Pontifícia Universidade Católica do Rio Grande do Sul Laboratório de Eletrônica de Potência – LEPUC ACTIVE SHUNT FILTER FOR HARMONIC MITIGATION IN WIND TURBINES GENERATORS FILTRO ATIVO PARALELO PARA MITIGAÇÃO DE CORRENTES HARMÔNICAS EM GERADORES DE TURBINAS EÓLICAS Reinaldo Tonkoski Jr., Fernando Soares dos Reis, Jorge Villar Alé and Fabiano Daher Adegas; Syed Islam and Kelvin Tan, sexta-feira, 7 de abril de 2006 1/24 Table of Contents INTRODUCTION OBJECTIVE WIND ENERGY CONVERSION SYSTEM ACTIVE SHUNT FILTER POWER LOSSES SIMULATION RESULTS CONCLUSIONS sexta-feira, 7 de abril de 2006 2/24 INTRODUCTION - Wind power is the most rapidlygrowing means of electricity generation at the turn of the 21st century. Global installed capacity has raised 20% in 2004; - Direct-driven wind turbine: multipole permanent magnet synchronous generator (PMSG) and three-phase bridge rectifier with a bulky capacitor; sexta-feira, 7 de abril de 2006 3/24 INTRODUCTION - Non-linear characteristic: harmonic current content flows into the PMSG; - Increase PMSG temperature; sexta-feira, 7 de abril de 2006 losses and 4/24 OBJECTIVE - Analysis and simulation of an active shunt filter (ASF) for harmonic mitigation in wind turbines generators. sexta-feira, 7 de abril de 2006 5/24 WIND ENERGY CONVERSION SYSTEM (WECS) Dynamic Model: Variable-speed, direct driven wind turbine. sexta-feira, 7 de abril de 2006 6/24 PMSG WAVEFORMS - BRIDGE RECTIFIER WITH BULKY CAPACITOR (NO ASF) WECS full load condition – 12 m/s (20 kW resistive load, Clink=5000uF, RL=6.5 Ω, VL=360 V) PMSG output currents and line to line voltage div. by 4. sexta-feira, 7 de abril de 2006 7/24 PMSG HARMONICS - BRIDGE RECTIFIER WITH BULKY CAPACITOR (NO ASF) WECS full load condition – wind speed 12 m/s (20 kW resistive load, Clink=5000uF, RL=6.5 Ω, VL=360 V) Phase Current Line Voltage sexta-feira, 7 de abril de 2006 8/24 3-PHASE ACTIVE SHUNT FILTER Control filter current to actively shape the source current is into the sinusoid. iF iPMSG iC i NL sexta-feira, 7 de abril de 2006 9/24 ASF CONTROL CIRCUITS REFERENCE CURRENTS • Calculate harmonic currents; • Regulate voltage on the capacitor CDC. d-q Synchronous Reference Frame sexta-feira, 7 de abril de 2006 10/24 ASF CONTROL CIRCUITS REFERENCE CURRENTS i i 1 1 i a 2 1 2 2 i 3 3 b 3 0 2 2 ic i * Fa i NLa iaf i * Fb i NLb ibf d-q Synchronous Reference Frame SRF 1P m ( s ) s 2 θSRF by mechanical angular speed ωm id cos( SRF ) sin( SRF ) i i q sin( SRF ) cos( SRF ) i i * Fc i NLc icf G( s) 1 0 i 2 1 3 2 i 3 2 1 3 2 2 sexta-feira, 7 de abril de 2006 i af ibf i cf Low-Pass k Filter sk if cos( SRF ) sin( SRF ) id i f sin( SRF ) cos( SRF ) iq 11/24 ASF CONTROL CIRCUITS CURRENT CONTROL BY PWM CARRIER STRATEGY •Control current iF in order to inject the calculated reference currents. sexta-feira, 7 de abril de 2006 12/24 ASF PASSIVE POWER COMPONENTES DESIGN cutoff t C DC max i F (t )dt 0 v DC max Maximum accepted voltage ripple ΔvDCmax 1 LF C LC filter cutoff frequency LF VDC Vn di (t ) max NLn dt Maximum slope of load current iNL LF, CDC and C can be adjusted based on simulation results. sexta-feira, 7 de abril de 2006 13/24 POWER LOSSES CALCULATION Power Losses PMSG Losses Bridge Rectifier Copper Diode PCU 3RA PBR 6 VD I D _ AVG rD I D _ RMS I i 1 Ai Core Passive Ppc I pcRMS ESR IGBT 2 Vi 1 