UNIVERSIDADE DO ESTADO DO AMAZONAS FUNDAÇÃO DE MEDICINA TROPICAL DR. HEITOR VIEIRA DOURADO PROGRAMA DE PÓS-GRADUAÇÃO EM MEDICINATROPICAL MESTRADO EM DOENÇAS TROPICAIS E INFECCIOSAS AVALIAÇÃO IN VITRO DA FAGOCITOSE DE PLAQUETAS EM PACIENTES COM MALÁRIA VIVAX HELENA CRISTINA CARDOSO COELHO MANAUS 2012 i HELENA CRISTINA CARDOSO COELHO AVALIAÇÃO IN VITRO DA FAGOCITOSE DE PLAQUETAS EM PACIENTES COM MALÁRIA VIVAX Dissertação apresentada ao Programa de Pós-Graduação em Medicina Tropical da Universidade do Estado do Amazonas em Convênio com a Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, para obtenção do grau de Mestre em Doenças Tropicais e Infecciosas. Orientador: Prof. Dr. Marcus Vinícius Guimarães de Lacerda MANAUS 2012 Ficha Catalográfica C672a Coelho, Helena Cristina Cardoso. Avaliação in vitro da fagocitose de plaquetas em pacientes com malária vivax /. -- Manaus : Universidade do Estado do Amazonas, Fundação de Medicina Tropical, 2012. xiii. 141 f. : il. Dissertação (Mestrado) apresentada ao Programa de PósGraduação em Medicina Tropical da Universidade do Estado do Amazonas – UEA/FMT, 2012. Orientador: Profº. Dr. Marcus Vinicius Guimarães de Lacerda. 1.Malária 2.Plasmodium vivax 3.Plaquetopenia . Título Ficha Catalográfica elaborada pela Bibliotecária Maria Eliana CDU: N. Silva, lotada na 616.928.5 Escola Superior de Ciências da Saúde - UEA ii FOLHA DE JULGAMENTO AVALIAÇÃO IN VITRO DA FAGOCITOSE DE PLAQUETAS EM PACIENTES COM MALÁRIA VIVAX HELENA CRISTINA CARDOSO COELHO “Esta Dissertação foi julgada adequada para obtenção do Título de Mestre em Doenças Tropicais e Infecciosas, aprovada em sua forma final pelo Programa de Pós-Graduação em Medicina Tropical da Universidade do Estado do Amazonas em convênio com a Fundação de Medicina Tropical Dr. Heitor Vieira Dourado”. Banca Julgadora: _____________________________________ Prof. Marcus Vinicius Guimarães de Lacerda, Dr. Presidente _______________________________ Prof. Fábio Trindade Maranhão, Dr. Membro ______________________ Profª. Aya Sadahiro, Dra. Membro iii À Deus, pela constante presença em minha vida. Aos meus pais, Gilberto e Cristina, por todos os ensinamentos que me auxiliam na jornada da vida. Ao meu esposo, Genilson, pelo amor e apoio incondicional em todas as horas. Ao meu filho Pedro, pelas alegrias de todos os dias. Dedico-lhes gratidão. essa conquista com iv AGRADECIMENTOS Ao meu orientador Dr. Marcus Vinícius G. Lacerda, pela oportunidade me dada para desenvolver esse trabalho desafiador que me despertou grande interesse. Agradeço também pelo conhecimento científico adquirido e pelo amadurecimento que obtive durante todo esse período que me orientou. Aos Professores Paulo Nogueira e Adriana Malheiro, pelo apoio, incentivo e grandes contribuições no desenvolvimento do trabalho, e Profª Aya Sadahiro pelas ótimas sugestões apresentadas no exame de qualificação. À Stefanie Lopes, que me acompanhou durante grande parte dessa jornada e que acabou tornando-se uma grande amiga. Obrigada Stef, por me ensinar com tanta boa vontade, me aconselhar durante os longos momentos de reflexão, me incentivar e me mostrar o valor da ciência, e é claro, obrigado pelos diversos momentos de alegria, dentro e fora dos laboratórios. Ao João Paulo Pimentel, que trouxe grande contribuição ao trabalho com sua experiência, paciência e gentileza. A minha querida amiga Gisely Melo, uma das primeiras pessoas que conheci na FMT-HVD que me recebeu com muito carinho e que acabou tornando-se uma grande companheira. E ao seu esposo e meu amigo Wuelton Monteiro pelo apoio, grandes ensinamentos e bons momentos de descontração. Aos queridos amigos Belisa Magalhães e Kleber Alexandre pelo carinho, incentivo e momentos especiais vividos ao lado deles. Ao Dr. André M. Siqueira, que desde o inicio do meu ingresso sempre esteve disposto a me auxiliar. Obrigada André pelos ensinamentos, incentivos e momentos divertidos. Aos queridos Raimunda, Wellington, Allyne, Marcela, Sra. Ericilda pela gentileza e empenho no processo de inclusão e coleta de amostra dos pacientes do estudo. Aos colegas do laboratório de virologia da FMT-HVD, especialmente ao Bosco pelo profissionalismo, dedicação e grande auxilio que nos prestou. As pessoas do laboratório do Centro de Pesquisa Leônidas e Maria Deane (FIOCRUZ), pela colaboração e pelos momentos agradáveis e descontraídos vividos nesses últimos anos. Aos amigos do HEMOAM, Allyson Guimarães e Walter Luiz, pela importante contribuição na realização do estudo. A todos os professores que, com seus ensinamentos, participaram de minha formação. Ao grande companheiro de “gincanas” pelos laboratórios, Alejandro com o seu eterno bom humor, tornava o nosso dia muito melhor. A toda equipe da malária (alunos, pesquisadores e funcionários) que de alguma forma contribuíram no desenvolvimento desse trabalho e aqueles que passaram um período conosco e que deixaram saudades como Mireia e Letusa. A querida Teresa, pessoa de boa índole, com muita força de vontade. Obrigada por sempre estar disposta a me ajudar. Aos colegas de turma de pós-graduação que foram importantes no início dessa caminhada. Em especial, à Patrícia e a Luciana pela amizade, espírito de cooperação e pelos momentos de descontração e reflexão. Aos pacientes que contribuíram no desenvolvimento dessa pesquisa. v Ao professor Ronei Mamoni (FCM-UNICAMP) que gentilmente doou as células THP-1 para execução dos ensaios de fagocitose. Ao excelente pesquisador Bernardo, pela oportunidade me dada de fazer parte de uma de suas pesquisas. À Fundação de Medicina Tropical do Amazonas e à Universidade do Estado do Amazonas UEA, pelo programa de pós-graduação. À Superintendência da Zona Franca de Manaus - SUFRAMA, financiadora do programa de pós-graduação da UEA. À Fundação de Hematologia e Hemoterapia do Estado do Amazonas HEMOAM e Centro de Pesquisa Leônidas e Maria Deane, por me autorizarem a utilizar parte das instalações na execução das minhas atividades. Ao meu marido Gê, por me fazer acreditar na felicidade que alcançaríamos após passarmos um período turbulento com diversas mudanças em nossas vidas. Por não me deixar desistir dos meus sonhos, e por estar sempre ao meu lado nos momentos de tristeza e alegria, oferecendo apoio, incentivo, carinho e muita paciência. À minha linda família, Gilberto (pai), Cristina (mãe), Monize (irmã) Júnior e Viviane (irmão e cunhada) por serem pessoas maravilhosas, por compreenderem a minha ausência em muitos momentos de suas vidas e por muitas vezes através de conversas ao vivo ou ao telefone renovar minhas forças para o cumprimento do que me propus a fazer. E aos pequenos anjos da minha vida, Katarina, Walentina e Breno que me tiraram muitos sorrisos, mesmos nos momentos de grande aflição. Aos meus queridos amigos Aline e Moacyr que foram os grandes incentivadores ao meu ingresso no programa de pós–graduação e responsáveis por muitos momentos felizes da minha vida. Obrigada Aline por ter entrado em minha vida e me acrescentar tantas coisas boas. Algo me diz que por algum motivo isso aconteceria mais cedo ou mais tarde, em Manaus, São Paulo ou em qualquer outro lugar. À minha grande amiga Fabiana, pela longa amizade sincera, pelo carinho, incentivo e pelas longas conversas sobre nossa simultânea trajetória científica. E como uma veterinária e apaixonada por animais, agradeço as minhas filhas de focinho que me fazem esquecer por alguns instantes os problemas do mundo a fora. vi RESUMO A plaquetopenia é uma alteração hematológica comumente relatada em pacientes com malária, entretanto, pouco se conhece sobre os mecanismos exatos que causam essa alteração hematológica nesses indivíduos. O objetivo desse trabalho foi estudar o papel da fagocitose na plaquetopenia da malária vivax. Plaquetas de 35 pacientes com malária vivax atendidos na Fundação de Medicina Tropical – Dr. Heitor Vieira Dourado, foram marcadas com diacetato de 5clorometilfluoresceína e incubadas com células THP-1 por 1 hora. A fagocitose de plaquetas foi verificada por citometria de fluxo. Como controle negativo, foram utilizadas plaquetas de 8 pessoas saudáveis. A expressão da P-selectina foi avaliada utilizando anticorpo anti CD62-P humano conjugado com ficoeritrina (PE). Concentrações séricas de citocinas do tipo IL-2, IL-4, IL-6, IL-10, fator de necrose tumoral alfa (TNF-α), interferon gama (IFN-γ) e IL-17 foram mensurados também por citometria de fluxo. A fagocitose de plaquetas foi maior nos pacientes plaquetopênicos do que nos não-plaquetopênicos (p=0,042) e pessoas saudáveis (p=0,048). Além disso, foi encontrada uma correlação negativa entre a fagocitose e contagem de plaquetas (p=0,016; r=-0,402). Não houve diferença significativa da expressão de P-selectina nas plaquetas entre os pacientes plaquetopênicos e pessoas saudáveis (p=0,092). Concentrações de IL-6, IL-10 e IFN-γ foram mais altas em pacientes com malária comparadas com pessoas saudáveis. Valores de IL-6 e IL-10 foram mais elevadas em pacientes plaquetopênicos quando comparados a pacientes não-plaquetopênicos (p=0,016; p=0,045). Concentração de TNF-α foi mais elevada em pacientes plaquetopênicos do que em pessoas saudáveis (0,007) e uma correlação positiva foi encontrada entre TNF-α e fagocitose de plaquetas (p=0,010; r=0,425). Os resultados sugerem que a fagocitose de plaquetas por monócitos pode ser considerada, em parte, um mecanismo que contribui na plaquetopenia da malária vivax. Esse fenômeno mostrou-se independente da ativação de plaquetas. Contudo, mais estudos são necessários para determinar os mecanismos moleculares que envolvem a fagocitose de plaquetas nessa doença. Palavras-chaves: Malária. Plasmodium vivax. Plaquetopenia. Fagocitose. vii ABSTRACT Thrombocytopenia is a hematological change commonly reported in patients with malaria, however, the exact mechanism has not been elucidated. The objective of the present work was to study the role of phagocytosis in malaria thrombocytopenia. Platelets from of thirty and five patients with vivax malaria were collected in Fundação de Medicina Tropical – Dr. Heitor Vieira Dourado, labeled with 5-diacetate clorometilfluoresceína (CMFDA) and incubated with THP-1 cells for 1 hour. Platelet phagocytosis was evaluated by flow cytometry. As a negative control, we used platelets from eithg healthy volunteers. The expression of P-selectin was evaluated using PE Mouse Anti-Human CD62P. Serum IL-2, IL-4, IL-6, IL-10, TNF-α (Tumor Necrosis Factor alpha), IFN-γ (Interferon gamma) and IL-17 were also measured by flow cytometry. The platelet phagocytosis was greater in thrombocytopenic patients than in those non-thrombocytopenic patients (p=0.042) and healthy volunteers (p=0.048). Furthermore, we found a negative correlation between phagocytosis and platelet counts (p=0.016, r=-0.402). No significant difference was found in the expression of P-selectin between thrombocytopenic patients and healthy volunteers (p=0.092). IL-6, IL-10 and IFN-γ were elevated in malaria patients compared to HV. Even more, IL-6 and IL-10 values were higher in thrombocytopenic patients that nonthrombocytopenic one (p=0.016; p=0.045). TNF-α was only elevated in thrombocytopenic patients compared to HV (p=0.007) and a positive correlation was found between TNF-α and platelet phagocytosis (p=0.010; r=0.425). This data suggest that phagocytosis platelet might be part of the pathogenic process involved in thrombocytopenia in vivax malaria. This phenomenon seems to be independent of platelet activation. However, further studies are needed to determine the molecular mechanisms involving platelet phagocytosis in this disease. Keywords: Malaria. Plasmodium vivax. Thrombocytopenia. Phagocytosis. viii LISTA DE FIGURAS Figura 1: Figura 2: Figura 3: Figura 4-A: Figura 4-B: Figura 4-C: Figura 5: Áreas de transmissão da malária .......................................... Mapa do Brasil com distribuição de casos de malária por 1.000 habitantes no Brasil ..................................................... Imagem da formação das plaquetas...................................... Imagem de uma plaqueta quiescente, apresentando forma discoide, com superfície rugosa (aumento 30.000 X)............ Aberturas na superfície da plaqueta conectadas ao sistema canicular aberto (aumento 26.000 X)..................................... Grânulos α (G) e grânulos densos (D) no citoplasma de uma plaqueta (aumento 32.000 X)........................................ Etapas do experimento de fagocitose de plaquetas.............. 1 3 5 6 6 6 27 ix LISTA DE TABELAS Tabela 1: Tabela 2: Grânulos plaquetários e seus constituintes principais............ 7 Classificação dos pacientes de acordo com a contagem de plaquetas ................................................................................ 25 x LISTA DE QUADROS Quadro 1: Quadro 2: Classificação fisiopatológica da plaquetopenia......................... Medicamentos que podem causar plaquetopenia..................... 9 23 xi LISTA DE ABREVIATURAS, SÍMBOLOS E UNIDADES DE MEDIDA ADP – Adenosina difosfato ATP – Adenosina trifosfato BSGC – Solução salina tamponada com glicose e citrato (Buffered Saline Glucose-Citrate) CD36 – Receptor de membrana celular CD40L – Ligante do receptor de membrana celular CD40 CID – Coagulação Intravascular Disseminada CMFDA – Diacetato de 5-clorometilfluoresceína (5-ChloroMethylFluorescein DiAcetate) CPqLMD – Centro de Pesquisa Leônidas Maria Deane FITC – Isotiocianato de fluorosceína (Fluorescein IsoThioCyanate) FL1 – Canal 1 de Fluorescência à citometria de fluxo FMT-HVD – Fundação de Medicina Tropical Dr. Heitor Vieira Dourado FFg – Frequência de fagocitose GM-CSF – Fator Estimulador de Colônia de Granulócitos e Monócitos (Granulocyte macrophage colony-stimulating factor). GP – Glicoproteina HBV – Vírus da Hepatite B HCV – Vírus da Hepatite C HDL – Lipoproteina de alta densidade (High Density Lipoprotein) HEMOAM – Fundação de Hematologia e Hemoterapia do Amazonas HIV – Vírus da Imunodeficiência Humana (Human Immunodeficiency Virus) IC – Intervalo de Confiança ICAM – Molécula de adesão intercelular (Intercellular adhesion molecule) LDL – Lipoproteína de baixa densidade (Low Density Lipoprotein) IFg- Índice de fagocitose IFN-y – Interferon gama IgG – Imunoglobulina G IL – Interleucina µL – Microlitro µM – Micromolar MAC-1 – Antígeno de macrófago 1 (Macrophage-1 antigen) xii Mg – Miligrama mL – Mililitro M-CSF – Fator estimulador de Colônias de Macrófagos (Macrophage colonystimulating factor) MDA – Malondialdeído MHC – Complexo principal de histocompatibilidade (Major histocompatibility complex) MIF – Mediana de intensidade de fluorescência OMS – Organização Mundial de Saúde PAIgG – Anticorpos da classe IgG associados a plaquetas PBMC – Células Mononucleares de Sangue Periférico (Peripheral Blood Mononuclear Cell) PCR – Reação em cadeia pela polimerase (Polymerase Chain Reaction) PDF – Produtos de degradação da fibrina PE – Ficoeritrina (Phycoerythrin) PESCLIN – Enfermaria de Pesquisa Clínica da FMT-HVD Ph – Potencial Hidrogeniônico PMA – Forbol 12-miristato 13-acetato (Phorbol Miristate Acetate) PNCM – Plano Nacional de Controle da Malária PRP – Plasma Rico em Plaquetas P-selectina – Molécula de adesão celular PSGL-1- Ligante glicoproteico de P-selectina (P-selectin glycoprotein ligand-1) RNA – Ácido Ribonucleico (RiboNucleic Acid) SSC – Granulações das células à citometria de fluxo (Side Scatter) TCLE – Termo de Consentimento Livre e Esclarecido TGF-β – Fator de crescimento de transformação - beta (Transforming growth factor beta) THP-1 – Linhagem comercial de monócitos TNF – Fator de Necrose Tumoral (Tumor Necrosis Factor) TPO – Trombopoietina TLRs_ Receptores Toll-like (Toll-like receptors) VPM – Volume Plaquetário Médio ˚C – Graus Celsius xiii SUMÁRIO 1 INTRODUÇÃO....................................................................................... 1.1 Aspectos epidemiológicos da malária.......................................... 1.2 Aspectos clínicos da malária........................................................ 1.3 Aspectos imunológicos da malária: produção de citocinas.......... 1.4 Plaquetas...................................................................................... 1.4.1 Formação da plaquetas................................................................ 1.4.2 Aspectos estruturais e funcionais das plaquetas......................... 1.4.3 Fagocitose de plaquetas por monócitos....................................... 1.4.4 Plaquetopenia............................................................................... 1.4.5 Plaquetopenia na malária............................................................. 1.4.6 Etiopatogenia da plaquetopenia na malária................................. 1.4.7 Relação entre plaquetopenia e citocinas produzidas durante a infecção por malária..................................................................... 2 OBJETIVOS........................................................................................... 2.1 Objetivo geral............................................................................... 2.2 Objetivos específicos.................................................................... 3 MATERIAL E MÉTODOS...................................................................... 3.1 Local do estudo............................................................................ 3.2 Tipo e tamanho da amostra........................................................ 3.3 Critérios de elegibilidade.............................................................. 3.4 Critérios de não inclusão............................................................. 3.5 Critérios de exclusão................................................................... 3.6 Seleção dos pacientes................................................................. 3.7 Coleta das amostras e procedimentos laboratoriais ................ 3.8 Classificação de pacientes em plaquetopênicos e nãoplaquetopênicos........................................................................... 3.9 Cultura de células THP-1............................................................. 3.10 Isolamento de plaquetas.............................................................. 3.11 Teste in vitro de fagocitose de plaquetas.................................... 3.12 Avaliação da expressão de P-selectina........................................ 3.13 Dosagem de citocinas.................................................................. 3.14 Citometria de fluxo........................................................................ 3.15 Análise estatística......................................................................... 3.16 Considerações éticas................................................................... 3.17 Limitações do estudo................................................................... 4 RESULTADOS....................................................................................... 4.1 Artigo publicado (resultado)........................................................ 5 CONCLUSÃO........................................................................................ 6 REFERÊNCIAS BIBLIOGRÁFICAS...................................................... 7 ANEXOS................................................................................................ ANEXO A (Termo de Consentimento Livre e Esclarecido – TCLE) ... ANEXO B (Ficha clínica do participante do estudo) ........................... ANEXO C (Procedimento Operacional Padrão – POP) ....................... ANEXO D (Parecer do CEP da FMT-HVD.............................................. ANEXO E (Artigos publicados).............................................................. ANEXO F (Normas da revista PLOS ONE............................................. 1 1 4 4 5 5 6 7 9 10 10 18 20 20 20 21 21 22 22 22 23 24 24 25 26 26 26 26 26 27 28 28 29 30 31 58 59 68 68 71 74 89 91 113 Ficha Catalográfica C672a Coelho, Helena Cristina Cardoso. Avaliação in vitro da fagocitose de plaquetas em pacientes com malária vivax /. -- Manaus : Universidade do Estado do Amazonas, Fundação de Medicina Tropical, 2012. xiii. 141 f. : il. Dissertação (Mestrado) apresentada ao Programa de PósGraduação em Medicina Tropical da Universidade do Estado do Amazonas – UEA/FMT, 2012. Orientador: Profº. Dr. Marcus Vinicius Guimarães de Lacerda. 1.Malária 2.Plasmodium vivax 3.Plaquetopenia . Título Ficha Catalográfica elaborada pela Bibliotecária Maria Eliana CDU: N. Silva, lotada na 616.928.5 Escola Superior de Ciências da Saúde - UEA 1 1 INTRODUÇÃO 1.1 Aspectos epidemiológicos da malária Reconhecida como um grande problema para a saúde pública, a malária ocorre em mais de 109 países e territórios. Segundo a Organização Mundial de Saúde (OMS), em 2008, foram registrados aproximadamente 243 milhões de casos de malária no mundo, com uma estimativa de 863 mil óbitos, principalmente em crianças menores de cinco anos e mulheres grávidas do Continente Africano (1, 2). As áreas de transmissão da malária no mundo são demonstradas na Figura 1. Dados da OMS estimam que há entre 70 e 80 milhões de casos por ano de malária decorrentes da infecção pela espécie Plasmodium vivax. As maiores prevalências são observadas no sul e leste da Ásia (52%), leste do Mediterrâneo (15%) e América do Sul (13%). No leste e sul da África, 5% das infecções por malária são atribuídas a essa espécie, que pode representar entre seis e quinze milhões dos casos por ano (3, 4). Na região das Américas, a transmissão ocorre em 21 países, estimando-se que três em cada 10 pessoas vivem em áreas com diferentes níveis de transmissão. A malária pelo P. vivax representou 80% dos casos registrados em 2009 nesse continente. Em conjunto, Brasil, Colômbia, Haiti e Peru foram responsáveis por 90% dos casos no ano de 2009 (5). Figura 1. Áreas de transmissão da malária (6). 2 No Brasil, a Amazônia Legal, composta pelos estados do Acre, Amapá, Amazonas, Pará, Rondônia, Roraima, Maranhão, Mato Grosso e Tocantins, é a principal região de ocorrência da malária. Em 2010, foram registrados 132.179 casos nessa região, sendo o Amazonas (33.948 casos), Pará (30.065 casos), Rondônia (16.401 casos) os responsáveis por 61% deste total (7). Em Manaus, a Fundação de Medicina Tropical Doutor Heitor Vieira Dourado (FMT- HVD), que funciona como um centro de referência para as pesquisas científicas, cuidados de saúde e diagnósticos de doenças tropicais no estado do Amazonas, atendeu no período entre janeiro de 2007 e dezembro de 2009, 114.404 pessoas que apresentavam quadro clínico febril, tidas como casos suspeitos de malária. Dessas, por meio do exame da gota espessa a partir de sangue periférico, 27.029 (23,6%) apresentaram a presença do protozoário, o que confirmou a doença (8). A espécie P. vivax é responsável pela maioria dos casos no país. No entanto, nem sempre essa espécie foi predominante. P. falciparum foi a espécie mais prevalente até a década de 80, quando o número de casos de P. vivax começou a aumentar relativamente. Em 1988, a incidência relativa dessas duas espécies era de aproximadamente 50% em cada uma. Essa relação mudou a partir de 1990, quando P. vivax começou a predominar (44,3% dos casos eram de P. falciparum). Em dados de 2008, observa-se que aproximadamente 85% dos casos de malária no Brasil foram causados por P. vivax (1, 9). Alguns autores consideram que essa inversão de predominância entre as espécies pode ser em parte, devida à implantação do Plano Nacional de Controle da Malária (PNCM), que visa ao rápido diagnóstico e tratamento dos casos de malária. Essas medidas podem controlar a transmissão do P. falciparum de uma forma mais eficiente que no P. vivax, já que na malária falciparum o surgimento dos gametócitos na corrente sanguínea leva um maior tempo (de oito a dez dias após a infecção) comparado com a malária vivax (até três dias após a infecção), facilitando, com o diagnóstico e tratamento precoces, a eliminação da infecção antes que o doente transmita P. falciparum para o mosquito (9). 3 Além disso, um outro fator que limita o controle de P. vivax é a sua capacidade de formar hipnozoítos no fígado, que após um período de tempo variável, transformamse em merozoítos que passam a circular novamente na circulação periférica, tornando o hospedeiro novamente uma fonte de infecção (4). Um terceiro ponto a ser considerado é a resistência do P. vivax ao tratamento com a cloroquina, relatada em diversas partes do mundo (10), inclusive no Brasil. Em um estudo realizado em Manaus demonstrou-se que a resistência ocorre em até 10% dos casos estudados (11). A distribuição dos casos de malária no Brasil pode ser observada na Figura 2, na qual são identificadas as áreas livres de malária (0 casos/1.000 habitantes), áreas com baixa transmissão (0 - 1 casos/1.000 habitantes), áreas com alta transmissão (1-100 casos e > 100 casos/1.000 habitantes). Figura 2. Mapa do Brasil com distribuição de casos por 1.000 habitantes no Brasil(12). 4 1.2 Aspectos clínicos da malária A doença clínica está associada a sintomas inespecíficos como calafrios, vômitos, mal-estar, cefaleia, febre, náuseas, vômitos, mialgia e icterícia. A anemia, plaquetopenia, hepatomegalia e esplenomegalia também podem ser observadas (13). Na literatura são descritos relatos de gravidade associados ao P.vivax, apresentando síndrome da angústia respiratória aguda (14), disfunção hepática, icterícia, malária cerebral, insuficiência renal, anemia grave (15, 16), rabdomiólise (17) ruptura do baço (18) e plaquetopenia grave (19-24). O desenvolvimento da forma grave da malária provavelmente é resultado de uma combinação de diversos fatores que envolvem o parasita e o hospedeiro (25), tais como a variação genética do hospedeiro, idade (crianças são mais acometidas), resistência a cloroquina, fatores de virulência do plasmódio, infecções mistas, além dos fatores geográficos e sociais (26). 1.3 Aspectos imunológicos da malária: produção de citocinas Na malária vivax, a liberação de endotoxinas durante a ruptura das hemácias parasitadas estimulam as células do sistema imune, culminando com o aumento de TNF-α e IL-6 (27, 28). Um estudo realizado na Turquia demonstrou um aumento de IL-1 beta, IL-6 e IL-12, bem como uma correlação positiva entre IL-10 e IL-12 e a parasitemia e uma correlação negativa entre a IL-8 com a parasitemia no soro de pacientes infectados com P. vivax (29). Altas concentrações de IFN-γ e IL-10 foram detectados no soro de crianças com malária falciparum grave (30). Por outro lado, comparando indivíduos assintomáticos e casos descritos como malária grave, um estudo realizado no Brasil mostrou que a razão de IFN-γ/IL-10 foi alta em casos graves, enquanto IL-10 foi elevado em indivíduos assintomáticos (31). 5 1.4 Plaquetas 1.4.1 Formação das plaquetas As plaquetas possuem um tamanho de 2 a 5 µm e um volume corpuscular médio (VPM) de 6 a 10 fentolitros e se originarem da fragmentação do citoplasma dos megacariócitos (19, 32). Os megacariócitos são células grandes (>60µm), de linhagem mielóide, com um núcleo poliplóide e diferem de outras células por permanecerem na medula após sua maturação. Essas células possuem mecanismos especializados em produzir e liberar as plaquetas na circulação sanguínea através da formação de extensões citoplasmáticas, denominadas pró-plaquetas. Por meio de brotamento dessas extensões citoplasmáticas ocorre a formação das plaquetas que são posteriormente levadas pela corrente sanguínea (Figura 3) (33). Figura 3. Imagem da formação das plaquetas. Patel et al, 2005, modificado (34). A produção de plaquetas é estimulada por diversos fatores de crescimento hematopoiético como o fator estimulador de colônias de granulócitos-monócitos (GM-CSF, do inglês granulocyte-macrophage colony-stimulating factor), IL-3, IL-6, IL-11 e trombopoietina (TPO), sendo esse último o mais importante. A TPO é uma glicoproteína produzida pelo fígado e durante a plaquetopenia seus níveis apresentam–se elevados (35). 