatment with fluoxetine and nortriptyline also reduced one of the anxiety-related behaviors in the elevated plus-maze discriminative avoidance task (risk assessment behavior, see figure 3B). Results obtained in the forced swimming test showed that 38 treatment with fluoxetine and mirtazapine reduced the immobility time, which is consistent with the antidepressant-like effects of these drugs (see figure 4A). As mentioned above, the analysis of the aversive arm exploration throughout the test session of the PMDAT provides indication of both task retrieval (beginning of session) and extinction (subsequent session blocks) (Ribeiro et al., 2010). Indeed, with the aversive stimuli no longer present, the animals avoid the aversive arm at first, but eventually realize the arm is now safe and increase its exploration, reaching the amount they would explore a regular enclosed arm by chance (or even more, since this arm is almost novel for them in the test session). This pattern is usually observed in males, but in a previous study we have shown that female rats keep avoiding the aversive arm until the end of the test, or even at a subsequent retest (Ribeiro et al., 2010). The lack of extinction by females points out to stronger consolidation and/or impaired extinction of aversive memories, which is in line with the better emotional memory usually reported for women (Canli et al., 2002; Hamann, 2005). In particularly, this lack of extinction is similar to what occur in some anxiety disorders, as for example, the posttraumatic stress disorder (PTSD), and it could be related to the greater prevalence of depression and anxiety disorders among female gender (Kendler et al., 2001; Mahedran, 2005; Rauch et al., 2006; Bekker and van Mens-Verhulst, 2007). In the present study, however, females did show extinction of the task. The amount of aversive arm exploration by the end of the test was still lower than that previously observed for males, but this result suggests that the lack of extinction of this task by females may not be unequivocal. Further, and more importantly, the presented data indicated that the SSRI fluoxetine was capable of increasing or speeding up the process of extinction in females. Although speculative, one might 39 raise the hypothesis that fluoxetine could exert its therapeutic action by modulating the extinction of aversive memories. In line with this reasoning, this drug has been shown potential benefits in the treatment of PTSD, which has a close relationship with deficits in extinction of traumatic memories (APA, 2000; Quirk et al., 2006; Yamamoto et al., 2008; 2009). Moreover, despite the effects of fluoxetine treatment on males in the same test has not been investigated yet, these results, taking together with previous extinction studies performed with males (see Introduction) suggest an important role of gender in the ability of antidepressants in modifying extinction. The SSRIs are one of most commonly prescribed drugs for treating mood and anxiety disorders (Marks et al., 1998; Brunello et al., 2001; Nandam et al., 2007). Their action includes an improvement on cognitive deficits caused by the disease (Austin et al., 2001; Castaneda et al., 2007) through the stimulation of the neurogenesis in males (Duman and Monteggia, 2006; Dranovsky and Hen, 2006; Nandam et al., 2007; Paizanis et al., 2007; Sahay and Hen, 2007; Pittenger and Duman, 2008), which is also needed for the extinction process (Gabriele and Packard., 2006). Treatment with fluoxetine also induces an increase in BDNF releasing, which may cause reactivation of the neuronal plasticity (Castrén and Rantamäki, 2010). In addition, another study has shown that brain-derived neurotrophic factor (BDNF) is also needed for the extinction of a memory (Gabriele and Packard, 2006). However, further clarification is needed about the role of BDNF in depression, because antidepressant effects of nortriptyline and escitalopram appear to be unrelated to hippocampal BDNF expression in female rats, (Hansson et al., 2011). Previous studies have demonstrated that antidepressants may induce synaptic reorganization in the amygdala (McEwen and Chattarji, 2004). For example, 40 fluoxetine administered chronically to adult rats reduces, in the amygdala, the polysialylated form of the neural cell adhesion molecule (PSA-NCAM), a molecule involved in the synaptogenesis (Varea et al. 2007; Homberg et al., 2011). It has also been proposed that some types of antidepressants could elicit an increase on the perception of the threat cues and improve the trace of the formatted memory avoiding or decreasing its extinction (Rawlings et al., 2010). In summary, it seems plausible that the clinical action of antidepressants could be related to a modulation of plastic processes related to extinction of aversive memories. On the other hand, in the present study, both mirtazapine and nortriptyline groups were not able to extinguish the task. This lack of extinction of the aversive memory could be related to the disturbance on emotional processing and persistence of the negative events instead of the neutral and good events (Beck et al., 1979; Harmer, 2010). That could be due to the modulation promoted by these drugs of the perception of the threat cues (Rawlings et al., 2010) and to the decrease of perception of aversive and rewarding stimuli seen in clinical studies (Harmer et al., 2006; McGabe et al., 2010). One of the effects of mirtazapine and nortriptyline is a decrease on HPA axis activity (Schüle et al., 2002; 2006), which we expected would improve the extinction, oppositely to what happened. An increase in HPA axis activity could damage the extinction process, as shown in a study with post-sepsis rats which received dexamethasone in low doses, and were tested on the inhibitory avoidance task (Cassol-Jr et al., 2010). In addition, it is known that the higher the sensitivity to cortisol, higher is the response to stressful events in the amygdala (Morgan and LeDoux, 1995), and lower is the activation of hippocampus and prefrontal cortex (Lebrón et al., 2004). As a result of these effects, a damage of the extinction of any 41 aversive memory formatted could appear (Morgan and LeDoux, 1995; Lebrón et al., 2004; Quirk et al., 2006). The hypolocomotor effects observed here in females treated with mirtazapine have already been found in other studies in this same dose range (Reneric et al., 2002) or not (Rauggi et al., 2005). It is interesting to note that, in the present study, the hypolocomotor effects were specifically found in the plus-maze discriminative avoidance task, i.e. they were not present in the forced swimming test. It is known that mirtazapine enhances both 5-HT and NA neurotransmissions, yet differently from monoamine reuptake inhibitors since its antidepressant effects are mediated through the direct antagonism of both α2 and 5-HT2C receptors (de Boer et al., 1996; Haddjeri et al., 1996). It has been shown that this mediation can cause hypolocomotor effects (Franowicz et al., 2002). Mirtazapine also induces blockage of histamine-H1 receptors, other possible mechanism that may produce sedation and decrease the exploratory activity (Schüle et al., 2003; 2006; Gambi et al., 2005). Usually, the clinical treatment with antidepressants, although possibly inducing an increase in anxiety at the beginning of the treatment, has overall an anxiolytic effect (for a review see Borsini et al., 2002; Drapier et al., 2006). Studies with male rodents also have shown that the antidepressants could have an anxiolytic effect acutely (Silva et al., 1999; Kurt et al., 2000; Holmes and Rodgers 2003; Drapier et al., 2006). The treatment with antidepressants fluoxetine and nortriptyline reduced the anxiety-related behaviors at least in one of the evaluated ethological parameters. However, this effect was observed only in the test session. A possible explanation would be that the presence of a stressful context (the aversive stimuli) in the training session would interfere with evaluation of the anxiety-like behavior. Indeed, in the test session the animals could explore more freely the apparatus and we could have 42 a better evaluation of the parameters. On the other hand, some authors argue that the evaluation of anxiety-related behaviors in a re-exposition to the conventional elevated plus-maze is not adequate, because the reasoning of the paradigm implies novelty (File, 1990). Still regarding possible anxiolytic effects of antidepressant drugs in animal models, despite the fact that most of anxiety and mood disorders are twice more frequent in females than in males (Bekker and van Mens-Verhulst, 2007) there is a strong bias towards the use of male animals to study these phenotypes (Wald and Wu, 2010; Zucker and Beery, 2010). This type of bias is not rare once most of drugs are tested in males and most of behavioral apparatus were developed using male rats. Thus it, is very important taking into account not only classical variables, but also the ethopharmacological parameters, when studying females in elevated plusmaze and their derived apparatus Cruz et al. (1994) showed that classical variables, like time spent in and number of entries into the open arms, which express ―anxiety‖ levels, loaded together with end-exploring, head dipping and risk assessment in a principal components analysis. In addition, Carobrez and Bertoglio (2005) emphasized the advantages of using this ethopharmacological measures for the purpose of avoid false negative results, what normally occur if we consider only classical parameters. To our knowledge, there were a few studies evaluating the effects of chronic treatment with nortriptyline in behavioral tests related to anxiety. For example, Brocco et al. (2002) showed that mice exposed to a novel environment failed to elevate the locomotion suggesting absence of anxiolytic effect. In opposite, the effects of chronic fluoxetine treatment were already been evaluated in the literature with some studies demonstrating anxiolytic (Griebel et al., 1995; Durand et 43 al. 1999; Mirza et al., 2007) while others showed anxiogenic effects (File et al., 1999; Robert et al., 2011). The forced swimming test is normally used in the screening of antidepressant drugs, with immobility duration levels being used to measure indices of ―behavioral despair‖ (Borsini and Meli, 1988). Moreover, the immobility presented by the animal is reversed by repeated antidepressant treatment and for this reason it is used as an index of ‗depressive-like‘ state (Cryan et al., 2005; Porsolt et al., 1978). In the present study, animals treated with fluoxetine and mirtazapine, as expected, showed decreased time of immobility duration in the forced swimming test. However, females treated with nortriptyline did not exhibit this decrease, at a dose that was previously shown to be effective in a study with males (Consoni et al., 2006). They also showed less climbing behavior than fluoxetine–treated animals, suggesting that nortriptyline group were less active in this behavioral test. However, the possibility that these effects were only due to alterations in locomotion seems unlikely, because in the plus-maze discriminative avoidance task there were no significant decreases in ambulation of nortriptyline-treated animals. An important issue to consider when studying female rodents behavior is the significant variation across the phases of the estrous cycle (Marcondes et al., 2001; Milad et al., 2009). In the present study, the estrous cycle stage was determined daily throughout treatment and behavioral procedures. In the behavioral test days, we did not found any predominance of phase in the experimental groups. In this respect, it is known that females in proestrous present low immobility duration in the forced swimming test (Contreras et al., 1998). In addition, progesterone chronically administered at low doses reverted depressive-like behaviors and had antidepressant effects during the diestrous phase (Andrade et al., 2010). In the 44 present study it was not possible to separate the animals according to the cycle phase in each behavioral experiment. Moreover, the relevance of this separation would be jeopardized by the fact that a prolonged drug treatment was performed, i.e., all rats received drug treatment at all phases. Even so, more experiments are needed to investigate if the lack of effect of nortriptyline group could be dependent on the estrous cycle stage. In conclusion, data reported in the present study showed that the treatment with antidepressant drugs modified the learning and extinction of an aversive task of females. Groups treated with nortriptyline and mirtazapine accelerated the learning of an aversive task compared to fluoxetine and vehicle. The fluoxetine promoted an improvement on extinction of the discriminative task, antecipating the process when compared to the vehicle counterparts. These results contribute to the investigation of sex differences in the neurobiology of anxiety and depression-related disorders, as well as the possibitily of gender-based pharmacotherapy in the near future. 