Ph Ph1 i 1 V1 i ASF Losses PIGBT VCE SAT I IGBT _ AVG 2 Vi 1 Ph Ph1 i 1 V1 i sexta-feira, 7 de abril de 2006 14/24 SIMULATION PARAMETERS WECS Dynamic Model Implemented on Software PSIM® 20 kW Parameter Description Value LF Inductor Filter 1.5mH C Capacitor Filter 3.9mF fPWM PWM Carrier Frequency CDC ASF DC Capacitor vDC ASF DC Voltage Clink Rectifier Bridge Link Capacitor Rload Resistance Load 6.5 Ω D Turbine Rotor Diameter 10 m J Turbine Inertia B Friction Coefficient Ld PMSG d-axis Inductance 5.24 mH Lq PMSG q-axis Inductance 5.24 mH RA PMSG Stator Resistance 0.432 Ω sexta-feira, 7 de abril de 2006 20 kHz 10000 mF 500 V 5000 mF 1500 kg.m2 20 N s/rad 15/24 SIMULATION RESULTS WECS full load condition – 12 m/s wind speed (20 kW resistive load, Clink=5000uF, RL=6.5 Ω, VL=360 V) sexta-feira, 7 de abril de 2006 16/24 SIMULATION RESULTS WECS full load condition – 12 m/s wind speed (20 kW resistive load, Clink=5000uF, RL=6.5 Ω, VL=360 V) sexta-feira, 7 de abril de 2006 17/24 SIMULATION RESULTS WECS full load condition – 12 m/s wind speed (20 kW resistive load, Clink=5000uF, RL=6.5 Ω, VL=360 V) 1,2 THD=2.60 % 1,0 0,8 Phase Current % 0,6 0,4 0,2 0,0 2 7 12 17 22 27 32 37 42 47 52 57 Order sexta-feira, 7 de abril de 2006 18/24 SIMULATION RESULTS WECS full load condition – 12 m/s wind speed (20 kW resistive load, Clink=5000uF, RL=6.5 Ω, VL=360 V) 14 13 12 11 10 9 8 % 7 6 5 4 3 2 1 0 THD=20.77 % Line Voltage 2 7 12 17 22 27 32 37 42 47 52 57 Order sexta-feira, 7 de abril de 2006 19/24 SIMULATION RESULTS WECS full load condition – 12 m/s wind speed (20 kW resistive load, Clink=5000uF, RL=6.5 Ω, VL=360 V) PMSG Losses Total (W) η (%) Copper Losses (W) Core Losses (W) Friction & Windage (W) BR 2318.93 180.82 120 2619.75 88.42 ASF 2790.24 150.73 120 3060.97 86.73 Topology ASF Losses IGBT Losses (W) 199.44 sexta-feira, 7 de abril de 2006 LF Losses (W) C Losses (W) CDC Losses (W) Total (W) 284.66 0.2166 116.00 600.33 20/24 SIMULATION RESULTS WECS full load condition – 12 m/s wind speed (20 kW resistive load, Clink=5000uF, RL=6.5 Ω, VL=360 V) Electrical Losses Topology PMSG Total (W) ASF Total (W) Rectifier Total (W) Efficiency (%) BR 2619.75 0 95.16 88.05 ASF 3199.92 603.03 211.82 84.74 WECS Efficiency Topology Aerodynamical (%) Electrical (%) Overall (%) BR 43.26 88.05 38.09 ASF 43.88 84.74 37.18 sexta-feira, 7 de abril de 2006 21/24 CONCLUSIONS The use of active shunt filter in wind energy generation systems for harmonic mitigation was analyzed and computationally simulated. The ASF is able to mitigate harmonic content of current that flows on the permanent magnet synchronous generator. A capacitor bank filter was used to suppress high-switching frequency voltage component generated by the ASF on generator terminals. sexta-feira, 7 de abril de 2006 22/24 CONCLUSIONS The d-q SRF synchronization using the angular rotor speed had worked, and its physical implementation using sensors must be investigated. The ASF could diminish voltage core losses. Although, PMSG efficiency is lower because copper losses are higher when using ASF. Overall wind energy conversion system efficiency is lower as well, so the use of ASF could be justified if only the PMSG generator could have a larger life cycle. sexta-feira, 7 de abril de 2006 23/24 Obrigado! sexta-feira, 7 de abril de 2006 24/24