6 1.4.2 Aspectos estruturais e funcionais das plaquetas A membrana plasmática das plaquetas possui uma aparência rugosa (Figura 4-A), com pequenas aberturas conectadas ao sistema canicular aberto (Figura 4-B). Essas características permitem o aumento da superfície e a mudança da forma da plaqueta durante sua ativação. O sistema canicular funciona como um caminho para liberação do conteúdo dos grânulos presentes no citoplasma das plaquetas (32). A B C Figura 4. A- Imagem de uma plaqueta quiescente, apresentando forma discoide, com superfície rugosa (aumento 30.000 X). B- Aberturas na superfície da plaqueta conectadas ao sistema canicular aberto (aumento 26.000 X).C- Grânulos α (G) e grânulos densos (D) no citoplasma de uma plaqueta (aumento32.000 X)(32). Tanto a superfície das plaquetas quanto o sistema canicular aberto são revestidos por diversos receptores que possuem a função de facilitar a adesão das plaquetas a uma superfície danificada, desencadear a ativação plena da plaqueta, promover a agregação plaquetária e interação com outros elementos celulares. Os principais receptores envolvidos na hemostasia são os do complexo glicoproteico (GP): Ib-IX-V (receptor para o fator Von Willebrand-vWF) e IIb-IIIa (receptor para fibrinogênio) (32). O citoplasma das plaquetas possui dois tipos de grânulos essenciais para as funções plaquetária: os grânulos α, maiores e mais abundantes no citoplasma e grânulos densos (Figura 4-C). Proteínas e receptores interiorizados nestes grânulos são expressos na membrana externa da plaqueta no momento de sua ativação, como a P-selectina, uma das proteínas responsável pela interação entre plaquetas, leucócitos e células endotelias, através da ligação com o ligante glicoproteico de Pselectina (PSGL-1). A tabela 1 descreve os principais constituintes dos grânulos plaquetários (36). 7 As plaquetas são desprovidas de moléculas MHC classe II. No entanto, elas contêm níveis significativos de moléculas MHC classe I em sua superfície (37). Outra molécula importante expressa pelas plaquetas é o CD40L, que pode se ligar ao CD40 expresso tanto no endotélio como em leucócitos (38, 39). Tabela 1. Grânulos plaquetários e seus principais constituintes (36). Grânulos α Fator Plaquetário 4 Fibrinogênio Fator V Fator de vonWillebrand Trombospondina Fator de crescimento derivado de plaquetas (PDGF) Grânulos densos ATP ADP Cálcio Serotonina P-selectina Catecolaminas As plaquetas quando ativadas também produzem citocinas, como IL-1 β, a qual pode levar a um aumento da expressão de ICAM1 e IL-6 por células endoteliais promovendo a adesão de leucócitos ao endotélio vascular (40, 41). O citoesqueleto é composto por microtúbulos, actomiosina e espectrina e é responsável por manter a forma da plaqueta quiescente e ativada (42). As plaquetas possuem uma meia vida de 7 a 10 dias e caso não participem da coagulação, são removidas da circulação pelo sistema reticuloendotelial (32). À medida que as plaquetas envelhecem, perdem sua capacidade hemostática (43). Plaquetas danificadas ou esgotadas são sequestradas e destruídas pelo baço. Além de ser um importante sítio de sequestro de plaquetas, o baço constitui um importante reservatório fisiológico de plaquetas (42). 1.4.3 Fagocitose de plaquetas por monócitos Monócitos são leucócitos que se originam a partir de células progenitoras presentes na medula óssea e são liberados para o sangue periférico, circulando por alguns dias antes de se deslocarem para os tecidos, onde são denominados 8 macrófagos. Os monócitos constituem 5 a 10% dos leucócitos presentes no sangue periférico em humanos e são importantes células efetoras tanto na resposta imune inata, quanto na adaptativa. À medida que essas células se diferenciam em macrófagos, adquirem receptores específicos e mecanismos para reconhecer e fagocitar microrganismos, partículas, células infectadas e células apoptóticas (44). Os macrófagos possuem diversos receptores, como Toll-like receptors (TLRs), os receptores acoplados à proteína G, os receptores Fc e C3 e os receptores de citocinas que atuam para ativar essa célula e induzir a resposta contra microrganismos fagocitados. A estimulação dos TLRs é o primeiro passo para a transição do macrófago para célula efetora do sistema imune. A fagocitose por macrófago é mediada por pelo menos quatro mecanismos que respectivamente envolve o receptor Fc de IgG, receptor do tipo scavenger, receptor do tipo lectina e receptores de complemento (44). O mecanismo de remoção das plaquetas da circulação sanguínea pelos macrófagos esplênicos ainda não é claramente explicado na literatura. O processo de ativação das plaquetas envolve diversas mudanças na superfície dessas estruturas, incluindo a expressão de P-selectina e a perda da assimetria da membrana. Essas mudanças na membrana das plaquetas podem gerar sinais moleculares para os macrófagos que desencadeiam a fagocitose (45-47). Dados demonstram que a ligação das plaquetas aos macrófagos é regulada principalmente por receptores Fc presentes nos macrófagos que reconhecem IgG ligados a superfície de plaquetas (48), pela ligação da P-selectina expressa em plaquetas ativadas ao ligante da P-selectina 1 (PSGL-1) (49), pela exposição de fosfatidilserina pelas plaquetas, que se liga a receptores responsáveis por reconhecer células apoptóticas (49-51) e pela exposição de glicoproteínas Ibα (CD42b) pelas plaquetas que se ligam aos macrófagos através do Mac-1 (também chamado de αMβ2 ou CD11b/CD18) (49). 9 1.4.4 Plaquetopenia Define-se como plaquetopenia a redução do número de plaquetas circulantes no sangue abaixo de 150.000/µL. A plaquetopenia resulta basicamente de três processos: produção plaquetária deficiente, destruição plaquetária maior do que sua taxa de reposição e distribuição anormal de plaquetas no organismo. A classificação da plaquetopenia baseada em critérios fisiopatológicos está apresentada no quadro 1. Quadro 1. Classificação fisiopatológica da plaquetopenia (52). I. Produção plaquetária deficiente 1. Hipoplasias ou supressão de megacariócitos 1.1. Agentes físicos e químicos; 1.2. Anemia aplásica (hipoplasia megacariocítica congênita, síndrome de Fanconi); 1.3. Processos mieloptísicos, infecções virais; 2. Trombopoese ineficaz (distúrbios devidos a deficiência de vitamina B12 ou ácido fólico, hemoglobinúria paroxística noturna; formas hereditárias); 3. Mecanismos de controle alterados (deficiência de trombopoetina, trombocitopenia cíclica); 4. Miscelânea (muitas formas hereditárias); II. Destruição plaquetária acelerada 1.Processos imunológicos 1.1. "Auto-anticorpos" (púrpura trombocitopênica idiopática, produção de anticorpos induzidos por droga, anemias hemolíticas, lúpus eritematoso sistêmico, distúrbios linforreticulares, hipertireoidismo); 1.2. Isoanticorpos (devido à incompatibilidade maternofetal; pós transfusão); 1.3. Outros processos imunológicos (alergias, eritroblastose fetal, reações anafiláticas, complexos imunes relacionados ao HIV); 2. Processos não imunológicos 2.1. Coagulação intravascular disseminada (CID) (complicações obstétricas, neoplasias, síndrome de Kasabach-Aldrich, infecções); 2.2. Processos microangiopáticos (púrpura trombocitopênica trombótica, válvulas cardíacas prostéticas); 2.3. Miscelânea (infecções, transfusões maciças, aparelhos de circulação extracorpórea, ristocetina, algumas formas hereditárias); III. Distribuição plaquetária anormal 1. Distúrbio esplênico (neoplasias, processos congestivos, infiltrativos e infecciosos e outras causas desconhecidas); 2. Anestesia hipotérmica; 3. Síndrome Kasabach-Merritt; 10 1.4.5 Plaquetopenia na malária A plaquetopenia em pacientes com malária é comumente relatada por diversos autores. Em uma revisão sistemática da literatura, a frequência da plaquetopenia nesses pacientes variou de 24% a 94% (53). A plaquetopenia grave (contagem de plaquetas <50.000/µL de sangue) também foi relatada na malária. Um estudo realizado na Venezuela constatou que 32 dos 75 pacientes com malária e plaquetopênicos (43%) apresentavam grave plaquetopenia (54). Em um estudo realizado no Brasil, a plaquetopenia foi encontrada em 70,8% (n=168) dos pacientes com malária atendidos na FMT-HVD, entre 2004 e 2006. Desses pacientes, 8,9% apresentavam uma contagem de plaquetas <50.000/µL (19). Em 124 pacientes com malária (64 pacientes por P. falciparum e 60 por P. vivax), 80,6% (n=100) apresentaram contagem de plaquetas abaixo de 150.000/µL, constatando a alta frequência de plaquetopenia, principalmente no grupo dos infectados por P. vivax (93,33%, contra 71,87% nos infectados por P. falciparum) (21). A plaquetopenia é um fato tão comum em pacientes com malária vivax, que alguns autores descrevem que essa alteração hematológica juntamente com a febre pode ser indicativo de infecção por malária (55-57). 1.4.6 Etiopatogenia da plaquetopenia na malária Estudos envolvendo a etiopatogênese da plaquetopenia na malária são realizados há pelo menos quatro décadas sendo atribuído como causas de plaquetopenia: destruição imunomediada, sequestro esplênico e não-esplênico, ativação plaquetária e ativação da cascata de coagulação, apoptose de plaquetas, estresse oxidativo e alteração na produção pela medula óssea. Entretanto, até o momento pouco se conhece sobre os mecanismos exatos que causam essa alteração hematológica e há algumas controvérsias entre os estudos já realizados. 11 a) Destruição imunomediada, sequestro esplênico e não esplênico de plaquetas Alguns autores acreditam que durante a infecção na malária há uma produção de anticorpos antiplaquetários e formação de imunocomplexos levando à plaquetopenia. Segundo os autores, isso ocorre provavelmente devido a ligação dessas partículas às plaquetas. Posteriormente, essas plaquetas são fagocitadas por macrófagos localizados no baço (56). Especula-se que a plaquetopenia na malária aguda causada por P. falciparum é resultante do sequestro das plaquetas pelo baço (60). De fato, é sabido que a esplenomegalia é um achado comum em pacientes com malária e análises histológicas revelaram um acúmulo de macrófagos no baço desses pacientes. Observa-se que esses mesmos macrófagos esplênicos estão envolvidos na fagocitose de eritrócitos normais e parasitados (61). Um estudo experimental, realizado em ratos infectados com P. chabaudi, demonstrou que os animais esplenectomizados não apresentavam redução no número de plaquetas, ao contrário dos animais não-esplenectomizados, salientando que a plaquetopenia estava associada ao sequestro pelo baço (62). Dados adicionais foram apresentados em um estudo com pacientes plaquetopênicos com malária vivax e falciparum não-complicada, os quais evidenciaram que o sequestro de plaquetas na malária não-complicada parece ser difuso, não apenas no baço ou no fígado. Esse trabalho também demonstrou que há uma redução na vida média das plaquetas (de dez para dois dias) e que essa redução foi menos intensa no paciente com malária vivax (4 dias) comparado com os pacientes com malária falciparum (0,60 a 1,66 dias) (61). Um trabalho de fundamental importância, apesar de antigo, demonstrou que 80% dos monócitos do esfregaço sanguíneo de um paciente com malária falciparum apresentavam fagocitose de plaquetas, sugerindo que esta fagocitose poderia ser um importante mecanismo envolvido no desenvolvimento da plaquetopenia nos casos de malária (63). 12 O alto nível do fator estimulador de colônia de macrófagos (M-CSF do inglês Macrophage colony-stimulating factor) em pacientes com malária tanto vivax quanto falciparum está associado à plaquetopenia, reforçando que os macrófagos teriam um papel fundamental na destruição dessas partículas, visto que esse fator é responsável pelo aumento da atividade de macrófagos (64). Outro trabalho relevante sobre a fagocitose plaquetária, apesar de não ser desenvolvido com pacientes com malária, demonstrou que o percentual de fagocitose e os níveis de PAIgG (anticorpos da classe IgG associados a plaquetas) aumentaram significativamente em indivíduos com dengue na fase aguda comparando com voluntários saudáveis. Os autores encontraram ainda uma correlação inversa entre a contagem de plaquetas e a porcentagem de fagocitose (P=0,011) e os níveis de PAIgG (P=0,041) (65). Estudos prévios realizados por esse mesmo grupo de pesquisadores encontraram tanto IgG anti vírus da dengue quanto RNA do vírus do dengue em plaquetas de pacientes infectados com dengue, sugerindo que imunocomplexos ligados às plaquetas podem contribuir para o aumento de fagocitose dessas partículas nesses pacientes (66). Na malária vivax e falciparum observa-se uma correlação inversa entre a contagem de plaquetas e a parasitemia, como se de alguma forma a quantidade de antígenos contribuíssem para o desenvolvimento da plaquetopenia (19, 56). Entretanto, existem alguns estudos contraditórios onde essa correlação não foi encontrada (54, 67). Ensaios de fagocitose utilizando imunocomplexos circulantes de pacientes com malária vivax, demonstraram que a fagocitose de plaquetas normais por células THP-1 (linhagem comercial de monócitos), estimuladas com PMA (Phobol Miristate Acetate), ocorre de forma satisfatória, entretanto, a hipótese de que os imunocomplexos poderiam aumentar a fagocitose de plaquetas na malária não foi confirmada. Nesse trabalho, verificou-se também que IgG extraídas dos imunocomplexos circulantes não reconheceram antígenos da superfície plaquetária, nem induziram a plaquetopenia, em camundongos, sugerindo que não há formação de auto-anticorpos anti-plaquetários. Um outro aspecto abordado pelo autor é que os 13 pacientes recuperam sua contagem de plaquetas logo após a negativação da parasitemia, e isso não aconteceria, caso houvesse a presença de auto-anticorpos, devido à prolongada meia-vida da IgG que pode chegar a meses ou anos (19). Os níveis de PAIgG foram previamente estudados em um trabalho no qual 16 de 17 pacientes plaquetopênicos com malária apresentaram um aumento desses anticorpos e tanto os níveis de PAIgG quanto o número de plaquetas retornaram ao normal após ausência do parasito na circulação. Além disso, foi confirmado que ligações de IgG e ligações de imunocomplexos às plaquetas seriam improváveis de causarem a plaquetopenia na malária. Segundo o autor, o que possivelmente acontece na malária é a ligação de antígenos parasitários à superfície das plaquetas durante a infecção aguda da malária e posteriormente a ligação secundária de anticorpos antimaláricos a esses antígenos (68). Um relato de dois casos de pacientes com malária vivax, plaquetopênicos, com número normal de megacariócitos e sem evidências de coagulação vascular dissemianda (CID), também demonstrou uma relação inversa entre os níveis de PAIgG e a contagem de plaquetas. Essa associação foi relatada antes da detecção de anticorpos contra a malária, sugerindo que os primeiros anticorpos produzidos contra o parasito devem se ligar às plaquetas. De fato o aumento de PAIgG pode ser devido a vários fatores, como aumento da expressão de IgG da superfície ou dos αgrânulos das plaquetas, aumento de anticorpos contra as plaquetas, aumento de imunocomplexos circulantes e aumento de IgG não específicos ou anticorpos contra o parasito. No entanto, os autores também excluem o aumento de PAIgG pelos imunocomplexos circulantes e IgG não específicos, já que estes estavam normais no sangue dos pacientes estudados e excluem anticorpos contra plaquetas devido ao fato dos níveis de PAIgG retornarem ao normal sem uma terapia imunossupressora (69). A destruição auto-imune de plaquetas foi relatada como possível mecanismo em um paciente procedente do Senegal, visto que foi identificado por citometria de fluxo a presença de auto-anticorpos plaquetários (ligados a GPIb/IIIa). Porém, além do estudo descrever apenas um paciente, não excluiu outras causas concomitantes da plaquetopenia, como o vírus HIV (70). 14 Em um artigo de revisão sobre a malária falciparum, os autores acreditam que os mecanismos imunes que causam a plaquetopenia surgem tardiamente no curso da infecção e não pode ser a explicação de plaquetopenia leve ou moderada observada no início da infecção malárica. Desta forma, os autores pressupõem que as principais causas que iniciam a plaquetopenia na malária aguda parecem estar mais relacionadas ao consumo generalizado de plaquetas no endotélio danificado (71). b) Ativação plaquetária e ativação da cascata de coagulação Marcadores de ativação plaquetária como o tromboxano, P-selectina e micropartículas de plaquetas foram descritos em níveis elevados em pessoas infectadas pelo P. falciparum e em modelos animais com P. berghei (72). Essa ativação acaba levando a adesão das plaquetas ao endotélio, reduzindo seu número na circulação (71). Alguns autores acreditam que na fase inicial da malária parece haver um aumento da ativação e agregação plaquetária. Um dos prováveis motivos para isso ocorrer é a liberação da adenosina difosfato pelas hemácias parasitadas. Dessa forma, as plaquetas agregadas são removidas da circulação, o que certamente contribui com a redução de plaquetas na circulação sanguínea (71). A ativação de plaquetas possivelmente acontece pela ligação da proteína PfEMP1 do plasmódio nos receptores CD36 das plaquetas. Essa ligação leva a duas potenciais consequências: formação de microagregados de hemácias infectadas com as plaquetas ativadas, podendo levar a uma oclusão dos vasos sanguíneos e adesão desses agregados no endotélio, ativando ainda mais as células endoteliais e plaquetas (72). No entanto, não é possível afirmar que esse evento isoladamente seja responsável pela agregação plaquetária. A ativação das plaquetas pode ser causada por outros diversos fatores, muitas vezes comuns na malária, como por exemplo, presença de imunocomplexos, citocinas, sistema complemento, fator tecidual liberado por lesão endotelial, entre outros (56, 71, 72). 15 Em uma pesquisa experimental, na qual voluntários foram infectados por P. falciparum, verificaram que o número de plaquetas diminuiu entre 7 a 9 dias após a infecção. Proporcionalmente a essa redução ocorreu o aumento do fator de von Willebrand (marcador da ativação crônica das células endoteliais), propeptídeo von Willebrand (marcador de ativação aguda das células endoteliais) e atividade do fator de von Willebrand reforçando a hipótese de que a aglutinação de plaquetas pode ser responsável pela plaquetopenia na malária falciparum, porém esse mecanismo não foi comprovado com pacientes infectados por P. vivax (73). Apesar da elevada concentração de citocinas pró-coagulantes, como TNF-α serem encontrados nas infecções por malária vivax e falciparum, o distúrbio de coagulação é consistentemente detectável somente em falciparum, sendo a ativação da cascata de coagulação e depuração esplênica mecanismos responsáveis pela redução de plaquetas na malária por essa espécie. Já na malária vivax, a plaquetopenia possivelmente seria causada por um mecanismo imunológico (74). Contudo, em um estudo com um grupo de pacientes infectados por P. vivax e outro por P. falciparum não houve diferença na frequência de plaquetopenia ou plaquetopenia grave entre esses pacientes, sugerindo mecanismos semelhantes de destruição plaquetária pelos dois parasitos (19). Estudos prévios associam a plaquetopenia da malária falciparum com CID (7577). No entanto, em muitos casos essa alteração hematológica não demonstrou associação com aumento de produtos da degradação de fibrina, sugerindo que a plaquetopenia poderia estar mais associada com uma lesão endotelial e consumo isolado de plaquetas (78). Dados comprobatórios foram demonstrados em um trabalho na Tailândia, onde a maioria dos pacientes com malária e plaquetopenia grave (plaquetas <50.000/µL) não estavam associados à CID (79). Há evidências de que a ativação plaquetária medida pela P-selectina pode intensificar a plaquetopenia na malária falciparum grave, mas parece não contribuir para a plaquetopenia na malária falciparum não-grave e na malária vivax, visto que o 16 aumento da P-selectina não foi observado nesses pacientes em um ensaio clínico (64). c) Apoptose de plaquetas Apesar das plaquetas serem desprovidas de núcleo, a apoptose de plaquetas tem sido relacionada com a plaquetopenia em doenças infecciosas (80, 81). Existem diversas maneiras de avaliar a apoptose em plaquetas, dentre elas a ativação das caspases e expressão de fosfatildilserina na superfície plaquetária. Após a apoptose, essas plaquetas são reconhecidas por macrófagos e fagocitadas. Em um estudo realizado com pacientes com infecção secundária pelo vírus da dengue demonstrou uma correlação positiva entre a apoptose e a fagocitose de plaquetas (80). Em um modelo de malária experimental em camundongos, a plaquetopenia foi acompanhada por um aumento na ativação de caspases plaquetárias e uma aumento na liberação de micropartículas plaquetárias. Essas caspases tiveram um papel importante na queda nos níveis de plaquetas. Ao usarem um inibidor de caspases, a plaquetopenia nos animais infectados foi atenuada e houve uma redução nos níveis de micropartículas plaquetárias (Piguet, 2002). d) Estresse Oxidativo Existem hipóteses de que o estresse oxidativo pode estar relacionado com a plaquetopenia na malária. Espécies reativas de oxigênio podem ter um papel importante na alteração estrutural e funcional das plaquetas. Em pacientes com malária vivax, demonstrou-se uma correlação negativa entre a contagem de plaquetas e peroxidação de lipídios plaquetários (82). Em adição a esses dados, observou-se uma redução sérica do colesterol total e da concentração de HDL e LDL em indivíduos com malária, o qual pode ser justificado pela peroxidação lipídica (83). Em um estudo transversal realizado em 2006 na FMT-HVD foram avaliados marcadores de estresse oxidativo como o malondialdeído (MDA) e antioxidantes em pacientes infectados por P. vivax com e sem plaquetopenia. Este estudo verificou 17 que os níveis de MDA tanto no plasma quanto nas plaquetas foram mais altos em pacientes com plaquetopenia (<150.000/µL). Levando em consideração as informações que as membranas de plaquetas são pouco resistentes ao estresse oxidativo e que são mais delgadas que as membranas de hemácias, se houver uma lise dos eritrócitos por estresse oxidativo, a lise das plaquetas por esse mesmo mecanismo será inevitável. Outro resultado interessante demonstrado nesse trabalho foi a forte correlação inversa entre a contagem de plaquetas e os níveis de glutationa-peroxidase plaquetária, uma enzima responsável pela redução de peróxido de lipídios. O aumento dessa enzima em pacientes plaquetopênicos na malária vivax pode ser um mecanismo de compensação antioxidante pelas plaquetas expostas ao estresse oxidativo (84). e) Alteração na produção de plaquetas Não há uma clara evidência que a plaquetopenia seja causada pelo comprometimento da medula óssea. Por um período, acreditava-se que o plasmódio pudesse invadir a medula óssea e alterar a produção de plaquetas. Um relato isolado desse fato menciona o encontro de trofozoítos de P. vivax no interior de plaquetas sugerindo que a invasão ocorra na circulação periférica e não na medula posto que parasitas não foram encontrados em megacariócitos (85). Exames da medula óssea de 89 crianças com malária falciparum revelaram megacariócitos menos lobulados e imaturos, além de serem encontrados em números elevados indicando provavelmente uma produção acelerada de plaquetas (86). A regulação e a produção de TPO foram estudadas em pacientes com malária e demonstrou estar normal, o que deixa claro que não há inibição na produção de plaquetas (87). Há também a hipótese que citocinas produzidas no momento da infecção da malária possam comprometer a medula. Em um trabalho realizado com crianças com malária falciparum grave no Quênia, verificou-se que pacientes com a contagem de plaquetas menor que 150.000/µL apresentavam elevada concentração 18 de IL-10 no plasma comparado com pacientes com número de plaquetas acima de 150.000/µL. No entanto, o trabalho não menciona a avaliação da medula óssea (67). Estudos anteriores já tinham evidenciado essa participação da IL-10 na plaquetopenia. A administração de baixa dose de IL-10 recombinante humana (8µg/kg/dia) diminuiu a produção plaquetária em voluntários saudáveis. Nesse mesmo estudo, houve uma redução no sequestro de plaquetas pelo baço desses voluntários. Além disso, observou uma diminuição do número de colônias formadoras de megacariócitos, comparado com os pacientes que receberam placebo ao invés de IL-10. Assim, esses resultados sugerem que a plaquetopenia pode ser causada, em parte, por uma redução na produção de plaquetas na medula óssea (88). 1.4.7 Relação entre plaquetopenia e citocinas produzidas durante a infecção por malária Além da citocina IL-10, como foi mencionado no item anterior, outras citocinas têm sido relacionadas com a plaquetopenia nos pacientes com malária. A dosagem sérica de TNF-α foi inversamente correlacionado com a plaquetimetria em um estudo realizado com 83 pacientes com malária vivax, na cidade de Belém (Pará Brasil) (89). No entanto, essa correlação não foi encontrada em outro estudo realizado no Brasil (90). Dados contraditórios sobre a relação da IL-1 com a plaquetimetria também são encontrados. Avaliando a concentração da IL-1 em pacientes com malária vivax e falciparaum, não se detectou correlação com a contagem de plaquetas (90). Em outro estudo o aumento da citocina IL-1 estava associado com a plaquetopenia em pacientes com malária vivax. Além da IL-1, esse estudo verificou que o aumento de IL-6, IL-10 e TGF-β também apresentavam uma associação com a redução no número de plaquetas (91). É possível evidenciar que há alguns mecanismos postulados como a causa da plaquetopenia na malária, porém poucos são os estudos que avaliam o papel da fagocitose de plaquetas nessa alteração hematológica. 19 O desenvolvimento de estudos esclarecedores sobre a patogênese da plaquetopenia na malária possivelmente contribuirá para o entendimento dos mecanismos determinantes da malária, inclusive dos casos complicados, visto que existe uma forte associação entre plaquetopenia e malária grave. Além disso, estudos sobre esse assunto poderão auxiliar no desenvolvimento de um tratamento de suporte da plaquetopenia na malária, menos empírico, deduzindo que seja mais fácil de tratar ou até evitar essa alteração hematológica conhecendo-se a sua causa. 20 2 OBJETIVOS 2.1 Objetivo geral Avaliar o papel da fagocitose na plaquetopenia da malária causada pelo P. vivax. 2.2 Objetivos específicos 2.2.1 Determinar o índice de fagocitose de plaquetas em pacientes com malária vivax, com e sem plaquetopenia; 2.2.2 Verificar a correlação entre o índice da fagocitose e a contagem de plaquetas no sangue periférico dos pacientes com malária vivax; 2.2.3 Avaliar o perfil de citocinas (IL-2, IL-4, IL-6, IL-10, IL17, IFN-γ e TNF-α) no soro dos pacientes com malária vivax; 2.2.4 Verificar se existe correlação entre a contagem de plaquetas no sangue periférico e fagocitose de plaquetas com concentrações séricas de citocinas em pacientes com malária vivax; 2.2.5 Verificar a ativação de plaquetas de pacientes com malária vivax. 