~ercíc~os ~11!;: Propostos ., , " - ". ~tl) Quatro resistores 'RI = IK5, R2 = 4K7, são ligadó!1 em série. Sabendo-se determinar: . que .,- R3 = 470 fie R4 a ;'tensão em R3 é ~ = 2K2 94OrnV. ~-- ~--- " ~. ". a) Res~stência equivalente...~'-o. b) Tensão aplicada na' associação" c) Potência dissipada gerador. nos resistores e a potência elétrica do, , ,.. i ~) No circuito, determinar a resistência total do potenciômetro ;. (linear),'~' sabendo-se que o cursor se encontra na metade s~u curso total, que, a corrente",po ,.circuito vale dI;) IA e que a ." tensão pada? na lâmpada vale II0V. Qual a potência dissipada na lâ~ E nopotenciômetro? ~' ~ .~ { ",", ",," (c"" ~ 3) No circuito, que limite deve ser imposto a Rv para que b fusi vel não queime? "~'c' 2°L~~' F: O,OIA 20011. 4) Três .resistore~ RI' R2 e R3 em série dão uma resistência tal de 3500g. Se R3 é duas vezes R2 e R2 é d~as vezes quais os valores das resistências? 5) Dois resístores Rl e R2 ligados em série dissipam tQ RI, respectiv~ mente 120mW e 80mW, quando a associação é ligada a uma de 20V. Quais os valores das resistências? fonte 6) Dois resistores; Rl ecR2 ligados em série são ligados a uma fonte de 40V. Sabendo-se que a potência elétrica do gerador é lOW, e que a potência dissipada em RI é 4W, quais os valQ res de RI e R2? .1 Exercícios Propostos j 1) Quatro-resistores', RI""" são.,.ligados en~ paralelo. 10OmA, determinar: 2) lK5, RZ =4K7, Sabendo-se RJ = 470,,-e que R,f"='. a corrente é em RJ a) Resistência b) Corrente em todos c) Potência dissipada em todos os resistores e no equivalente Dois equIvalente os resistores e a fornecida pela fonte resistores são ligados em paralelo,'sendo um o dobro outro. Aplicando-se uma tensão de ZOV na associação, do verifi ca-se.que .0 de menor valor é percorrido por uma corr.ente 'O,IA. Quais o~~ vaioies,das resistências?.Qual o valor da tência dissipada em 'cada resistor?,"" J) ZKZ .:' de P.9. Três resistores,~RI, RZ e RJ são l-t.gadqs em para,lelo. Saben do-se que a potência em RJ é duas ~ezes a potência dissipada RZ, que a potência dissipada em RZ é três vezes a em RI, e que a""potência elétricado gerador ele 12V Quais os valores de RI, R2 e R3? dissipada é. 1, 2W. 4) Quantos resisto;es"de l20n ra dar uma resistência 5) Determine Rl tal que devem ser"ligados em paralolo, equivalente l'I' d~ 30Q? JOOQ RE seja RE=300.o.r E 6) Determinar e - R2 no circuito 18mA E - 16m/. R'=6K '~ 7) Determinar ' E,' Rl e, RJ ] R,o3< no circUi,to ;. , J " \3m~ R2 = 2K ,, .) 8) Dois resistores Rl e R2,'quando ligados em paraleJllo, dhlij)t'1!\ 240mW, consumindo uma corrente ~e 20mA. Sabend~-se tência dissipa'daem Rl é 96mW, ~alcular os va!l!oree 4.3 Div~5°X: d}i!- T~n5ão - Divisor de total ~aplidkda na asso;iaçã~ ligados (1m s~ dividia pelo. em cada rl3lll:!..t da associação. Padem:>s escrever a t§nsão ção da tensão " d.. l(1 .. "11 Corr,ente Vimos que" quando resisto~es são tensão QU8' . ,JfU 111, r.MI.I~'" r.n 11111 'II\n total. Na figura 4.3, temos que: UQ = Rl.IT,e U2. 1t2.III' ""Idl ",,' IT c,= ~..'E~< Rl'+R2. RI.E UI = RI+R2 R2.E' U2= J Q:lu., I tJ 4.3 i":'S;~ e '..!:r- Figura ..~':' .' ,T:i ~)['W"" ,L hportanto!#f I RI+R2 o',. .. 1 1 ..I Exercícios Propostos 11) Determinar a resistência equivalente .em~cada caso entre pontos A e B a) ~I IOK IOK t IOK IOK os '. B ..> 2K b) ..' , ;. 2K2K . B 2K c) 4OIl 20Il A ,':~ d) 50Il 40Il ç 1 130Il A ! 20Il UIOIl I mn 08 / e) Iq.n.. 8- r) IK A i O'" 2K B 20Il g) IOIl I 2) Determinar , B o valor de ,R no circuito. , o, R - ImA 3) Determinar o valor de UT e IT no circuito. 3K 12K fUT 6K c:=I 2K 0.-,," ,4)Determinar ~ intensidade da correpte ',em"'todos .os resistores. LI .!!- !4 10IL ~ 10IL .';0.0. .,.AV 20.0: 16 , .~ 5) Quer-se' obter resistores uma resistência de 1Q. Como devem c. , "".