45 5. References American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. 2000. 4th ed. Washington, DC: American Psychatric Association. Andrade, S., Silveira, S.L., Arbo, B.D., Batista, B.A., Gomez, R., Barros, H.M., Ribeiro, M.F. 2010. Sex-dependent antidepressant effects of lower doses of progesterone in rats. Physiol Behav. Apr 19; 99(5):687-90. Astur, R.S., Tropp, J., Sava, S., Constable, R.T. & Marku, E.J. 2004. Sex differences and correlations in a virtual Morris water task, a virtual radial arm maze, and mental rotation. Behavioral Brain Research, 151, 103-115. Austin, M.-P., Mitchell, P., Goodwin, G.M. 2001. Cognitive deficits in depression: Possible implications for functional neuropathology, British Journal of Psychiatry 178, 200-206. Babbini, M., Gaiardi, M., Bartoletti, M. 1976. Effects of combined treatment with nortriptiline and lorazepam on conflict behavior and motility of rats. Psychopharmacology (Berl). Aug 17;48(3):251-4. Beck, A.T., Rush, A.J., Shaw, B.F., Emery, G. 1979. Cognitive Therapy of Depression. Guilford. Bengtsson, H.J., Kele, J., Johansson, J. Hjorth, S. 2000. Interaction of the antidepressant mirtazapine with α2-adrenoceptors modulating the release of 5-HT in different rat brain regions in vivo, Naunyn-Schmiedeberg‘s Arch Pharmacol 362 :406–412. Bekker, M.H.J., Mens-Verhulst, J. van, 2007. Anxiety Disorders: Sex Differences in Prevalence, Degree, and Background, But Gender-Neutral Treatment, Gender Medicine/VoL 4, SUPPL. B, 2007. Bigos, K.L., Pollock, B.G., Stankevich, B.A., Bies, R.R. 2009. Sex differences in the pharmacokinetics and pharmacodynamics of antidepressants: an updated review. Gend Med. Dec;6(4):522-43. Review. Nature 465 10 June. Blokland, A., Rutten, K., Prickaerts, J. 2006. Analysis of spatial orientation strategies of male and female Wistar rats in a Morris water escape task. Behav. Brain Res., 171, 216-224. Borsini, F., Meli, A. 1988. Is the forced swimming test a suitable model for revealing antidepressant activity? Psychopharmacology (Berl);94(2):147-60. Borsini, F., Podhorna, J., Marazziti, D. 2002. Do animal models of anxiety predict anxiolytic-like effects of antidepressants? Psychopharmacology, 163:121– 141. Brocco, M., Dekeyne, A., Veiga, S., Girardon, S., Millan, M.J. 2002. Induction of hyperlocomotion in mice exposed to a novel environment by inhibition of serotonin 46 reuptake. A pharmacological characterization of diverse classes of antidepressant agents. Pharmacol Biochem Behav. Apr;71(4):667-80. Brunello, N., Davidson, J.R., Deahl, M., Kessler, R.C., Mendlewicz, J., Racagni, G., Shalev, A.Y., Zohar, J. 2001. Posttraumatic stress disorder: diagnosis and epidemiology, comorbidity and social consequences, biology and treatment. Neuropsychobiology ;43(3):150-62. Cassol-Jr., O.J., Comim, C.M., Petronilho, F., Constantino, L.S., Streck, E.L., Quevedo, J., Dal-Pizzol, F. 2010. Low dose dexamethasone reverses depressive-like parameters and memory impairment in rats submitted to sepsis. Neuroscience Letters 473; 126–130 Canli, T., Desmond, J., Zhao, A., Gabrielli, J.D.E. 2002. Sex differences in the neural basis of emotional memories. PNAS, 99(16), 10789-10794. Castaneda, A.E., Tuulio-Henriksson, A., Marttunen, M., Suvisaari, J, Lönnqvist, J. 2007. A review on cognitive impairments in depressive and anxiety disorders with a focus on young adults. J. Affect. Disord. Castrén, E., Rantamaki, T. 2010. The Role of BDNF and Its Receptors in Depression and Antidepressant Drug Action: Reactivation of Developmental Plasticity. Dev Neurobiol. Apr;70(5):289-97. Cheng, Y.F., Wang, C., Lin, H.B., Li, Y.F., Huang, Y., Xu, J.P., Zhang, H.T. 2010. Inhibition of phosphodiesterase-4 reverses memory deficits produced by Aβ2535 or Aβ1-40 peptide in rats. Psychopharmacology (Berl). Oct; 212(2):181-91. Consoni, F.T., Vital, M.A., Andreatini, R. 2006. Dual monoamine modulation for the antidepressant-like effect of lamotrigine in the modified forced swimming test. Eur Neuropsychopharmacol, v 16(6), p. 451-458. Contreras, C.M., Martinez-Mota, L., Saavedra, M. 1998. Desipramine restricts estral cycle oscillations in swimming. Prog Neuropsychopharmacol Biol Psychiatry, v. 22, p. 1121-1128, Cryan, J.F., Valentino, R.J., Lucki, I. 2005. Assessing substrates underlying the behavioral effects of antidepressants using the modified rat forced swimming test. Neurosci Biobehav Rev ;29:547–69. Dagtekin, O., Marcus, H., Müller, C., Böttinger, B.W., Spöhr, F. 2010. Liquid therapy for serotonin syndrome after intoxication with venlafaxine, lamotrigine and diazepam, Minerva Anestesiologica, v. 76. Dalla, C., Pitychoutis, P.M., Kokras, N., Papadopoulou-Daifoti, Z. 2009. Sex Differences in Animal Models of Depression and Antidepressant Response. Basic & Clinical Pharmacology & Toxicology, 106, 226–233. Dazzi, L., Spiga, F., Pira, L., Ladu, S., Vacca, G., Rivano, A., Jentsch, J.D., Biggio, G. 2001. Inhibition of stress- or anxiogenic-drug-induced increases in 47 dopamine release in the rat prefrontal cortex by long-term treatment with antidepressant drugs. Journal of Neurochemistry, 76, 1212±1220. De Boer, T.H., Nefkens, F., van Helvoirt, A. and Delft, A.M. van. 1996. Differences in modulation of noradrenergic and serotonergic transmission by the alpha-2 adrenoceptor antagonists, mirtazapine, mianserin and idazoxan, J. Pharmacol. Exp. Ther. 277, pp. 852–860. Dranovsky, A., Hen, R. 2006. Hippocampal Neurogenesis: Regulation by Stress and Antidepressants, Biol Psychiatry;59:1136–1143. Drapier, D., Bentué-Ferrer, D., Laviolle, B., Millet, B., Allain, H., Bourin, M., Reymann, J.M. 2007. Effects of acute fluoxetine, paroxetine and desipramine on rats tested on the elevated plus-maze. Behav Brain Res, Jan 25;176(2):202-9. Dulawa, S.C., Holick, K.A., Gundersen, B., Hen, H. 2004. Effects of Chronic Fluoxetine in Animal Models of Anxiety and Depression. Neuropsychopharmacology 29, 1321–1330. Duman, R.S., Monteggia L.M. 2006. A Neurotrophic Model for Stress-Related Mood Disorders, Biol Psychiatry;59:1116–1127. Dunlop, B.W., & Davis, P.G. 2008. Combination Treatment With Benzodiazepines and SSRIs for Comorbid Anxiety and Depression: A Review, Prim Care Companion J Clin Psychiatry;10:222–228. File, S.E. 1990. One-trial tolerance to the anxiolytic effects of chlordiazepoxide in the plus-maze. Psychopharmacology (Berl), 100(2):281-2. File, S.E., Ouagazzal, A.M., Gonzalez, L.E., Overstreet, D.H. 1999. Chronic fluoxetine in tests of anxiety in rat lines selectively bred for differential 5-HT1A receptor function. Pharmacol Biochem Behav. Apr;62(4):695-701. Franowicz, J.S., Kessler, L.E., Borja, C.M.D., Kobilka, B.K., Limbird, L.E., Arnsten, A.F.T. 2002. Mutation of the 2A-Adrenoceptor Impairs Working Memory Performance and Annuls Cognitive Enhancement by Guanfacine. The Journal of Neuroscience, October 1, 22(19):8771–8777. Freud, S. Recordar, repetir e elaborar. 1914, reediction of 1976. Gabriele, A., Packard, M.G. 2006. Evidence of a role for multiple memory systems in behavioral extinction. Neurobiology of Learning and Memory, v.85 p.289– 299. Gambi, F., De Berardis, D., Campanella, D., Carano, A., Sepede, G., Salini, G., Mezzano, D., Cicconetti, A., Penna, L., Salerno, R.M., Ferro, F.M. 2005. Mirtazapine treatment of Generalized Anxiety Disorder: a fixed dose, open label study. Journal of Psychopharmacology. v.19, p.483-487. 48 Griebel, G., Blanchard, D.C., Agnes, R.S., Blanchard, R.J. 1995. Differential modulation of antipredator defensive behavior in Swiss-Webster mice following acute or chronic administration of imipramine and fluoxetine. Psychopharmacology (Berl). Jul;120(1):57-66. Haddjeri, N., Blier, P., Montigny, C. de. 1996. Effect of the alpha-2 adrenoceptor antagonist mirtazapine on the 5-hydroxytryptamine system in the rat brain, J. Pharmacol. Exp. Ther. 277 pp. 861–871) Hamann, S. 2005. Sex differences in the responses of the human amygdala. The neuroscientist, 11, 288-293. Hansson, A.C., Rimondini, R., Heilig, M., Mathé, A.A., Sommer, W.H. 2011. Dissociation of antidepressant-like activity of escitalopram and nortriptyline on behaviour and hippocampal BDNF expression in female rats. J Psychopharmacol. Jan 24. Harmer, C.J., Mackay, C.E., Reid, C.B., Cowen, P.J., Goodwin, G.M. 2006. Antidepressant Drug Treatment Modifies the Neural Processing of Nonconscious Threat Cues. Biol Psychiatry;59:816–820. Harmer, C.J. 2010. Antidepressant drug action: a neuropsychological perspective. Depression and Anxiety 27: 231–233. Heim, C., Nemeroff, C.B. 2009. Neurobiology of posttraumatic stress disorder. CNS Spectr. Jan;14(1 Suppl 1):13-24. Hildebrandt, M.G., Steyerberg, E.W., Stage, K.B., Passchier, J., KraghSoerensen P. 2003. Are gender differences important for the clinical effects of antidepressants? Am J Psychiatry ;160:1643–50. Holmes A, Rodgers RJ. 2003. Prior exposure to the elevated plus-maze sensitizes mice to the acute behavioral effects of fluoxetine and phenelzine. Eur J Pharmacol, 459:221–30. Homberg JR, Olivier JD, Blom T, Arentsen T, van Brunschot C, Schipper P, Korte-Bouws G, van Luijtelaar G, Reneman L. 2011. Fluoxetine exerts agedependent effects on behavior and amygdala neuroplasticity in the rat. PLoS One. Jan 31;6(1):e16646. Jonasson, Z. 2005. Meta-analysis of sex differences in rodent models of learning and memory: a review of behavioral and biological data. Neurosci. Biobehav. Rev., 28, 811- 825. Kelly, S.J., Ostrowski, N.L., Wilson, M.A. 1999. Gender Differences in Brain and Behavior: Hormonal and Neural Bases, Pharmacology Biochemistry and Behavior, Vol. 64, No. 4, pp. 655–664. 49 Kendler, K.S., Thornton, L.M., Prescott, C.A. 2001. Gender differences in the rates of exposure to stressful life events and sensitivity to their depressogenic effects. Am. J. Psychiatry, 158, 587-93. Kim, J.H., Richardson, R. 2010. New Findings on Extinction of Conditioned Fear Early in Development: Theoretical and Clinical Implications, Biol Psychiatry ;67:297–303. Krystal, J.H., Neumeister, A. 2009. Noradrenergic and serotonergic mechanisms in the neurobiology of posttraumatic stress disorder and resilience, Brain Research 1293 13-23. Kornstein, S.G., Schatzberg, A.F., Thase, M.E., Yonkers, K.A., McCullough, J.P., Keitner, G. I. et al. 2000. Gender differences in treatment response to sertraline versus imipramine in chronic depression. Am J Psychiatry;157:1445–52. Kubzansky, L.D., Koenen, K.C., Jones, C., Eaton, W.W. 2009. A Prospective Study of Posttraumatic Stress Disorder Symptoms and Coronary Heart Disease in Women. Health Psychol. January; 28(1): 125–130. Kurt, M., Arik, A.C., Celik, S. 2000. The effects of sertraline and fluoxetine on anxiety in the elevated plus-maze test in mice. J Basic Physiol Pharmacol, 11:173– 80. Lebrón, K., Milad, M.R., Quirk, G.J. 2004. Delayed Recall of Fear Extinction in Rats With Lesions of Ventral Medial Prefrontal Cortex. Learn. Mem. 11: 544-548 MacQueen, G.M., Campbell, S., McEwen, B.S., Macdonald, K., Amano, S., Joffe, R.T., Nahmias, C., Young, L.T. 2003. Course of illness, hippocampal function, and hippocampal volume in major depression. PNAS, February 4, vol. 100, no. 3, 1387–1392. Mahendran, R., Yap, H.L. 2005. Clinical practice guidelines for depression. Singapore Medical Journal. v.46, n.11, p.610-615. Marcondes, F.K., Miguel, K.J., Melo, L.L., Spadari-Bratfisch, R.C. 2001. Estrous cycle influences the response of female rats in the elevated plus-maze test. Physiol & Behav 74:435– 440. Marks, I., Lovell, K., Noshirvani, H., Livanou, M., Thrasher, S. 1998. Treatment of Posttraumatic Stress Disorder by Exposure and/or Cognitive Restructuring, Arch Gen Psychiatry, 55:317-325. McCabe, C., Mishor, Z., Cowen, P.J., Harmer, C.J. 2010. Diminished Neural Processing of Aversive and Rewarding Stimuli During Selective Serotonin Reuptake Inhibitor Treatment. BIOL PSYCHIATRY;67:439–445. McEwen, B.S., Chattarji, S. 2004. Molecular mechanisms of neuroplasticity and pharmacological implications: the example of tianeptine. Eur Neuropsychopharmacol. Dec;14. 