21 3 MATERIAL E MÉTODOS 3.1 Local do estudo O estudo foi realizado em três instituições, todas localizadas na cidade de Manaus, estado do Amazonas: (1) Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT- HVD), onde ocorreu a seleção, avaliação da história clinica do paciente, coleta de material biológico, avaliação laboratorial do paciente e testes de fagocitose; (2) Fundação de Hematologia e Hemoterapia do Amazonas (HEMOAM), local escolhido para realizar as análises dos ensaios de fagocitose e ativação plaquetária; (3) Centro de Pesquisa Leônidas Maria Deane (CPqLMD) - Fundação Oswaldo Cruz (FIOCRUZ), onde ocorreu a análise das concentrações de citocinas. A FMT- HVD é o centro de referência para o diagnóstico e tratamento da malária no Amazonas, além de ser também referência no ensino, pesquisa e assistências nas doenças infecciosas e parasitárias do estado. Conta com uma Unidade Ambulatorial, Unidade de Internação Hospitalar Dr. Nelson Antunes, Laboratório de Análises Clínicas e as Gerências de Pesquisas, dentre as quais a Gerência de Malária que possui laboratórios especializados para o diagnóstico de rotina e pesquisa em malária (Microscopia, Sorologia, Biologia Molecular, Cultura in vitro de plasmódio). A instituição conta também com uma enfermaria de pesquisa clínica (PESCLIN), setor com 10 (dez) leitos exclusivamente destinado para acompanhamento de indivíduos incluídos em projetos de pesquisa. O HEMOAM, além de ser o centro referencial de diagnóstico e tratamento de doenças hematológicas na região Norte, é uma Instituição de Pesquisa cadastrada junto ao CNPq e à FAPEAM. Possui uma estrutura laboratorial para fins de pesquisa, que conta com um citômetro de fluxo FACS Calibur – BD. O CPqLMD possui uma estrutura laboratorial com uma sala específica de citometria, equipada com um citômetro de fluxo FACSCanto™ II – BD. 22 3.2 Tipo e tamanho da amostra Trata-se de amostragem não probabilística, dos pacientes da demanda espontânea da FMT-HVD. Foram selecionados 35 pacientes para os ensaios de fagocitose e 8 indivíduos que formaram o grupo dos controles, com a finalidade de se estabelecer uma prova de conceito das alterações de fagocitose plaquetária na malária. 3.3 Critério de elegibilidade Pacientes com diagnóstico microscópico de malária por P. vivax. 3.4 Critérios de não-inclusão 4.4.1 Gestantes; 3.4.2 Pacientes menores de 18 anos; 3.4.3 Pacientes na vigência de tratamento antimalárico; 3.4.4 Pacientes com infecção mista (P. vivax e P. falciparum); 3.4.5 Pacientes com doenças de natureza imunológica conhecidas; 3.4.6 Pacientes com história de sangramento espontâneo frequente; 3.4.7 Pacientes com história de comorbidade com potencial de alterar o número das plaquetas; 3.4.8 Pacientes em uso crônico de medicamentos (Quadro 2) com o potencial de causar plaquetopenia; A não-inclusão de pacientes gestantes se deve a ocorrência de plaquetopenia de etiologia adversa daquela estudada neste trabalho. A não-inclusão de pacientes menores de 18 anos se justificou pelo grande volume de sangue necessário para os exames laboratoriais e para a realização dos experimentos estabelecidos no estudo. Medicamentos antimaláricos, como o quinino, podem causar alterações hematológicas, motivo pelo qual pacientes na vigência de tratamento por esses medicamentos não foram incluídos no estudo (92). 23 Pacientes com infecção mista pelo P. falciparum e P. vivax também não foram incluídos, visto que o objetivo do proposto estudo é avaliar essa alteração hematológica na espécie P. vivax. 3.5 Critérios de exclusão 3.5.1 Pacientes com exame sorológico positivo para vírus da imunodeficiência humana (HIV), vírus da hepatite B (HBV), vírus da hepatite C (HCV) ou vírus do dengue; 3.5.2 Pacientes com exame de PCR positivo para infecção mista P. vivax e P. falciparum. Quadro 2. Medicamentos que podem causar plaquetopenia (93). Abciximab Ácido aminossalicílico Ácido nalidíxico Ácido valpróico Aminoglutetimida Amiodarona Anfotericina B Captopril Carbamazepina Cimetidina Clorpromazina Clorotiazida Clorpropamida Danazol Deferroxamina Diatrizoato de meglumina Diazepam Diazóxido Diclofenaco Dietiletilbestrol Digoxina Eptifibatide Fenitoína Fluconazol Furosemida Haloperidol Heparina Hidroclorotiazida Ibuprofeno Interferon-α Isoniazida Levamisol Lítio Metildopa Minoxidil Nafazolina Ouro Oxipenbutazona Oxitetraciclina Paracetamol Penicilina Piperacilina Procainamida Quinidina Quinino Ranitidina Rifampicina SulfametaxozolTrimetoprima Sulfassalazina Sulfissoxazol Sulindac Tamoxifeno Tiotixeno Tirofiban Vancomicina A exclusão dos pacientes relacionados nos itens 4.6.1 e 4.6.2 foi realizada com o objetivo de afastar outras causas de plaquetopenia que não seja a infecção por malária vivax. 24 3.6 Seleção dos pacientes A Seleção dos pacientes ocorreu de dezembro de 2011 a junho de 2012. Os indivíduos foram selecionados para pesquisa após a confirmação do diagnóstico de malária, por meio do exame de gota espessa, no Laboratório de Microscopia da Gerência de Malária da FMT-HVD. A história clínica desses pacientes foi avaliada através de um questionário presente na Ficha Clínica do Participante do Estudo (Anexo E) e em seguida amostras de sangue foram coletadas para a avaliação laboratorial e coleta de plaquetas. Os indivíduos saudáveis foram selecionados obedecendo aos mesmos critérios dos pacientes infectados por malária. 3.7 Coleta das amostras e exames laboratoriais Após a avaliação da história clínica, os pacientes foram encaminhados a sala de coleta na FMT-HVD. Coletou-se a vácuo, aproximadamente 20 mL de sangue venoso periférico: em tubos contendo K2EDTA para a realização do hemograma e ensaios de PCR para malária; e em tubos contendo citrato de sódio 3,8% para a contagem de plaquetas e separação do plasma rico em plaquetas. O processamento das amostras ocorreu até 2 horas após a coleta. Os resultados dos exames também foram registrados na Ficha Clínica do Participante do Estudo (Anexo E). Além do uso de tubos com anticoagulantes, utilizaram-se tubos sem anticoagulantes, para a coleta de sangue venoso periférico, com o objetivo de separar o soro para a realização dos exames sorológicos para HIV, hepatite B, hepatite C; dengue; leptospirose e dosagem de citocinas. O soro foi armazenado em temperatura de -80 °C até o momento da realização dos exames. Os ensaios de fagocitoses foram realizados imediatamente após a coleta de plaquetas, ou seja, utilizando plaquetas frescas. 25 Os hemogramas e as contagens de plaquetas foram realizados no laboratório de recepção de amostras de pesquisa da Gerência da Malária da FMT-HVD, em aparelho automatizado do tipo SYSMEX KX-21N. Os exames sorológicos para HIV, hepatite B, hepatite C e dengue foram realizados no Laboratório de Virologia da FMT- HV. Para o teste anti-HIV foi utilizado o kit comercial Rapid Check HIV 1&2 ™. Para determinação das hepatites virais Kits foram utilizados: a) para Hepatite B, foi verificado a presença do antígeno de superfície HbsAg pelo kit imunoenzimático HBsAg ELISA Bioeasy®; b) para Hepatite C, utilizou o teste imunoenzimático para determinação de anticorpo antiHCV pelo kit HCV ELISA Bioeasy®. Para o diagnóstico de dengue foi realizado a pesquisa da proteína NS1 pelo Kit Dengue EDEN test Bioeasy®. Para o diagnóstico de Leptospirose utilizou o teste imunocromatográfico Leptospira IgG/IgM (SD BioLine®), que detecta anticorpo IgG e IgM contra a Leptospira interrogans. Para a confirmação da infecção malárica por P. vivax foi realizado o diagnóstico molecular. Para extração de DNA foi utilizado o kit QIAamp® Blood Mini Dit (Qiagen, Hilden, Alemanha), usando 200µL de sangue total, conforme instrução do fabricante. Na realização de PCR em tempo real, o DNA foi amplificado usando Applied Biosystems 7500 Fast System com primers e sondas TaqMan (94). 3.8 Classificação de pacientes em plaquetopênicos e não-plaquetopênicos A tabela 2 demonstra classificação dos pacientes em plaquetopênicos (grave e não-grave) e não-plaquetopênicos conforme a contagem de plaquetas. Tabela 2. Classificação dos pacientes de acordo com a contagem de plaquetas. Contagem de plaquetas/µL Classificação <50.000 Plaquetopênicos Graves 50.000 a 149.000 Plaquetopênicos Não-Graves = ou > 150.000 Não-plaquetopênicos 26 3.9 Cultura de células THP-1 As células THP-1 foram cultivadas em meio RPMI suplementado com 10% de soro bovino fetal (FBS) e 0,1% de gentamicina. Posteriormente as células THP-1 foram ativadas com PMA conforme descrito no POP_MAL_LB_011_v01_PT- Anexo C. 3.10 Isolamento de plaquetas As plaquetas foram isoladas a partir de PRP conforme descrito no POP_MAL_LB_010_v01_PT – Anexo C. 3.11 Teste in vitro de fagocitose de plaquetas O procedimento do teste de fagocitose está detalhado no POP_MAL_LB_011_v01_PT– Anexo C. A figura 5 demonstra as etapas do experimento de fagocitose de plaquetas. 3.12 Avaliação da expressão de P-selectina A expressão da P-selectina foi avaliada utilizando anticorpo anti CD62P humano conjugado com PE (BD Pharmingen™), conforme descrito no POP POP_MAL_LB_010_v01_PT – Anexo C. 3.13 Dosagem de citocinas A dosagem de citocinas (IL-2, IL-4, IL-6, IL-10, TNF-α, IFN-γ e IL-17) foi realizada no CPqLMD-FIOCRUZ, utilizando o kit da BD Cytometric Bead Array (CBA) Human Th1/Th2/Th17 Citokine e o citômetro de fluxo BD FACS Calibur, conforme instruções do fabricante. 27 Figura 5. Etapas do experimento de fagocitose de plaquetas. 3.14 Citometria de fluxo Em citômetro de fluxo, as células THP-1 foram previamente selecionadas (gate) pelo tamanho (forward scatter/FSC-H) e pela densidade interna (side scatter/SSCH), excluindo-se, portanto, as plaquetas marcadas não fagocitadas. Posteriormente, avaliou-se a mediana de intensidade de fluorescência (MIF) emitida no canal FL1-H por cada célula THP-1 contada no gate. A frequência de fagocitose de plaquetas (FFg) foi determinada pela contagem de células positivas para CMFDA nesse canal. Possivelmente o tamanho das plaquetas pode interferir na intensidade de fluorescência, pressupondo que plaquetas maiores terão maior quantidade de 28 CMFDA e desta forma irão emitir uma maior intensidade de fluorescência. Dados demonstram que o VPM dos pacientes com plaquetopenia é maior comparado com os pacientes sem plaquetopenia (19, 67). Assim, para padronização dos valores de fagocitose de plaquetas foi criado um índice de fagocitose (IFg) utilizando a fórmula IFg = MIF x FFg/100 x VPM. 3.15 Análise estatística As análises estatísticas foram realizadas utilizando o programa GraphPad Prism versão 5.00 (GraphPad Software, CA,US), também utilizado para a construção dos gráficos. Teste de Kolmogorov-Smirnov foi utilizado para determinar a normalidade dos dados. A correlação entre variáveis foi analisada através do coeficiente de correlação de Spearman. As comparações entre 2 grupos foram analisadas usando o teste U de Mann–Whitney. Teste de Wilcoxon foi utilizado nas análises pareadas. Para comparar frequência foi aplicado o teste Qui-quadrado ou teste exato de Fisher. A significância foi considerada em caso de p<0,05. 3.16 Considerações éticas O projeto foi submetido à apreciação do Comitê de Ética em Pesquisa (CEP) da FMT-HVD, no dia 13 de maio de 2011, e foi aprovado no dia 29 de julho de 2011 sob registro no CEP n. 1610-11, CAAE- 0029.0-114.114-11 (Anexo D). Todos os voluntários que aceitaram a participar do estudo assinaram o TCLE (Anexo A) após o devido esclarecimento verbal dos objetivos e métodos do projeto. Uma cópia do TCLE foi entregue ao paciente e outra cópia foi arquivada sob responsabilidade do pesquisador responsável. O presente projeto não ofereceu risco para o paciente, já que o a única técnica utilizada foi a punção venosa de sangue periférico utilizando material descartável, sendo realizada por profissionais de saúde que compõem a equipe de pesquisa. A identidade do indivíduo será mantida em sigilo em qualquer publicação futura resultante do estudo, e ainda, não houve nenhum custo para o paciente em relação a qualquer exame. 29 Todos pacientes do estudo receberam o devido tratamento antimalárico gratuito preconizado pelo Ministério da Saúde do Brasil (95), inclusive os que não aceitaram participar da pesquisa. 3.17 Limitações do estudo Através da metodologia desse estudo, não foi possível diferenciar se a fluorescência medida pela citometria de fluxo nos monócitos corresponde apenas às plaquetas internalizadas (fagocitadas) ou também às plaquetas aderidas à superfície dos monócitos. No entanto, considera-se que se as plaquetas aderiram à superfície dos monócitos, em algum momento essas partículas iriam ser internalizadas. Não se pode garantir que os achados da fagocitose in vitro utilizando monócitos de uma linhagem comercial possam ser extrapolados para o que acontece com os macrófagos esplênicos. Os participantes selecionados poderão ter alguma doença não diagnosticada pelos exames laboratoriais ou história clínica, que possa alterar a função ou a contagem das plaquetas. 30 4 RESULTADOS Os resultados e discussão deste trabalho estão apresentados na forma de artigo científico, apresentado a seguir, segundo as normas de publicação da Plos One. Thrombocytopenia in Plasmodium vivax Malaria Is Related to Platelets Phagocytosis Helena Cristina C. Coelho1,2, Stefanie C. P. Lopes3, João Paulo D. Pimentel4,6, Paulo A. Nogueira4, Fábio T. M. Costa3, André M. Siqueira1,2, Gisely C. Melo1, Wuelton M. Monteiro2,5, Adriana Malheiro5,6, Marcus V. G. Lacerda1,2* 1 Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil, 2 Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil, 3 Universidade Estadual de Campinas, Campinas, São Paulo, Brazil, 4 Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Amazonas, Brazil, 5 Universidade Federal do Amazonas, Manaus, Amazonas, Brazil, 6 Fundação de Hematologia e Hemoterapia do Amazonas, Manaus, Amazonas, Brazil Abstract Background: Although thrombocytopenia is a hematological disorder commonly reported in malarial patients, its mechanisms are still poorly understood, with only a few studies focusing on the role of platelets phagocytosis. Methods and Findings: Thirty-five malaria vivax patients and eight healthy volunteers (HV) were enrolled in the study. Among vivax malaria patients, thrombocytopenia (,150,000 platelets/mL) was found in 62.9% (22/35). Mean platelet volume (MPV) was higher in thrombocytopenic patients as compared to non- thrombocytopenic patients (p = 0.017) and a negative correlation was found between platelet count and MPV (r = 20.483; p = 0.003). Platelets from HV or patients were labeled with 5-chloromethyl fluorescein diacetate (CMFDA), incubated with human monocytic cell line (THP-1) and platelet phagocytosis index was analyzed by flow cytometry. The phagocytosis index was higher in thrombocytopenic patients compared to non-thrombocytopenic patients (p = 0.042) and HV (p = 0.048). A negative correlation was observed between platelet count and phagocytosis index (r = 20.402; p = 0.016). Platelet activation was assessed measuring the expression of P-selectin (CD62-P) in platelets’ surface by flow cytometry. No significant difference was found in the expression of Pselectin between thrombocytopenic patients and HV (p = 0.092). After evaluating the cytokine profile (IL-2, IL-4, IL-6, IL-10, TNF-a, IFN-c and IL-17) in the patients’ sera, levels of IL-6, IL-10 and IFN-c were elevated in malaria patients compared to HV. Moreover, IL-6 and IL-10 values were higher in thrombocytopenic patients than non-thrombocytopenic ones (p = 0.044 and p = 0.017, respectively. In contrast, TNF-a levels were not different between the three groups, but a positive correlation was found between TNF-a and phagocytosis index (r = 20.305; p = 0.037). Conclusion/Significance: Collectively, our findings indicate that platelet phagocytosis may contribute to thrombocytopenia found in vivax malaria. Finally, we believe that this study opens new avenues to explore the mechanisms involved in platelet dysfunction, commonly found in vivax malaria patients. Citation: Coelho HCC, Lopes SCP, Pimentel JPD, Nogueira PA, Costa FTM, et al. (2013) Thrombocytopenia in Plasmodium vivax Malaria Is Related to Platelets Phagocytosis. PLoS ONE 8(5): e63410. doi:10.1371/journal.pone.0063410 Editor: Luzia Helena Carvalho, Centro de Pesquisa Rene Rachou/Fundação Oswaldo Cruz (Fiocruz-Minas), Brazil Received February 18, 2013; Accepted April 2, 2013; Published May 24, 2013 Copyright: ß 2013 Coelho et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: HCCC received a fellowship from CAPES and SCPL was sponsored by a FAPESP fellowship. MVGL and FTMC are CNPq fellows. FTMC is also a fellow from Programa Estratégico de Ciência, Tecnologia & Inovação nas Fundações Estaduais de Saúde (PECTI/AM-Saúde) from Fundação de Amparo à Pesquisa do Estado do Amazonas (FAPEAM, Amazonas - Brazil). This work was supported by CNPq and FAPEAM grants. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Competing Interests: The authors have declared that no competing interests exist. * E-mail: [email protected] [7]. High frequency of thrombocytopenia in patients with malaria has been well-documented in several studies [8], including reports from Manaus in the Brazilian Amazon [8,9]. Indeed, Kochar and colleagues have recently shown that severe thrombocytopenia (platelet count ,206103/mm3) is a common manifestation in patients with vivax mono-infection confirmed by PCR [10,11]. Research on the pathogenesis of malaria thrombocytopenia has been conducted for more than four decades, however the exact mechanism underlying this phenomenon remains not elucidated. Nevertheless, thrombocytopenia in malaria seems to be a multifactorial phenomenon and probably involves an increase in platelets destruction and consumption [12]. Moreover, although some studies showed bleeding associated with thrombocytopenia Introduction Plasmodium infections are still a major public health problem, resulting in millions of deaths annually worldwide [1]. Although P. falciparum is responsible for the majority of severe complications cases and malaria-associated mortality [2]; vivax malaria has now clearly emerged as a potentially lethal condition [3,4], despite of having previously been considered a benign disease. P. vivax is more widely distributed than P. falciparum and has potential to cause morbidity and mortality amongst the 2.85 billion people living at risk of infection [5]. In Brazil, P. vivax accounts for up to 80% of the malaria cases [6]. Thrombocytopenia and anemia are the most common malariaassociated hematological complications in P. vivax and P. falciparum PLOS ONE | www.plosone.org 1 May 2013 | Volume 8 | Issue 5 | e63410 Platelets Phagocytosis in Vivax Malaria in malaria [11,13], low platelet counts were not commonly accompanied by severe bleeding [8]. Several mechanisms have been proposed to explain malaria thrombocytopenia [12,14–20]. Some studies suggest that the low platelet counts in malaria might be caused by activation [20] and/ or apoptosis of platelets [14], thus leading to its removal by the immune system [12,15]. Nonetheless, it has also been proposed that immune complexes generated by malarial antigen could lead to sequestration of the injured platelets in the spleen followed by phagocytosis by splenic macrophages [16–19]. Recently, Klein and Ronez [21] showed a blood smear from a P. falciparum patient compatible with peripheral hemophagocytosis. This patient presented marked thrombocytopenia and platelet-like particle inside the monocytes [21]. Indeed, platelet phagocytosis in malaria was shown more than 20 years ago in a patient report with 80% of circulating monocytes presenting platelets inside [22]. Although there are some evidences of phagocytosis involvement in malaria thrombocytopenia, information regarding the mechanisms responsible for this phenomenon is scarce. Herein, we investigate the role of platelets phagocytosis in malaria vivax thrombocytopenia, after establishing an in vitro phagocytosis assay based on flow cytometry in the presence of platelets from patients and healthy donors and THP-1 cells. acidified with citric acid 0,15 M until the PRP pH reached 6.4 and then 1 mg/mL of prostaglandin E-1 (PGE-1) was added to avoid platelet stimulation. PRP was pelleted by centrifugation for 10 min at 1,6006g and the platelets pellet was re-suspended in phosphate buffered saline (PBS) supplemented with 0.5% bovine serum albumin, 2mM EDTA, 0.1% sodium azide and 1 mg/mL PGE-1. For phagocytosis experiments, platelets were fluorescently labeled with 5 mg of CellTrackerH Green CMFDA (InvitrogenH) by 60 min incubation at 37uC, followed by two washes in supplemented PBS. The number of platelets was determined and the solution was adjusted to 506106 platelets/mL. The efficiency of platelet labeling with CMFDA was determined to be above 95% using flow cytometry (FACS CaliburH, BD BiosciencesH, San Jose, CA). P-selectin Expression P-selectin expression in platelets (chosen as a surrogate of platelet activation) was measured in two moments, in the PRP and after platelet isolation. For this purpose 100 mL of PRP or platelet solution (56106 platelets/mL) were incubated with 4 mL of PE mouse anti-human CD62-P (BD PharmingenH) for 30 min at 37uC. After two washes in supplemented PBS, P-selectin expression was measured on a FACScaliburH (BD BiosciencesH, San Jose, CA). Materials and Methods THP-1 Cells Ethics Statement Human monocytic THP-1 cells (ATCCH TIB-20H) were cultured in RPMI-1640 medium (GibcoH) supplemented with 10% fetal calf serum (FCS) and gentamicin (40 mg/L) at 37uC. THP-1 cells were counted in a Neubauer chamber and 16106 cells per well were added in a 24 wells plate. Maturation was induced by incubation with 60 gg/mL of Phorbol 12-Myristate 13-Acetate (PMA) (CalbiochemH, San Diego, CA) for 2 hours at 37uC. After this period, the supernatant was removed and the THP-1 cells were washed twice with RPMI medium. All protocols and consents forms were approved by the Ethics Review Board of the Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD) (approval number 1610–11). A signed informed consent was obtained from each subject enrolled in this study. Study Area and Subjects Patients were recruited and examined at FMT-HVD, a tertiary care center for infectious diseases in Manaus, the capital of the Amazonas State, Brazil. Up to 20 mL of peripheral blood was collected immediately after confirmation of P. vivax infection by thick blood smear (n = 35). Afterwards, patients were treated with chloroquine and primaquine, according to the standard protocol recommended by the Brazilian Malaria Control Program. P. vivax mono-infection was subsequently confirmed by polymerase chain reaction (PCR) analysis [23]. Peripheral blood was also collected from eight healthy volunteers (HV) living in Manaus, negative for P. vivax infection by thick blood film and PCR and with no previous history of malaria. Clinical and demographical data were acquired through a standardized questionnaire, and the hematological profile, including peripheral platelet count and MPV, were determined using a cell counter (Sysmex KX-21NH). Patients presenting any other co-morbidity related to thrombocytopenia that could be traced were excluded from the study, as well as HVs. The comorbidities investigated were human immunodeficiency virus (HIV) (Rapid Check HIV 1&2H), dengue (Dengue Eden Test BioeasyH, MG, Brazil), leptospirosis (SD Bioline Leptospira IgG/IgM, Kyonggi-doH, Korea), hepatitis C (Anti-HCV BioeasyH, MG, Brazil) and hepatitis B (HBsAg ELISA BioeasyH, MG, Brazil). In vitro Platelet Phagocytosis After cell maturation, phagocytosis of platelets by THP-1 cells was measured by flow cytometry as previously described [24]. Briefly, 56106 fluorescently labeled platelets were added to each well and then plates were centrifuged at 5006g for 5 min at room temperature. After 60 min of incubation in 5% CO2 atmosphere at 37uC, the THP-1 cells were harvested, washed three times in PBS and fixed in paraformaldehyde 4% in cacodylate buffer for flow cytometry analysis. Flow Cytometry Analysis The THP-1 cells were gated and 10,000 events were acquired from each sample. The frequency of platelet phagocytosis (FP) was determined by counting the CellTrackerH Green CMFDA positive cells in FL1-H. The median intensity of fluorescence (MIF) emitted for each cell was also evaluated. As larger platelets have a greater amount of CellTrackerH Green CMFDA, the mean platelet volume (MPV) may affect the intensity of fluorescence. Then, to standardize the platelet phagocytosis for each sample, we created a formula to calculate the Phagocytosis index: PI = MIF6FP/1006MPV. Platelets Isolation Cytokine Measurements Platelets were isolated from whole blood collected in sodium citrate solution (3.8%) from vivax malaria patients or HVs and centrifuged for 10 min at 2006g to generate platelet-rich plasma (PRP). To avoid platelets aggregation and activation, PRP was The levels of IL-2, IL-4, IL-6, IL-10, IL-17, IFN-c and TNF-a were quantified in cryopreserved serum using the Cytometric Bead Array kit (CBA, BD Biosciences PharmingenH) following manufacturer’s instructions. All the cytokine levels below detection limit PLOS ONE | www.plosone.org 2 May 2013 | Volume 8 | Issue 5 | e63410 Platelets Phagocytosis in Vivax Malaria Table 1. Characteristics of patients with Plasmodium vivax (with and without thrombocytopenia). Patients Characteristics Total Age, years (mean 6SD) Sex (%) M F Duration of symptoms in days (mean 6SD) Previous malaria episodes (%) Yes No T 41.8613.6 40.1613.8 42.4613.9 0.918a 29/35 (82.9) 9/13(69.3) 19/22 (86.4) 0.383b 6/35 (17.1) 4/13(30.7) 3/22 (13.6) 5.564.0 5.363.5 5.364.9 0.605a 27/35 (77.2) 11/13 (84.6) 16/22 (72.7) 0.680b 8/35 (22.8) 2/13 (15.4) 6/22 (27.3) 3.663.6 3.162.9 3.964.0 0.876a ,6 months 13/27 (48.2) 7/16 (43.7) 6/11 (54.6) 0.581b $6 months 14/27 (51.8) 9/16 (56.3) 5/11 (45.4) Nu of previous malaria episodes (mean 6SD) Last malaria (%) P value* NT SD = standard deviation. NT = non-thrombocytopenic; T = thrombocytopenic. *Non-thrombocytopenic patients6thrombocytopenic patients. a Mann Whitney test. b Chi-square or Fisher’s exact test. doi:10.1371/journal.pone.0063410.t001 were given half of the threshold value and those values above the upper detection limit were excluded from the analysis. Results Patient’s Characteristics and Thrombocytopenia Frequency Statistical Analysis According to Table 1, thrombocytopenia (,150,000 platelets/ All data were expressed as the mean 6 SD. Correlations were analyzed using the Spearman correlation. Normal distribution of data was evaluated with the Kolmogorov-Smirnov test. Comparisons between groups were analyzed using the Mann-Whitney U test (two groups) or Kruskal Wallis test. Pselectin expression before and after platelets isolation were compared by Wilcoxon signed rank test. Differences were considered statistically significant when p#0.05. Statistical analysis was performed using the GraphPad PrismH version 5.0 (GraphPad SoftwareH, CA, US). mL) was found in 62.9% of the patients (22/35) enrolled in this study. Amongst thrombocytopenic patients, 18.2% (4/22) presented severe thrombocytopenia (,50,000 platelets/mL). Moreover, no significant difference in duration of clinical malaria symptoms and number of previous malaria episodes were observed between thrombocytopenic and non-thrombocytopenic patients (Table 1). Likewise, the frequencies of primary infection and past malaria infection in the last six months were similar in both groups (Table 1). MPV and Thrombocytopenia MPV was significantly elevated in patients with thrombocytopenia (Figure 1A). Moreover, a negative correlation was observed Figure 1. Mean platelet volume (MPV). MPV comparisons between healthy volunteers (HV), non-thrombocytopenic (NT) and thrombocytopenic (T) patients with vivax malaria (A). doi:10.1371/journal.pone.0063410.g001 PLOS ONE | www.plosone.org 3 May 2013 | Volume 8 | Issue 5 | e63410 Platelets Phagocytosis in Vivax Malaria Figure 2. Parasitemia and thrombocytopenia. Comparisons of