XXVth European Colloquium o Heterocyclic Chemistry organised by the Department of Chemistry University of Reading Poster Presentations P0-39 NEWSYNTHESESOFNOVELARYLXANTHONES Djenisa H. A. Rocha,a Catia I. C. Esteves,a Diana C. G. A. Pinto, a Clementina M. M. Santos,b Cristela M. Brito,a Artur M. S. Silva,a Jose A. S. Cavaleiroa aDepartment of Chemistry & QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal ~epartment of Vegetal Production and Technology, Scholl of Agriculture, Campus de Santa Apol6nia, 5301-855 Braganc;a, Portugal Xanthones represent an outstanding class of oxyg~1_1ated heterocycles widespread in nature, commonly distributed in several higher plant families, such as Gentianaceae, Guttiferae and Polygalaceae and in a few families of fungi and lichens [1]. Both natural and synthetic derivatives often endowed with interesting pharmacological properties (e.g. anti-inflammatory, antitumour and antioxidant activities [1,2]. Naturally-occurring xanthones present different types .of substituents (e.g. hydroxyl, methoxyl and prenyl groups, among others) in different positions of their scaffold leading to a large variety of analogues [2]. The presence of an aryl ring attached to the xanthone core has only been reported in some synthetic derivatives [3 ,4]. We have dedicated our previous work to the development of novel methodologies for the synthesis of xanthones bearing a 2,3-diaryl substitution pattern [4]. Herein, we report the latest advances in the synthesis of novel 5-arylbenzo[c]xanthones 2 and 1aryl-9H-xanthen-9-ones 4 [5]. 5-Arylbenzo[c]xanthones 2 are obtained by the Heck reaction of 3-bromoflavones 1 with styrene derivatives, leading to (E)-3-styrylflavones, followed by an one-pot photoinduced electrocyclisation and in situ oxidation of cycloadducts. The condensation of 2-methylchromone 3 with cinammaldehydes leaded to (E,E)-2-(4-arylbuta-1,3-dien-1-yl)-4H-chromen-4-ones, which after an one-pot electrocyclization and in situ oxidation of cycloadducts gave the desired 1-aryl-9Hxanthen-9-ones 4. UYOuCH3 ~ 1 -......:;,r8 .....__. 2 3 ~ ~ Acknowledgment: Thanks are due to the University of Aveiro, Funda<;ao para a Ciencia e a Tecnologia and FEDER for funding the Organic Chemistry Research Unit (project PEst-C/QUI!UI0062/20 11 ), the Portuguese National NMR Network (RNRMN) and the grants to D.H.A. Rocha (BIIUI51/4889/2010 and SFRH/BD/68991/2010) and C.I.C. Esteves (SFRH/BI/51098/2010). [1] a) Gales, L.; Damas, A.M. Curr. Med. Chem. 2005, 12, 2499. b) Vieira, L.M.M.; K.ijjoa, A. Curr. Med. Chem. 2005, 12,2413. [2] a) Pinto, M.M.M.; Sousa, M.E.; Nascimento M.S.J. Curr. Med. Chem. 2005, 12, 2517. b) Riscoe, M.; K.elly, J.X.; Winter, R Curr. Med. Chem. 2005, 12, 2539. c) El-Seedi, H.R.; El-Barbary, M.A.; El-Ghorab, D.M.; Bohlin, L.; Borg-K.arlson, A. K..; Goransson, U.; Verpoorte, R. Curr. Med. Chem. 2010, 17, 854. (3] a) Fukawa, I.; Yoneda, H.; Asahi, K..K..K..K. Eur. Patent EP0237004, Sep, 1987. b) K.elkar, A.S.; Letcher. R.M.; Cheung, K..