50 McFarlane, A.C., Papay, P. 1992. Multiple diagnoses in posttraumatic stress disorder in the victims of a natural disaster. J Nerv Ment Dis;180;498-504. McNamara, R.K., Able, J.A., Rider, T., Tso, P., Jandacek, R. 2010. Effect of chronic fluoxetine treatment on male and female rat erythrocyte and prefrontal cortex fatty acid composition. Prog Neuropsychopharmacol Biol Psychiatry. Oct 1;34(7):1317-21. Milad, M.R., Igoe, S.A., Lebron-Milad, K., Novales, J.E. 2009. Estrous cycle phase and gonadal hormones influence conditioned fear extinction. Neuroscience 164:887-895. Miyamoto, D., Iijima, M., Yamamoto, H., Nomura, H., Matsuki, N. 2010. Behavioural effects of antidepressants are dependent and independent on the integrity of the dentate gyrus. Int J Neuropsychopharmacol. Nov 3:1-10. Mirza NR, Nielsen EØ, Troelsen KB. 2007. Serotonin transporter density and anxiolytic-like effects of antidepressants in mice. Prog Neuropsychopharmacol Biol Psychiatry. May 9;31(4):858-66. Monti, B., Berteotti, C., Contestabile, A. 2006. Subchronic rolipram delivery activates hippocampal CREB and arc, enhances retention and slows down extinction of conditioned fear. Neuropsychopharmacology 31, 278 e 286. Morgan, M.A., LeDoux, J.E. 1995. Differential Contribution of Dorsal and Ventral Medial Prefrontal Cortex to the Acquisition and Extinction of Conditioned Fear in Rats. Behavioral Neuroscience, Vol. 109, No. 4, 681-688 Mueller, E.M., Hofmann, S.G., Cherry, J.A. 2010. The type IV phosphodiesterase inhibitor rolipram disturbs expression and extinction of conditioned fear in mice. Neuropharmacology 59; 1 e 8. Nandam, L.S., Jhaveri, D., Bartlett, P. 2007. 5-HT7, neurogenesis and antidepressants: a promising therapeutic axis for treating depression, Clinical and Experimental Pharmacology and Physiology 34, 546–551. Nestler, E.J., Barrot, M., DiLeone, R.J., Eisch, A.J., Gold, S.J., Monteggia, L.M. 2002. Neurobiology of depression. Neuron; 34:13–25. Olivier, J.D., Van Der Hart, M.G., Van Swelm, R.P., Dederen, P.J., Homberg, J.R., Cremers, T., Deen, P.M., Cuppen, E., Cools, A.R., Ellenbroek, B.A. 2008. A study in male and female 5-HT transporter knockout rats: an animal model for anxiety and depression disorders. Neuroscience. Mar 27;152(3):573-84. Paizanis, E., Hamon, M., Lanfumey, L. 2007. Hippocampal Neurogenesis, Depressive Disorders, and Antidepressant Therapy, Neural Plasticity, v., Article ID 73754, 7 pages. 51 Pittenger, C. & Duman, R.S. Stress, 2008. Depression, and Neuroplasticity: A Convergence of Mechanisms, Neuropsychopharmacology REVIEWS 33, 88–109. Porsolt, R.D., Le Pichon, M., Jalfre, M. 1977. Depression: a new animal model sensitive to antidepressant treatment. Nature, v. 266, p.730-732. Porsolt, R.D., Anton, G., Blavet, N., Jalfre, M. 1978. Behavioural despair in rats: a new model sensitive to antidepressant treatments. Eur J Pharmacol ;47:379– 91. Quirk, G.J., Garcia, R., González-Lima, F. 2006. Prefrontal Mechanisms in Extinction of Conditioned Fear. BIOL PSYCHIATRY;60:337–343 Rauch, S.L., Shin, L.M., Phelps, E.A. 2006. Neurocircuitry models of posttraumatic stress disorder and extinction: human neuroimaging research – past, present, and future. Biol. Psychiatry, 60, 376-382. Rauggi, R., Cassanelli, A., Raone, A., Tagliamonte, A., Gambarana, C. 2005. Study of mirtazapine antidepressant effects in rats. International Journal of Neuropsychopharmacology, v.8, p. 369–379. Rawlings, N.B., Norbury, R., Cowen, P.J., Harmer C.J. 2010. A single dose of mirtazapine modulates neural responses to emotional faces in healthy people. Psychopharmacology 01 September. Reneric, J.P., Bouvard, M., Stinus, L. 2002. In the rat forced swimming test, chronic but not subacute administration of dual 5-HT/NA antidepressant treatments may produce greater effects than selective drugs. Behav Brain Res 136: 521–532. Ribeiro, A.M, Barbosa, F.F, Godinho, M.R, Fernandes, V.S, Munguba, H., Alves, L.M, Melo, T.G, Barbosa, M.T, Silva, R.H. 2010. Sex differences in aversive memory in rats: possible role of extinction and reactive emotional factors. Brain and Cognition Volume 74, Issue 2, November, Pages 145-151. Rilea, S.L., Roskos-Ewoldsen, B., Boles, D. 2004. Sex differences in spatial ability: a lateralization of function approach. Brain and Cognition, 56, 332-343. Robert G, Drapier D, Bentué-Ferrer D, Renault A, Reymann JM. 2011. Acute and chronic anxiogenic-like response to fluoxetine in rats in the elevated plus-maze: Modulation by stressful handling. Behav Brain Res. Jul 7;220(2):344-8. Rodgers, R.J., Cao, B.-J., Dalvi, A., Holmes, A. 1997. Animal models of anxiety: an ethological perspective Braz J Med Biol Res 30(3). Rodgers, R.J., Dalvi, A. 1997. Anxiety, Defence and the Elevated Plus-maze. Neuroscience and Biobehavioral Reviews, Vol. 21, No. 6, pp. 801–810. Rogóz, Z., Skuza, G., Legutko, B. 2005. Repeated treatment with mirtazapine induces brain derived neurotrophic factor gene expression in rats. Journal of Physiology and Pharmacology. v.56, n.4, p.661-671. 52 Rogóż, Z. 2010. Effects of co-treatment with mirtazapine and low doses of risperidone on immobility time in the forced swimming test in mice. Pharmacol Rep. Nov-Dec;62(6):1191-6. Sahay, A. & Hen R. 2007. Adult hippocampal neurogenesis in depression, Nature Neuroscience v.10; 9; september. Santarelli, L., Saxe, M., Gross, C., Battaglia, F., Dulawa, S., Weisstaub, N., Lee, J., Duman, R., Arancio, O., Belzung, C., Hen, R. 2003. Requirement of hippocampal neurogenesis for the behavioral effectc of antidepressants. Science vol 301, 8 August. Silva, M.T., Alves, C.R., Santarem, E.M. 1999. Anxiogenic-like effect of acute and chronic fluoxetine on rats tested on the elevated plus-maze. Braz J Med Biol Res, 32:333–9. Silva, R.H., Bellot, R.G., Vital, M.A. & Frussa-Filho, R. 1997. Effects of longterm ganglioside GM1 administration on a new discriminative avoidance test in normal adult mice. Psychopharmacology, 129, 322-328. Silva, R.H. & Frussa-Filho, R. 2000. The plus-maze discriminative acoidance task: a new model to study memory-anxiety interactions. Effects of chlordiazepoxide and caffeine. J Neurosci. Methods, 102, 117-125. Silva, R.H., Abílio, V.C., Torres-Leite, D., Bergamo, M., Chinen, C.C., Claro, F.T., Carvalho, R.C. & Frussa-Filho, R. 2002a. Concomitant development of oral dyskinesia and memory deficits in reserpine-treated male and female mice. Behav. Brain. Res., 132, 171-177. Silva, R.H., Kameda, S.R., Carvalho, R.C., Rigo, G.S., Costa, K.L., Taricano, I.D. & Frussa-Filho, R. 2002b. Effects of amphetamine on the plus-maze discriminative avoidance task in mice. Psychopahrmacology, 160, 9-18. Silva, R.H., Chehin, A.B., Kameda, S.R., Takatsu-Coleman, A.L., Abilio, V.C., Tufik, S. & Frussa-Filho, R. 2004. Effects of pre- or post-training paradoxical sleep deprivation on two animal models of learning and memory in mice. Neurobiol. Learn. Mem., 82, 90-98. Solomon, M.B., Herman, J.P. 2009. Sex differences in psychopathology: Of gonads, adrenals and mental illness, Physiology & Behavior 97 250–258. Schüle, C., Baghai, T., Goy, J., Bidlingmaier, M., Strasburger, C., Laakmann, G. 2002. The influence of mirtazapine on anterior pituitary hormone secretion in healthy male subjects. Psychopharmacology 163:95–101 Schüle, C., Baghai, T., Zwanzger, P., Ella, R., Eser, D., Padberg, F., Möller, H.-J., Rupprecht, R. 2003. Attenuation of hypothalamic-pituitary-adrenocortical hyperactivity in depressed patients by mirtazapine. Psychopharmacology 166:271– 275. 53 Schüle, C., Baghai, T.C., Eser, D., Zwanzger, P., Jordan, M., Buechs, R., Rupprecht, R. 2006. Time course of hypothalamic-pituitary-adrenocortical axis activity during treatment with reboxetine and mirtazapine in depressed patients. Psychopharmacology (Berl). Jul;186(4):601-11. Schulz, D., Buddenberg, T., Huston, J.P. 2007. Extinction-induced ―despair‖ in the water maze, exploratory behavior and fear: Effects of chronic antidepressant treatment. Neurobiology of Learning and Memory 87; 624–634. Toufexis, D.J., Myers, K.M., Davis, M. 2006. The effect of gonadal hormones and gender on anxiety and emotional learning, Hormones and Behavior 50 539–549. Varea, E., Castillo-Gómez, E., Gómez-Climent, M.A., Blasco-Ibáñez, J.M., Crespo, C., Martínez-Guijarro, F.J., Nàcher, J. 2007. Chronic antidepressant treatment induces contrasting patterns of synaptophysin and PSA-NCAM expression in different regions of the adult rat telencephalon. Eur Neuropsychopharmacol. Jul;17(8):546-57. Wald, C., & Wu C. 2010. Biomedical research. Of mice and women: the bias in animal models. Science, Mar 26;327 (5973):1571-2. Woolley, D.G., Vermaercke, B. Beeck, H. O. de, Wagemans, J., Gantois, I., D‘Hooge, R. Swinnen, S. P., Wenderoth, N. 2010. Sex differences in human virtual water maze performance: Novel measures reveal the relative contribution of directional responding and spatial knowledge. Behavioural Brain Research 208 408– 414. Yamamoto, S., Morinobu, S., Fuchikami, M., Kurata, A., Kozuru, T., Yamawaki, S. 2008. Effects of Single Prolonged Stress and D-Cycloserine on Contextual Fear Extinction and Hippocampal NMDA Receptor Expression in a Rat Model of PTSD. Neuropsychopharmacology, 33, 2108–2116 Yamamoto, S., Morinobu, S., Takei, S., Fuchikami, M., Matsuki, A., Yamawaki, S., Liberzon, I. 2009. Single prolonged stress: toward an animal model of posttraumatic stress disorder. Depress Anxiety.;26 (12):1110-7. Zucker I, Beery AK. 2010. Males still dominate animal studies. Nature, Jun 10;465(7299):690. 54 AUTHOR INFORMATION PACK 6 Jan 2011 www.elsevier.com/locate/pnp 1 PROGRESS IN NEUROPSYCHOPHARMACOLOGY & BIOLOGICAL PSYCHIATRY An International Research, Review, and News Journal AUTHOR INFORMATION PACK TABLE OF CONTENTS • Description • Audience • Impact Factor • Abstracting and Indexing • Editorial Board • Guide for Authors ISSN: 0278-5846 DESCRIPTION . Progress in Neuro-Psychopharmacology & Biological Psychiatry is an international and multidisciplinary research, review and news journal. One of its main aims is to assure rapid publication of authoritative reviews and research papers dealing with 55 experimental and clinical aspects of neuro-psychopharmacology and biological psychiatry. Another important aim of the journal is to supply pertinent information, provided by national and international bodies, that contributes to progress in the scientific and professional fields. Finally, the journal intends to foster and encourage communications between members of the communities of neuro- psychopharmacology and biological psychiatry. Progress in Neuro-Psychopharmacology & Biological Psychiatry does not publish work on the actions of biological extracts unless the pharmacological active molecular substrate and/or specific receptor binding properties of the extract compounds are elucidated. US National Institutes of Health (NIH) voluntary posting ("Public Access") policy Progress in Neuropsychopharmacology & Biological Psychiatry and Elsevier facilitate the author's response to the NIH Public Access Policy. For more details please see the Guide for authors Fraudulent 'phishing' e-mails soliciting scholarly papers have been circulating which claim to originate from Elsevier, Inc. and are directed to prospective authors and editors. The fraudulent e-mail messages currently in circulation generally contain "Manuscript Submission" or "Call for Papers" in the subject line and are typically sent using e-mail accounts supported by Gmail, Hotmail or by other free e-mail providers. Typically, the body of these messages contain a "Call for Papers," requesting that authors submit scholarly articles 56 via e-mail for publication by Elsevier in various Elsevier journals and other publications. Ultimately, these fraudulent e-mails involve a request for the victims to send "handling fees" to cover the processing of the article that has been submitted. Please be assured that Elsevier, Inc. is in no way associated with this fraudulent e-mail campaign. In addition, please be advised that Elsevier does not solicit intellectual property from authors in this fashion, and does not utilize Gmail, Hotmail, or any other free thirdparty e-mail providers in communications with authors and editors. AUTHOR INFORMATION PACK 6 Jan 2011 www.elsevier.com/locate/pnp 2 If you receive any e-mail messages that appear to be a part of this fraudulent solicitation, DO NOT respond to the message and do not open any attachments contained in the message. Rather, please forward the message to Elsevier's Fraud Department at [email protected]. We will use the information included in the message to aid in our investigation. AUDIENCE . Neuroscientists, pharmacologists, psychiatrists, psychologists in both basic and clinical research. IMPACT FACTOR . 