parasitemia (per mm3 of blood) between non-thrombocytopenic (NT) and thrombocytopenic (T) patients with malaria (A). Correlation between platelet count and parasitemia (mm3 of blood) (B). doi:10.1371/journal.pone.0063410.g002 between the MPV and the platelet count in malaria patients (r = 20.483; p = 0.003) (Figure 1B). P-selectin Expression Parasitemia was similar in thrombocytopenic and non-thrombocytopenic patients (Figure 2A) and no correlation was found between platelet count and parasitemia (Figure 2B). P-selectin expression was similar between thrombocytopenic patients and HVs in two time-points: immediately after harvesting (PRP) or after washing and CMFDA labeling. According to Figure 4, no significant increase in P-selectin expression was found in platelet isolation process for either non-thrombocytopenic or thrombocytopenic patients. Phagocytosis Assay Cytokine Profile in Patients’ Sera The phagocytosis index was significantly higher in patients with thrombocytopenia malaria than in patients without thrombocytopenia (p = 0.042) and HV (p = 0.048) (Figure 3A). Moreover, significantly correlation was observed between platelet count and phagocytosis index (r = 20.426; p = 0.016) (Figure 3B). Phagocytosis index not corrected by MPV was also analyzed and lead to the same results (data not shown). Of seven cytokines analyzed in this study, IL-6, IL-10 and IFNc were elevated in malaria patients sera, thrombocytopenic or not, compared to HVs (Figure 5A, 5B and 5C). IL-6 and IL-10 were higher in thrombocytopenic patients than in non-thrombocytopenic ones (Figure 5A and 5B). Indeed, negative correlations were found between platelet counts and IL-6 and IL-10 values Parasitemia and Thrombocytopenia Figure 3. Phagocytosis index (PI). Comparisons of phagocytosis between healthy volunteers (HV), non-thrombocytopenic (NT) and thrombocytopenic (T) patients with malaria (A). Correlation between platelet count and phagocytosis index (B). doi:10.1371/journal.pone.0063410.g003 PLOS ONE | www.plosone.org 4 May 2013 | Volume 8 | Issue 5 | e63410 Platelets Phagocytosis in Vivax Malaria Discussion Despite not being a criterion for severe malaria, thrombocytopenia is one of the most common complications of both P. vivax and P. falciparum malaria. Recently, Kochar and colleagues have shown that thrombocytopenia is more frequent and severe among patients with P. vivax infection [10]. Nevertheless, only a limited number of studies have addressed key questions on the pathogenesis of thrombocytopenia in malaria. Of those, two independent studies have shown platelets phagocytosis in malaria thrombocytopenic patients [21,22], although a detailed investigation of this phenomenon was not pursued. Herein, by means of an in vitro phagocytosis assay, we evaluated the involvement of platelet phagocytosis in vivax malaria thrombocytopenia. In this study, thrombocytopenia was frequently detected amongst vivax malaria patients (62.9%) as well as severe thrombocytopenia (platelet counts under 50,000 platelets/mL) (18.2%). Nevertheless, we did not observe association between severe thrombocytopenia and bleeding in these patients, although severe thrombocytopenia is occasionally associated with severity [25,26] including severe vivax patients [27,28]. In this study, MPV was elevated in thrombocytopenic patients and a negative correlation between platelet counts and MPV was detected in malaria patients. Our findings corroborates previous studies [11] and are in line with the rationale that larger platelets observed in thrombocytopenic patients may be a manner to Figure 4. P-selectin expression in healthy volunteers an thrombocytopenic patients. The P-selectin expression in platelets was measured in two moments, in the PRP and in isolated platelets. doi:10.1371/journal.pone.0063410.g004 (Figure 6A and 6B). A positive correlation was found only between phagocytosis index and TNF-a values (Figure 7). Figure 5. Cytokines levels. Comparisons of IL-6 (A), IL-10 (B), and IFN-c (C) between healthy volunteers (HV), non-thrombocytopenic (NT) and thrombocytopenic (T) patients. doi:10.1371/journal.pone.0063410.g005 PLOS ONE | www.plosone.org 5 May 2013 | Volume 8 | Issue 5 | e63410 Platelets Phagocytosis in Vivax Malaria Figure 6. Correlation between cytokines levels and platelet count. Correlation between IL-6 (A) and IL-10 (B) and platelet count. doi:10.1371/journal.pone.0063410.g006 platelet count in P. falciparum experimentally infected volunteers [36]. In contrast, Lee and colleagues showed that circulating Pselectin in plasma was elevated in P. falciparum severe malaria but not in P. vivax or P. falciparum non-severe infections [20]. As Pselectin expression levels were not augmented in the platelets from thrombocytopenic patients in our study, we believe that this molecule is not directly involved in platelet phagocytosis. Cytokines released during an acute inflammatory response could contribute to the pathogenesis of thrombocytopenia. Recently, a study showed that the administration of IL-10 to healthy volunteers was capable of inducing thrombocytopenia [37]. This decrease in platelet counts in IL-10 treated group was accompanied by reduction in the amount of megakaryocyte colony-forming units, indicating the participation of this cytokine in platelet production [37]. Actually, it has been shown that thrombocytopenia in children with acute falciparum malaria is strongly associated with plasma concentrations of IL-10, but not with P. falciparum parasitemia or other plasma cytokines [38]. Park and colleagues showed higher levels of IL-1, IL-6, IL-10 and TGFß in P. vivax thrombocytopenic patients compared to nonthrombocytopenic [39]. Indeed, similar to previous findings [38,39], we observed that IL-6 and IL-10 levels are elevated in thrombocytopenic patients serum compared to non-thrombocytopenic ones, and negative correlations between IL-6 and IL-10 levels and platelet count were found. TNF-a has been associated with platelet consumption in mice but not with platelet production [40]. In our study, TNF-a levels were similar in malaria patients and HV but a positive correlation between TNF-a levels in serum and phagocytosis index was found. In contrast, IFN-c was elevated in thrombocytopenic patients as compared to HV. In fact, high levels of IFN-c and TNF-aare often correlated to severity in murine experimental models and in humans infected with P. falciparum and P. vivax [28,41–44]. However, the relationship between thrombocytopenia and severe malaria is nebulous [8,38], and further studies are needed to understand the pathogenesis associated with thrombocytopenia. compensate the low absolute number of platelets in the periphery; therefore preserving primary hemostasis and avoiding severe bleeding [8]. Negative correlation between parasitemia and thrombocytopenia has been shown elsewhere [29–31], and this correlation has been attributed to platelets shortened lifespan due to immune complexes sequestration in their surface [16–18]. Surprisingly, we did not find any relation between parasitemia and platelet counts in vivax malaria patients. Despite of our small sample size, findings corroborate a large study conducted in Bikaner, India [32]. Indeed, despite the fact that circulating immune complexes are elevated in vivax and falciparum malaria, their role in the development of thrombocytopenia is not clear [33,34]. Nonetheless, we observed a negative correlation between platelet counts and phagocytosis index, indicating that platelet phagocytosis may be involved in thrombocytopenia pathogenesis in vivax malaria. It has been proposed that platelet phagocytosis could be mediated by the increase in P-selectin expression in the surface of activated platelets [35]. However, only two studies evaluated Pselectin expression in malaria thrombocytopenia [20,36], and just one in P. vivax malaria [20]. Recently, de Mast and colleagues showed that P-selectin expression in platelets surface and circulating P-selectin in plasma were not associated with low Conclusion Collectively, our findings demonstrate that platelet phagocytosis is associated to thrombocytopenia and correlates with TNF-a, a cytokine normally attributed to severity in malaria. Moreover, we showed that this increase in phagocytosis has not been associated with parasitemia or platelet activation. Importantly, our data Figure 7. Correlation between TNF-a and phagocytosis index (PI). doi:10.1371/journal.pone.0063410.g007 PLOS ONE | www.plosone.org 6 May 2013 | Volume 8 | Issue 5 | e63410 Platelets Phagocytosis in Vivax Malaria brings new insights about the mechanisms involved in malaria vivax thrombocytopenia and highlights the potential relevance of this phenomenon. Author Contributions Conceived and designed the experiments: MVGL. Performed the experiments: HCCC SCPL JPDP PAN AM. Analyzed the data: AMS GCM WMM. Wrote the paper: HCCC FTMC MVGL. Acknowledgments This paper is dedicated to Prof. Maria Imaculada Muniz-Junqueira, who introduced us all to the art of phagocytosis. References 1. World Health Organization. (2011) World malaria report 2011. Geneva: World Health Organization. xii, 246 p. p. 2. Guerra CA, Gikandi PW, Tatem AJ, Noor AM, Smith DL, et al. (2008) The limits and intensity of Plasmodium falciparum transmission: implications for malaria control and elimination worldwide. PLoS Med 5: e38. 3. Anstey NM, Russell B, Yeo TW, Price RN (2009) The pathophysiology of vivax malaria. Trends Parasitol 25: 220–227. 4. Lacerda MV, Mourao MP, Alexandre MA, Siqueira AM, Magalhaes BM, et al. (2012) Understanding the clinical spectrum of complicated Plasmodium vivax malaria: a systematic review on the contributions of the Brazilian literature. Malar J 11: 12. 5. Guerra CA, Howes RE, Patil AP, Gething PW, Van Boeckel TP, et al. (2010) The international limits and population at risk of Plasmodium vivax transmission in 2009. PLoS Negl Trop Dis 4: e774. 6. Oliveira-Ferreira J, Lacerda MV, Brasil P, Ladislau JL, Tauil PL, et al. (2010) Malaria in Brazil: an overview. Malar J 9: 115. 7. Wickramasinghe SN, Abdalla SH (2000) Blood and bone marrow changes in malaria. Baillieres Best Pract Res Clin Haematol 13: 277–299. 8. Lacerda MV, Mourao MP, Coelho HC, Santos JB (2011) Thrombocytopenia in malaria: who cares? Mem Inst Oswaldo Cruz 106 Suppl 1: 52–63. 9. Alecrim MGC (2000) Clinical aspects, resistance and parasitary polymorphism of Plasmodium vivax malaria in Manaus. Brası́lia: Universidade de Brası́lia. 176 p. 10. Kochar DK, Das A, Kochar A, Middha S, Acharya J, et al. (2010) Thrombocytopenia in Plasmodium falciparum, Plasmodium vivax and mixed infection malaria: a study from Bikaner (Northwestern India). Platelets 21: 623– 627. 11. Tanwar GS, Khatri PC, Chahar CK, Sengar GS, Kochar A, et al. (2012) Thrombocytopenia in childhood malaria with special reference to P. vivax monoinfection: A study from Bikaner (Northwestern India). Platelets 23: 211– 216. 12. Cox D, McConkey S (2010) The role of platelets in the pathogenesis of cerebral malaria. Cell Mol Life Sci 67: 557–568. 13. Echeverri M, Tobon A, Alvarez G, Carmona J, Blair S (2003) Clinical and laboratory findings of Plasmodium vivax malaria in Colombia, 2001. Rev Inst Med Trop Sao Paulo 45: 29–34. 14. Piguet PF, Kan CD, Vesin C (2002) Thrombocytopenia in an animal model of malaria is associated with an increased caspase-mediated death of thrombocytes. Apoptosis 7: 91–98. 15. Erhart LM, Yingyuen K, Chuanak N, Buathong N, Laoboonchai A, et al. (2004) Hematologic and clinical indices of malaria in a semi-immune population of western Thailand. Am J Trop Med Hyg 70: 8–14. 16. Skudowitz RB, Katz J, Lurie A, Levin J, Metz J (1973) Mechanisms of thrombocytopenia in malignant tertian malaria. Br Med J 2: 515–518. 17. Kelton JG, Keystone J, Moore J, Denomme G, Tozman E, et al. (1983) Immune-mediated thrombocytopenia of malaria. J Clin Invest 71: 832–836. 18. Looareesuwan S, Davis JG, Allen DL, Lee SH, Bunnag D, et al. (1992) Thrombocytopenia in malaria. Southeast Asian J Trop Med Public Health 23: 44–50. 19. Yamaguchi S, Kubota T, Yamagishi T, Okamoto K, Izumi T, et al. (1997) Severe thrombocytopenia suggesting immunological mechanisms in two cases of vivax malaria. Am J Hematol 56: 183–186. 20. Lee SH, Looareesuwan S, Chan J, Wilairatana P, Vanijanonta S, et al. (1997) Plasma macrophage colony-stimulating factor and P-selectin levels in malariaassociated thrombocytopenia. Thromb Haemost 77: 289–293. 21. Klein E, Ronez E (2012) Peripheral hemophagocytosis in malaria infection. Blood 119: 910. 22. Jaff MS, McKenna D, McCann SR (1985) Platelet phagocytosis: a probable mechanism of thrombocytopenia in Plasmodium falciparum infection. J Clin Pathol 38: 1318–1319. 23. Monbrison F, Angei C, Staal A, Kaiser K, Picot S (2003) Simultaneous identification of the four human Plasmodium species and quantification of Plasmodium DNA load in human blood by real-time polymerase chain reaction. Trans R Soc Trop Med Hyg 97: 387–390. PLOS ONE | www.plosone.org 24. Honda S, Saito M, Dimaano EM, Morales PA, Alonzo MT, et al. (2009) Increased phagocytosis of platelets from patients with secondary dengue virus infection by human macrophages. Am J Trop Med Hyg 80: 841–845. 25. Gerardin P, Rogier C, Ka AS, Jouvencel P, Brousse V, et al. (2002) Prognostic value of thrombocytopenia in African children with falciparum malaria. Am J Trop Med Hyg 66: 686–691. 26. Rogier C, Gerardin P, Imbert P (2004) Thrombocytopenia is predictive of lethality in severe childhood falciparum malaria. Arch Dis Child 89: 795–796. 27. Kochar DK, Saxena V, Singh N, Kochar SK, Kumar SV, et al. (2005) Plasmodium vivax malaria. Emerg Infect Dis 11: 132–134. 28. Andrade BB, Reis-Filho A, Souza-Neto SM, Clarencio J, Camargo LM, et al. (2010) Severe Plasmodium vivax malaria exhibits marked inflammatory imbalance. Malar J 9: 13. 29. Maina RN, Walsh D, Gaddy C, Hongo G, Waitumbi J, et al. (2010) Impact of Plasmodium falciparum infection on haematological parameters in children living in Western Kenya. Malar J 9 Suppl 3: S4. 30. Gonzalez B, Rodulfo H, De Donato M, Berrizbeitia M, Gomez C, et al. (2009) [Hematologic variations in patient with malaria caused by Plasmodium vivax before, during and after treatment]. Invest Clin 50: 187–201. 31. Saravu K, Docherla M, Vasudev A, Shastry BA (2011) Thrombocytopenia in vivax and falciparum malaria: an observational study of 131 patients in Karnataka, India. Ann Trop Med Parasitol 105: 593–598. 32. Kochar DK, Tanwar GS, Agrawal R, Kochar S, Tanwar G, et al. (2012) Platelet count and parasite density: independent variable in Plasmodium vivax malaria. J Vector Borne Dis 49: 191–192. 33. Touze JE, Mercier P, Rogier C, Hovette P, Schmoor P, et al. (1990) [Platelet antibody activity in malaria thrombocytopenia]. Pathol Biol (Paris) 38: 678–681. 34. Tyagi P, Biswas S (1999) Naturally occurring plasmodia-specific circulating immune complexes in individuals of malaria endemic areas in India. Indian J Malariol 36: 12–18. 35. Badlou BA, Wu YP, Smid WM, Akkerman JW (2006) Platelet binding and phagocytosis by macrophages. Transfusion 46: 1432–1443. 36. Mast Q, de Groot PG, van Heerde WL, Roestenberg M, van Velzen JF, et al. (2010) Thrombocytopenia in early malaria is associated with GP1b shedding in absence of systemic platelet activation and consumptive coagulopathy. Br J Haematol 151: 495–503. 37. Sosman JA, Verma A, Moss S, Sorokin P, Blend M, et al. (2000) Interleukin 10induced thrombocytopenia in normal healthy adult volunteers: evidence for decreased platelet production. Br J Haematol 111: 104–111. 38. Casals-Pascual C, Kai O, Newton CR, Peshu N, Roberts DJ (2006) Thrombocytopenia in falciparum malaria is associated with high concentrations of IL-10. Am J Trop Med Hyg 75: 434–436. 39. Park JW, Park SH, Yeom JS, Huh AJ, Cho YK, et al. (2003) Serum cytokine profiles in patients with Plasmodium vivax malaria: a comparison between those who presented with and without thrombocytopenia. Ann Trop Med Parasitol 97: 339–344. 40. Tacchini-Cottier F, Vesin C, Redard M, Buurman W, Piguet PF (1998) Role of TNFR1 and TNFR2 in TNF-induced platelet consumption in mice. J Immunol 160: 6182–6186. 41. Wroczynska A, Nahorski W, Bakowska A, Pietkiewicz H (2005) Cytokines and clinical manifestations of malaria in adults with severe and uncomplicated disease. Int Marit Health 56: 103–114. 42. Andrade BB, Barral-Netto M (2011) Biomarkers for susceptibility to infection and disease severity in human malaria. Mem Inst Oswaldo Cruz 106 Suppl 1: 70–78. 43. Yeo TW, Lampah DA, Gitawati R, Tjitra E, Kenangalem E, et al. (2008) Angiopoietin-2 is associated with decreased endothelial nitric oxide and poor clinical outcome in severe falciparum malaria. Proc Natl Acad Sci U S A 105: 17097–17102. 44. Armah H, Wired EK, Dodoo AK, Adjei AA, Tettey Y, et al. (2005) Cytokines and adhesion molecules expression in the brain in human cerebral malaria. Int J Environ Res Public Health 2: 123–131. 7 May 2013 | Volume 8 | Issue 5 | e63410 38 5. CONCLUSÃO 5.1 O índice de fagocitose dos pacientes plaquetopênicos com malária vivax foi maior comparado com o índice de fagocitose dos pacientes não-plaquetopênicos com malária e pessoas saudáveis, sugerindo que a plaquetopenia na malária vivax está associada com a fagocitose de plaquetas; 5.2 A contagem de plaquetas no sangue periférico dos pacientes com malária esteve inversamente correlacionada com o índice de fagocitose. 5.3 Concentrações séricas de IL-6 e IL-10 apresentaram-se mais elevadas nos pacientes com malária vivax plaquetopênicos do que nos pacientes nãoplaquetopênicos e pessoas saudáveis. A concentração sérica de IFN-γ foi maior em pacientes não-plaquetopênicos do que em pessoas saudáveis. TNF-α apresentou-se mais elevado em pacientes plaquetopênicos com malária vivax do que em pessoas saudáveis. 5.4 A contagem de plaquetas no sangue periférico nos pacientes com malária vivax apresentou-se inversamente correlacionada com as concentrações séricas de IL-6 e IL-10. O índice de fagocitose correlacionou-se apenas com TNF- α. 5.5 Não houve diferença na expressão de P-selectina pelas plaquetas entre os pacientes plaquetopênicos e pessoas saudáveis, tanto no plasma rico em plaquetas, quanto nas plaquetas isoladas, sugerindo que o evento de fagocitose acontece de forma independente da ativação plaquetária. 39 6 REFERÊNCIAS BIBLIOGRÁFICAS 1. Brasil MdS. Aspectos epidemiológicos. [internet] [cited April 21, 2010]; Available from: http://portal.saude.gov.br/portal/saude/profissional/area.cfm?id_area=1526 2. WHO. World Malaria Report 2009. WHO Library Cataloguing-in-Publication 2009 [cited November 10, 2009]; Available from: http://www.who.int 3. Mendis K, Sina BJ, Marchesini P, Carter R. The neglected burden of Plasmodium vivax malaria. Am J Trop Med Hyg 2001;64(1-2 Suppl):97-106. 4. Price RN, Tjitra E, Guerra CA, Yeung S, White NJ, Anstey NM. Vivax malaria: neglected and not benign. Am J Trop Med Hyg 2007;77(6 Suppl):79-87. 5. WHO. World Malaria Report 2010/WHO- World Health Organization. WHO Library Cataloguing-in-Publication 2010 [cited January 06, 2010]; Available from: http://www.who.int 6. WHO. World Heath Organization (2010) World: Malaria Risk areas 2010. In: Global_Malaria_ITHRiskMap.JPG, editor. 7. 6, Brasil MdS. Avaliação malaria_jan_maio_19_07_2010. 2010 [cited January 2011]; Available from: http://portal.saude.gov.br/portal/arquivos/pdf/avaliacao_malaria_jan_maio_19_07_2010.pdf 8. FMT. Informe Epidemiológico Nº 12 - ANO V / 2010 da FMT. 2010 [cited November 01, 2010]; Available from: www.fmt.am.gov.br/informe/2010/MURAL%20MAL2007A2009.pdf 9. Oliveira-Ferreira J, Lacerda MV, Brasil P, Ladislau JL, Tauil PL, Daniel-Ribeiro CT. Malaria in Brazil: an overview. Malar J 2010;9:115. 10. Baird JK. Resistance to therapies for infection by Plasmodium vivax. Clin Microbiol Rev 2009;22(3):508-34. 11. de Santana Filho FS, Arcanjo AR, Chehuan YM, Costa MR, MartinezEspinosa FE, Vieira JL, et al. Chloroquine-resistant Plasmodium vivax, Brazilian Amazon. Emerg Infect Dis 2007;13(7):1125-6. 12. WHO. malaria/publications/country-profiles/profile_bra_. In: www.who.int/malaria/publications/country-profiles/profile_bra_en.pdf, editor. 13. Alecrim MdG, Alecrim W. Malária. In: Cinerman S, Cinerman B, editors. Medicina Tropical. São Paulo: Atheneu; 2003. p. 105 -118. 40 14. Tan LK, Yacoub S, Scott S, Bhagani S, Jacobs M. Acute lung injury and other serious complications of Plasmodium vivax malaria. Lancet Infect Dis 2008;8(7):44954. 15. Kochar DK, Das A, Kochar SK, Saxena V, Sirohi P, Garg S, et al. Severe Plasmodium vivax malaria: a report on serial cases from Bikaner in northwestern India. Am J Trop Med Hyg 2009;80(2):194-8. 16. Poespoprodjo JR, Fobia W, Kenangalem E, Lampah DA, Hasanuddin A, Warikar N, et al. Vivax malaria: a major cause of morbidity in early infancy. Clin Infect Dis 2009;48(12):1704-12. 17. Siqueira AM, Alexandre MA, Mourao MP, Santos VS, Nagahashi-Marie SK, Alecrim MG, et al. Severe rhabdomyolysis caused by Plasmodium vivax malaria in the Brazilian Amazon. Am J Trop Med Hyg;83(2):271-3. 18. Baird JK. Neglect 2007;23(11):533-9. of Plasmodium vivax malaria. Trends Parasitol 19. Lacerda MVG. Manifestações Clínicas e Patogênese da plaquetopenia na malária. Brasília: Universidade de Brasília; 2007. 20. Rodriguez-Morales AJ, Sanchez E, Vargas M, Piccolo C, Colina R, Arria M. Anemia and thrombocytopenia in children with Plasmodium vivax malaria. J Trop Pediatr 2006;52(1):49-51. 21. Shaikh QH, Ahmad SM, Abbasi A, Malik SA, Sahito AA, Munir SM. Thrombocytopenia in malaria. J Coll Physicians Surg Pak 2009;19(11):708-10. 22. Harish R, Gupta S. Plasmodium vivax malaria presenting with severe thrombocytopenia, cerebral complications and hydrocephalus. Indian J Pediatr 2009;76(5):551-2. 23. Makkar RP, Mukhopadhyay S, Monga A, Monga A, Gupta AK. Plasmodium vivax malaria presenting with severe thrombocytopenia. Braz J Infect Dis 2002;6(5):263-5. 24. Thapa R, Biswas B, Mallick D, Sardar S, Modak S. Childhood Plasmodium vivax malaria with severe thrombocytopenia and bleeding manifestations. J Pediatr Hematol Oncol 2009;31(10):758-9. 25. Mackintosh CL, Beeson JG, Marsh K. Clinical features and pathogenesis of severe malaria. Trends Parasitol 2004;20(12):597-603. 26. Anstey NM, Russell B, Yeo TW, Price RN. The pathophysiology of vivax malaria. Trends Parasitol 2009;25(5):220-7. 41 27. Karunaweera ND, Wijesekera SK, Wanasekera D, Mendis KN, Carter R. The paroxysm of Plasmodium vivax malaria. Trends Parasitol 2003;19(4):188-93. 28. Medina TS, Costa SP, Oliveira MD, Ventura AM, Souza JM, Gomes TF, et al. Increased interleukin-10 and interferon-gamma levels in Plasmodium vivax malaria suggest a reciprocal regulation which is not altered by IL-10 gene promoter polymorphism. Malar J;10:264. 29. Zeyrek FY, Kurcer MA, Zeyrek D, Simsek Z. Parasite density and serum cytokine levels in Plasmodium vivax malaria in Turkey. Parasite Immunol 2006;28(5):201-7. 30. Mirghani HA, Eltahir HG, TM AE, Mirghani YA, Elbashir MI, Adam I. Cytokine profiles in children with severe Plasmodium falciparum malaria in an area of unstable malaria transmission in central Sudan. J Trop Pediatr;57(5):392-5. 31. Andrade BB, Reis-Filho A, Souza-Neto SM, Clarencio J, Camargo LM, Barral A, et al. Severe Plasmodium vivax malaria exhibits marked inflammatory imbalance. Malar J;9:13. 32. White JG. Platelet Structure. In: Elsevier, editor. Platelets. 2 ed. San Diego; 2007. p. 45-73. 33. Alberts B, Jonson A, Lewis J, Raff M, Roberts K, Walter P. Molecular Biology of the Cell; 2002. 34. Patel SR, Hartwig JH, Italiano JE, Jr. The biogenesis of platelets from megakaryocyte proplatelets. J Clin Invest 2005;115(12):3348-54. 35. Kuter DJ, Begley CG. Recombinant human thrombopoietin: basic biology and evaluation of clinical studies. Blood 2002;100(10):3457-69. 36. Lichtman M, Beutler E, Kaushansky K, Kipps T, Seligohn U, Prchal J. Williams Hematology; 2005. 37. Gouttefangeas C, Diehl M, Keilholz W, Hornlein RF, Stevanovic S, Rammensee HG. Thrombocyte HLA molecules retain nonrenewable endogenous peptides of megakaryocyte lineage and do not stimulate direct allocytotoxicity in vitro. Blood 2000;95(10):3168-75. 38. Piguet PF, Kan CD, Vesin C, Rochat A, Donati Y, Barazzone C. Role of CD40CVD40L in mouse severe malaria. Am J Pathol 2001;159(2):733-42. 39. Schofield L, Grau GE. Immunological processes in malaria pathogenesis. Nat Rev Immunol 2005;5(9):722-35. 42 40. Kaplanski G, Porat R, Aiura K, Erban JK, Gelfand JA, Dinarello CA. Activated platelets induce endothelial secretion of interleukin-8 in vitro via an interleukin-1mediated event. Blood 1993;81(10):2492-5. 41. Bergmeier W, Wagner DD. Inflammation. In: Elsevier, editor. Platelets. 2 ed. San Diego; 2007. p. 713 -726. 42. Lee GR, Bithell TC, Foerster J, Athens JW, Lukens JN. Wintrobe Hematologia Clínica. 1 ed. São Paulo; 1998. 43. Hartwig J, Italiano J, Jr. The birth of the platelet. J Thromb Haemost 2003;1(7):1580-6. 44. Fischer TH, Merricks E, Bellinger DA, Hayes PM, Smith RS, Raymer RA, et al. Splenic clearance mechanisms of rehydrated, lyophilized platelets. Artif Cells Blood Substit Immobil Biotechnol 2001;29(6):439-51. 45. Andre P. P-selectin in haemostasis. Br J Haematol 2004;126(3):298-306. 46. Heemskerk JW, Bevers EM, Lindhout T. Platelet activation and blood coagulation. Thromb Haemost 2002;88(2):186-93. 47. Zwaal RF, Bevers EM. Platelet phospholipid asymmetry and its significance in hemostasis. Subcell Biochem 1983;9:299-334. 48. Semple JW, Aslam R, Kim M, Speck ER, Freedman J. Platelet-bound lipopolysaccharide enhances Fc receptor-mediated phagocytosis of IgG-opsonized platelets. Blood 2007;109(11):4803-5. 49. Badlou BA, Wu YP, Smid WM, Akkerman JW. Platelet binding and phagocytosis by macrophages. Transfusion 2006;46(8):1432-43. 50. Bratton DL, Henson PM. Apoptotic cell recognition: will the phosphatidylserine receptor(s) please stand up? Curr Biol 2008;18(2):R76-9. real 51. Brown SB, Clarke MC, Magowan L, Sanderson H, Savill J. Constitutive death of platelets leading to scavenger receptor-mediated phagocytosis. A caspaseindependent cell clearance program. J Biol Chem 2000;275(8):5987-96. 52. Bithell TC. Trombocitopenia. In: Manole, editor. Wintrobe Hematologia Clínica. São Paulo; 1998. p. 1454-1457. 53. Lacerda MV, Mourao MP, Coelho HC, Santos JB. Thrombocytopenia in malaria: who cares? Mem Inst Oswaldo Cruz 2011;106 Suppl 1:52-63. 43 54. Rodriguez-Morales AJ, Sanchez E, Vargas M, Piccolo C, Colina R, Arria M, et al. Occurrence of thrombocytopenia in Plasmodium vivax malaria. Clin Infect Dis 2005;41(1):130-1. 55. Vij AS, Dandona PK, Aggarwal A. Malaria with marked thrombocytopenia: report of 2 cases. J Indian Med Assoc 2008;106(2):123, 125. 56. Erhart LM, Yingyuen K, Chuanak N, Buathong N, Laoboonchai A, Miller RS, et al. Hematologic and clinical indices of malaria in a semi-immune population of western Thailand. Am J Trop Med Hyg 2004;70(1):8-14. 57. Katira B, Shah I. Thrombocytopenia in Plasmodium vivax infected children. J Vector Borne Dis 2006;43(3):147-9. 58. Gonzalez B, Rodulfo H, De Donato M, Berrizbeitia M, Gomez C, Gonzalez L. [Hematologic variations in patient with malaria caused by Plasmodium vivax before, during and after treatment]. Invest Clin 2009;50(2):187-201. 59. Patel U, Gandhi G, Friedman S, Niranjan S. Thrombocytopenia in Malaria. Journal of the National Association 2004;96:1212-1214. 60. Skudowitz RB, Katz J, Lurie A, Levin J, Metz J. Mechanisms of thrombocytopenia in malignant tertian malaria. Br Med J 1973;2(5865):515-8. 61. Karanikas G, Zedwitz-Liebenstein K, Eidherr H, Schuetz M, Sauerman R, Dudczak R, et al. Platelet kinetics and scintigraphic imaging in thrombocytopenic malaria patients. Thromb Haemost 2004;91(3):553-7. 