~ de ,,3,5Q COm o menor ser ligados de número en,tre,. si? 'YFaça " ',." " b. "', ef: - quema. . "I 6) No circuito, determine qual o valor de R para i dev,es~r ' . , a potência elétr ica que do ge);'ador se j.a"50mW. R .' 'v', , 7) Determinar R para que I = 2,25mA ..', 5K 250IL / 12V 8) Determinar R para que a lámpada funcione"" dentro racterísticas. de suas ct >.., .. " .~. 60!l. " .', " '~'" ! \" L:6V/IOOmA I .; 9) Dois resistores RI e R2 em paralelo dissipam um total de 360mW. Sabendo-se que a fonte fornece 30mA e que a potência dissipada em RI é 72mW, quais os valores de RI e R2? 10)Determinar RI no circuito para que a resistência '" entre A e B seja '3KI1. equivalente ::I]4K - ..---.-.. 11)No circui te, a fonte fornece urnapotência de 2W. Determinar: a) valor de RI e R2 b) Corrente em RI LJ' fm, 12)Determinar RI e R2 no circuito. --O.IA 20V ;.. " . ,',. .;_. R2 I)" 13) Determinar I no circuito.c ~I IOK 5K 14) Determinar Rx para que I = 4mA. ..L12V 4K Rx , 15) Determinar Rx para que I = 8mA. IK l~ 16) Determinar Rx para que "-é'; IT = ~5mA ~ ... """"',;;::. '~"';"";:;:"'.;L"'.';" , 13) Determinar r no circuito. :, ~I 15K IOK ! 5K D '14) Determinar Rx para quer = 4mA. l12V Rx 4K >; ",\ 15) DeterminarRx para que r = 8mA. - 20mA IK l~ 16) DeterminarRx para que rT = lSmA .,--,' . <. "..,; .(;.-'" ",,""""",. ~,' ,~- lI.- .. " ~,?",., --> <.,,-" . t, ." 'I",-j 3V 300fi R~ 17) No circuito, qual o menor valo~ que o reostato pode assumir, .om que o fusível queime? D.SA 8fi ~, L j- 80fi I fi) No circuito,os fusíveisapresentammesma resist-ência Qual e máxima corrente qUe pode passar pela lâmpada, sem que haja queima de qualquer fusível? Obs.: Os fusíveis têm mesma resistência. --IA 2A I llIL 3A -- /T I 4A I ÁÀL ",.",{o'l.o" Propostos , 1,) "ftlll. f'ormar para, triâ.-ngu19', A " 20.0. 10.0. c B .,1 .... '",,-, .. .""",t ~~""'r~"'r';{"" '" ~""""". ;2'r'Tràns"formar'ÚJara"'estr\ha. A " c 3) Determinar a) A B I'" a resistência equivalente entre ;', A e C . ,". 60fi c b) ' j, B 60.0. ;'.~~"< ,':~ n~ 10fi A 10.0. li!I,1 o 30.0. c 60.0. 10.0. ,I F II 4) Dete'rminar todas as correntes do circuito e a potência ca do get-ador. ' elétr:1II - I!' 1i ; " 60V :<~O.!l" . " -15 ,("'" 'li" 30.0. ..rJl'io. no 5) No circuito, determinar o valor da corrente , ampe'ríiÍ1etro , '. " , ~ - RI = 101< R4 = = SOl< RiA = 201< R2 301< R3 = R5 = 20 - 151< " . !' . 'w" I< 20V '. Solução . Item dos Exercícios " Propostos'... 4.1 1) a) RE = 8,87KI< b) UT = 17.74V P2 = 18,8mW, c) PI = 6mW, PE 2) RT = 220\2 .3) RVmin PDL = 1l0W; P4 =.8,8mW, PDp = 1l0W = 8001< 4) RI = 5001< 5) R I = P3 ""=1,88mW, =. 35,,48mW I, 2K R2 = 10001< e 6) ~l = 641< R2 = 8001< R2 = 961< R3 = 20001< Item 4.2 1) a) RE = 2891< b) II = 31,33mA, 12 =' 10mA, c) PI = 1,4 7W" P2 =' 0,47W, 14 = 21,36mA 13 = 100mA, P4 = lW. P'3 = 4,7W, PE = 7,64W -i . , 2) RI = 2001< R2 'J) RI R2 = 400Q, = 4001<, PI = 2W, = iW':'" pz " .. I200Q, ; i R3 = 200"Q r.c',: ,-- " 1\ .. .IJIOOt. -" - . i 4} 4 resistores S} = 829,412 RI 6) E = 24V R2 '" 4K. ,;. 7) RI = 12Kn R3 = 4KO 8) RI = I,SK R2 'E = I2V ;; lK Item 4.4 1) a) 3, 7SKO f) 4K b) 2) R = c) SOOS'! d) 600 60S'! 1T = UmA 13 = 16 = 12 = O,OSA 6) R = 4000 = 1 OK li 8) R = 600 RZ , 9 )..RI- '" 2K!L. '" 5000 10) RI = 6KII 11) a) RI'" 2S00, 12) RI 13) I = O, 6mA 14) Rx = IS) Rx '" I,SKII 16) Rx = = 8011, 17) RVmin 12KII 60011 '" 200 18) ILmax = 4A ",;li- li 3K O 4) 11 = 17 = O,IA, R 10 g) 60 3) UT = 41V 7) e) RZ '" lK li RZ = IS00 b) 11 = 80mA 14 = IS .. O,O2"A ,.. 1."!tI " !j II ~I\I' , 'ffi II ,,) - .lto,60 " fJO ItJ\" H 13,3 RAC = 1101< RE "' 12,51< n I2 "' IA .&) '1 .. 11\ "li - .a40W li) I . 'IBmA b)RAB :~, ~,. - RBC = 55» Rc = 6,25 Q'; . ~ = 48,1 13 = O '»'., 14 = 3A '. , ~., 15 ="lA. '.::,?"