2009: 2.823 © Thomson Reuters Journal Citation Reports 2010 57 ABSTRACTING AND INDEXING . BIOSIS Cambridge Scientific Abstracts Chemical Abstracts Current Contents/BIOMED Database Current Contents/Index to Scientific Reviews Current Contents/Life Sciences EMBASE Elsevier BIOBASE MEDLINE® Research Alert SCISEARCH Science Citation Index Scopus EDITORIAL BOARD . Editor-in-Chief: Guy Drolet, Neurosciences, Centre de Recherche du CHUL (CHUQ), RC-9800 2705 Laurier, Quebec, G1V 4G2, Canada Assistant Editor: Sylvie Laforest, Emeritus Editor: 58 Paul Bédard, Founding Editor: C. Radouco-Thomas*, Editorial Board: O. Akyol, Ankara, Turkey H. Belmaker, Beersheva, Israel P. Blier, Ottawa, Canada M-H. Bloch, New Haven, CT, USA C. Davidson, London, UK S.I. Deutsch, Washington, DC, USA K. Domschke, Münster, Germany F. Graeff, Ribeirao Preto SP, Brazil L. He, Shanghai, China F. Holsboer, München, Germany A.V. Kalueff, Tampere, Finland K. Kasai, Tokyo, Japan T. Kato, Wako, Japan Y.-K. Kim, Ansan City, South Korea AUTHOR INFORMATION PACK 6 Jan 2011 www.elsevier.com/locate/pnp 3 S.K. Kulkarni, Chandigarh, India P-Y. Lin, Kaohsiung, Taiwan, ROC M. Maes, Maastricht, Netherlands K. Melkersson, Sollentuna, Sweden D. Morilak, San Antonio, TX, USA D. Muck-Seler, Zagreb, Croatia 59 C. Rouillard, Quebec, QC, Canada J. Samochowiec, Szczecin, Poland A. Serretti, Bologna, Italy R. Silva, Natal, Brazil H. Singh Duggal, Tecumseh, MI, USA D. Stein, Cape Town, South Africa R. Szeszko, Glen Oaks, NY, USA S. Tsai, Taipei, Taiwan, ROC P. Vezina, Chicago, IL, USA M. Xu, Boston, MA, USA X-Y. Zhang, Houston, TX, USA AUTHOR INFORMATION PACK 6 Jan 2011 www.elsevier.com/locate/pnp 4 GUIDE FOR AUTHORS . INTRODUCTION Progress in Neuro-Psychopharmacology & Biological Psychiatry is an international and multidisciplinary research, review and news journal. One of its main aims is to assure rapid publication of authoritative reviews and research papers dealing with experimental and clinical aspects of neuro-psychopharmacology and biological psychiatry. Another important aim of the journal is to supply pertinent information, provided by national and international bodies, that contributes to progress in the scientific and professional fields. Finally, the journal intends to foster and encourage communications between members of the communities of neuro- psychopharmacology and biological psychiatry. 60 Studies on natural products The journal does not publish work on the actions of biological extracts unless the pharmacological active molecular substrate and/or specific receptor binding properties of the extract compounds are elucidated. Types of paper 1. Original research articles 2. Review articles: Mini-reviews or comprehensive reviews of cutting edge work, or syntheses of cutting edge work that has been done in the past two years As of 1st December 2010, Letters to the Editor are no longer accepted for publication in the journal. Page charges This journal has no page charges. BEFORE YOU BEGIN Ethics in Publishing For information on Ethics in Publishing and Ethical guidelines for journal publication see http://www.elsevier.com/publishingethics and http://www.elsevier.com/ethicalguidelines. Policy and ethics The work described in your article must have been carried out in accordance with The Code of Ethics of the World Medical Association (Declaration of Helsinki) for experiments involving http://www.wma.net/en/30publications/10policies/b3/index.html; humans EC Directive 61 86/609/EEC for animal experiments http://ec.europa.eu/environment/chemicals/lab_animals/legislation_en.htm; Uniform Requirements for manuscripts submitted to Biomedical journals http://www.icmje.org. This must be stated at an appropriate point in the article. Conflict of interest All authors are requested to disclose any actual or potential conflict of interest including any financial, personal or other relationships with other people or organizations within three years of beginning the submitted work that could inappropriately influence, or be perceived to influence, their work. See also http://www.elsevier.com/conflictsofinterest. Submission declaration Submission of an article implies that the work described has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis), that it is not under consideration for publication elsewhere, that its publication is approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out, and that, if accepted, it will not be published elsewhere including electronically in the same form, in English or in any other language, without the written consent of the copyright-holder. Contributors Each author is required to declare his or her individual contribution to the article: all authors must have materially participated in the research and/or article preparation, 62 so roles for all authors should be described. The statement that all authors have approved the final article should be true and included in the disclosure. Changes to authorship This policy concerns the addition, deletion, or rearrangement of author names in the authorship of accepted manuscripts: AUTHOR INFORMATION PACK 6 Jan 2011 www.elsevier.com/locate/pnp 5 Before the accepted manuscript is published in an online issue: Requests to add or remove an author, or to rearrange the author names, must be sent to the Journal Manager from the corresponding author of the accepted manuscript and must include: (a) the reason the name should be added or removed, or the author names rearranged and (b) written confirmation (e-mail, fax, letter) from all authors that they agree with the addition, removal or rearrangement. In the case of addition or removal of authors, this includes confirmation from the author being added or removed. Requests that are not sent by the corresponding author will be forwarded by the Journal Manager to the corresponding author, who must follow the procedure as described above. Note that: (1) Journal Managers will inform the Journal Editors of any such requests and (2) publication of the accepted manuscript in an online issue is suspended until authorship has been agreed. After the accepted manuscript is published in an online issue: Any requests to add, delete, or rearrange author names in an article published in an online issue will follow the same policies as noted above and result in a corrigendum. Copyright 63 Upon acceptance of an article, authors will be asked to complete a 'Journal Publishing Agreement' (for more information on this and copyright see http://www.elsevier.com/copyright). Acceptance of the agreement will ensure the widest possible dissemination of information. An e-mail will be sent to the corresponding author confirming receipt of the manuscript together with a 'Journal Publishing Agreement' form or a link to the online version of this agreement. Subscribers may reproduce tables of contents or prepare lists of articles including abstracts for internal circulation within their institutions. Permission of the Publisher is required for resale or distribution outside the institution and for all other derivative works, including compilations and translations (please consult http://www.elsevier.com/permissions). If excerpts from other copyrighted works are included, the author(s) must obtain written permission from the copyright owners and credit the source(s) in the article. Elsevier has preprinted forms for use by authors in these cases: please consult http://www.elsevier.com/permissions. Retained author rights As an author you (or your employer or institution) retain certain rights; for details you are referred to: http://www.elsevier.com/authorsrights. Role of the funding source You are requested to identify who provided financial support for the conduct of the research and/or preparation of the article and to briefly describe the role of the sponsor(s), if any, in study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the paper for 64 publication. If the funding source(s) had no such involvement then this should be stated. Please see http://www.elsevier.com/funding. Funding body agreements and policies Elsevier has established agreements and developed policies to allow authors whose articles appear in journals published by Elsevier, to comply with potential manuscript archiving requirements as specified as conditions of their grant awards. To learn more about existing agreements and policies please visit http://www.elsevier.com/fundingbodies. Open access This journal offers you the option of making your article freely available to all via the ScienceDirect platform. To prevent any conflict of interest, you can only make this choice after receiving notification that your article has been accepted for publication. The fee of $3,000 excludes taxes and other potential author fees such as color charges. In some cases, institutions and funding bodies have entered into agreement with Elsevier to meet these fees on behalf of their authors. Details of these agreements are available at http://www.elsevier.com/fundingbodies. Authors of accepted articles, who wish to take advantage of this option, should complete and submit the order form (available at http://www.elsevier.com/locate/openaccessform.pdf). Whatever access option you choose, you retain many rights as an author, including the right to post a revised personal version of your article on your own website. More information can be found here: http://www.elsevier.com/authorsrights . 65 Language and language services Please write your text in good English (American or British usage is accepted, but not a mixture of these). Authors who require information about language editing and copyediting services pre- and post-submission please http://webshop.elsevier.com/languageediting or our customer support visit site at http://support.elsevier.com for more information. AUTHOR INFORMATION PACK 6 Jan 2011 www.elsevier.com/locate/pnp 6 Submission Submission to this journal proceeds totally online and you will be guided stepwise through the creation and uploading of your files. The system automatically converts source files to a single PDF file of the article, which is used in the peer-review process. Please note that even though manuscript source files are converted to PDF files at submission for the review process, these source files are needed for further processing after acceptance. All correspondence, including notification of the Editor's decision and requests for revision, takes place by e-mail removing the need for a paper trail. Submit your article Please submit your article via http://ees.elsevier.com/pnp/ Referees Please submit, with the manuscript, the names, addresses and e-mail addresses of 3 potential referees. Note that the editor retains the sole right to decide whether or not the suggested reviewers are used. 66 Genetic Association Studies Progress in Neuro-Psychopharmacology & Biological Psychiatry is interested in Genetics/Association studies that are replicable and generalizable. The following guidelines are offered in pursuit of this goal. (1) Studies need to be sufficiently large. (2) Information about subject ethnicity, and how it was determined, should be provided. The use of an analytic strategy that controls for potential stratification, such as family-controlled association, or structured association, is encouraged. (3) There must be a clear description of how the phenotype was ascertained. (4) Negative studies should always include estimates of power. Confirmation of the functional consequences of a common disease-associated variant is useful information, but does not substitute for a rigorous demonstration of a statistically significant association. Analysis of pathways or candidate regional analysis is encouraged over single gene studies. Candidate gene studies must have strong positional or biological rationale or precedents in the literature that motivate gene choice. For studies of nonfunctional variants, there should generally be sufficiently dense marker coverage to allow a relatively comprehensive analysis of common variants within a gene or genes. Analysis of the extent of marker coverage using standard methods to assess linkage disequilibrium should be presented. If rare variants are being tested, the same method of assessment (sequencing, copy number assessment, etc.) should be used in both case and control groups. We will consider both negative and positive association studies, as well as large replication studies. Negative studies should be based on an attempt to replicate previous studies. Power calculations considering reasonable effect sizes must be provided to show that the study had sufficient power to be informative. 