62. Watier H, Verwaerde C, Landau I, Werner E, Fontaine J, Capron A, et al. Tcell-dependent immunity and thrombocytopenia in rats infected with Plasmodium chabaudi. Infect Immun 1992;60(1):136-42. 63. Jaff MS, McKenna D, McCann SR. Platelet phagocytosis: a probable mechanism of thrombocytopenia in Plasmodium falciparum infection. J Clin Pathol 1985;38(11):1318-9. 64. Lee SH, Looareesuwan S, Chan J, Wilairatana P, Vanijanonta S, Chong SM, et al. Plasma macrophage colony-stimulating factor and P-selectin levels in malariaassociated thrombocytopenia. Thromb Haemost 1997;77(2):289-93. 65. Honda S, Saito M, Dimaano EM, Morales PA, Alonzo MT, Suarez LA, et al. Increased phagocytosis of platelets from patients with secondary dengue virus infection by human macrophages. Am J Trop Med Hyg 2009;80(5):841-5. 66. Saito M, Oishi K, Inoue S, Dimaano EM, Alera MT, Robles AM, et al. Association of increased platelet-associated immunoglobulins with thrombocytopenia 44 and the severity of disease in secondary dengue virus infections. Clin Exp Immunol 2004;138(2):299-303. 67. Casals-Pascual C, Kai O, Newton CR, Peshu N, Roberts DJ. Thrombocytopenia in falciparum malaria is associated with high concentrations of IL10. Am J Trop Med Hyg 2006;75(3):434-6. 68. Kelton JG, Keystone J, Moore J, Denomme G, Tozman E, Glynn M, et al. Immune-mediated thrombocytopenia of malaria. J Clin Invest 1983;71(4):832-6. 69. Yamaguchi S, Kubota T, Yamagishi T, Okamoto K, Izumi T, Takada M, et al. Severe thrombocytopenia suggesting immunological mechanisms in two cases of vivax malaria. Am J Hematol 1997;56(3):183-6. 70. Conte R, Tassi C, Belletti D, Ricci F, Tazzari thrombocytopenia in malaria. Vox Sang 2003;85(3):221. PL. Autoimmune 71. Ghosh K, Shetty S. Blood coagulation in falciparum malaria--a review. Parasitol Res 2008;102(4):571-6. 72. Cox D, McConkey S. The role of platelets in the pathogenesis of cerebral malaria. Cell Mol Life Sci 2010;67(4):557-68. 73. de Mast Q, Groot Eo, Lenting PJ, de Groot PG, McCall M, Sauerwein RW, et al. Thrombocytopenia and release of activated von Willebrand Factor during early Plasmodium falciparum malaria. J Infect Dis 2007;196(4):622-8. 74. Francischetti IM. Does activation of the blood coagulation cascade have a role in malaria pathogenesis? Trends Parasitol 2008;24(6):258-63. 75. Borochovitz D, Crosley AL, Metz J. Disseminated intravascular coagulation with fatal haemorrhage in cerebral malaria. Br Med J 1970;2(5711):710. 76. Srichaikul T, Puwasatien P, Karnjanajetanee J, Bokisch VA, Pawasatien P. Complement changes and disseminated intravascular coagulation in Plasmodium falciparum malaria. Lancet 1975;1(7910):770-2. 77. Stuart J. Intravascular coagulation in falciparum malaria. Br Med J 1978;2(6139):774. 78. Horstmann RD, Dietrich M. Haemostatic alterations in malaria correlate to parasitaemia. Blut 1985;51(5):329-35. 79. Rojanasthien S, Surakamolleart V, Boonpucknavig S, Isarangkura P. Hematological and coagulation studies in malaria. J Med Assoc Thai 1992;75 Suppl 1:190-4. 45 80. Alonzo MT, Lacuesta TL, Dimaano EM, Kurosu T, Suarez LA, Mapua CA, et al. Platelet apoptosis and apoptotic platelet clearance by macrophages in secondary dengue virus infections. J Infect Dis 2012;205(8):1321-9. 81. Piguet PF, Kan CD, Vesin C. Thrombocytopenia in an animal model of malaria is associated with an increased caspase-mediated death of thrombocytes. Apoptosis 2002;7(2):91-8. 82. Erel O, Vural H, Aksoy N, Aslan G, Ulukanligil M. Oxidative stress of platelets and thrombocytopenia in patients with vivax malaria. Clin Biochem 2001;34(4):341-4. 83. Erel O, Kocyigit A, Bulut V, Avci S, Aktepe N. Role of lipids, lipoproteins and lipid peroxidation in thrombocytopenia in patients with vivax malaria. Haematologia (Budap) 1998;29(3):207-12. 84. Araujo CF, Lacerda MV, Abdalla DS, Lima ES. The role of platelet and plasma markers of antioxidant status and oxidative stress in thrombocytopenia among patients with vivax malaria. Mem Inst Oswaldo Cruz 2008;103(6):517-21. 85. Fajardo L, Tallent C. Malarial parasites within human platelets. J Am Med Assoc 1974;229:1205-7. 86. Abdalla SH. Hematopoiesis in human malaria. Blood Cells 1990;16(2-3):40116; discussion 417-9. 87. Kreil A, Wenisch C, Brittenham G, Looareesuwan S, Peck-Radosavljevic M. Thrombopoietin in Plasmodium falciparum malaria. Br J Haematol 2000;109(3):5346. 88. Sosman JA, Verma A, Moss S, Sorokin P, Blend M, Bradlow B, et al. Interleukin 10-induced thrombocytopenia in normal healthy adult volunteers: evidence for decreased platelet production. Br J Haematol 2000;111(1):104-11. 89. Silva IBA. Malária vivax: manifestações clínicas e laboratoriais relacionadas com o fator de necrose tumoral alfa. Belém: Universdiade Federal do Pará; 2004. 90. Lacerda MVG, Arcanjo ARL, Farias AF, Alecrim WD, Alecrim MGC. o papel das citocinas nas alterações hematológicas da malária por P. vivax e P. falciparum. n nais a euni o a iona e es uisa e a ria orto e o 91. Park JW, Park SH, Yeom JS, Huh AJ, Cho YK, Ahn JY, et al. Serum cytokine profiles in patients with Plasmodium vivax malaria: a comparison between those who presented with and without thrombocytopenia. Ann Trop Med Parasitol 2003;97(4):339-44. 46 92. Brinker AD, Beitz J. Spontaneous reports of thrombocytopenia in association with quinine: clinical attributes and timing related to regulatory action. Am J Hematol 2002;70(4):313-7. 93. Sekhon SS, Roy V. Thrombocytopenia in adults: A practical approach to evaluation and management. South Med J 2006;99(5):491-8; quiz 499-500, 533. 94. de Monbrison F, Angei C, Staal A, Kaiser K, Picot S. Simultaneous identification of the four human Plasmodium species and quantification of Plasmodium DNA load in human blood by real-time polymerase chain reaction. Trans R Soc Trop Med Hyg 2003;97(4):387-90. 95. Brasil MdS. Manual de terapêutica da malária. 2001 [cited December 7, 2009]; Available from: http://portal aquivos pdf manu_terapeutica_malaria.pdf 96. World Health Organization. World malaria report 2011. Geneva: World Health Organization; 2011. 97. Oliveira-Ferreira J, Lacerda MV, Brasil P, Ladislau JL, Tauil PL, Daniel-Ribeiro CT. Malaria in Brazil: an overview. Malar J;9:115. 98. Wickramasinghe SN, Abdalla SH. Blood and bone marrow changes in malaria. Baillieres Best Pract Res Clin Haematol 2000;13(2):277-99. 99. Alecrim MGC. Clinical aspects, resistance and parasitary polymorphism of Plasmodium vivax malaria in Manaus. Brasília: Universidade de Brasília; 2000. 100. Echeverri M, Tobon A, Alvarez G, Carmona J, Blair S. Clinical and laboratory findings of Plasmodium vivax malaria in Colombia, 2001. Rev Inst Med Trop Sao Paulo 2003;45(1):29-34. 101. Klein E, Ronez E. Peripheral hemophagocytosis in malaria infection. Blood 2012;119(4):910. 102. Maina RN, Walsh D, Gaddy C, Hongo G, Waitumbi J, Otieno L, et al. Impact of Plasmodium falciparum infection on haematological parameters in children living in Western Kenya. Malar J 2010;9 Suppl 3:S4. 103. Kochar DK, Das A, Kochar A, Middha S, Acharya J, Tanwar GS, et al. Thrombocytopenia in Plasmodium falciparum, Plasmodium vivax and mixed infection malaria: a study from Bikaner (Northwestern India). Platelets 2010;21(8):623-7. 104. World Health Organization. Guidelines for the treatment of malaria. 2nd ed. Geneva: World Health Organization; 2010. 47 105. Tacchini-Cottier F, Vesin C, Redard M, Buurman W, Piguet PF. Role of TNFR1 and TNFR2 in TNF-induced platelet consumption in mice. J Immunol 1998;160(12):6182-6. 48 7. ANEXOS ANEXO A: Termo de Consentimento Livre e Esclarecido – TCLE TERMO DE CONSENTIMENTO LIVRE E ESCLARECIDO (TCLE) 1. DADOS DE IDENTIFICAÇÃO Nome (Paciente):..................................................................................................... Documento de Identidade:....................................................................................... Endereço: .................................................................CEP: ..................................... Cidade: .............................Estado...................Fone:............................................... 2. DADOS SOBRE O ESTUDO 2.1 Titulo: Avalição in vitro da fagocitose de plaquetas em pacientes com malária vivax e falciparum. 2.2 Pesquisadores Principais: Helena Cristina Cardoso Coelho (Aluna do programa de pós-graduação em Medicina Tropical da Universidade do Estado do Amazonas em Convênio com a Fundação de Medicina Tropical Dr. Heitor Vieira Dourado) e Dr. Marcus Vinícius Guimarães de Lacerda (Orientador). 2.3 Aprovação pelo Comitê de Ética em Pesquisa (CEP): Nº 1610-11 3. EXPLICAÇÕES DO PESQUISADOR AO PACIENTE A malária é uma doença muito comum na amazônia. Ela é transmitida pela picada do carapanã. No Brasil existem dois tipos de malária: a malária vivax e a malária falciparum. Nos dois tipos, o paciente pode ter só febre, mas também pode morrer se não for tratado. Umas das complicações que a malária causa é a diminuição do número de uma célula chamada plaqueta. As plaquetas são importantes para o seu corpo não sangrar, assim se essas células diminuirem no seu sangue, você poderá sangrar pela pele nariz ou boca. Ainda não se sabe porque isso acontece na malária. Para podermos saber o motivo de isso acontecer, precisamos estudar o sangue dos pacientes com malaria. Assim, precisamos colher 20 mL de sangue da veia do seu braço, além do exame da malária, que foi colhido no dedo. Com esse sangue estudaremos as plaquetas e os glóbulos brancos além de fazer um exame chamado hemograma. Podemos também realizar exames para excluir outras causas que diminuem as plaquetas no seu sangue como: Teste de HIV, teste de hepatites e teste para dengue. Depois de colher o sangue do braço, ele pode doer um pouco na região da picada da agulha e pode ficar com uma mancha roxa. Além da colheita de sangue, o participante da pesquisa deverá responder um questionário informando alguns dados clínicos importantes para a pesquisa. A coleta será feita com material esterilizado e descartável sem risco algum para os pacientes. Os resultados dos exames poderão ser visto pela pessoa que participar da pesquisa. O sangue colhido que sobrar poderá ser guardado no freezer com um número (sem o nome da pessoa) e poderá ser utilizado para outro estudo no futuro. A participação nesse estudo será confidencial e os resultados dos exames serão mostrados apenas às pessoas do Hospital Tropical que trabalham com malária ou pesquisadores de outras cidades ou países, mas o nome da pessoa que participa será mantido em segredo. Caso seja necessário a pessoa poderá ser consultada por um médico participante do grupo de pesquisa. A pessoa que aceitou participar da pesquisa tem todo o direito de dizer que não quer mais participar em qualquer momento. Se isso acontecer, a pessoa será tratada com a medicação adequada e terá o direito ao atendimento no Hospital Tropical sempre que precisar. A pessoa que aceitar participar da pesquisa assinará duas cópias deste documento, uma cópia ficará com o pesquisador, e outra ficará com o paciente. Para obtenção de quaisquer informações o paciente poderá entrar em contato com o Presidente do Comitê de Ética em Pesquisa do Hospital Tropical (grupo de pessoas que avalia os projetos de pesquisa que são realizados em um hospital): Dr. Luiz Carlos de Lima Ferreira (Telefone: 3238-1711, ramal 319) ou com a pesquisadora responsável Helena Cristina Cardoso Coelho (8142-6721). Informamos que você não receberá qualquer benefício adicional, nem dinheiro, mas estará contribuindo para o estudo da doença, que ainda mata muitas pessoas. 4. AFIRMAÇÕES DO PACIENTE 4.1 Fui esclarecido sobre os objetivos da pesquisa, os procedimentos, riscos e benefícios SIM....... NÃO ....... 4.2 Fui esclarecido sobre a liberdade de desistir de participar a qualquer momento, sem que isso traga prejúizos ao meu atendimento e tratamento. SIM....... NÃO ....... 4.3 Fui esclarecido de que não haverá remuneração financeira. SIM....... NÃO ....... 4.4 Fui esclarecido de que não heverá indenização além das previstas pela lei, em reparação a dano imediado ou tardio, causado pela pesquisa em questão. SIM....... NÃO ....... 5. CONSENTIMENTO PÓS-INFORMADO Declaro que recebi a explicação de que serei um dos participantes dessa pesquisa e entendo todas as suas etapas e objetivos. Se eu não souber ler ou escrever, uma pessoa de minha confiança lerá este documento para mim e depois escreverá nesta página o meu nome e a data do preenchimento. E por estar devidamente informado e esclarecido sobre o conteúdo deste termo, livremente, sem qualquer pressão por parte dos pesquisadores, expresso meu consentimento para minha inclusão nesta pesquisa. ........................................................................................... Assinatura do paciente .............................................................................................. Assinatura do pesquisador que conversou com o paciente .................................................... Local e Data .......................... Data 51 ANEXO B: Ficha clínica do participante do estudo AVALIAÇÃO IN VITRO DA FAGOCITOSE DE PLAQUETAS EM PACIENTES COM MALÁRIA VIVAX Mestrado do Programa de Pós-Grauduação UEA/FMT-HVD Aluna responsável: Helena Cristina Cardoso Coelho FICHA CLÍNICA DO PARTICIPANTE DO ESTUDO Número: Data de inclusão: ........ /........ /........ 1 IDENTIFICAÇÃO Nome:............................................................................................................... Registro:.......................... Data de nascimento: ........ /........ / ........ Sexo: 1-M 2- F Idade:.................... Endereço:................................................................................................................................................ Bairro:............................................................... Município:.............................. Telefone residencial:......................................................... Estado:........................ Telefone celular:......................................... 2 CARACTERÍSTICAS INDIVIDUAIS 2.1 Local provável de infecção: 1-Manaus 2-Outro município 3 -Outro estado Qual?....................................................................................................................................................... 2.2 Sua exposição à área endêmica é eventual 1- sim 2-não 2.3 Se não, há quanto tempo vive em área endêmica? 1-<6m 2-6m 3-1a 4->2 2.4 Número de episódios prévios de malária:............................................................................................... 2.5 Última malária foi há quanto tempo ?...................................................................................................... 2.6 Tipo da última malária 2.7 Usou alguma medicação antimalária nos últimos 60 dias? 1-V 2- F 3-F+V 4- não sabe 1- sim 2-não Qual?....................................................................................................................................................... 2.8 Usou algum outro medicamento? 1- sim 2-não Qual?....................................................................................................................................................... Quanto tempo e Quando foi a última vez?............................................................................................... 2.9 Tem ou já teve alguma doença hematológica ou imunológica? 1- sim 2-não Qual?....................................................................................................................................................... 2.10 Algum familiar já teve alguma doença hematológica ? 1- sim 2-não Qual?....................................................................................................................................................... 2.11 Já precisou fazer alguma hemotransfusão? 1- sim 2-não 2.12 Há quanto tempo?................................................................................................................................... 2.13 Tem facilidade em sangrar após trauma? 1- sim 2-não 2.14 Já teve algum sangramento espontâneo? 1- sim 2-não Que tipo de sangramento?....................................................................................................................... 2.15 Possui alguma outra doença? 1- sim 2-não Qual?....................................................................................................................................................... A doença está em atividade nos últimos dias? 2.16 Usa alguma medicação regular? 1- sim 2-não 1- sim 2-não Qual?....................................................................................................................................................... 2.17 Está gestante? 1- sim 2-não 2,18 Tabagista? 1- sim 2-não 2,19 Uso regular de álcool? 1- sim 2-não 3 HISTÓRIA DA DOENÇA ATUAL 3,1 Doença atual há .......................... Dias 3,2 Sintomas: Febre 1-sim 2-não Dor abdominal 1-sim 2-não Vômitos 1-sim 2-não Náusea 1-sim 2-não Mioartralgia 1-sim 2-não Diarréia 1-sim 2-não Cefaléia 1-sim 2-não Sangramento 1-sim 2-não Dispnéia 1-sim 2-não Calafrios 1-sim 2-não 4 EXAMES LABORATORIAIS 4,1 Tipo de malária (Microscopia): 1-V 2- F 4,2 Parasitemia da malária vivax 4,3 Esquizontes ? 3-V+F 1- < 1/2+ 2- 1/2+ 1- sim 2-não 6 3 4,4 Hemácias.......................x10 /µL MCV................../µm 4,5 Hematrócrito..................................% 3- + 4- ++ 5- +++ 4,6 Leucócitos .......................................x10 /µL Gametócitos 1- sim 2-não MCH...................pg MCHCM...................g/dL Leucócitos .....................................% 3 ........................................x10 /µL Linfócitos.....................................% 3 4,8 Monócitos........................................x10 /µL Monócitos.....................................% 3 4,9 Neutrófilos........................................x10 /µL Neutrófilos.....................................% 3 4,10 Eosinófilos........................................x10 /µL Eosinófilos.....................................% 3 4,11 Plaquetas........................................x10 /µL MPV........................................./µm3 4,12 IgG anti-HIV (ELISA) 1-positivo 2-negativo 3-não realizado 4,13 HBsAg (ELISA) 1-positivo 2-negativo 3-não realizado 4,14 Anti-HCV (ELISA) 1-positivo 2-negativo 3-não realizado 4,15 Proteína NS1 Dengue 1-positivo 2-negativo 3-não realizado 4,16 Anti-IgG/igM Leptospirose 1-positivo 2-negativo 3-não realizado 4,17 PCR malária 6- ++++ Hb ..................................................... 3 4,7 Linfócitos 4 - Negativo 1-V 2- F 3-V+F 4 - Negativo 5 CLASSIFICAÇÃO CONTAGEM DE PLAQUETAS 5,1 1-Plaquetopênicos 2-Não plaquetopênicos Teste de Fagocitose N. 54 ANEXO C: Procedimento Operacional Padrão - POP POP_MAL_LB_009_v01_PT Procedimento Operacional Padrão Gerência de Malária Código POP POP_MAL_LB_009_v01_PT Título Congelamento e descongelamento de células THP-1 Idioma da versão original Português Escrito ou traduzido por: Revisado por: Aprovado por: Helena C. C. Coelho Paulo Nogueira , João Paulo Pimentel e Stefanie Lopes Marcus V. G. Lacerda Data & assinatura Data & assinatura Data & assinatura Emenda 1 Data de aplicação: Data da próxima revisão: Razão da emenda OBJETIVOS Padronizar o procedimento de congelamento e descongelamentos de células THP-1. 2 DEFINIÇÕES RPMI: meio para cultura de células humanas desenvolvido no Roswell Park Memorial Institute. SFB: Soro Fetal Bovino. Células THP-1: linhagem celular de leucemia monocítica aguda humana. 3 APLICÁVEL A As células THP-1 serão utilizadas em testes de fagocitose. 4 RESPONSABILIDADES Gerente da unidade, coordenador da subunidade e pessoal técnico. 5 POP’S RELACIONADOS POP_MAL_LB_011_v01_PT POP_MAL_LB_009_v01_PT 6 Página 2 de 2 PROCEDIMENTOS 6.1 Recursos necessários para o procedimento: 6.1.1 Garrafas com células THP-1 mantidas em meio RPMI com 10% de SFB e gentamicina (meio RPMI completo) 6.2 Materiais necessários para o procedimento: 6.2.1 Tubos de polipropileno de 15 mL 6.2.2 Gelo seco e Caixa térmica 6.2.3 Criotubos 6.2.4 Pipetas ajustáveis de canal único (10 µL, 200 µL, 1000 µL) 6.2.5 Ponteiras estéreis (10 µL, 200 µL, 1000 µL) 6.2.6 Pipetas sorológicas estéreis (10 mL) 6.2.7 Caixa StrataCooler 6.3 Equipamentos necessários para o procedimento: 6.3.1 Cabine de fluxo laminar 6.3.2 Banho-maria 6.3.3 Microscópio óptico com lente objetiva de aumento de 40x 6.3.4 Câmara de neubauer 6.4 Soluções necessárias para o procedimento: 6.4.1 Meio RPM 6.4.2 Meio RPMI completo: com 10% de SFB e 0,1% de gentamicina 6.4.3 Meio de congelamento: RPMI completo com 10% de Dimethyl Sulphoxide (DMSO) 6.4.4 Azul de Trypan (para contagem de células) 6.5 Procedimento para congelamento: 6.5.1 Retirar as células THP-1 da garrafa e transferir-las para um tubo falcon 15 mL; 6.5.2 Determinar a concentração celular utilizando o azul de trypan e a câmara de neubauer, conforme descrito no item 6.7; 6.5.3 Centrifugar o tubo contendo as células THP-1 a 100xg por 6 minutos a 24ºC; 6.5.4 Identificar os criotubos e colocá-los na caixa StrataCooler que deve estar previamente resfriada a 4ºC; 6.5.5 No momento do congelamento, retirar a caixa StrataCooler e o meio de congelamento da geladeira e destampar os criotubos mantendo as tampas viradas para cima; 6.5.6 Após o término da centrifugação, desprezar o sobrenadante e resuspender o pellet e com o auxílio de uma pipeta estéril, aspirando o volume necessário de meio de congelamento para cada amostra (considere 6 1mL de meio de congelamento para cada 1x10 células); 6.5.7 Transferir o meio de congelamento para o tubo com células e homogeneizar bem com o auxílio da POP_MAL_LB_009_v01_PT Página 3 de 3 pipeta; 6.5.8 Transferir essa solução para os criotubos; 6.5.9 Tampar os criotubos e armazenar no freezer -80ºC. 6.6 Procedimento para descongelamento: 6.6.1 Separar um tubo de 15 mL previamente identificado e adicionar 10mL de meio de cultura RPMI; 6.6.2 Retirar os criotubos com as células THP-1 do freezer -80ºC e mantê-los no gelo seco até o momento do descongelamento; 6.6.3 Descongelar uma amostra de cada vez rapidamente, com leve agitação no banho-maria a 37ºC até que a amostra se desgrude do fundo do criotubo. Parar quando ainda houver um pedaço de gelo visível no criotubo; 6.6.4 Adicionar 1 mL de meio de cultura RPMI gotejando lentamente no criotubo e transferir o meio com a amostra para o tubo de 15 mL; 6.6.5 Repetir a operação até retirar toda a amostra do criotubo; 6.6.6 Lavar o criotubo com mais 1 mL do meio RPMI (principalmente as paredes do criotubo) e transferir para o tubo de 15mL respectivo; 6.6.7 Centrifugar a 100xg por 6 minutos; 6.6.8 Desprezar o sobrenadante e lavar as células mais uma vez com meio RPMI. 6.6.9 Após a última lavagem, resuspender o pellet em 1 mL de meio RPMI completo 6.6.10 Fazer a contagem e a viabilidade das células, utilizando azul de trypan e câmara de Neubauer, conforme descrito no item 6.7. 6.7 Contagem e viabilidade celular 6.7.1 Retirar uma alíquota de10µL da solução de células e misturar em 10µL de azul de trypan. 6.2.1 Contar as células em todos os quatro quadrantes da câmara de Neubauer como mostrado na Figura 1. 6.3.1 Multiplicar a média dos quatro quadrantes pelos fatores de diluição e pelo fator de correção da câmara de Neubauer (104): Células/ml = (média de células nos quatro quadrantes) x fatores de diluição x 104 6.2.16 Para determinar a viabilidade celular, contar as células de coloração azul (células mortas) na câmara de Neubauer. A viabilidade é determinada pelo teste de exclusão do corante azul de trypan. Células viáveis são impermeáveis a este corante, uma vez que sua penetração na célula indica a perda da integridade de sua membrana: Viabilidade (%) = Células vivas x 100 / Totais de Células (Células vivas e mortas). Nota: Este procedimento deve ser realizado em cabine de fluxo laminar. POP_MAL_LB_009_v01_PT Página 4 de 4 Figura 1: Câmara de Neubauer. Em vermelho: os 4 quadrantes que devem ser contados para determinar o número de células por mL. 7 8 REFERÊNCIAS • Protocol TBRU#8 “A Prospective Study of Shortening the Duration of Standar Short Course Chemotherapy from 6 Months to 4 Months in HIV-non-Infected Patients with Fully Drug-Susceptible, Non-cavitary Pulmonary Tuberculosis with Negative Sputum Cultures after 2 Months of Anti-TB Treatment”. • John E. Coligan et al editors. Current Protocols in Immnology. John Wiley & Sans Inc, 1994. Volume 03, Appendix 3 G. REGISTROS DOS ANEXOS Não se aplica. A versão atual deste POP foi traduzida a ____________________ e a versão traduzida entra em efeito em ___/___/_____. dd mm aa Assinatura do responsável: ______________________ POP_MAL_LB_010_v01_PT Procedimento Operacional Padrão Gerência de Malária Código POP POP_MAL_LB_010_v01_PT Título Separação, marcação, opsonização de plaquetas e avaliação da expressão de P-selectina em plaquetas. Idioma da versão original Português Escrito ou traduzido por: Revisado por: Aprovado por: Helena C. C. Coelho Paulo Nogueira, João Paulo Pimentel e Stefanie Lopes Marcus V. G. Lacerda Data & assinatura Data & assinatura Data & assinatura Emenda 1 Data de aplicação: Data da próxima revisão: Razão da emenda OBJETIVOS Este procedimento visa isolar, marcar e opsonizar plaquetas do sangue periférico. 2 • • • • 3 DEFINIÇÕES PBS - Phosphate buffered saline PGE1 - Prostaglandina E1 CMFDA – Diacetato de 5-clorometilfluoresceína, marcador fluorescente verde lipofílico, que entra no citoplasma das células e, por conta de ligações covalentes, não volta ao meio extracelular. PE – Phycoerythrin. APLICÁVEL A O preparado por este procedimento será usado em testes de fagocitose (POP_MAL_LB_011_v01_PT). 4 RESPONSABILIDADES Gerente da unidade, coordenador da subunidade e pessoal técnico. 5 POP’S RELACIONADOS POP_MAL_LB_011_v01_PT POP_MAL_LB_010_v01_PT 6 Página 2 de 2 PROCEDIMENTOS 6.1 Recursos necessários para o procedimento: 6.1.1 Aproximadamente 8 mL de sangue total com anticoagulante (em 2 tubos com citrato de sódio 3,2% de 4 mL). 