-K..; Chiu, K..-F.; Brown, G.D. J. Chem. Soc. Perkin Trans /2000,3732. [4] Santos, C.M.M.; Silva, A.M.S.; Cavaleiro, J.A.S. Synlett 2005, 3095; Synlett 2007, 3113; Eur. J. Org. Chem. 2009,2642. [5]. a) Esteves, C.I.C.; Santos, C.M.M.; Brito, C.M.; Silva, A.M.S.; Cavaleiro, J.A.S. Synlett, 2011, 1403. b) Rocha, D.H.A.; Pinto, D.C.G.A.; Silva, A.M.S.; Patonay, T.; Cavaleiro, J.A.S. Synlett, 2012,23,559. ' a Rocha, a Esteves, a Pinto, Djenisa H. A. Cátia I. C. Diana C. G. A. a a b a Clementina M. M. Santos, Cristela M. Brito, Artur M. S. Silva, José A. S. Cavaleiro Reading / UK August 13th-17th, 2012 aDepartment of Chemistry & QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal bDepartment of Vegetal Production and Technology, Scholl of Agriculture, Campus de Santa Apolónia, 5301-855 Bragança, Portugal INTRODUCTION Xanthones represent an outstanding class of oxygenated heterocycles widespread in nature, commonly distributed in several higher plant families, such as Gentianaceae, Guttiferae and Polygalaceae and in a few families of fungi and lichens [1]. Both natural and synthetic derivatives often endowed with interesting pharmacological properties (e.g. anti-inflammatory, antitumour and antioxidant activities) [1,2]. Naturally-occurring xanthones present different types of substituents (e.g. hydroxyl, methoxyl and prenyl groups, among others) in different positions of their scaffold leading to a large variety of analogues [2]. The presence of an aryl ring attached to the xanthone scaffold has only been reported in some synthetic derivatives [3,4]. We have dedicated our previous work to the development of novel methodologies for the synthesis of xanthones bearing a 2,3-diaryl substitution pattern [4]. Herein, we report the latest advances in the synthesis of novel 5-arylbenzo[c]xanthones 5 and 1-aryl-9Hxanthen-9-ones 9 [5]. SYNTHESIS OF 5-ARYLBENZO[C]XANTHONES 5 SYNTHESIS OF 1-ARYL-9H-XANTHEN-9-ONES 9 5-Arylbenzo[c]xanthones 5 are obtained by the Heck reaction of 3-bromoflavones 2 with styrene derivatives 3, leading to (E)-3-styrylflavones 4, followed by an one-pot photoinduced electrocyclisation and in situ oxidation of the formed cycloadducts. OH O OH R 1 R 2 O (i) R 2 O 3 R (ii) Br O 1 R 1 R OH O R3 4 R4 R O R1 R2 R R4 40 R1, R2 = H R3, R4 = H 72 R1, R2 = H R3, R4 = H 70 b R1 = Me, R2 = H 48 R1 = Me, R2 = H R3, R4 = H 70 R1 = Me, R2 , R2’ = H R3, R4 = H 45 c R1 = OMe, R2 = H 45 R1 = OMe, R2 = H R3, R4 = H 69 R1 = OMe, R2 , R2’ = H R3, R4 = H 73 d R1 = Cl, R2 = H 42 R1 = Cl, R2 = H 62 R1 = Cl, R2 , R2’ = H R3, R4 = H 74 e R1 = NO2 , R2 = H 30 R1 = NO2 , R2 = H R3, R4 = H 50 R1 = NO2 , R2 , R2’ = H R3, R4 = H 30 f = OMe 32 R1 , R2 --- - R1 , R2 = OMe g h --- - = OMe --- R3, R4 =H 50 43 R1 , R2’ = OMe R2 , R3, R4 = H 15 45 R3, R4 = OMe --- = OMe R2’, R3, R4 = H - R1 , R2 R1 , R2 , R2’ = H R3, R4 = OMe 8 O 7 2 5 O 4c 1'' 6'' 3' H-2’,6’ H-8 g H-6 H-g 3 H-a H-3 a O H- 2'' 3'' H-d