67 NIH voluntary posting ("Public Access") US National Institutes of Health (NIH) voluntary posting ("Public Access") Elsevier facilitates author response to the NIH voluntary posting request (referred to as the NIH "Public http://www.nih.gov/about/publicaccess/index.htm) Access by posting Policy"; the see peerreviewed author's manuscript directly to PubMed Central on request from the author, 12 months after formal publication. Upon notification from Elsevier of acceptance, we will ask you to confirm via email (by e-mailing us at [email protected]) that your work has received NIH funding and that you intend to respond to the NIH policy request, along with your NIH award number to facilitate processing. Upon such confirmation, Elsevier will submit to PubMed Central on your behalf a version of your manuscript that will include peer-review comments, for posting 12 months after formal publication. This will ensure that you will have responded fully to the NIH request policy. There will be no need for you to post your manuscript directly with PubMed Central, and any such posting is prohibited. PREPARATION Use of wordprocessing software It is important that the file be saved in the native format of the wordprocessor used. The text should be in single-column format. Keep the layout of the text as simple as possible. Most formatting codes will be removed and replaced on processing the article. In particular, do not use the wordprocessor's options to justify text or to hyphenate words. However, do use bold face, italics, subscripts, superscripts etc. When preparing tables, if you are using a table grid, use only one grid for each 68 individual table and not a grid for each row. If no grid is used, use tabs, not spaces, to align columns. The electronic text should be prepared in a way very similar to that of conventional manuscripts AUTHOR INFORMATION PACK 6 Jan 2011 www.elsevier.com/locate/pnp 7 (see also the Guide to Publishing with Elsevier: http://www.elsevier.com/guidepublication). Note that source files of figures, tables and text graphics will be required whether or not you embed your figures in the text. See also the section on Electronic illustrations. To avoid unnecessary errors you are strongly advised to use the "spell-check" and "grammar-check" functions of your wordprocessor. LaTeX If the LaTeX file is suitable, proofs will be produced without rekeying the text. The article should preferably be written using Elsevier's document class "elsarticle", or alternatively any of the other recognized classes and formats supported in Elsevier's electronic submissions system, for further information see http://www.elsevier.com/wps/find/authorsview.authors/latex-ees-supported. The Elsevier "elsarticle" LaTeX style file package (including detailed instructions for LaTeX preparation) can be obtained from the Quickguide: http://www.elsevier.com/latex. It consists of the file: elsarticle.cls, complete user documentation for the class file, bibliographic style files in various styles, and template files for a quick start. Article structure Title The title of the paper should be brief; no longer than 100 characters in length, and should capture and communicate the key message of your research to a broader 69 audience. To aid this, abbreviations, unless familiar to a broad audience, should be avoided. Subdivision - numbered sections Divide your article into clearly defined and numbered sections. Subsections should be numbered 1.1 (then 1.1.1, 1.1.2, ...), 1.2, etc. (the abstract is not included in section numbering). Use this numbering also for internal cross-referencing: do not just refer to "the text". Any subsection may be given a brief heading. Each heading should appear on its own separate line. Original research articles should be organized as follows: Introduction State the objectives of the work and provide an adequate background, avoiding a detailed literature survey or a summary of the results. Methods This section should contain explicit, concise descriptions of all procedures, materials and methods used in the investigation to enable the reader to judge their accuracy, reproducibility, etc. To increase clarity, headings should be used throughout. For example, the following subheadings, which should be numbered, could be used: Experimental articles: Animals, Drugs, Apparatus, Experimental procedure, and Statistical analysis. Clinical articles: Patient population, Drug administration, Study design, Assessment instruments, and Data analysis. Depending on the type of article they are preparing, authors could introduce any other subheadings they find useful. Results This section usually contains the experimental data, but no extended discussion of their significance. The results should be illustrated (figures and tables); data are 70 usually easier for readers to grasp if they are represented in graphic or tabular form, rather than discursively. Graphic presentation of data is preferred. Data should not be needlessly repeated in text. Sufficient data may allow interested but non-expert readers to judge the variability and reliability of the results. The section should be well structured using appropriate subheadings. Discussion This should be pertinent to the results. Speculative discussion is not discouraged provided it is based on the data presented. The discussion should be as concise as possible and well structured, using appropriate subheadings. Conclusion A short paragraph of conclusions (5 to 10 lines) should be included. Essential title page information • Title. Concise and informative. Titles are often used in information-retrieval systems. Avoid abbreviations and formulae where possible. AUTHOR INFORMATION PACK 6 Jan 2011 www.elsevier.com/locate/pnp 8 • Author names and affiliations. Where the family name may be ambiguous (e.g., a double name), please indicate this clearly. Present the authors' affiliation addresses (where the actual work was done) below the names. Indicate all affiliations with a lower-case superscript letter immediately after the author's name and in front of the appropriate address. Provide the full postal address of each affiliation, including the country name, and, if available, the e-mail address of each author. • Corresponding author. Clearly indicate who will handle correspondence at all stages of refereeing and publication, also post-publication. Ensure that telephone and fax numbers (with country and area code) are provided in addition to the e- 71 mail address and the complete postal address. Contact details must be kept up to date by the corresponding author. • Present/permanent address. If an author has moved since the work described in the article was done, or was visiting at the time, a "Present address" (or "Permanent address") may be indicated as a footnote to that author's name. The address at which the author actually did the work must be retained as the main, affiliation address. Superscript Arabic numerals are used for such footnotes. Abstract A concise and factual abstract is required. The abstract should state briefly the purpose of the research, the principal results and major conclusions. An abstract is often presented separately from the article, so it must be able to stand alone. For this reason, References should be avoided, but if essential, then cite the author(s) and year(s). Also, non-standard or uncommon abbreviations should be avoided, but if essential they must be defined at their first mention in the abstract itself. Graphical abstract A Graphical abstract is optional and should summarize the contents of the article in a concise, pictorial form designed to capture the attention of a wide readership online. Authors must provide images that clearly represent the work described in the article. Graphical abstracts should be submitted as a separate file in the online submission system. Image size: Please provide an image with a minimum of 531 × 1328 pixels (h × w) or proportionally more. Preferred file types: TIFF, EPS, PDF or MS Office files. See http://www.elsevier.com/graphicalabstracts for examples. 72 Highlights Highlights are mandatory for this journal. They consist of a short collection of bullet points that convey the core findings of the article and should be submitted in a separate file in the online submission system. Please use 'Highlights' in the file name and include 3 to 5 bullet points (maximum 85 characters per bullet point including spaces). See http://www.elsevier.com/researchhighlights for examples. Keywords Immediately after the abstract, provide a maximum of 6 keywords, using American spelling and avoiding general and plural terms and multiple concepts (avoid, for example, "and", "of"). Be sparing with abbreviations: only abbreviations firmly established in the field may be eligible. These keywords will be used for indexing purposes. Abbreviations Define abbreviations that are not standard in this field in a footnote to be placed on the first page of the article. Such abbreviations that are unavoidable in the abstract must be defined at their first mention there, as well as in the footnote. Ensure consistency of abbreviations throughout the article. Acknowledgements Collate acknowledgements in a separate section at the end of the article before the references and do not, therefore, include them on the title page, as a footnote to the title or otherwise. List here those individuals who provided help during the research (e.g., providing language help, writing assistance or proof reading the article, etc.). 73 Units Follow internationally accepted rules and conventions: use the international system of units (SI). If other units are mentioned, please give their equivalent in SI. Drug nomenclature Generic names should be used in text, tables and figures. Trade names and the name and city of their manufacturer may be mentioned in parentheses in the first text reference to the drug, but should not appear in titles, figures or tables. Chemical names could also be used. Code numbers could be given in brackets. When a trade name is used, it should be capitalized; general or chemical names are not capitalized. The chemical nature of new drugs must be given when known. The form of drug used in calculations of doses (e.g., base or salt) should be indicated. AUTHOR INFORMATION PACK 6 Jan 2011 www.elsevier.com/locate/pnp 9 Footnotes Footnotes should be used sparingly. Number them consecutively throughout the article, using superscript Arabic numbers. Many wordprocessors build footnotes into the text, and this feature may be used. Should this not be the case, indicate the position of footnotes in the text and present the footnotes themselves separately at the end of the article. Do not include footnotes in the Reference list. Table footnotes Indicate each footnote in a table with a superscript lowercase letter. Artwork Electronic artwork 74 General points • Make sure you use uniform lettering and sizing of your original artwork. • Save text in illustrations as "graphics" or enclose the font. • Only use the following fonts in your illustrations: Arial, Courier, Times, Symbol. • Number the illustrations according to their sequence in the text. • Use a logical naming convention for your artwork files. • Provide captions to illustrations separately. • Produce images near to the desired size of the printed version. • Submit each figure as a separate file. A detailed guide on electronic artwork is available on our website: http://www.elsevier.com/artworkinstructions You are urged to visit this site; some excerpts from the detailed information are given here. Formats Regardless of the application used, when your electronic artwork is finalised, please "save as" or convert the images to one of the following formats (note the resolution requirements for line drawings, halftones, and line/halftone combinations given below): EPS: Vector drawings. Embed the font or save the text as "graphics". TIFF: color or grayscale photographs (halftones): always use a minimum of 300 dpi. TIFF: Bitmapped line drawings: use a minimum of 1000 dpi. TIFF: Combinations bitmapped line/half-tone (color or grayscale): a minimum of 500 dpi is required. DOC, XLS or PPT: If your electronic artwork is created in any of these Microsoft Office applications please supply "as is". 