6.2 Materiais necessários para o procedimento: 6.2.1 Tubos de polipropileno de 15 mL 6.2.2 Pipetas sorológicas estéreis (10 ml) 6.2.3 Pipetas ajustáveis de canal único (10 µL, 200 µL, 1000 µL) 6.2.4 Ponteiras estéreis (10 µL, 200 µL, 1000 µL) 6.2.5 Câmara de Neubauer ou aparelho automatizado para contagem de plaquetas 6.2.6 Contador de células 6.2.7 Microtubos de 2 mL 6.3 Equipamentos para o procedimento: 6.3.1 Cabine de fluxo laminar 6.3.2 Centrífuga refrigerada 6.3.3 Centrífuga Eppendorf 6.3.4 Microscópio óptico com lente objetiva de aumento de 40x 6.3.4 PHmetro 6.4 Reagentes necessários para o procedimento: • • • • • • • PBS (suplementado com 0,5% albumina bovina, 2 mM EDTA, e 0,1% azida sódica) Ácido cítrico 0,15M PGE1 CellTracker® Green CMFDA (Molecular Probes –Invitrogen®) 50 µg/frasco Meio de cultura RPMI 1640 Anticorpo monoclonal IgG2a anti MHC classe I humano (W6/32) Anticorpo anti CD62P humano conjugado com PE (BD Pharmingen™) 6.5 Preparação dos reagentes: CMFDA Solução de Estoque CMFDA.................................................................................................................................................................................................................................50 µg DMSO................................................................................................................................................................................................................................100 µL Deixar o frasco com 50 µg de CMFDA em temperatura ambiente por 20 minutos e reconstituir em DMSO (dimetilsulfóxido anídrico). Separar alíquotas de 10 µL em tubos de Eppendorfs (solução de estoque). POP_MAL_LB_010_v01_PT Página 3 de 3 CMFDA Solução de Trabalho CMFDA Solução de estoque............................................................................................................................................................................10 µL RPMI......................................................................................................................................................................................................................................25 µL Ácido Cítrico 0,15M Acido Cítrico.........................................................................................................................................3g Água destilada qsp..............................................................................................................................100mL 6.6 Armazenamento dos reagentes: Ácido Cítrico – Armazenar à temperatura ambiente. PBS – Armazenar à temperatura de 2 a 8º C. PGE-1 – Armazenar à temperatura de -20 º C. CellTracker® Green – Armazenar à temperatura de -20 º C. Meio de cultura RPMI 1640 - Armazenar à temperatura de 2 a 8º C. Anticorpo monoclonal IgG2a anti MHC classe I humano (W6/32) - Armazenar à temperatura de -20º C. 6.7 Procedimento para separação e marcação de plaquetas: 6.7.1 Centrifugar os tubos a 1.500 rpm (130 a 200 g) por 10 minutos a temperatura 24 º C; 6.7.2 Recuperar o sobrenadante (PRP) e transferir para um tubo falcon; 6.7.3 Acidificar o PRP com ácido cítrico 0,15 M a pH 6,4; 6.7.4 Acrescentar PGE-1 (concentração final de 0,3 µM); 6.7.5 Centrifugar a 3.000 rpm (1.600g) por 10 minutos a temperatura 24 º C; 6.7.6 Descartar o sobrenadante e resuspender em 1 mL de PBS e PGE-1 (concentração final de 0,3 µM); 6.7.7 Acrescentar 5 µg de CMFDA e deixar a temperatura ambiente, protegido da luz, por 60 minutos; 6.7.8 Centrifugar a 3.000 RPM (1.600g) por 10 minutos a temperatura 24 º C; 6.7.9 Descartar o sobrenadante e lavar as plaquetas com PBS e PGE-1 (duas vezes); 6.7.10 Após a última lavagem, resuspender as plaquetas em 1 mL de meio RPMI; 6.7.11 Contar as plaquetas e ajustar para 50x106/mL. Nota: Estes procedimentos devem ser realizados em cabine de fluxo laminar. 6.8 Contagem de plaquetas na camâra de neubauer: 6.8.1.Retirar uma alíquota de 10µL da solução com plaquetas e diluir em 1000 µL de PBS; 6.8.2 Deixar a camâra de neubauer em repouso em camâra úmida por 10 minutos; POP_MAL_LB_010_v01_PT Página 4 de 4 6.8.3 Contar as plaquetas no quadrante central da câmara de Neubauer (área 5 da figura 1); 6.8.4 Multiplicar o valor encontrado por 1.000. Plaquetas/µL = Quadrante central x 1.000. 6.9 Procedimento opsonização de plaquetas (para realizar o controle positivo): 6.9.1 Separar 400 µL da solução de plaquetas que foi previamente ajustada. 6.9.2 Acrescentar 3,5 µL de anticorpo monoclonal IgG2a anti MHC classe I humano (W6/32); 6.9.3 Incubar por 30 minutos á temperatura ambiente, protegido da luz; 6.9.4 Lavar as plaquetas com o PBS (duas vezes); 6.9.5 Resuspender em 400 µL de meio RPMI; 6.9.6 Armazenar a 20ºC até o teste de fagocitose. 6.10 Procedimento para avaliar a expressão de P-selectina em plaquetas 6.10.1 Incubar 100µl de PRP com 4µL anticorpo anti CD62P humano conjugado com PE (BD Pharmingen™) por 30 min a 37°C. 6.10.2 Lavar duas vezes com PBS suplementado e PGE-1. 6.10.3 Acrescentar 200 µL de solução fixadora de células (paraformoldeído e cacodilato) e analisar a expressão de CD62P (P-selectina) por citometria de fluxo. 6.11 Procedimento para avaliar a marcação de CMFDA e expressão de P-selectina no citômetro. 6.11.1 Seleciona (gate) as plaquetas pelo volume (forward scatter/FSC-H) e pela densidade interna (side scatter/SSC-H) e avalia o porcentual de células positivas para CMFDA (no canal FL1-H) ou PE (no canal FL2-H). Nota: As células marcadas com CMFDA ficam fluorescentes e viáveis por até 24 horas. Proteger a amostra da luz até a análise por citometria. 7 REFERÊNCIAS • Baker, G. R., et al. A simple, fluorescent method to internally label platelets suitable for physiological measurements. Am J Hematology, v. 56, Sep, p. 15-25. 1997. • Lim, J., et al. Flow cytometric monocyte phagocytic assay for predicting platelet transfusion outcome. Immunohematology, v. 42, Mar, p. 309-316. 2002. • Lacerda, M. V. G. Manifestações Clínicas e Patogênese da plaquetopenia na malária. Universidade de Brasília, Brasília, 2007. • Honda, S., M. Saito, et al. Increased phagocytosis of platelets from patients with secondary dengue virus infection by human macrophages. Am J Trop Med Hyg, v.80, n.5, May, p.841-5. 2009. POP_MAL_LB_010_v01_PT • 8 Página 5 de 5 Semple, J. W., et al. Platelet-bound lipopolysacharide enhances Fc receptor-mediated phagocytosis of IgG opsonized platelets. Blood, v.109, n. 11, Jun, p. 4803-5.2007. REGISTROS DOS ANEXOS Não se aplica. ANEXOS Figura 1: Câmara de Neubauer. Número 5 é o quadrante central que deve ser contado para obter o número de plaquetas. A versão atual deste POP foi traduzida a ____________________ e a versão traduzida entra em efeito em ___/___/_____. dd mm aa Assinatura do responsável: ______________________ POP_MAL_LB_011_v01_PT Procedimento Operacional Padrão Gerência de Malária Código POP POP_MAL_LB_011_v01_PT Título Teste de fagocitose de plaquetas por células THP-1 Idioma da versão original Português Escrito ou traduzido por: Revisado por: Aprovado por: Helena C. C. Coelho Paulo Nogueira, João Paulo Pimentel e Stefanie Lopes Marcus V. G. Lacerda Data & assinatura Data & assinatura Data & assinatura Emenda 1 Data de aplicação: Data da próxima revisão: Razão da emenda OBJETIVOS Descrever o procedimento de fagocitose de plaquetas por células THP-1. 2 DEFINIÇÕES Fagocitose: processo no qual partículas estranhas são envolvidas e destruídas por células especializadas ou fagócitos. CMFDA: diacetato de 5-clorometilfluoresceína, marcador fluorescente verde lipofílico, que entra no citoplasma das células e, por conta de ligações covalentes, não volta ao extracelular. Citometria de fluxo: técnica biofísica de análise qualitativa e quantitativa de partículas, biológicas ou não, em suspensão monodispersa em meio líquido. Celulas THP-1: linhagem celular de leucemia monocítica aguda humana. PMA: Forbol 12-miristato 13-acetato (Phorbol Miristate Acetate). 3 APLICÁVEL A O procedimento se aplica apenas à pesquisa experimental. POP_MAL_LB_011_v01_PT 4 RESPONSABILIDADES Gerente da unidade, coordenador da subunidade e pessoal técnico. 5 POP’S RELACIONADOS POP_MAL_LB_010_v01_PT 6 6.1 PROCEDIMENTOS Materiais necessários para o procedimento: 6.1.2 Células THP-1 mantidas em meio de cultura RPMI 1640 com SFB 10% a 37ºC 6.1.3 Placa de cultura de tecido com 24 escavações 6.1.4 Ponteiras para pipetas automáticas 6.1.5 Pipetas automáticas de 20 µL, 200 µL e 1000 µL 6.1.6 Gelo 6.1.7 Tubos de ensaio de polipropileno de 5 mL 6.1.8 Eppendorfs 6.1.9 Lâminas e lamínulas 6.1.10 Tubos para citometria 6.2 Equipamentos necessários para o procedimento: 6.2.1 Destilador de água 6.2.2 Balança semi-analítica 6.2.3 Estufa a 37ºC 6.2.4 Centrífuga refrigerada 6.2.5 Capela de fluxo laminar 6.2.6 Câmara de Neubauer ou aparelho automatizado para contagem de células. 6.2.7 Citômetro de fluxo 6.3 Reagentes necessários para o procedimento: 6.3.1 PBS 1x 6.3.2 Meio de cultura RPMI 1640 6.3.3 Soro fetal bovino (SFB) 6.3.4 Gentamicina 6.3.5 Solução para fixar as células (cacodilato e paraformaldeído) 6.3.6 PMA ( Forbol 12-miristato 13-acetato) Página 2 de 5 POP_MAL_LB_011_v01_PT Página 3 de 5 6.4. Preparação dos reagentes: PBS 10x Fosfato de sódio bibásico Na2HPO4...................................................................................................................................11,94 g Fosfato de sódio hidratado NaH2PO4.H2O........................................................................................................................... 2,56 g Cloreto de sódio NaCl............................................................................................................................. .................87,66 g Água destilada H2O..........................................................................................................................................................1 L Adicionar aproximadamente 900mL de água destilada estéril em um Erlenmeyer. Colocar o fosfato de sódio e o fosfato de sódio hidratado até que se dissolvam completamente. Ajustar o pH para 7,2-7,4 com NaOH 1 N ou HCl 1 N. Depois de ajustar o pH, adicionar o NaCl até que se dissolva completamente. Ajustar para 1 L com água destilada. Fracionar em frascos para armazenamento de reagentes estéreis. PBS 1x Fazer uma diluição 1:10 com água destilada. Ajustar o pH para 7,2-7,4 com NaOH 1 N ou HCl 1 N. RPMI com 10% de SFB e 0,1% de gentamicina. Soro fetal bovino ................................................................................................................................................................................5 mL RPMI 1640........................................................................................................................................................................................................................ 45 mL Gentamicina ......................................................................................................................................... 50 µL 6.5. Armazenamento dos reagentes: Os reagentes utilizados nesse procedimento devem ser armazenados à temperatura de 2 –8º C. 6.6 Estimulação das células THP-1 6.6.1 Incubar 1x106 células THP-1 por poço (placa de cultura com 24 escavações) com RPMI 1640 e PMA (60ng) por 2 horas, em estufa a 37º C e 5% de co2. 6.7 Procedimento para o teste de fagocitose: 6.7.1 Após 2 horas de incubação com PMA, aspirar o sobrenadante de cada poço da placa e lavá-los com RPMI 1640 2 vezes. 6.7.2 Adicionar 900 µL de RPMI 1640. 6 6.7.3 Adicionar 100 µL da solução de plaquetas marcadas com CMFDA (50x10 /mL), com (controle positivo) ou sem (pacientes e controle negativo) anticorpo monoclonal IgG2a anti MHC classe I humano (W6/32) em cada poço. 6.7.5 Centrifugar a placa 500 g por 5 minutos à temperatura de 37ºC. POP_MAL_LB_011_v01_PT Página 4 de 5 6.7.4 Incubar a placa em estufa à 37ºC com 5% de Co2 por 60 minutos. 6.7.5 Interromper a fagocitose colocando a placa em uma vasilha com gelo. 6.7.6 Retirar o sobrenadante. 6.7.7 Acrescentar 200 µL de PBS 1X em cada poço e retirar as células com o auxílio da ponteira. 6.7.8 Passar as células para os tubos de citometria. 6.7.9 Lavar as células 3 vezes com PBS 1X, centrifugando os tubos a uma velocidade de 1.300 RPM por 7 minutos. 6.7.10 Descartar o sobrenadante e acrescentar 200 µL de solução fixadora de células (paraformoldeído e cacodilato). 6.7.11 Armazenar à temperatura 2-8 ºC até o momento da leitura no citômetro. 6.8 Procedimento para leitura da fagocitose por citometria de fluxo: 6.8.1 Em citômetro de fluxo, fazer uma seleção prévia (gating) das células THP-1, pelo volume (forward scatter/FSC-A) e pela densidade interna das células contidas no tubo de ensaio (side scatter/SSC-A), excluindo-se, portanto, as plaquetas marcadas não fagocitadas. 6.8.2 Fazer e leitura no canal de fluorescência 1 (FL1-H). 6.8.3 A variável analisada foi a mediana de intensidade fluorescência emitida em FL1-H por cada célula THP1 contadas no gate e a porcentagem de células THP-1 positivas para CMFDA. Nota: A fluorescência medida pela citometria de fluxo nas células THP-1 corresponde não apenas às plaquetas internalizadas durante a fagocitose, mas também às plaquetas aderidas à superfície dos monócitos. 7 8 REFERÊNCIAS Auwerx J. The human leukemia cell line, THP-1: a multifacetted model for the study of monocyte-macrophage differentiation. Experientia 1991;47:22-31. Honda, S., M. Saito, et al. Increased phagocytosis of platelets from patients with secondary dengue virus infection by human macrophages. Am J Trop Med Hyg, v.80. 2009. Lim, J., et al. Flow cytometric monocyte phagocytic assay for predicting platelet transfusion outcome. Immunohematology, v. 42, Mar, p. 309-316. 2002. Lacerda, M. V. G. Manifestações Clínicas e Patogênese da plaquetopenia na malária. Universidade de Brasília, Brasília, 2007. Richmond JY, Mckinney RW. Biossegurança em laboratórios biomédicos e de microbiologia. Brasília: Ministério da Saúde: Fundação Nacional de Saúde; 2001. REGISTROS DOS ANEXOS Não se aplica. POP_MAL_LB_011_v01_PT Página 5 de 5 A versão atual deste POP foi traduzida a ____________________ e a versão traduzida entra em efeito em ___/___/_____. dd mm aa Assinatura do responsável: ______________________ 69 ANEXO D: Parecer do CEP da FMT-HVD 91 ANEXO E: Artigos publicados Plasma Circulating Nucleic Acids Levels Increase According to the Morbidity of Plasmodium vivax Malaria Bernardo S. Franklin1*, Barbara L. F. Vitorino1, Helena C. Coelho2, Armando Menezes-Neto1, Marina L. S. Santos1, Fernanda M. F. Campos1, Cristiana F. Brito1, Cor J. Fontes3, Marcus V. Lacerda2, Luzia H. Carvalho1* 1 Laboratório de Malária, Centro de Pesquisa René, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil, 2 Gerência de Malária, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil, 3 Departamento de Clı́nica Médica, Universidade Federal de Mato Grosso, Cuiaba, Mato Grosso, Brazil Abstract Background: Given the increasing evidence of Plasmodium vivax infections associated with severe and fatal disease, the identification of sensitive and reliable markers for vivax severity is crucial to improve patient care. Circulating nucleic acids (CNAs) have been increasingly recognized as powerful diagnostic and prognostic tools for various inflammatory diseases and tumors as their plasma concentrations increase according to malignancy. Given the marked inflammatory status of P. vivax infection, we investigated here the usefulness of CNAs as biomarkers for malaria morbidity. Methods and Findings: CNAs levels in plasma from twenty-one acute P. vivax malaria patients from the Brazilian Amazon and 14 malaria non-exposed healthy donors were quantified by two different methodologies: amplification of the human telomerase reverse transcriptase (hTERT) genomic sequence by quantitative real time PCR (qPCR), and the fluorometric dsDNA quantification by Pico Green. CNAs levels were significantly increased in plasma from P. vivax patients as compared to healthy donors (p,0.0001). Importantly, plasma CNAs levels were strongly associated with vivax morbidity (p,0.0001), including a drop in platelet counts (p = 0.0021). These findings were further sustained when we assessed CNAS levels in plasma samples from 14 additional P. vivax patients of a different endemic area in Brazil, in which CNAS levels strongly correlated with thrombocytopenia (p = 0.0072). We further show that plasma CNAs levels decrease and reach physiological levels after antimalarial treatment. Although we found both host and parasite specific genomic sequences circulating in plasma, only host CNAs clearly reflected the clinical spectrum of P. vivax malaria. Conclusions: Here, we provide the first evidence of increased plasma CNAs levels in malaria patients and reveal their potential as sensitive biomarkers for vivax malaria morbidity. Citation: Franklin BS, Vitorino BLF, Coelho HC, Menezes-Neto A, Santos MLS, et al. (2011) Plasma Circulating Nucleic Acids Levels Increase According to the Morbidity of Plasmodium vivax Malaria. PLoS ONE 6(5): e19842. doi:10.1371/journal.pone.0019842 Editor: Fabio T. M. Costa, State University of Campinas, Brazil Received December 2, 2010; Accepted April 18, 2011; Published May 17, 2011 Copyright: ß 2011 Franklin et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: This work was supported by the Research Foundation of Minas Gerais State (FAPEMIG), The Brazilian National Research Council (CNPq), and Oswaldo Cruz Foundation (FIOCRUZ, PAPES V), Pronex Malaria, CNPq/DECIT/MS; scholarships from FAPEMIG (FMFC), CNPq-FIOCRUZ (BSF), and CNPq (LHC, ATC, and CFAB) are also acknowledged. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Competing Interests: The authors have declared that no competing interests exist. * E-mail: [email protected] (BSF); [email protected] (LHC) true spectrum of clinical disease in endemic areas remains unknown [8]. The few studies that have addressed the pathogenesis of vivax malaria showed that the different clinical presentations of vivax malaria might be related to the intensity of proinflammatory responses [9,10,11,12]. Inflammatory cytokines such as TNF-alpha and antioxidant agents have been associated with clinical severity of P. vivax infections [13,14]. Nevertheless, data validating their sensitivity and reliability as predictors of severe disease are scarce. Consequently, the identification of highly sensitive biomarkers for malaria vivax morbidity is crucial to prevent life threatening complications. Most of the DNA and RNA in the human body are located within cells, but small physiologic amounts of nucleic acids can also be found circulating freely in the blood. These DNA, RNA, and small RNA molecules may arise from both: i) active release of nucleic acids from living cells, or ii) break down of dying cells that release their contents into the blood. The term Circulating Nucleic Introduction Plasmodium vivax malaria threatens almost 40% of the world’s population, with an upper estimate of 300 million cases each year [1]. Fortunately, after a long time being neglected under the contemptible designation of benign infection, vivax malaria has gained increasing attention in recent years. In the last decade, a series of case reports and longitudinal studies carried out in India [2,3], Papua in Indonesia [4,5], Papua New Guinea [6] and Brazil [7] have demonstrated association of P. vivax infections with severe or even fatal outcomes, with incidence and morbidity rates similar to those for P. falciparum. Consequently, costs due to hospitalization have significantly raised as well as the need for intensive care, which helped vivax malaria to be placed in a higher status of public health emergency [7]. Compared to falciparum malaria, there are remarkably large knowledge gaps in the pathophysiology of vivax malaria, and the PLoS ONE | www.plosone.org 1 May 2011 | Volume 6 | Issue 5 | e19842 Circulating Nucleic Acids: Malaria Severity Marker malaria, evaluated here by scoring patients’ clinical and hematological parameters. Acids (CNAs) refers to cell free segments of DNA or RNA found in the bloodstream. Their existence in human plasma was first reported more than 60 years ago [15], however, no interest was shown in the presence of DNA in the circulatory system until high DNA levels were demonstrated in the blood of patients with cancer [16]. Elevated plasma CNAs levels have now been detected during other acute illnesses and injuries. Examples include lupus erythematosus [17,18], diabetes [19], trauma [20], stroke [21], and myocardial infarction [22,23]. Furthermore, high usefulness of CNAs levels in the diagnosis of infections in febrile patients and as a prognostic marker in septic patients has been shown [24]. Their applications in clinical diagnosis and prognosis have continuously grown and further studies on CNAs showed that these nucleic acids could be a powerful non-invasive approach to a wide range of clinical disorders [25]. Aiming at finding sensitive and reliable biomarkers for P. vivax, herein we tested the usefulness of plasma CNAs levels as markers for the morbidity of vivax malaria. We investigated the CNAs levels in plasma from P. vivax infected patients with different clinical presentations and found significant higher levels of CNAs in P. vivax infected patients, as compared to age-matched healthy donors. We found that plasma CNAs levels were closely correlated with variations in body temperature, platelets counts, and increased in a linear fashion with the clinical spectrum of vivax Results CNAs levels were measured in plasma from P. vivax patients by qPCR amplification of the genomic sequence of the human single copy gene hTERT and by fluorometric quantification of the dsDNA content with the Quant-iTTM Pico Green Reagent. The amplification plot of hTERT shows that the mean cycle threshold (Ct) achieved in CNAs samples from P. vivax patients (mean Ct 28.661.5) was significantly lower than the one reached in samples from healthy donors (mean Ct 31.560.79) (p,0.0001) (Fig. 1A and 1C). As the amount of DNA theoretically doubles every cycle during the exponential phase of qPCR, these results suggest that the levels of this target sequence in the CNAs preparation from P. vivax patients are at least 8-fold higher than in healthy donors. In fact, a difference of 11,66 between the hTERT levels in plasma from P. vivax patients (1.278 pg/ml) and healthy donors (0.1098 pg/ml) was confirmed when a standard curve, built from a serial dilution of an amplified sample of hTERT sequence, was used to interpolate the hTERT concentrations in the samples (Figure S1). To normalize the amount of nucleic acids purified and inputted in qPCR experiments, 5 ng of salmon sperm DNA was Figure 1. Increased CNAs levels in plasma from P. vivax patients. CNAs levels were quantified in plasma from acute P. vivax patients or healthy donors by measuring the amplification of the hTERT human genomic sequence (A) as compared to the amplification of the O. keta Y chromosome marker (B) for the salmon sperm DNA spiked into plasma samples before CNAs purification. (C) Comparison of the mean cycle threshold (Ct) from the hTERT or the O. keta Y chromosome marker in CNAs samples purified from P. vivax patients or non-exposed healthy donors. (D) Fluorometric dsDNA quantification of CNAs levels in plasma by the Quant-iTTM Pico Green methodology. Statistical analyses were performed using the Mann-Whitney test. A p value,0.05 was considered significant. doi:10.1371/journal.pone.0019842.g001 PLoS ONE | www.plosone.org 2 May 2011 | Volume 6 | Issue 5 | e19842 Circulating Nucleic Acids: Malaria Severity Marker cancer [26]. Both platelets [27] and platelet derived microparticles (PMPs) [10] have been associated with clinical manifestations of malaria. We thus investigated if plasma CNAs levels may be associated with thrombocytopenia and/or others hematological parameters, such as WBC and RBC counts, hemoglobin and hematocrit levels, mean corpuscular hemoglobin (MHC) and mean platelet volume (MPV). Among all parameters investigated, we found a strong negative correlation between CNAs levels, assessed by dsDNA quantification with Pico Green, and platelet counts (spearman r = 20.6451, p = 0.0021) (Fig. 3A). These findings were confirmed when the mean Ct obtained after qPCR amplification of the genomic sequence for hTERT gene was plotted against platelet levels (Pearson r = 0.6479, p = 0.0027) (Fig. 3B). To further confirm the association between CNAS levels and P. vivax morbidity, we assessed the CNAS levels in plasma from an additional group of P. vivax patients whose selection was carriedout in a different hospital of the Amazon area, Cuiaba, MT (,1500 miles from Manaus, AM). Once the clinical protocol used at the hospital in Cuiaba was different from Manaus (FMT-HVD), we were unable to build a similar clinical score. For this reason, we compared the CNAS levels in these samples with thrombocytopenia, a common hematological disturbance seen in malaria morbidity in the Amazon area [28]. By analyzing the amplification of hTERT, it was possible to demonstrate a significant correlation (Pearson r = 0.745, p = 0.0072) between CNAS levels and thrombocytopenia in P. vivax patients from Cuiaba (Figure S2A). As this study provides the first description of circulating nucleic acids in malaria infection, we evaluate CNAs levels in a small group of P. falciparum patients who sought for care at Cuiaba’s hospital (n = 9). CNAs levels were significantly higher in samples from falciparum malaria patients as compared to healthy donors (p = 0.038; not shown). Importantly, CNAs levels in patient’s plasma clearly correlated with thrombocytopenia (Figure S3A) and the occurrence of fever during acute P. falciparum infection (Figure S3B). spiked into plasma samples before CNAs purification (Fig. 1B). As expected, the specific sequence of salmon sperm DNA was similarly amplified in P. vivax patients and healthy donors plasmas (Fig. 1B and 1C, p = 0.6925). The increased levels of total CNAs in plasma from P. vivax patients were confirmed by quantification of dsDNA with QuantiTTM Pico Green Reagent (Fig. 1D) (1494.761169.7 in vivax patient vs. 689.036131.54 pg/ml in healthy donors, p,0.0001). To investigate the potential of CNAs as biomarkers for malaria morbidity, we compared the levels of CNAs in plasma from patients with different clinical presentations, and scored according to clinical and hematological parameters (Table S1). Figure 2A illustrates the qPCR amplification of the hTERT genomic sequence in plasma from four P. vivax patients and four unexposed-controls. Sensitive changes in hTERT amplification were observed according to the slightest increase in the clinical score. Furthermore, significantly higher levels of CNAs were found in plasma isolated from patients who presented fever at the time of blood collection (febrile patients) compared to plasma samples from non-febrile patients, as revealed by the two different methodologies: amplification of hTERT genomic sequence by qPCR (p = 0.0376) and the quantification of dsDNA content with Quant-iTTM Pico Green (p = 0.0023) (data not shown). To confirm whether CNAs levels reflect disease morbidity, the sum of scores attributed to each patient (Table S1) was plotted against the CNAs levels detected in plasma with the Quant-iTTM Pico Green or the mean cycle threshold detected by qPCR amplification of the hTERT genomic sequence (Fig. 2B). A clear correlation (Spearman r = 0.4795, p = 0.0034) was found between the CNAs levels and the intensity of clinical malaria. These data were confirmed when the Cts from the amplification of hTERT were analyzed (Pearson r = 20.7111, p,0.0001) (Fig. 2B). Platelet activation exerts thrombotic and pro-inflammatory functions and their unbalanced activation contributes to lifethreatening outcomes in diseases such as heart attack, stroke, and Figure 2. Plasma CNAs levels reliably correlate with the P. vivax clinical spectrum. CNAs levels were quantified in plasma from P. vivax patients with different clinical presentations. (A) Amplification of the genomic sequence of hTERT by qPCR in four healthy controls, and P. vivax patients (Pv_01 to 04) scored according to clinical/hematological parameters. Only four patients are shown for illustration purposes. (B) Correlation between the final clinical score of P. vivax patients (n = 21) and their plasma CNAs levels (pg/ml) (Spearman r = 0.6092, p = 0.0034), or their Ct for the amplification of the hTERT (Pearson r = 20.7897, p,0.0001). doi:10.1371/journal.pone.0019842.g002 PLoS ONE | www.plosone.org 3 May 2011 | Volume 6 | Issue 5 | e19842 Circulating Nucleic Acids: Malaria Severity Marker Figure 3. Correlation between plasma CNAs levels and malaria vivax thrombocytopenia. Correlation of plasma CNAs levels with platelet counts in symptomatic vivax malaria patients. The dsDNA levels measured by Pico Green (A) and the mean cycle threshold for hTERT amplification (B) were plotted against the platelet counts. Spearman (r = 20.6451) and Person (r = 0.6479) correlations were used respectively in A and B. A p value,0.05 was considered significant. doi:10.1371/journal.pone.0019842.g003 It is reasonable to speculate that parasite specific DNA is present among the CNAs circulating in plasma. To confirm this, we assessed the levels of P. vivax