Questão 04 Uma lâmina bimetálica de bronze e ferro, na temperatura ambiente, é fixada por uma de suas extremidades, como visto na figura abaixo. Módulo 37 - Exercício 13 Questão 01 Nessa situação, a lâmina está plana e horizontal. A seguir, ela é aquecida por uma chama de gás. Após algum tempo de aquecimento, a forma assumida pela lâmina será mais adequadamente representada pela figura: Note e adote: O coeficiente de dilatação térmica linear do ferro é -1 1,2x10-5 °C . O coeficiente de dilatação térmica linear do bronze é 1,8x10-5 °C-1. Após o aquecimento, a temperatura da lâmina é uniforme. Uma barra de comprimento L = 50 m, feita de um material X, sofre variação de temperatura de 20°C, e seu comprimento varia em 0,02%. Considere duas barras do mesmo material X e de mesmo comprimento L, posicionadas, uma em frente à outra, separadas por uma distância d = 1 cm (veja a figura). Admitindo-se que cada barra cresça de forma homogênea, a variação de temperatura necessária para que a distância d, entre elas, se anule será igual a a) Questão 02 b) A figura a seguir representa um retângulo formado por quatro hastes fixas. c) d) e) Considere as seguintes informações sobre esse retângulo: sua área é de 75 cm2 à temperatura de 20 °C; a razão entre os comprimentos e é igual a 3; as hastes de comprimento são constituídas de um mesmo material, e as hastes de comprimento de outro; a relação entre os coeficientes de dilatação desses dois materiais equivale a 9. Questão 05 Quem viaja de carro ou de ônibus pode ver, ao longo das estradas, torres de transmissão de energia tais como as da figura. Admitindo que o retângulo se transforma em um quadrado à temperatura de 320 °C, calcule, em °C-1, o valor do coeficiente de dilatação linear do material que constitui as hastes menores. Questão 03 O diâmetro externo de uma arruela de metal é de 4,0 cm e seu diâmetro interno é de 2,0 cm. Aumentada a temperatura da arruela de T observa-se que seu diâmetro externo aumenta em d. Então, pode-se afirmar que seu diâmetro interno: a) diminui de d. b) diminui de d/2. c) aumenta de d. d) aumenta de d/2. e) não varia. Viva essa experiência. Olhando mais atentamente, é possível notar que os cabos são colocados arqueados ou, como se diz popularmente, "fazendo barriga". A razão dessa disposição é que: a) a densidade dos cabos tende a diminuir com o passar dos anos. 1 www.colegiocursointellectus.com.br b) a condução da eletricidade em alta tensão é facilitada desse modo. c) o metal usado na fabricação dos cabos é impossível de ser esticado. d) os cabos, em dias mais frios, podem encolher sem derrubar as torres. e) os ventos fortes não são capazes de fazer os cabos, assim dispostos, balançarem. a) 0,25. b) 0,50. c) 1,00. d) 2,00. Questão 09 Uma esfera oca metálica tem raio interno de 10 cm e raio externo de 12 cm a 15°C. Sendo o coeficiente de -5 -1 dilatação linear desse metal 2,3 x 10 (°C) , assinale a alternativa que mais se aproxima da variação do volume 3 da cavidade interna em cm quando a temperatura sobe para 40°C. Considere = 3. a) 0,2 b) 2,2 c) 5,0 d) 15 e) 15,2 Questão 06 O piso de concreto de um corredor de ônibus é constituído de secções de 20m separadas por juntas de dilatação. Sabe-se que o coeficiente de dilatação linear -6 -1 do concreto é 12x10 °C , e que a variação de temperatura no local pode chegar a 50°C entre o inverno e o verão. Nessas condições, a variação máxima de comprimento, em metros, de uma dessas secções, devido à dilatação térmica, é: a) 1,0x10-2 b) 1,2x10-2 c) 2,4x10-4 d) 4,8x10-4 e) 6,0x10-4 Questão 10 Duas chapas circulares A e B de áreas iguais a uma temperatura inicial de 20°C foram colocadas no interior de um forno cuja temperatura era de 170°C. Sendo a chapa A de alumínio e a chapa B de ferro e a diferença entre suas áreas no instante em que atingiram o 2 equilíbrio térmico com o forno igual a 2,7 cm , então o raio inicial das chapas no instante em que foram colocadas no forno era de: Questão 07 Certo metal possui um coeficiente de dilatação linear . Uma barra fina deste metal, de comprimento L0, sofre uma dilatação para uma dada variação de temperatura T. Para uma chapa quadrada fina de lado e para um cubo também de lado L0 desse mesmo metal, se a variação de temperatura for 2 T, o número de vezes que aumentou a variação da área e do volume, da chapa e do cubo, respectivamente, é: a) 4 e 6 b) 2 e 2 c) 2 e 6 d) 4 e 9 e) 2 e 8 (Considere: a) 25 cm. b) 30 cm. c) 35 cm. d) 40 cm. Questão 08 No gráfico a seguir, está representado o comprimento L de duas barras A e B em função da temperatura . Sabendo-se que as retas que representam os comprimentos da barra A e da barra B são paralelas, pode-se afirmar que a razão entre o coeficiente de dilatação linear da barra A e o da barra B é: Viva essa experiência. 2 www.colegiocursointellectus.com.br