75 Please do not: • Supply files that are optimised for screen use (like GIF, BMP, PICT, WPG); the resolution is too low; • Supply files that are too low in resolution; • Submit graphics that are disproportionately large for the content. Color artwork Please make sure that artwork files are in an acceptable format (TIFF, EPS or MS Office files) and with the correct resolution. If, together with your accepted article, you submit usable color figures then Elsevier will ensure, at no additional charge, that these figures will appear in color on the Web (e.g., ScienceDirect and other sites) regardless of whether or not these illustrations are reproduced in color in the printed version. For color reproduction in print, you will receive information regarding the costs from Elsevier after receipt of your accepted article. Please indicate your preference for color in print or on the Web only. For further information on the preparation of electronic artwork, please see http://www.elsevier.com/artworkinstructions. Please note: Because of technical complications which can arise by converting color figures to "gray scale" (for the printed version should you not opt for color in print) please submit in addition usable black and white versions of all the color illustrations. Figure captions Ensure that each illustration has a caption. Supply captions separately, not attached to the figure. A caption should comprise a brief title (not on the figure itself) and a description of the illustration. Keep text in the illustrations themselves to a minimum but explain all symbols and abbreviations used. 76 Tables Number tables consecutively in accordance with their appearance in the text. Place footnotes to tables below the table body and indicate them with superscript lowercase letters. Avoid vertical rules. Be sparing in the use of tables and ensure that the data presented in tables do not duplicate results described elsewhere in the article. AUTHOR INFORMATION PACK 6 Jan 2011 www.elsevier.com/locate/pnp 10 References Citation in text Please ensure that every reference cited in the text is also present in the reference list (and vice versa). Any references cited in the abstract must be given in full. Unpublished results and personal communications are not recommended in the reference list, but may be mentioned in the text. If these references are included in the reference list they should follow the standard reference style of the journal and should include a substitution of the publication date with either "Unpublished results" or "Personal communication" Citation of a reference as "in press" implies that the item has been accepted for publication. Web references As a minimum, the full URL should be given and the date when the reference was last accessed. Any further information, if known (DOI, author names, dates, reference to a source publication, etc.), should also be given. Web references can be listed separately (e.g., after the reference list) under a different heading if desired, or can be included in the reference list. References in a special issue 77 Please ensure that the words 'this issue' are added to any references in the list (and any citations in the text) to other articles in the same Special Issue. Reference style Text: All citations in the text should refer to: 1. Single author: the author's name (without initials, unless there is ambiguity) and the year of publication; 2. Two authors: both authors' names and the year of publication; 3. Three or more authors: first author's name followed by "et al." and the year of publication. Citations may be made directly (or parenthetically). Groups of references should be listed first alphabetically, then chronologically. Examples: "as demonstrated (Allan, 1996a, 1996b, 1999; Allan and Jones, 1995). Kramer et al. (2000) have recently shown ...." List: References should be arranged first alphabetically and then further sorted chronologically if necessary. More than one reference from the same author(s) in the same year must be identified by the letters "a", "b", "c", etc., placed after the year of publication. Examples: Reference to a journal publication: Van der Geer, J., Hanraads, J.A.J., Lupton, R.A., 2000. The art of writing a scientific article. J. Sci. Commun. 163, 51–59. Reference to a book: 78 Strunk Jr., W., White, E.B., 1979. The Elements of Style, third ed. Macmillan, New York. Reference to a chapter in an edited book: Mettam, G.R., Adams, L.B., 1999. How to prepare an electronic version of your article, in: Jones, B.S., Smith , R.Z. (Eds.), Introduction to the Electronic Age. E-Publishing Inc., New York, pp. 281–304. Journal abbreviations source Journal names should be abbreviated according to Index Medicus journal abbreviations: http://www.nlm.nih.gov/tsd/serials/lji.html; List of serial title word abbreviations: http://www.issn.org/2-22661-LTWA-online.php; CAS (Chemical Abstracts Service): http://www.cas.org/sent.html. Video data Elsevier accepts video material and animation sequences to support and enhance your scientific research. Authors who have video or animation files that they wish to submit with their article are strongly encouraged to include these within the body of the article. This can be done in the same way as a figure or table by referring to the video or animation content and noting in the body text where it should be placed. All submitted files should be properly labeled so that they directly relate to the video file's content. In order to ensure that your video or animation material is directly usable, please provide the files in one of our recommended file formats with a maximum size of 10 MB. Video and animation files supplied will be published online in the electronic version of your article in Elsevier Web products, including ScienceDirect: http://www.sciencedirect.com. Please supply 'stills' with your files: you can choose 79 any frame from the video or animation or make a separate image. These will be used instead of standard icons and will personalize the link to your video data. For more detailed instructions please visit our video instruction pages at http://www.elsevier.com/artworkinstructions. AUTHOR INFORMATION PACK 6 Jan 2011 www.elsevier.com/locate/pnp 11 Note: since video and animation cannot be embedded in the print version of the journal, please provide text for both the electronic and the print version for the portions of the article that refer to this content. Supplementary data Elsevier accepts electronic supplementary material to support and enhance your scientific research. Supplementary files offer the author additional possibilities to publish supporting applications, highresolution images, background datasets, sound clips and more. Supplementary files supplied will be published online alongside the electronic version of your article in Elsevier Web products, including ScienceDirect: http://www.sciencedirect.com. In order to ensure that your submitted material is directly usable, please provide the data in one of our recommended file formats. Authors should submit the material in electronic format together with the article and supply a concise and descriptive caption for each file. For more detailed instructions please visit our artwork instruction pages at http://www.elsevier.com/artworkinstructions. Submission checklist 80 The following list will be useful during the final checking of an article prior to sending it to the journal for review. Please consult this Guide for Authors for further details of any item. Ensure that the following items are present: One Author designated as corresponding Author: • E-mail address • Full postal address • Telephone and fax numbers All necessary files have been uploaded • Keywords • All figure captions • All tables (including title, description, footnotes) Further considerations • Manuscript has been "spellchecked" and "grammar-checked" • References are in the correct format for this journal • All references mentioned in the Reference list are cited in the text, and vice versa • Permission has been obtained for use of copyrighted material from other sources (including the Web) • Color figures are clearly marked as being intended for color reproduction on the Web (free of charge) and in print or to be reproduced in color on the Web (free of charge) and in black-and-white in print • If only color on the Web is required, black and white versions of the figures are also supplied for printing purposes For any further information please visit our customer support site at http://support.elsevier.com. AFTER ACCEPTANCE 81 Use of the Digital Object Identifier The Digital Object Identifier (DOI) may be used to cite and link to electronic documents. The DOI consists of a unique alpha-numeric character string which is assigned to a document by the publisher upon the initial electronic publication. The assigned DOI never changes. Therefore, it is an ideal medium for citing a document, particularly 'Articles in press' because they have not yet received their full bibliographic information. The correct format for citing a DOI is shown as follows (example taken from a document in the journal Physics Letters B): doi:10.1016/j.physletb.2010.09.059 When you use the DOI to create URL hyperlinks to documents on the web, they are guaranteed never to change. Proofs One set of page proofs (as PDF files) will be sent by e-mail to the corresponding author (if we do not have an e-mail address then paper proofs will be sent by post) or, a link will be provided in the e-mail so that authors can download the files themselves. Elsevier now provides authors with PDF proofs which can be annotated; for this you will need to download Adobe Reader version 7 (or higher) available free from http://www.adobe.com/products/acrobat/readstep2.html. Instructions on how to annotate PDF files will accompany the proofs (also given online). The exact system requirements are given at the Adobe site: http://www.adobe.com/products/reader/systemreqs. If you do not wish to use the PDF annotations function, you may list the corrections (including replies to the Query Form) and return them to Elsevier in an e-mail. Please list your corrections quoting 82 line number. If, for any reason, this is not possible, then mark the corrections and any other comments AUTHOR INFORMATION PACK 6 Jan 2011 www.elsevier.com/locate/pnp 12 (including replies to the Query Form) on a printout of your proof and return by fax, or scan the pages and e-mail, or by post. Please use this proof only for checking the typesetting, editing, completeness and correctness of the text, tables and figures. Significant changes to the article as accepted for publication will only be considered at this stage with permission from the Editor. We will do everything possible to get your article published quickly and accurately. Therefore, it is important to ensure that all of your corrections are sent back to us in one communication: please check carefully before replying, as inclusion of any subsequent corrections cannot be guaranteed. Proofreading is solely your responsibility. Note that Elsevier may proceed with the publication of your article if no response is received. Offprints The corresponding author, at no cost, will