derived-CNAs in plasma in an attempt to investigate their use as a streamline diagnostic and prognostic tool. For this purpose, specific primers were designed to amplify a genomic sequence unique to P. vivax. As expected, amplification of this genomic sequence was not detected in samples from healthy donors (Fig. 5A). Furthermore, although parasite specific CNAs levels were weakly associated with the presence of fever at the time of blood sampling (Ct vs. body temperature, r = 20.5535, p = 0.0497) (Fig. 5B), they were not In six patients attended at the FMT-HVD (Manaus, AM), the CNAs levels were further assessed 7 days after antimalarial chemotherapy. As shown in Fig. 4A, CNAs levels decreased after specific treatment (p = 0.0428). The comparison of the mean Ct obtained after qPCR amplification of the hTERT in plasma samples from acute vs. treated patients confirmed these findings (p = 0.0243) (Fig. 4B). Seven days post-treatment, the platelet counts returned to physiological levels (Fig. 4C). These data were further confirmed in patients from Cuiaba area (n = 10) (Figure S2B). In those samples, CNAs levels were significantly diminished after 7–10 days of chemotherapy. Figure 4. Plasma CNAs levels decrease after anti-malarial chemotherapy. For 6 patients who showed up during convalescence, the CNAs levels in plasma were assessed by (A) fluorescence quantification of dsDNA with the Pico Green methodology or (B) comparison of the mean cycle threshold for the qPCR amplification of hTERT genomic sequence. (C) platelet counts measured during admission and convalescence. Statistics were performed as follow: Mann-Whitney test for panel A, and two tailed t test for panels b and C. A p value,0.05 was considered significant. doi:10.1371/journal.pone.0019842.g004 PLoS ONE | www.plosone.org 4 May 2011 | Volume 6 | Issue 5 | e19842 Circulating Nucleic Acids: Malaria Severity Marker Figure 5. Plasmodium specific genomic sequences circulating in plasma from P. vivax patients. The presence and levels of P. vivax specific plasma CNAs were investigated in samples from P. vivax patients with different clinical presentations by qPCR amplification of a specific P. vivax genomic sequence. (A) For illustration purpose, qPCR amplification of a P. vivax specific genomic sequence in four healthy controls, and four P. vivax patients (Pv_01 to 04) scored according to clinical/hematological parameters is shown. (B) Pearson correlation between the Ct of parasite specific genomic sequence and the body temperature measured at the time of blood collection (r = 20.5535, p = 0.0497) or the clinical score of the patients (r = 20.3604, p = 0.2056). A p value,0.05 was considered significant. doi:10.1371/journal.pone.0019842.g005 associated with the clinical spectrum of the disease (r = 20.3604, p = 0.2056) (Fig. 5C). Also, parasite specific CNAs genomic sequences did not reflect peripheral parasitemia (r = 20.3735, p = 0.1884). malaria patients. The kinetics by which CNAs levels rise and fall during acute malaria requires further investigation. The source of CNAs levels during malaria remains unknown. Apoptosis and necrosis have been pointed as the main source of cell-free DNA circulating in blood [41,42]. Usually apoptosisinduced cleavage of DNA results in DNA fragments of approximately 180 bp; thus, quantification of a small and a long PCR product allows indirect inferences about the underlying celldeath entity. Although apoptosis has not been directly addressed in this study, our results do not rule out this possibility, as most of the fragments amplified were in the range of 90 bp to be suitable for qPCR analysis. In malaria, apoptosis is a process highly represented in the annotation of gene expression profile of acute infection as revealed by several microarray studies involving both human and mouse models [43,44]. Nevertheless, it was recently shown that apoptosis and or necrosis might not be the main sources of CNAs in plasma of patients with a variety of other conditions, and active release of free circulating DNA by living cells was pointed as a plausible mechanism [45]. At this time, it is unknown whether apoptosis and/or DNA release contribute to the higher levels of cell-free DNA observed here in P. vivax patients. Thrombocytopenia (platelet counts ,150,000/mm3) is a common hematological finding in patients with Plasmodium infection particularly in vivax malaria [28,46]. Recent studies carried out in northwest India highlighted the higher occurrence of severe thrombocytopenia in P. vivax in comparison to either P. falciparum monoinfection or mixed infections [47,48]. We show here that CNAs levels in vivax malaria strongly correlate with a drop in platelet counts, a data confirmed in two different hospitals of the Amazon area. Although it is not possible, at this point, to speculate on the role of platelets in the increase of CNAs levels in plasma, our results indicate that CNAs might contribute to cell activation and inflammation that are associated with malaria infection. Although P. falciparum infection was not the main scope of the present study, by having access to a small group of patients, it was possible to demonstrate that CNAS levels are increased during acute P. falciparum infection. In this malaria model, increased CNAs levels in plasma were associated with thrombocytopenia and the occurrence of fever at the time of blood collection (Figure Discussion This study is the first to investigate the use of plasma levels of cell-free circulating nucleic acids (CNAs) as a marker of P. vivax malaria morbidity. We show here that CNAs levels in plasma from P. vivax patients increase linearly with the clinical spectrum of the disease. This confirms that this powerful marker can also be used in malaria as a sensitive indicator of inflammation and injury. In fact, plasma CNAs levels have been regarded as a noninvasive universal cancer biomarker [29] as their levels have been shown to be distinctly increased in most patients with solid tumors (E.g. lung [30], colon [31], cervical [32], ovarian [33], breast [34], testis [35], bladder [36], and prostate [37]), allowing their discrimination from patients with nonmalignant disease or healthy individuals. Plasma CNAs levels have also been associated with the severity of several other inflammatory disorders [17,18,19,20,21,22,23]. Other molecules circulating in plasma, such as adhesion molecules [38], pro-inflammatory cytokines [39], the superoxide dismutase-1 [14], and, more recently, microparticles [10], have been suggested as biomarkers for human P. vivax malaria as their levels are often associated with malaria clinical manifestations. Nevertheless, we believe that CNAs offer a more sensitive tool since qPCR amplification of hTERT, a specific single copy human genomic sequence, revealed that levels as low as 100 fentogram of CNAs could be detected circulating in plasma, and were able to discriminate different degrees of disease morbidity (Figure S1). We show here that plasma CNAs reach physiologic levels after 7–10 days of antimalarial chemotherapy and patient’s recovery. It has been shown that clearance of cell-free DNA from the bloodstream occurs rapidly; the half-life time of fetal DNA in the blood of mothers after delivery was approximately 16 minutes [40]. Cell-free DNA seems to be eliminated by different manners including renal and hepatic mechanisms as well as degradation by plasma nucleases [29]. It is unknown whether a different clearance time is also contributing to the higher levels of cell-free DNA in PLoS ONE | www.plosone.org 5 May 2011 | Volume 6 | Issue 5 | e19842 Circulating Nucleic Acids: Malaria Severity Marker number of P. vivax malaria cases in Latin America [54]. In 2009, a total of 19,698 malaria cases were reported in Manaus with a large dominance of vivax (92.6%) over falciparum malaria [55]. Individuals who sought care at FTM-HVD and whose thick blood smear was positive for P. vivax were invited to participate in the study. Exclusion criteria included: (i) refuse or inability to sign the informed consent; (ii) age ,18 years; (ii) pregnant women; (ii) mixed infection with P. falciparum or P. malariae; (iv) any other comorbidity that could be traced. Twenty-one patients, aging 21 to 72 years, were enrolled in the study. Selected volunteers were all negative for P. falciparum and/or Plasmodium malariae infection by both microscopic examination and a nested-PCR, carried out latter in our laboratory. Clinical and demographical data were acquired through a standardized questionnaire, and the hematological profiles were assessed by automated complete blood count carried out at FMTA hematology facility. Table 1 summarizes demographic, epidemiological, parasitological and hematological data of P. vivax infected-volunteers. The study was approved by the Ethical Review Board of the René Rachou Research Center, FIOCRUZ, Brazilian Ministry of Health (Reporter CEPSH/CPqRR 05/2008). All participants were instructed about the objectives of the study and signed an S3). While these results support the association between CNAS and malaria, the size of our sample precludes any definitive comparison between P. falciparum and P. vivax infection. Further studies will be required to proper address this question. In uncomplicated P. vivax malaria, we have recently shown that the levels of circulating platelet-derived microparticles (PMPs) are associated with the clinical spectrum of disease, including fever and prolonged time with malaria symptoms [10]. The fact that CNAs levels as well as PMPs were higher in febrile and symptomatic vivax patients suggests a possible association with PMP and CNAs. MPs are important carriers of membrane components or bioactive molecules and their association with nucleic acids has been proposed [49]. The presence of host and/or parasite DNA associated with MPs circulating in plasma and their role in inflammation is currently being addressed in your laboratory. To investigate if parasite derived-sequences are part of the pool of nucleic acids circulating in blood during vivax malaria, and if these sequences correlate with disease morbidity, we assessed the levels of a parasite specific single copy genomic sequence in CNAs purified from P. vivax patients. Although our results revealed that host and parasite sequences are part of the total plasma CNAs levels in acute P. vivax infected patients, the levels of a host specific (hTERT) but not parasite specific sequence correlated with vivax clinical disease. These results are in agreement with a recently study carried out in the Amazon area in which high parasitemia was not the rule among patients with severe disease according to the WHO criteria [50]. Whether CNAs are merely inert debris of cellular injury, or if they possess pro-inflammatory properties and are, therefore, players in the immunopathogenic basis of malaria requires further investigation. Although at this point is not possible to draw conclusions, their role in the inflammatory response during malaria cannot be rule out. In fact, it is well known that dying cells spill their content and release a myriad of endogenous proinflammatory danger signals, including proteins, nucleic acids, extracellular matrix components, lipid mediators and adenosine triphosphate (ATP) [51]. These endogenous danger signals have been shown to play important roles in inflammation [51,52,53]. As human and parasite derived nucleic acid sequences have been shown to posses immune-stimulatory properties, the implication of CNAs in cellular activation and in innate immunity is likely. Likewise, the frequency of immune stimulatory vs. non-stimulatory circulating nucleic acids in plasma from patients with different clinical outcomes would provide important insights into the role of CNAS in malaria pathogenesis. In conclusion, we show that host circulating nucleic acids in plasma constitute a reliable and non-invasive biomarker to evaluate vivax malaria morbidity. CNAs levels were closely associated with P. vivax malaria clinical spectrum, and may have a role in malaria-induced inflammation. Given the enormous economic scourge of P. vivax in endemic areas, plasma CNAs levels provide a welcome prognostic tool to rapidly identify potentially severe cases and improve clinical management. Table 1. Characteristics of the Plasmodium vivax patients enrolled in the study. CHARACTERISTICS Demographical and epidemiological Sex, male/female, proportion 13/8 Age, median, range 49 (21–72) Nu of previous malaria episodes 3 (0–30) Parasitological and hematological, median (range) Parasitemia, parasites/ml of blood 305 (25–2255) Hematocrit %, 42.6 (30.5–48.9) Hemoglobin levels g/dL 13.2 (9.5–14.9) WBC counts6106/mm3 4.9 (2–8.6) RBC counts6106/mm3 4.8 (3.57–5.42) Platelet counts6106/mm3 125.5 (39–225) MCV (fL) 89.3 (82.9–96) MPV (fL) 9.8 (8.1–13.2) MCH (pg) 27.1 (25–30.1) MCHC (g/dL) 30.6 (29.8–33.2) Clinical parameters Duration of symptoms in days, median, (range) 3 (.1–20) Fever at the time of blood sampling, n (%) 7 (33.3%) Symptoms in the last 3 days, n (%) Fever 21 (100%) Myalgia 21 (100%) Chills 19 (90.5%) Headache 18 (85.7%) Study area and subjects Nausea 15 (71.4%) This study was conducted in May 2010, at Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), a tertiary care center for infectious diseases in Manaus (3u89S, 60u19W), the capital of the state of Amazonas, Brazil. Manaus is clearly part of a new frontier in the economic development of the Amazon and is considered as one of the leading cities in terms of Anorexia 12 (57.1%) Vomiting 6 (28.6%) Dyspnea 6 (28.6%) Diarrhea 3 (14.3%) Materials and Methods PLoS ONE | www.plosone.org doi:10.1371/journal.pone.0019842.t001 6 May 2011 | Volume 6 | Issue 5 | e19842 Circulating Nucleic Acids: Malaria Severity Marker informed consent in accordance with guidelines for human research, as specified by the Brazilian National Council of Health (Resolution 196/96). Patients diagnosed with vivax malaria were treated according to the standard protocols recommended by the National Malaria Control Program (chloroquine plus primaquine). Peripheral blood samples (10 mL in EDTA) were obtained from patients on admission and, in those who attended follow-up, during convalescence 7 days later. Plasma samples from 14 agematched malaria-unexposed donors from Belo Horizonte, a malaria free area, were used as baseline control. Aiming to avoid bias of selection, we further include an additional group of P. vivax patients (n = 14; age range, 18–41 years) from a second hospital of the Amazon area, Julio Muller Hospital, Cuiaba, MT, which was located about 1500 miles from Manaus city. CNAS levels were also evaluated in plasma samples from a small group of P. falciparum patients (n = 9; age range, 18–52 yrs.). Plasma samples were isolated immediately after blood sampling and stored at 280uC until use. specific marker was amplified in parallel with hTERT using the specific primers: Fw: 59 AGG CAA CCC TTG CTC GAA TT 39; Rev 59 TGG GCA CAT GGC TTA CCG 39; (ii) total dsDNA levels in plasmas were also quantified fluorometrically using the Quant-iTTM Pico Green Reagent (Molecular Probes, Netherlands) according to the manufacturer’s instructions. To identify parasite derived sequences in plasma samples from infected patients the following primer pair Fw: 59 CAA CAG GTC CTT CAC GCT TAG TG 39; Rev: 59 CGA CAG CAC CAT TGG CG 39 was designed based on the P. vivax genomic sequence [59] retrieved from PlasmoDB version 6.4 (http://plasmodb.org/ plasmo/). The Primer Express software (PE Applied Biosystems) was used for primer design. Quantitative PCR reactions were carried out in an ABI Prism 7000 Sequence Detection System SDS (PE Applied Biosystems, CA, USA). The temperature profile was 95uC for 10 min followed by 40 cycles of denaturation at 95uC for 15 s and annealing/extension at 60uC for 1 min. The cycle threshold for DNA quantification was set to 0.2 for all experiments in this study. Malaria vivax clinical score Statistical analysis Since at present no clear criteria define vivax malaria severity, the present study used the World Health Organization standard criteria built for P. falciparum malaria [50]. One patient (Pv_04, Table 1) presented clinical signs of severe malaria according to the WHO criteria. This patient presented with hyperbilirrubinemia (total bilirubin = 4.3 mg/dL) and acute renal failure (creatinin = 2.3 mg/dL), and other common infectious diseases were ruled out during his hospitalization. To define different degrees of morbidity for the remaining P. vivax malaria patients, we adapted the criteria originally described by Karunaweera et al [56], and previously validated in the Amazon area [57]. Briefly, the occurrence of fever at the time of blood collection and other 8 signs and/or symptoms that commonly accompany a malarial infection - headache, chills, myalgia, nausea, vomiting and diarrhea - were addressed into the questionnaire applied to each patient. Additionally, hematological parameters were also included in the score calculation: white blood cells (WBC), red blood cells (RBC) and platelets counts, hemoglobin and hematocrit levels (Table 1). Numerical scores of 0 or 1 were assigned to clinical and hematological parameters reported as absent (or within normal range) or present (or outside normal range), respectively. For those 15 parameters analyzed, the sum of scores provides the patient’s final clinical score, as shown in Table S1 (supporting information). This semi quantitative clinical assessment enabled numerical comparisons between the plasma CNAs levels and the clinical spectrum of vivax malaria. Data were analyzed using GraphPad Prism version 5.00 for Windows (GraphPad Software, CA, US). Differences in the means were analyzed using two-tailed student’s t test or Mann-Whitney test when data did not fit a Gaussian distribution. Spearman nonparametric correlation coefficient was used to analyze the association between the variables. Supporting Information Figure S1 Absolute quantification of hTERT levels in plasma from P. vivax patients. The human genomic sequence of hTERT was amplified by PCR using the primers described in M&M. The concentration of the PCR product was determined spectrophotometrically using Nanodrop. (A) A standard curve was built by re-amplifying known amounts of the hTERT PCR product in 10-fold serial dilutions. (B) Amplification of hTERT in CNAs samples purified from healthy donors or malaria patients. (C) Results of interpolated hTERT concentrations in CNAs samples purified from plasma of healthy donors or malaria patients. Levels are expressed as pg/ml. Differences were calculated by the Mann-Whitney test. A p value,0.05 was considered significant. (TIFF) Figure S2 Plasma CNAs levels correlates with vivax thrombocytopenia in a different Brazilian endemic area, Cuiaba, Mato Grosso. Correlation of plasma CNAs levels with platelet counts in 14 symptomatic vivax malaria patients attended at the hospital Julio Muller, Cuiaba, MT. (A) The mean cycle threshold for hTERT amplification was plotted against the platelet counts (Pearson r = 0.745, p = 0.0072). (B) Assessment of CNAs levels and mean cycle threshold for hTERT amplification in samples from 10 out of 14 patients who returned after 7–10 days post treatment. (TIFF) Purification and quantification of CNAs from plasma Cell-free circulating nucleic acids (CNAs) were isolated from plasma from P. vivax patients or healthy donors with QIAamp Circulating Nucleic Acid Kit (Qiagen, CA, US) according to the manufacturer’s instructions. Two different methodologies were used to quantify CNAs levels in plasma: (i) amplification of the genomic sequence of the human telomerase reverse transcriptase (hTERT), an ubiquitous single copy gene mapped on 5p 15.33, used here as a marker of the total amount of DNA present in plasma samples. For that, we used the following specific primers Fw: 59GGC ACA CGT GGC TTT TCG 39; Rev: 59 GGT GAA CCT GCT AAG TTT ATG CAA 39, previously described [58]. To normalize the amount of DNA in plasma samples, 5 ng of Salmon Sperm DNA solution (Invitrogen, CA, USA) were spiked into plasma samples before purification of CNAs. The genomic sequence of the chum salmon (Oncorhynchus keta) Y-chromosome PLoS ONE | www.plosone.org Plasma CNAs levels correlates with thrombocytopenia in P. falciparum patients. CNAs levels were assessed in plasma from 9 samples from P. falciparum patients and correlated with (A) their platelet counts and (B) body temperature measured at the time of blood collection. Fluorometric dsDNA measurement by PicoGreen and qPCR amplification of hTERT genomic sequence were used for comparisons. (TIFF) Figure S3 7 May 2011 | Volume 6 | Issue 5 | e19842 Circulating Nucleic Acids: Malaria Severity Marker Real Time PCR Instrumet awarded to BSF as the 2009 winner of the Helixis Young Investigator Award. Table S1 Patient final clinical score and plasma CNAs levels. (DOC) Author Contributions Acknowledgments Conceived and designed the experiments: BSF LHC MVL. Performed the experiments: BSF BLFV HCC MLSS FMFC AM-N. Analyzed the data: BSF LHC MVL. Contributed reagents/materials/analysis tools: CFB MVL. Wrote the paper: BSF LHC. Coordinated the study in the endemic areas: MVL CJF. The authors would like to thank the Program for Technological Development in Tools for Health - PDTIS - FIOCRUZ for use of its facilities; Belisa Maria Lopes Magalhães and Raimunda Ericilda da Silva for their help with patients in the endemic area. The authors would also like to thank the Helixis Incorporation (currently Illumina) for the PIXO References 1. Guerra CA, Howes RE, Patil AP, Gething PW, Van Boeckel TP, et al. (2010) The international limits and population at risk of Plasmodium vivax transmission in 2009. PLoS Negl Trop Dis 4: e774. 2. Kochar D, Saxena V, Singh N, Kochar S, Kumar S, et al. (2005) Plasmodium vivax malaria. Emerg Infect Dis 11: 132–134. 3. Kochar D, Das A, Kochar S, Saxena V, Sirohi P, et al. (2009) Severe Plasmodium vivax malaria: a report on serial cases from Bikaner in northwestern India. Am J Trop Med Hyg 80: 194–198. 4. Poespoprodjo J, Fobia W, Kenangalem E, Lampah D, Hasanuddin A, et al. (2009) Vivax malaria: a major cause of morbidity in early infancy. Clin Infect Dis 48: 1704–1712. 5. Tjitra E, Anstey N, Sugiarto P, Warikar N, Kenangalem E, et al. (2008) Multidrug-resistant Plasmodium vivax associated with severe and fatal malaria: a prospective study in Papua, Indonesia. PLoS Med 5: e128. 6. Genton B, D’Acremont V, Rare L, Baea K, Reeder J, et al. (2008) Plasmodium vivax and mixed infections are associated with severe malaria in children: a prospective cohort study from Papua New Guinea. PLoS Med 5: e127. 7. Alexandre M, Ferreira C, Siqueira A, Magalhães B, Mourão M, et al. (2010) Severe Plasmodium vivax malaria, Brazilian Amazon. Emerg Infect Dis 16: 1611–1614. 8. Anstey N, Russell B, Yeo T, Price R (2009) The pathophysiology of vivax malaria. Trends Parasitol 25: 220–227. 9. Hemmer C, Holst F, Kern P, Chiwakata C, Dietrich M, et al. (2006) Stronger host response per parasitized erythrocyte in Plasmodium vivax or ovale than in Plasmodium falciparum malaria. Trop Med Int Health 11: 817–823. 10. Campos F, Franklin B, Teixeira-Carvalho A, Filho A, de Paula S, et al. (2010) Augmented plasma microparticles during acute Plasmodium vivax infection. Malar J 9: 327. 11. Karunaweera N, Grau G, Gamage P, Carter R, Mendis K (1992) Dynamics of fever and serum levels of tumor necrosis factor are closely associated during clinical paroxysms in Plasmodium vivax malaria. Proc Natl Acad Sci U S A 89: 3200–3203. 12. Andrade B, Reis-Filho A, Souza-Neto S, Clarencio J, Camargo L, et al. (2010) Severe Plasmodium vivax malaria exhibits marked inflammatory imbalance. Malar J 9: 13. 13. Karunaweera N, Wijesekera S, Wanasekera D, Mendis K, Carter R (2003) The paroxysm of Plasmodium vivax malaria. Trends Parasitol 19: 188–193. 14. Andrade BB, Reis-Filho A, Souza-Neto SM, Raffaele-Netto I, Camargo LM, et al. (2010) Plasma superoxide dismutase-1 as a surrogate marker of vivax malaria severity. PLoS Negl Trop Dis 4: e650. 15. Mandel P, Metais P (1948) Les acides nucleiques du plasma sanguine chez I’homme. C R Acad Sci Paris 142. 16. Leon S, Shapiro B, Sklaroff D, Yaros M (1977) Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res 37: 646–650. 17. Chen J, Meister S, Urbonaviciute V, Rödel F, Wilhelm S, et al. (2007) Sensitive detection of plasma/serum DNA in patients with systemic lupus erythematosus. Autoimmunity 40: 307–310. 18. Koffler D, Agnello V, Winchester R, Kunkel H (1973) The occurrence of singlestranded DNA in the serum of patients with systemic lupus erythematosus and other diseases. J Clin Invest 52: 198–204. 19. Rani S, Clynes M, O’Driscoll L (2007) Detection of amplifiable mRNA extracellular to insulin-producing cells: potential for predicting beta cell mass and function. Clin Chem 53: 1936–1944. 20. Lam N, Rainer T, Chan L, Joynt G, Lo Y (2003) Time course of early and late changes in plasma DNA in trauma patients. Clin Chem 49: 1286–1291. 21. Lam NY, Rainer TH, Wong LK, Lam W, Lo YM (2006) Plasma DNA as a prognostic marker for stroke patients with negative neuroimaging within the first 24 h of symptom onset. Resuscitation 68: 71–78. 22. Antonatos D, Patsilinakos S, Spanodimos S, Korkonikitas P, Tsigas D (2006) Cell-free DNA levels as a prognostic marker in acute myocardial infarction. Ann N Y Acad Sci 1075: 278–281. 23. Chang CP, Chia RH, Wu TL, Tsao KC, Sun CF, et al. (2003) Elevated cell-free serum DNA detected in patients with myocardial infarction. Clin Chim Acta 327: 95–101. 24. Moreira VG, Prieto B, Rodrı́guez JS, Alvarez FV (2010) Usefulness of cell-free plasma DNA, procalcitonin and C-reactive protein as markers of infection in febrile patients. Ann Clin Biochem 47: 253–258. PLoS ONE | www.plosone.org 25. Butt A, Swaminathan R (2008) Overview of circulating nucleic acids in plasma/ serum. Ann N Y Acad Sci 1137: 236–242. 26. Ombrello C, Block RC, Morrell CN (2010) Our expanding view of platelet functions and its clinical implications. J Cardiovasc Transl Res 3: 538–546. 27. Cox D, McConkey S (2010) The role of platelets in the pathogenesis of cerebral malaria. Cell Mol Life Sci 67: 557–568. 28. Araujo C, Lacerda M, Abdalla D, Lima E (2008) The role of platelet and plasma markers of antioxidant status and oxidative stress in thrombocytopenia among patients with vivax malaria. Mem Inst Oswaldo Cruz 103: 517–521. 29. Ellinger J, Müller S, Stadler T, Jung A, von Ruecker A, et al. (2009) The role of cell-free circulating DNA in the diagnosis and prognosis of prostate cancer. Urol Oncol. 30. Sozzi G, Conte D, Mariani L, Lo Vullo S, Roz L, et al. (2001) Analysis of circulating tumor DNA in plasma at diagnosis and during follow-up of lung cancer patients. Cancer Res 61: 4675–4678. 31. Umetani N, Kim J, Hiramatsu S, Reber H, Hines O, et al. (2006) Increased integrity of free circulating DNA in sera of patients with colorectal or periampullary cancer: direct quantitative PCR for ALU repeats. Clin Chem 52: 1062–1069. 32. Trejo-Becerril C, Pérez-Cárdenas E, Treviño-Cuevas H, Taja-Chayeb L, Garcı́a-López P, et al. (2003) Circulating nucleosomes and response to chemotherapy: an in vitro, in vivo and clinical study on cervical cancer patients. Int J Cancer 104: 663–668. 33. Chang HW, Lee SM, Goodman SN, Singer G, Cho SK, et al. (2002) Assessment of plasma DNA levels, allelic imbalance, and CA 125 as diagnostic tests for cancer. J Natl Cancer Inst 94: 1697–1703. 34. Huang ZH, Li LH, Hua D (2006) Quantitative analysis of plasma circulating DNA at diagnosis and during follow-up of breast cancer patients. Cancer Lett 243: 64–70. 