H-a H-7 H-5 8d H-8 H-7 H-5 8.0 7.8 7.6 7.4 7.2 7.0 6.8 5 6 H-3’,5’ 5'' H-2’,6’ H-6 H-2,4 2 3-OCH3 1 10 9 H-1 H-8 3 O OCH3 4 O 3 2 O 6' 2' 5' 3' H-2 H-7 H-5 H-8 9d Br 4 2' 8 O 5c 3' 6 8.2 8.1 8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 4' 6' 5' H H H 10 11 11a H HMBC connectivities O 2 3 1 4 11b 4a 1 R H 6 H H 7 2' 9 REFERENCES H-4 H-3 11 ppm 7.1 ppm 6 H-10 H-11 H-4’,9 6.4 7 8 H-2’,3’,5’,6’ 6.6 H-4’’ 4'' H-6 Xanthones 9 (%) 30 26 70 56 50 H-3’,5’ 8.2 a 3 Br R1 9 H-6,2’’,6’’ 6' 6 O 6 H-3’’,5’’ 5' 5' R1 = H R1 = Me R1 = OMe R1 = Br R1 = NO2 a b c d e 8 Cinnamaldehydes 7 Chromones 8 (%) (%) 80 63 77 68 83 33 70 69 68 2' 5 O O 7 60 H-3’,5’ OCH3 O R d 8 (vi) 3 2' O CHO (v) 6' H-2’,6’ 4' R1 (i) Dry Py, room temp., 12h (ii) Dry THF, NaH, reflux, 1 h (iii) DMSO, TsOH ac., 100 ºC, 2 h (iv) Dry DMF, Pd(OAc)2 , K2 CO3, (Bu)4NOAc, KCl, 90 ºC (v) EtOH, NaOEt, room temp. (vi) 1,2,4-Trichlorobenzene, I2 , reflux, 48h 7 3' CH3 6 3 a R1, R2 = H R1 , R2 O X = Br or I (iv) O Benzoxanthones 5 (%) R3, R4 = H O 1 O 5 3-Styrylflavones 4 (%) R (i) (ii) (iii) 2' O X CH3COCl O (iii) (i) THF, PTT, room temp., 24-48h (ii) DMF, Pd(OAc)2 , K2 CO3, (Bu)4NBr, 300 W, 5-10 min. (iii) 1,2,4-Trichlorobenzene, I2 , h 3-Bromoflavones 2 (%) R 2 4 3 a R3, R4 = H b R3, R4 = OMe 2 R 1 The condensation of 2-methylchromone 6 with cinnamaldehydes 7 leaded to (E,E)-2-(4-arylbuta-1,3-dien-1-yl)-4H-chromen-4ones 8, which after an one-pot electrocyclization and in situ oxidation of the formed cycloadducts gave the desired 1-aryl-9Hxanthen-9-ones 9. 8 H 7a 7 6a 6 O H 1' 5 3' H H 5 8 H 4b 8a O 9 4a 9a OH 6' H4 3 2 1 1' 2' 5' 4' 6' 5' H [1] a) Gales, L.; Damas, A.M. Curr. Med. Chem. 2005, 12 , 2499. b) Vieira, L.M.M.; Kijjoa, A. Curr. Med. Chem. 2005, 12 , 2413. [2] a) Pinto, M.M.M.; Sousa, M.E.; Nascimento M.S.J. Curr. Med. Chem. 2005, 12 , 2517. b) Riscoe, M.; Kelly, J.X.; Winter, R. Curr. Med. Chem. 2005, 12 , 2539. c) El-Seedi, H.R.; El-Barbary, M.A.; ElGhorab, D.M.; Bohlin, L.; Borg-Karlson, A.K.; Göransson, U.; Verpoorte, R. Curr. Med. Chem. 2010, 17, 854. [3] a) Fukawa, I.; Yoneda, H.; Asahi, K.K.K.K. Eur. Patent EP0237004, Sep, 1987. b) Kelkar, A.S.; Letcher. R.M.; Cheung, K.-K.; Chiu, K.-F.; Brown, G.D. J. Chem. Soc. Perkin Trans I 2000, 3732. [4] Santos, C.M.M.; Silva, A.M.S.; Cavaleiro, J.A.S. Synlett 2005, 3095; Synlett 2007, 3113; Eur. J. Org. Chem. 2009, 2642. [5] a)Esteves, C.I.C.; Santos, C.M.M.; Brito, C.M.; Silva, A.M.S.; Cavaleiro, J.A.S. Synlett, 2011, 1403. b) Rocha, D.H.A.; Pinto, D.C.G.A.; Silva, A.M.S.; Patonay, T.; Cavaleiro, J.A.S. Synlett, 2012, 559. H 4' 3' 1 H HMBC connectivities H H H R ACKNOWLEDGMENTS Thanks are due to the University of Aveiro, Fundação para a Ciência e a Tecnologia and FEDER for funding the Organic Chemistry Research Unit (project PEst-C/QUI/UI0062/2011), the Portuguese National NMR Network (RNRMN) and the grants to D.H.A. Rocha (BI/UI51/4889/2010 and SFRH/BD/68991/2010) and C.I.C. Esteves (SFRH/BI/51098/2010).