be provided with a PDF file of the article via e-mail. For an extra charge, paper offprints can be ordered via the offprint order form which is sent once the article is accepted for publication. The PDF file is a watermarked version of the published article and includes a cover sheet with the journal cover image and a disclaimer outlining the terms and conditions of use. AUTHOR INQUIRIES For inquiries relating to the submission of articles (including electronic submission where available) please visit this journal's homepage. You can track accepted articles at http://www.elsevier.com/trackarticle and set up e-mail alerts to inform you of when an article's status has changed. Also accessible from here is information on 83 copyright, frequently asked questions and more. Contact details for questions arising after acceptance of an article, especially those relating to proofs, will be provided by the publisher. © Copyright 2010 Elsevier | http://www.elsevier.com 84 IV. Considerações finais e conclusões Os presentes resultados demonstraram que o grupo tratado com fluoxetina manteve o aprendizado e a evocação da tarefa nos mesmos níveis que os desempenhados pelo grupo veículo; porém exibiu uma aceleração no processo de extinção da memória aversiva. A nortriptilina e a mirtazapina aumentaram a velocidade de aprendizado da tarefa aversiva, o que pode ser relacionado a uma ênfase aos estímulos aversivos, um efeito inesperado resultante do uso de antidepressivos (Harmer et al. 2006; McGabe et al. 2010; Rawlings et al. 2010). Já na sessão teste essas drogas impediram a extinção da tarefa. A nortriptilina demonstrou efeitos na redução da ansiedade apenas sob um dos aspectos etológicos, o que pode sugerir uma necessidade de maior dosagem para que possam ser observados efeitos ansiolíticos mais expressivos em fêmeas. Essa ausência de diferenças nos parâmetros mais clássicos do labirinto em cruz elevado no tocante a ansiedade atenta para a importância da observação dos aspectos etológicos no modelo utilizado. Além disso, as fêmeas tratadas com mirtazapina exibiram uma menor atividade locomotora no treino e teste da EDLC, sugerindo um efeito hipolocomotor da dose da droga utilizada, apesar de o mesmo não ocorrer com machos nas mesmas condições (Rauggi 2005). Por fim, no TNF os grupos de fêmeas tratados com fluoxetina e mirtazapina apresentaram decréscimo de imobilidade, um resultado que sugere um efeito antidepressivo destas drogas neste teste comportamental. O grupo tratado com fluoxetina ainda apresentou aumento do tempo de escalada. Já a nortriptilina apresentou um resultado atípico no TNF, sugerindo uma possível necessidade de aumento de dosagem para observação de efeitos antidepressivos. 85 Estes resultados sugerem que a fluoxetina pode exercer sua ação terapêutica facilitando a extinção de memórias aversivas, correlatas ou não a transtornos de humor e ansiedade. A mirtazapina apesar de promover um efeito antidepressivo em animais submetidos ao teste do nado forçado, não foi capaz de promover a extinção da memória aversiva, o que sugere uma dissociação entre a melhora dos sintomas depressivos e possíveis efeitos sobre a extinção da memória para esse fármaco. Estudos como o nosso sugerem que a investigação das diferenças sexuais na neurobiologia da ansiedade e transtornos associados à depressão pode contribuir com a melhora na escolha mais adequada para o tratamento farmacológico mais específico, com melhores efeitos em curto prazo e com menores efeitos colaterais baseados no gênero. Além disso, nossos dados corroboram a premissa de que os efeitos terapêuticos de ISRS podem estar relacionados à facilitação da extinção de memórias aversivas. Mais estudos são necessários para o esclarecimento dos mecanismos relacionados a esse efeito. 86 V. Referências Aia, P. G., Revuelta, G. J., Cloud, L. J., Factor, S. A. 2011. Tardive Dyskinesia. Curr Treat Options Neurol, Mar 3. American Psychiatric Association. 2000. Diagnostic and Statistical Manual of Mental Disorders. Publication Manual. 4th ed. Washington, DC. Aragonès, E., Piñol, J. L., Labad, A. 2009. Comorbilidad de la depresión mayor con otros trastornos mentales comunes en pacientes de atención primaria, Aten Primaria, 41(10):545–551. Arantes-Gonçalves, F. & Coelho, R. 2006. Depression and treatment. Apoptosis, neuroplasticity and antidepressants. Acta Médica Portuguesa. v.19, p.9-20. Arnone D., Horder, J., Cowen, P. J., Harmer, C. J. 2009. Early effects of mirtazapine on emotional processing. Psychopharmacology, v 203, p.685–691. Austin, M.-P., Mitchell, P., Goodwin, G. M. 2001. Cognitive deficits in depression: Possible implications for functional neuropathology, British Journal of Psychiatry, 178, 200-206. Barros, H. M. T. & Ferigolo, M. 1998. Ethopharmacology of imipramine in the forced-swimming test: gender differences. Neuroscience and Biobehavioral Reviews 23 279–286. Bengtsson, H. J., Kele, J., Johansson, J. Hjorth, S. 2000. Interaction of the antidepressant mirtazapine with α2-adrenoceptors modulating the release of 5HT in different rat brain regions in vivo. Naunyn Schmiedeberg’s Arch Pharmacol, 362:406–412. Bekker, M. H. J., Mens-Verhulst, J. van. 2007. Anxiety Disorders: Sex Differences in Prevalence, Degree, and Background, But Gender-Neutral Treatment, Gender Medicine, VoL 4, Suppl. B. Blaney, P. H. 1986. Affect and memory: a review. Psychol. Bull. 99, 229– 246. Bruder, G. E., Stewart, J. W., Tenke, C. E., McGrath, P. J., Leite, P., Bhattacharya, N., Quitkin, F. M. 2001. Electroencephalographic and perceptual asymmetry differences between responders and nonresponders to an SSRI antidepressant. Biol Psychiatry. Mar 1;49(5):416-25. Brunello, N., Davidson, J. R., Deahl, M., Kessler, R.C., Mendlewicz, J., Racagni, G., Shalev, A. Y., Zohar, J. 2001. Posttraumatic stress disorder: diagnosis and epidemiology, comorbidity and social consequences, biology and treatment. Neuropsychobiology. 43(3):150-62. Calzavara, M. B., Medrano, W. A., Levin, R., Kameda, S. R., Andersen, M. L., Tufik, S., Silva, R. H., Frussa-Filho, R., Abilio, V. C. 2009. Neuroleptic Drugs 87 Revert the Contextual Fear Conditioning Deficit Presented by Spontaneously Hypertensive Rats: A Potential Animal Model of Emotional Context Processing in Schizophrenia. Schizophrenia Bulletin, v. 35, p. 748-759. Castaneda, A. E., Tuulio-Henriksson, A., Marttunen, M., Suvisaari, J, Lönnqvist, J. 2007. A review on cognitive impairments in depressive and anxiety disorders with a focus on young adults. J. Affect. Disord. Feb;106(1-2):1-27. Cheng, Y. F., Wang, C., Lin, H. B., Li, Y. F., Huang, Y., Xu, J. P., Zhang, H. T. 2010. Inhibition of phosphodiesterase-4 reverses memory deficits produced by Aβ25-35 or Aβ1-40 peptide in rats. Psychopharmacology (Berl). Oct;212(2):181-91. Consoni, F. T., Vital, M. A., Andreatini, R. 2006. Dual monoamine modulation for the antidepressant-like effect of lamotrigine in the modified forced swimming test. Eur Neuropsychopharmacol, v 16(6), p. 451-458. Cryan, J.F. & Lucki, I. 2000. Antidepressant-like behavioral effects mediated by 5hydroxytryptamine (2C) receptors. J. Pharmacol. Exp. Ther. 295, 1120– 1126. Cryan, J.F., Markou, A., Lucki, I. 2002. Assessing antidepressant activity in rodents: recent developments and future needs. Trends Pharmacol. Sci..23 (5), 238– 245. Cryan JF, Valentino RJ, Lucki I. 2005. Assessing substrates underlying the behavioral effects of antidepressants using the modified rat forced swimming test. Neurosci Biobehav Rev, 29:547–69. Dagtekin, O., Marcus, H., Müller, C., Böttinger, B. W., Spöhr, F. 2010. Liquid therapy for serotonin syndrome after intoxication with venlafaxine, lamotrigine and diazepam, Minerva Anestesiologica, v. 76. Davis, R. & Wilde, M. I. 1996. Mirtazapine: A review of its pharmacology and therapeutic potential in the management of major depression. CNS Drugs, 5, 389–402. De Boer, T. 1995. The effects of mirtazapine on central noradrenergic and serotonergic neurotransmission. Int Clin Psychopharmacol, 10: 19–23. Denizot, H., Laporte, F., Llorca, P.-M. 2009. Traitement psychotrope à long terme dans les dépressions de l‘enfant. Archives de pédiatrie, 16, 1208–1212. Detke, M. J., Rickels, M., Lucki, I. 1995. Active behaviors in the rat forced swimming test differentially produced by serotonergic and noradrenergic antidepressants. Psychopharmacology 121, 66– 72. Detke, M. J., Johnson, J., Lucki, I. 1997. Acute and chronic antidepressant drug treatment in the rat forced swimming test model of depression. Exp. Clin. Psychopharmacol. 5, 107– 112. 88 Diaz, S. L. & Maroteaux, L. 2011. Implication of 5-HT2B receptors in the serotonin syndrome. Neuropharmacology. Jan 26. Dranovsky, A. & Hen, R. 2006. Hippocampal Neurogenesis: Regulation by Stress and Antidepressants, Biol Psychiatry, 59:1136–1143 Drevets, W. 2001. Neuroimaging and neuropathological studies of depression: implications for the cognitive-emotional features of mood disorders. Current Opinion in Neurobiology, 11:240–249. Duman, R. S. & Monteggia L. M. A. 2006. Neurotrophic Model for Stress-Related Mood Disorders, Biol Psychiatry, 59:1116–1127. Dunlop, B. W. & Davis, P. G. 2008. Combination Treatment With Benzodiazepines and SSRIs for Comorbid Anxiety and Depression: A Review, Prim Care Companion J Clin Psychiatry;10:222–228. Elaković, I., Djordjevic, A., Adzic, M., Djordjevic, J., Radojčić, M., Matić, G. 2011. Gender-specific response of brain corticosteroid receptors to stress and fluoxetine. Brain Res. Apr 12;1384:61-8. Esel, E., Ozsoy, S., Tutus, A., Sofuoglu, S., Kartalci, S., Bayram, F., Kokbudak, Z., Kula, M. 2005. Effects of antidepressant treatment and of gender on serum leptin levels in patients with major depression. Prog Neuropsychopharmacol Biol Psychiatry. May;29(4):565-70. Fava, M. & Kendler, K. S. 2000. Major Depressive Disorder, Neuron, Vol. 28, 335– 341, November. Findling, R. L. Pagano, M. E., McNamara, N. K., Stansbrey, R. J., Faber, J. E., Lingler, J., Demeter, C. A., Bedoya, D., Reed, M. D. 2009. The short-term safety and efficacy of fluoxetine in depressed adolescents with alcohol and cannabis use disorders: a pilot randomized placebo-controlled trial. Child and Adolescent Psychiatry and Mental Health, v 3:11. Freis, E. D. 1954. Mental depression in hypertensive patients treated for long periods with large doses of reserpine. N Engl J Med. Dec 16;251(25):1006-8. Freud, S. 1914. Recordar, repetir e elaborar. Reedição de 1976. Gabriele, A. & Packard, M. G. 2006. Evidence of a role for multiple memory systems in behavioral extinction. Neurobiology of Learning and Memory, v.85 p.289– 299. Gambi, F., De Berardis, D., Campanella, D., Carano, A., Sepede, G., Salini, G., Mezzano, D., Cicconetti, A., Penna, L., Salerno, R. M., Ferro, F. M. 2005. Mirtazapine treatment of Generalized Anxiety Disorder: a fixed dose, open label study. Journal of Psychopharmacology. v.19, p.483-487. 89 Garcia-Vendugo, J. M., Doetsch, F., Wichterle, H., Lim, D. A. 1998. Architecture and cell types of the adult subventricular zone: in search of the stem cells. J Neurobiol. Aug;36(2):234-48. Gerritsen, L., Comijs, H. C., van der Graaf, Y., Knoops, A. J., Penninx, B. W., Geerlings, M. I. 2011. Depression, Hypothalamic Pituitary Adrenal Axis, and Hippocampal and Entorhinal Cortex Volumes-The SMART Medea Study. Biol Psychiatry. Mar 23. Ghia, J. E., Park, A. J., Blennerhassett, P., Khan, W. I., Collins, S. M. 2011. Adoptive transfer of macrophage from mice with depression-like behavior enhances susceptibility to colitis. Inflamm Bowel Dis. Jan 18. Glannon, W. 2006. Psychopharmacology and memory. Journal of Medical Ethics. v.32, n.2, p.74-78. Gould, E., Beylin, A., Tanapat, P., Reeves, A., Shors, T. J. 1999. Learning enhances adult neurogenesis in the hippocampal formation, nature neuroscience, v. 2 no 3, march. Gould, E. & Gross, C. G. 2002. Neurogenesis in adult mammals: some progress and problems. J Neurosci. Feb 1;22 (3):619-23. Gouveia Jr, A., Afonseca, T. L., Maximino, C., Dominguez, R., Morato, S. 2008. Influence of gender and estrous cycle in the forced swim test in rats. Psychology & Neuroscience, 1, 2, 191 – 197. Guay, D. R. 2010. Tetrabenazine, a monoamine-depleting drug used in the treatment of hyperkinetic movement disorders. Am J Geriatr Pharmacother. Aug;8(4):33173. Haddjeri, N., Blier, P., De Montigny, C. 1998. Acute and long-term actions of the antidepressant drug mirtazapine on central 5-HT neurotransmission. Journal of Affective Disorders. v.51, p.255–266. Harmer, C.J., Mackay, C.E., Reid, C.B., Cowen, P.J., Goodwin, G.M. 2006. Antidepressant Drug Treatment Modifies the Neural Processing of Nonconscious Threat Cues. Biol Psychiatry, 59:816–820. Harmer, C. J., Goodwin, G. M., Cowen, P. J. 2009. Why do antidepressants take so long to work? A cognitive neuropsychological model of antidepressant drug action, The British Journal of Psychiatry 195, 102–108. Harmer, C. J., Cowen, P. J., Goodwin, G. M. 2010. Efficacy markers in depression. Journal of Psychopharmacology, June 8. Ilsley, J. E., Moffoot, A. P., O’Carroll, R. E. 1995. An analysis of memory dysfunction in major depression. Journal of Affective Disorders, 35, 1–2. 90 Kalueff, A. V. 2007. Neurobiology of Memory and Anxiety: From Genes to Behavior. Neural Plasticity. p.1-12. Kelly, S. J., Ostrowski, N. L., Wilson, M. A. 1999. Gender Differences in Brain and Behavior: Hormonal and Neural Bases, Pharmacology Biochemistry and Behavior, Vol. 64, No. 4, pp. 655–664. Kent, J. M. 2000. SNaRIs, NaSSAs, and NaRIs: new agents for the treatment of depression. The Lancet, v.355, p.911-918, mar. Kim, J. H. & Richardson, R. 2010. New Findings on Extinction of Conditioned Fear Early in Development: Theoretical and Clinical Implications, Biol Psychiatry 67:297–303. Kloet, E. Ron de, Jöels, M., Holsboer, F. 2005. Stress and the brain: from Adaptation to disease. Nature Reviews Neuroscience, Volume 6, June, 463. Krystal, J. H. & Neumeister, A. 2009. Noradrenergic and serotonergic mechanisms in the neurobiology of posttraumatic stress disorder and resilience, Brain Research 1293; 13-23. Lee, S. Jeong, J. Kwak, Y. Park S. K. 2010. Depression research: where are we now? Molecular Brain, 3:8. Lopez-Rubalcava, C. & Lucki, I. 2000. Strain differences in the behavioral effects of antidepressant drugs in the rat forced swimming test. Neuropharmacology 22, 191– 199. Mahendran, R. & Yap, H. L. 2005. Clinical practice guidelines for depression. Singapore Medical Journal. v.46, n.11, p.610-615. Manji, H. K., Drevets, W. C., Charney, D. S. 2001. The cellular neurobiology of depression. Nature Med 7:541–547. Mao, J., Gold, M. S., Backonja, M. M. 2011. Combination Drug Therapy for Chronic Pain: A Call for More Clinical Studies, The Journal of Pain, volume 12, Issue 2, Pages 157-166, February. Marques, C. 2001. Tratamento farmacológico do transtorno obsessivo-compulsivo. Revista Brasileira de Psiquiatria, v 23(Supl II), p.49-51. Marks, D. M. Han, C., Krulewicz, S., Pae, C., Peindl, K., Patkar, A. A., Masand P. S. 2008. History of depressive and anxiety disorders and paroxetine response in patients with irritable bowel syndrome: post hoc analysis from a placebocontrolled study. Prim Care Companion J Clin Psychiatry, 10:368-375. Marks, I., Lovell, K., Noshirvani, H., Livanou, M., Thrasher, S. 1998. Treatment of Posttraumatic Stress Disorder by Exposure and/or Cognitive Restructuring, Arch Gen Psychiatry, 55:317-325. 91 McCabe, C., Mishor, Z., Cowen, P.J., Harmer, C.J. 2010. Diminished Neural Processing of Aversive and Rewarding Stimuli During Selective Serotonin Reuptake Inhibitor Treatment. Biol Psychiatry, 67:439–445. Mischoulon D., Eddy, K. T., Keshaviah, A., Dinescu, D., Ross, S. L., Kass, A. E., Franko, D. L., Herzog, D. B. 2010. Depression and eating disorders: Treatment and course. J Affect Disord. Nov 23. Modrzejewska, R. 2010. Comorbidity in adolescence: simultaneous declaration of depressive, eating, obsessive-compulsive symptoms and use of psychoactive substances in the general population of 17 year old students in a big city. Psychiatr Pol. Sep-Oct;44(5):651-63. Monfils, M. H., Cowansage, K. K., LeDoux, J. E. 2007. BDNF: linking fear learning to memory consolidation. Molecular Pharmacology Fast Forward. p, mai. Morishita, S. & Aoki, S. 2002. Effects of tricyclic antidepressants on protein kinase C activity in rabbit and human platelets in vivo. Journal of Affective Disorders 70 329–332. Monteggia, L. M., Luikart, B., Barrot, M., Theobold, D., Malkovska, I., Nef, S., Parada, L. F., Nestler, E. J. 2007. Brain-Derived Neurotrophic Factor Conditional Knockouts Show Gender Differences in Depression-Related Behaviors. Biol Psychiatry 61:187–197. Monti, B., Berteotti, C., Contestabile, A. 2006. Subchronic rolipram delivery activates hippocampal CREB and arc, enhances retention and slows down extinction of conditioned fear. Neuropsychopharmacology 31, 278 e 286. Mueller, E. M., Hofmann, S. G., Cherry, J. A. 2010. The type IV phosphodiesterase inhibitor rolipram disturbs expression and extinction of conditioned fear in mice. Neuropharmacology 59, 1 e 8. Nandam, L. S., Jhaveri, D. & Bartlett, P. 2007. 5-HT7, neurogenesis and antidepressants: a promising therapeutic axis for treating depression, Clinical and Experimental Pharmacology and Physiology 34, 546–551. Nestler, E. J. & Carlezon Jr., W. A. 2006. The Mesolimbic Dopamine Reward Circuit in Depression. Biol Psychiatry 59:1151–1159. Newman, P. J. & Sweet, J. J. Depressive disorders. In A. E. Puente & R. J. McCaffrey (Eds.), Handbook of neuropsychological assessment: A biopsychosocial perspective. (1992) (pp. 263–307). New York: Plenum Press. Page, M. E., Detke, M. J., Dalvi, A., Kirby, L. G., Lucki, I. 1999. Serotonergic mediation of the effects of fluoxetine, but not desipramine, in the rat forced swimming test. Psychopharmacology (Berl.) 147, 162– 167. 92 Paizanis, E., Hamon, M., Lanfumey, L. 2007. Hippocampal Neurogenesis, Depressive Disorders, and Antidepressant Therapy. Neural Plasticity, v. 2007, Article ID 73754, 7 pages. Pardo, J. V., Pardo, P. J., Humes, S. W., Posner, M. I. 2006. Neurocognitive dysfunction in antidepressant-free, non-elderly patients with unipolar depression: Alerting and covert orienting of visuospatial attention. Journal of Affective Disorders. v.92, p,71-78. Pellow, S., Chopin, P., File, S. E., Briley, M. 1985. Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods. Aug;14(3):149-67. Pellow, S. & File, S. E. 1986. Anxiolytic and anxiogenic drug effects on exploratory activity in an elevated plus-maze: a novel test of anxiety in the rat. Pharmacol Biochem Behav. Mar;24(3):525-9. Phelps, E. A. & LeDoux, J. E. 2005. Contributions of the Amygdala to Emotion Processing: From Animal Models to Human Behavior. Neuron, Vol. 48, 175– 187, October 20. Pittenger, C. & Duman, R. S. 2008. Stress, Depression, and Neuroplasticity: A Convergence of Mechanisms. Neuropsychopharmacology REVIEWS 33, 88– 109. Porsolt, R. D., Le Pichon, M., Jalfre, M. 1977. Depression: a new animal model sensitive to antidepressant treatment. Nature, v. 266, p.730-732. Porsolt, R. D., Anton, G., Blavet, N., Jalfre, M. 1978. Behavioural despair in rats: a new model sensitive to antidepressant treatments. Eur J Pharmacol 47:379–91. Rauggi, R. Cassanelli, A., Raone, A., Tagliamonte, A., Gambarana, C. 2005. Study of mirtazapine antidepressant effects in rats. International Journal of Neuropsychopharmacology, v.8, p. 369–379. Rauch S. L., Shina, L. M., Phelps, E. A. 2006. Neurocircuitry Models of Posttraumatic Stress Disorder and Extinction: Human Neuroimaging Research—Past, Present, and Future. Biol Psychiatry, 376-382. Rawlings, N.B., Norbury, R., Cowen, P.J., Harmer C.J. 2010. A single dose of mirtazapine modulates neural responses to emotional faces in healthy people. Psychopharmacology 01 September. Ravnkilde, B., Videbech. P., Clemmensen, K., Egander, A., Rasmussen, N. A. Rosenberg, R. 2002. Cognitive deficits in major depression. Scandinavian Journal of Psychology. 43, 239–251. Reneric J. P., Bouvard, M., Stinus, L. 2002. In the rat forced swimming test, chronic but not subacute administration of dual 5-HT/NA antidepressant treatments may produce greater effects than selective drugs. Behav. Brain Res. 15, 521–532. 93 Reneric, J. P. & Lucki, I. 1998. Antidepressant behavioral effects by dual inhibition of monoamine reuptake in the rat forced swimming test. Psychopharmacology (Berl.) 136, 190– 197. Ribeiro, A. M., Barbosa, F. F., Godinho, M. R., Fernandes, V. S., Munguba, H. Alves, L. M., Melo, T. G., Barbosa, M. T., Silva, R. H. 2010. Sex differences in aversive memory in rats: possible role of extinction and reactive emotional factors. Brain and Cognition Volume 74, Issue 2, November, Pages 145-151. Rogóz, Z., Skuza, G., Legutko, B. 2005. Repeated treatment with mirtazapine induces brain derived neurotrophic factor gene expression in rats. Journal of Physiology and Pharmacology. v.56, n.4, p.661-671. Sahay, A. & Hen R. 2007. Adult hippocampal neurogenesis in depression, Nature Neuroscience v.10; 9; September. Sánchez, C. & Hyttel, J. 1999. Comparison of the Effects of Antidepressants and Their Metabolites on Reuptake of Biogenic Amines and on Receptor Binding, Cellular and Molecular Neurobiology, Vol. 19, No. 4. Sen, S., Nesse, R. M., Stoltenberg, S. F., Li, S., Gleiberman, L., Chakravarti, A., Weder, A.B., Burmeister, M. 2003. A BDNF Coding Variant is Associated with the NEO Personality Inventory Domain Neuroticism, a Risk Factor for Depression, Neuropsychopharmacology 28, 397–401. Silva, R. H., Bellot, R. G., Vital, M. A. B. F., Frussa-Filho, R. 1997. Effects of Long - Term Ganglioside GM1 Administration on a New Discriminative Avoidance Test in Normal Adult Mice. Psychopharmacology, v. 129, p. 322-328. Silva, R. H. & Frussa-Filho, R. 2000. The plus-maze discriminative avoidance task: a new model to study memory–anxiety interactions. Effects of chlordiazepoxide and caffeine. Journal of Neuroscience Methods. v.102, p.117–125, Silva, R. H. Kameda, S. R., Carvalho, R. C., Rigo, G. S., Costa, K. L., Taricano, I. D., Frussa-Filho, R. 2002. Effects of amphetamine on the plus-maze discriminative avoidance task in mice. Psychopharmacology. v.160, p.9-18. Solomon, M. B. & Herman, J. P. 2009. Sex differences in psychopathology: Of gonads, adrenals and mental illness. Physiology & Behavior 97; 250–258. Tian, J. S., Cui, Y. L., Hu, L. M., Gao, S., Chi, W., Dong, T. J., Liu, L.P. 2010. Antidepressant-like effect of genipin in mice. Neurosci Lett. Aug 2;479(3):236-9. Tsai, S.-J., Hong, C.-J., Liou, Y.-J., Chen, T.-J., Chen, M.-L., Hou, S.-J., Yen, F.C., Yu, Y. W.-Y. 2009. Haplotype analysis of single nucleotide polymorphisms in the vascular endothelial growth factor (VEGFA) gene and antidepressant treatment response in major depressive disorder. Psychiatry Research 169; 113–117. 94 Toufexis, D. J., Myers, K. M., Davis, M. 2006. The effect of gonadal hormones and gender on anxiety and emotional learning, Hormones and Behavior 50; 539– 549. Vázquez-Palacios, G. 2004. Antidepressant-like effects of the acute and chronic administration of nicotine in the rat forced swimming test and its interaction with flouxetine. Pharmacology, Biochemistry and Behavior. v.78, p.165–169. Veiel, H. 1997. A preliminary profile of neuropsychological deficits associated with major depression. Journal of Clinical and Experimental Neuropsychology. 19, 587–603. Weiland-Fiedler, P. Erickson, K., Waldeck, T., Luckenbaugh, D. A., Pike, D., Bonne, O., Charney, D. S., Neumeister, A. 2004.Evidence for continuing neuropsychological impairments in depression. Journal of Affective Disorders. v.82, p.253–258. Wing, V. C. & Shoaib, M. 2007. Examining the clinical efficacy of bupropion and nortriptyline as smoking cessation agents in a rodent model of nicotine withdrawal. Psychopharmacology 195:303–313. Woolley, D. G., Vermaercke, B. Beeck, H. O. de, Wagemans, J., Gantois, I., D’Hooge, R. Swinnen, S. P., Wenderoth, N. 2010. Sex differences in human virtual water maze performance: Novel measures reveal the relative contribution of directional responding and spatial knowledge. Behavioural Brain Research 208 408–414. Yaffe, K., Blackwell, T, Gore, R, Sands, L, Reus, V, Browner, W. S. 1999. Depressive symptons and cognitive decline in nondemented elderly women. A prospective study. Archives of General Psychiatry. v.56, p.425-430. Yamamoto, S., Morinobu, S., Takei, S., Fuchikami, M., Matsuki, A., Yamawaki, S., Liberzon, I. 2009. Single prolonged stress: toward an animal model of posttraumatic stress disorder. Depress Anxiety. 26 (12):1110-7. Zucker, I. & Beery, A. K. 2010. Males still dominate animal studies. Nature. Jun 10;465(7299):690. 95