35. Ellinger J, Wittkamp V, Albers P, Perabo F, Mueller S, et al. (2009) Cell-free circulating DNA: diagnostic value in patients with testicular germ cell cancer. J Urol 181: 363–371. 36. Ellinger J, Bastian P, Ellinger N, Kahl P, Perabo F, et al. (2008) Apoptotic DNA fragments in serum of patients with muscle invasive bladder cancer: a prognostic entity. Cancer Lett 264: 274–280. 37. Jung K, Stephan C, Lewandowski M, Klotzek S, Jung M, et al. (2004) Increased cell-free DNA in plasma of patients with metastatic spread in prostate cancer. Cancer Lett 205: 173–180. 38. Jakobsen P, Morris-Jones S, Rønn A, Hviid L, Theander T, et al. (1994) Increased plasma concentrations of sICAM-1, sVCAM-1 and sELAM-1 in patients with Plasmodium falciparum or P. vivax malaria and association with disease severity. Immunology 83: 665–669. 39. Kern P, Hemmer CJ, Van Damme J, Gruss HJ, Dietrich M (1989) Elevated tumor necrosis factor alpha and interleukin-6 serum levels as markers for complicated Plasmodium falciparum malaria. Am J Med 87: 139–143. 40. Lo YM, Zhang J, Leung TN, Lau TK, Chang AM, et al. (1999) Rapid clearance of fetal DNA from maternal plasma. Am J Hum Genet 64: 218–224. 41. Jahr S, Hentze H, Englisch S, Hardt D, Fackelmayer FO, et al. (2001) DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res 61: 1659–1665. 42. Atamaniuk J, Ruzicka K, Stuhlmeier KM, Karimi A, Eigner M, et al. (2006) Cell-free plasma DNA: a marker for apoptosis during hemodialysis. Clin Chem 52: 523–526. 43. Lovegrove F, Gharib S, Patel S, Hawkes C, Kain K, et al. (2007) Expression microarray analysis implicates apoptosis and interferon-responsive mechanisms in susceptibility to experimental cerebral malaria. Am J Pathol 171: 1894–1903. 44. Miu J, Hunt N, Ball H (2008) Predominance of interferon-related responses in the brain during murine malaria, as identified by microarray analysis. Infect Immun 76: 1812–1824. 45. van der Vaart M, Pretorius P (2008) Circulating DNA. Its origin and fluctuation. Ann N Y Acad Sci 1137: 18–26. 46. Shaikh Q, Ahmad S, Abbasi A, Malik S, Sahito A, et al. (2009) Thrombocytopenia in malaria. J Coll Physicians Surg Pak 19: 708–710. 47. Kochar DK, Tanwar GS, Khatri PC, Kochar SK, Sengar GS, et al. (2010) Clinical features of children hospitalized with malaria–a study from Bikaner, northwest India. Am J Trop Med Hyg 83: 981–989. 8 May 2011 | Volume 6 | Issue 5 | e19842 Circulating Nucleic Acids: Malaria Severity Marker 54. Saraiva M, Amorim R, Moura M, Martinez-Espinosa F, Barbosa M (2009) [Urban expansion and spatial distribution of malaria in the municipality of Manaus, State of Amazonas]. Rev Soc Bras Med Trop 42: 515–522. 55. Oliveira-Ferreira J, Lacerda M, Brasil P, Ladislau J, Tauil P, et al. (2010) Malaria in Brazil: an overview. Malar J 9: 115. 56. Karunaweera N, Carter R, Grau G, Mendis K (1998) Demonstration of antidisease immunity to Plasmodium vivax malaria in Sri Lanka using a quantitative method to assess clinical disease. Am J Trop Med Hyg 58: 204–210. 57. Souza-Silva FA, da Silva-Nunes M, Sanchez BA, Ceravolo IP, Malafronte RS, et al. (2010) Naturally acquired antibodies to Plasmodium vivax Duffy binding protein (DBP) in Brazilian Amazon. Am J Trop Med Hyg 82: 185–193. 58. Sozzi G, Conte D, Leon M, Ciricione R, Roz L, et al. (2003) Quantification of free circulating DNA as a diagnostic marker in lung cancer. J Clin Oncol 21: 3902–3908. 59. Carlton J, Adams J, Silva J, Bidwell S, Lorenzi H, et al. (2008) Comparative genomics of the neglected human malaria parasite Plasmodium vivax. Nature 455: 757–763. 48. Kochar DK, Das A, Kochar A, Middha S, Acharya J, et al. (2010) Thrombocytopenia in Plasmodium falciparum, Plasmodium vivax and mixed infection malaria: a study from Bikaner (Northwestern India). Platelets 21: 623–627. 49. Anker P, Stroun M (2002) Progress in the knowledge of circulating nucleic acids: plasma RNA is particle-associated. Can it become a general detection marker for a cancer blood test? Clin Chem 48: 1210–1211. 50. WHO (2000) Severe falciparum malaria. 90 p. 51. Kono H, Rock KL (2008) How dying cells alert the immune system to danger. Nat Rev Immunol 8: 279–289. 52. McDonald B, Pittman K, Menezes GB, Hirota SA, Slaba I, et al. (2010) Intravascular danger signals guide neutrophils to sites of sterile inflammation. Science 330: 362–366. 53. Hornung V, Latz E (2010) Intracellular DNA recognition. Nat Rev Immunol 10: 123–130. PLoS ONE | www.plosone.org 9 May 2011 | Volume 6 | Issue 5 | e19842 52 Mem Inst Oswaldo Cruz, Rio de Janeiro, Vol. 106(Suppl. I): 52-63, 2011 Thrombocytopenia in malaria: who cares? Marcus Vinícius Guimarães Lacerda1,2,3/+, Maria Paula Gomes Mourão1,2,3, Helena Cristina Cardoso Coelho2, João Barberino Santos4 Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Av. Pedro Teixeira 25, 69040-000 Manaus, AM, Brasil 2 Universidade do Estado do Amazonas, Manaus, AM, Brasil 3Universidade Nilton Lins, Manaus, AM, Brasil 4 Universidade de Brasília, Brasília, DF, Brasil 1 Despite not being a criterion for severe malaria, thrombocytopenia is one of the most common complications of both Plasmodium vivax and Plasmodium falciparum malaria. In a systematic review of the literature, platelet counts under 150,000/mm3 ranged from 24-94% in patients with acute malaria and this frequency was not different between the two major species that affected humans. Minor bleeding is mentioned in case reports of patients with P. vivax infection and may be explained by medullary compensation with the release of mega platelets in the peripheral circulation by megakaryocytes, thus maintaining a good primary haemostasis. The speculated mechanisms leading to thrombocytopenia are: coagulation disturbances, splenomegaly, bone marrow alterations, antibody-mediated platelet destruction, oxidative stress and the role of platelets as cofactors in triggering severe malaria. Data from experimental models are presented and, despite not being rare, there is no clear recommendation on the adequate management of this haematological complication. In most cases, a conservative approach is adopted and platelet counts usually revert to normal ranges a few days after efficacious antimalarial treatment. More studies are needed to specifically clarify if thrombocytopenia is the cause or consequence of the clinical disease spectrum. Key words: Plasmodium falciparum - Plasmodium vivax - malaria - thrombocytopenia - platelets Malaria affects almost all blood components and is a true haematological infectious disease. Anaemia and thrombocytopenia are the most frequent malaria-associated haematological complications (Wickramasinghe & Abdalla 2000) and have received more attention in the scientific literature due to their associated mortality. On the other hand, thrombocytopenia is less studied, causes negligible mortality and is an isolated phenomenon; there is no report of a single patient in the literature who has died only because of malaria-associated thrombocytopenia. In the current field of Travel Medicine, the rapid increase in the number of people travelling to tropical areas has added a great challenge for malaria diagnosis because the thick blood smear (the standard diagnosis in endemic areas) has high specificity but only when performed by experienced microscopists. The presence of thrombocytopenia in acute febrile travellers returning from tropical areas has become a highly sensitive clinical marker for malaria diagnosis (D’Acremont et al. 2002). Another study has reported 60% sensitivity and 88% specificity of thrombocytopenia for malaria diagnosis in acute febrile patients (Lathia & Joshi 2004). The sensitivity of thrombocytopenia together with the acute febrile syndrome was 100% for malaria diagnosis, with a specificity of 70%, a positive predictive value of 86% and a negative predictive value of 100% (Patel et al. 2004). Financial support: CAPES (scholarship for HCCC), CNPq (MVGL is a level 2 research productivity fellow), ASH + Corresponding author: [email protected] Received 1 April 2011 Accepted 26 May 2011 online | memorias.ioc.fiocruz.br Thrombocytopenia is a well-documented and frequent complication in Plasmodium vivax malaria. In one study, platelet count normalised after treatment and only one patient, concomitant with the lowest platelet count, exhibited “purpuric lesions” on the lower extremities (Hill et al. 1964). Since the beginning of the 1970s, there have been reports proposing that malaria-associated thrombocytopenia is quite similar in P. vivax and Plasmodium falciparum infections (Beale et al. 1972). However, more recent data in India has shown how thrombocytopenia exhibited a heightened frequency and severity among patients with P. vivax infection (Kochar et al. 2010). In 1903, the young physician Carlos Chagas (who become more famous afterwards for the discovery of American trypanosomiasis, which is named after him), published his MD thesis on the Hematological Studies on Paludism (Chagas 1903). Within it, he described anaemia and leukocyte abnormalities, but also normal megakaryocytes in the bone marrow were referred to in patients with acute and chronic malaria from Rio de Janeiro. He also drew our attention to evidence of bleeding in the 46 patients he followed. In the city of Manaus, state of Amazonas, located in the Western Brazilian Amazon, Djalma Batista authored Paludism in the Amazon, a book in which he described observations about patients with malaria seen at his private clinics (Batista 1946). Similar to Carlos Chagas, there is no mention of platelet count in his study because it was not routinely performed. However, there is a vivid description of haemostasis disorders in some patients. Particularly noteworthy is the presence of huge spleen enlargement and prolonged bleeding time accompanied by recurrent gingival bleeding. Malaria and thrombocytopenia • Marcus Vinícius Guimarães Lacerda et al. Data on the real burden of thrombocytopenia associated with malaria is contradictory in the literature and it is not usually considered when conducting patient selection. Table I shows the major publications estimating the frequency of thrombocytopenia. Most of these data were published in the late 1990s, probably in time with the surge in the availability of affordable automated machines capable of performing full blood counts (FBC). Manual platelet counting is time-consuming and usually needs to be requested by the physician with the routine blood count in most of the endemic areas for malaria. In only three publications is there an adequate randomised enrollment of patients with appropriate sample size calculation to estimate the frequency of bleeding and its association with the respective platelet count (Lacerda 2007, Silva 2009, Kochar et al. 2010). Only one study has ruled out other common causes of thrombocytopenia that are also endemic in the studied area (Lacerda 2007). There is a wide range of thrombocytopenia occurrence in these reports, which may be explained by distinct selection criteria of the enrolled patients. There are also differences in the selection of outpatients or inpatients from tertiary care centres that tend to present with severe thrombocytopenia. Furthermore, clinical manifestations of thrombocytopenia are usually described as case reports and most of these are due to P. vivax (Table II). In 2005, 138 of 684 (20.1%) malarial cases hospitalised in a tertiary care centre in Manaus had thrombocytopenia as the cause of admission, which corresponded to 6.8% of hospitalisations due to all causes in this reference institution (unpublished observations). Hospitalisation, however, does not add any benefit to the patient and because there is no evidence for any intervention, this simply increases public health costs in underdeveloped and under-resourced areas. Pathogenesis of malarial thrombocytopenia - Coagulation disturbances - A study based on 31 American soldiers in Vietnam with chloroquine-resistant falciparum malaria noted the following changes in the acute phase of the disease using the same patients as their own controls during convalescence: decrease in the platelet count and prothrombim activation time, increase in the activated thromboplastin time, and reduction in factors V, VII and VIII with normal fibrinogen (Dennis et al. 1967). This report suggested that thrombocytopenia was simply a consequence of the coagulation disorders presented by these patients, an idea that persisted for many decades in the literature. In another series of 21 patients with falciparum malaria, six had developed disseminated intravascular coagulation (DIC). The authors noted that the patients with more severe thrombocytopenia also had DIC and that there was correlation between platelet count and C3 protein levels. However, the reduction in C3 was proportional to that in parasitaemia, suggesting that thrombocytopenia was not independently associated with C3 (Srichaikul et al. 1975). In Manaus, 2004, a study with falciparum and vivax patients demonstrated a negative correlation between platelet counts, thrombinanti-thrombin complex and D-dimers, suggesting that the activation of coagulation could be partially responsible for thrombocytopenia (Marques et al. 2005). 53 Splenomegaly - The spleen in malaria has played a crucial role in the immune response against the parasite, as well as controlling parasitaemia due to the phagocytosis of parasitised red blood cells (RBCs) (Engwerda et al. 2005). Some data suggested that platelets were sequestered in the spleen during the acute infection (Skudowitz et al. 1973). In the experimental model with Plasmodium chabaudi, thrombocytopenia was absent in splenectomised mice, showing that the spleen was essential for thrombocytopenia (Watier et al. 1992). The term hypersplenism was proposed to describe the clinical picture of the enlarged spleen followed by the decrease in one or more peripheral blood lineages (usually reverted after splenectomy), probably due to sequestration or destruction of cells inside the spleen, in liver diseases, which lead to increased portal system pressure. However, it is recently believed that not only mechanical alterations take place, but also compromise of haematopoietic growth factors produced in the liver (Peck-Radosavljevic 2001). On the other hand, the isolated spleen enlargement does not explain per se the destruction of cells as formerly believed. This organ represents outstanding architectural organisation and controls, with great sophistication, the exposure of cells screened by it. In patients with malaria, the increase in the macrophage-colony stimulating factor is associated to thrombocytopenia, suggesting that macrophages play a role in the destruction of these particles (Lee et al. 1997). In the comparison of spleens from patients with severe falciparum malaria vs. those of control and septic patients, it was shown that splenic dendritic cells are increased in malaria and there is a reduction in B lymphocytes and macrophages in the splenic cords (Urban et al. 2005). The mechanisms related to the formation of splenic hematomas are mostly associated with P. vivax infection and the interface with thrombocytopenia is noted to be imprecise (Lacerda et al. 2007). In vivax malaria, the role of the spleen in the expression of vir genes is still unrecognised. P. vivax passing through the spleen would activate the transcription of polymorphic Vir proteins to escape from macrophage destruction in this organ. On the other hand, these same proteins would permit the binding of parasitised RBCs to barrier cells, creating an isolated microenvironment in the spleen that would be rich in reticulocytes (del Portillo et al. 2004). More recent studies with the murine model of Plasmodium yoelii evidenced that there was higher parasite accumulation, reduced motility, loss of directionality, increased residence time and altered magnetic resonance only in the spleens of mice infected with the non-lethal 17X strain (MartinJaular et al. 2011). This same model has never been used to study the role of the spleen in thrombocytopenia, but opens new avenues for functional and structural studies of this lymphoid organ. Bone marrow alterations - The finding of a P. vivax trophozoite inside a human platelet suggested that thrombocytopenia could be the result of invasion of these particles by the parasites themselves, similar to what was classically proposed for RBCs. As these same authors did not find parasites inside megakaryocytes, they proposed that the penetration took place in the peripheral circulation (Fajardo & Tallent 1974). However, this observa- 54 Mem Inst Oswaldo Cruz, Rio de Janeiro, Vol. 106(Suppl. I), 2011 TABLE I Systematic review of studies, estimating thrombocytopenia in malarial patients (1997-2011) References Study site Type of patients Age range Species n Thrombocytopenia % [criterion (mm3)] Mohanty et al. (1997) India Inpatients and outpatients All ages P.v. P.f. 24 76 29 (< 150,000) 39 (< 150,000) Noronha (1998) Kortepeter and Brown (1998) Murthy et al. (2000) Brazil USA India Inpatients and outpatients < 14 y Inpatients and outpatients > 18 y Inpatients 10-80 y P.f. P.f./P.v. P.f. 54 79 158 51.8 (< 150,000) 74 (< 150,000) 40.5 (< 150,000) Gonzalez et al. (2000) Alecrim (2000) Silva et al. (2000) Oh et al. (2001) Robinson et al. (2001) Mourão et al. (2001) Lacerda et al. (2001) Ladhani et al. (2002) Park et al. (2002) Mohapatra et al. (2002) Bashawri et al. (2002) Araújo Filho et al. (2003) Echeverri et al. (2003) Colombia Inpatients All ages P.f. P.v. 113 128 33.6 (< 150,000) 39 (< 150.000) Brazil Inpatients Outpatients > 12 y P.v. 73 319 91.8 (< 150,000) 60.8 (< 150,000) Brazil South Korea Australia Brazil Brazil Kenya Brazil India Saudi Arabia Brazil Colombia Inpatients Inpatients and outpatients Inpatients Inpatients Inpatients Inpatients Inpatients Inpatients and outpatients Inpatients and outpatients Inpatients and outpatients Outpatients All ages > 17 y NA < 12 y > 12 y Children All ages 15-60 y 2 m-74 y 4-64 y All ages P.v. P.v. P.f./P.v./P.o. P.f. P.f. P.f. P.v. P.v. P.v./P.f. P.v. P.v. 429 101 246 255 218 1,369 237 110 727 68 104 46.6 (< 140,000) 85.1 (< 150,000) 71 (< 150,000) 73.7 (< 150,000) 87.6 (< 150,000) 56.7 (< 150,000) 61.6 (NA) 3.6 (< 100,000) 55.6 (< 150,000) 20.6 (< 50,000) 8 (< 130,000) Jadhav et al. (2004) India Inpatients and outpatients All ages P.v. P.f. 973 65 (50,000-150,000) 590 50 (50,000-150,000) Marques (2004) Brazil Inpatients and outpatients P.f. P.v. 44 106 79 (< 150,000) 94 (< 150,000) Rodriguez-Morales et al. (2005) Venezuela NA NA Rodriguez-Morales et al. (2006) Venezuela Inpatients < 12 y Casals-Pascual et al. (2006) Kenya Inpatients and outpatients 6 m-10 y Kumar and Shashirekha (2006) India Inpatients and outpatients All ages P.v. P.v. P.f. P.v. 116 78 120 27 87.6 (< 150,000) 58.9 (< 150,000) 34.4 (< 150,000) 88.8 (< 150,000) Lacerda (2007) > 15 y Brazil Outpatients > 18 y P.v. P.f. 142 26 71.8 (< 150,000) 65.4 (< 150,000) Koltas et al. (2007) Taylor et al. (2008) Turkey Indonesia Outpatients Outpatients All ages All ages P.v. P.v./P.f. 90 151 NA 78.8 (< 150,000) Tan et al. (2008) Thailand P.v. P.f. 523 694 22 (< 75,000) 34 (< 75,000) Silva (2009) Rasheed et al. (2009) Shaikh et al. (2009) Prasad et al. (2009) Gonzalez et al. (2009) Poespoprodjo et al. (2009) Khan et al. (2009) Maina et al. (2010) Kochar et al. (2010) George and Alexander (2010) Srivastava et al. (2011) Brazil Outpatients Pakistan Inpatients Pakistan Outpatients India Inpatients Venezuela Outpatients Indonesia Inpatients Qatar Outpatients Kenya Outpatients India Inpatients and outpatients India Inpatients India Inpatients Inpatients and outpatients Pregnant women All ages 397 P.v. All ages 502 P.v./P.f All ages 124 P.v./P.f. <5y 40 P.f. 3-67 59 P.v. 0-3 m P.v./P.f. and mixed 179 All ages 81 P.v. <5y 523 P.f. All ages P.v./P.f. and mixed 1,064 18-66 y 30 P.v. All ages 50 P.v. 77.1 (< 150,000) 80 (< 150,000) 82.5 (< 150,000) 85 (< 150,000) 55.9 (< 150,000) 61.3 (< 100,000) 63 (< 150,000) 49 (< 150,000) 24.6 (< 150,000) 93.3 (< 150,000) 82 (< 150,000) m: months; NA: non-available; P.f.: Plasmodium falciparum; P.o.: Plasmodium ovale; P.v.: Plasmodium vivax; y: years. Malaria and thrombocytopenia • Marcus Vinícius Guimarães Lacerda et al. 55 TABLE II Collated case reports of Plasmodium vivax-associated thrombocytopenia (1964-2011) Study site Platelet count (x 1,000/mm3) Bleeding Platelet transfusion Observation United States of America Solomon Islands Bali NA Thailand and Sri Lanka Brazil India India Mexico Brazil India India South America India 20-49 NA 22 NA 22-53 1 5 8 19 1 6 14-92 15 30 Petecchiae NA No NA No Several No Gingival bleeding Epistaxis Gingival bleeding Petecchiae No NA No No NA No NA No Yes No Yes Yes Yes Yes Yes NA No Experimental infection DIC PAIgG increase PAIgG increase ITP ITP Acute renal failure South Korea 25-20 No No DIC, lung edema, acute renal failure and shock Kaur et al. (2007) Lacerda et al. (2008) Vij et al. (2008) Rifakis et al. (2008) India Brazil India Venezuela 30 6 NA 57 Petecchiae No Gingival bleeding No No No No No Acute renal failure Chronic splenomegaly NA Hydronephrosis and shock Parakh et al. (2009) India 5-42 Petecchiae No Cerebral malaria, shock and acute renal failure Thapa et al. (2009) India 11 Petecchiae and mucosal bleeding Yes Hepatitis and shock Harish and Gupta (2009) Bhatia and Bhatia (2010) India India 1 NA Intracranial bleed Yes No NA Seizures NA References Hill et al. (1964) Takaki et al. (1991) Anstey et al. (1992) Ohtaka et al. (1993) Yamaguchi et al. (1997) Victoria et al. (1998) Kakar et al. (1999) Makkar et al. (2002) Holland et al. (2004) Lacerda et al. (2004) Aggarwal et al. (2005) Katira and Shah (2006) Komoda et al. (2006) Kaur et al. (2007) Song et al. (2007) DIC: disseminated intravascular coagulation; ITP: immune thrombocytopenic purpura; NA: non-available; PAIgG: plateletassociated IgG. tion was never seen again in the literature. Likewise, a “dysmegakaryopoiesis” was proposed, similar to what happened in the human malarial anaemia model, where dyserythropoiesis was triggered by cytokines (Menendez et al. 2000). In the few studies that examined the bone marrow for this purpose, megakaryocytic lineage was apparently preserved (Naveira 1970, Beale et al. 1972). Thrombopoietin indeed seems to rise during the acute disease even in the presence of liver compromise, suggesting that no bone marrow inhibition is seen (Kreil et al. 2000). Additional data from FBC samples in vivax patients showed that there is a significant negative correlation between platelet count and mean platelet volume (Lacerda 2007), suggesting that megakaryocytes are able to release mega platelets in the circulation to compensate for the low absolute number of platelets in the periphery. Similar results were shown in children with falciparum malaria (Maina et al. 2010). These mega platelets are probably able to sustain a good primary haemostasis that could explain the low frequency of severe bleeding in malarial patients, as shown in Table II. Non-human primates, on the other hand, are an unexplored model to study megakaryopoiesis alterations and its implication on thrombocytopenia (Llanos et al. 2006). Antibody-mediated platelet destruction - There is evidence that platelet-associated IgG (PAIgG) is increased in malaria and is associated with thrombocytopenia. However, this is a generic definition for all types of IgGs that may be found on the platelet surface, including antibodies stored inside platelet α-granules. Therefore, increased PAIgG could also be interpreted as platelet activation and exposition of IgGs on the surface, and not necessarily auto-immunity, as suggested in anecdotal case reports where antibodies against glycoproteins were detected in malaria (Panasiuk 2001, Conte et al. 2003). The detection of auto-antibodies against platelets by flow cytometry (Rios-Orrego et al. 2005) should not be seen as specific for malaria, as natural auto-antibody formation is a common defence of the infected organism 56 Mem Inst Oswaldo Cruz, Rio de Janeiro, Vol. 106(Suppl. I), 2011 and is frequently seen in most viral, bacterial and parasitic diseases without any repercussion (Daniel-Ribeiro & Zanini 2000). Molecular mimicry, however, provides evolutionary advantage for microorganisms that escape immune aggression (Daniel-Ribeiro 2000). The relationship between malaria and auto-immunity has been discussed in the literature and the first epidemiological association was made based on the presence of fewer auto-immune diseases in malarigenous areas (Greenwood 1968). The formation of circulating immune complexes (CIC) in vivo in malaria, as well as in other infectious diseases, is a continuous process from antigens and antibodies and/or complement elements. CIC seems to modulate the immune response to several antigens that remain sequestered in B lymphocyte or dendritic cellrich follicles for a longer time, which contributes to the formation of B-cell immunological memory, as seen in vaccine studies (Davidson 1985). During acute malaria, thrombocytopenia is most probably associated with the binding of parasite antigens to the surface of platelets to which antimalarial antibodies also bind, leading to the in situ formation of immune complexes (ICs) (Kelton et al. 1983). In an experimental model with Plasmodium berghei, the same correlation between platelet count and IC’s was evidenced (Grau et al. 1988). No association was found with IgM (Beale et al. 1972). It is clear that CICs are elevated in vivax and falciparum malaria, but their role in the development of thrombocytopenia is still obscure (Touze et al. 1990, Tyagi & Biswas 1999) as well as its immune suppressing effect (Brown & Kreier 1982, Shear 1984). Because the generation of IC’s is proportional to the amount of available antigen, the negative correlation between platelet count and peripheral parasitaemia reported in many studies (Lacerda 2007, Silva 2009) corroborates ICs as a potential mechanism of platelet destruction. The presence of amino acid residues tyrosine 193 [9Y(193)] and serine 210 [S(210)] on apical membrane antigen-1 (AMA-1) was significantly associated with normal platelet counts in P. vivax malaria independent of the level of parasitaemia that also provides supporting evidence for this (Grynberg et al. 2007). In only one study, circulating monocytes were found to phagocytose platelets, but this mechanism still needs to be associated to thrombocytopenia more closely (Jaff et al. 1985). The finding of immune thrombocytopenic purpura (ITP) secondary to malarial infection is rare and may be due to idiosyncratic auto-immune mechanisms not well understood (Lacerda et al. 2004). Oxidative stress - Free radicals may play an important role in the platelet destruction in malarial infection. There is evidence that the decrease in total cholesterol in vivax malaria is due to lipidic peroxidation (Erel et al. 1998). Also, in vivax malaria, there is a negative correlation between platelet count and platelet lipid peroxidation in addition to the positive correlation between platelet count and the activity of gluthatione peroxidase and superoxide dismutase, which are considered anti-oxidant enzymes (Erel et al. 2001). In a study of 103 patients with acute falciparum malaria, there was a negative correlation between platelet count and nitrogen reactive intermediates (Santos 2000). There is also a strong associa- tion between platelet count and intra-platelet gluthatione peroxidase, suggesting that a compensatory mechanism is presented by platelets to face the oxidative burst found in malaria (Araujo et al. 2008). Platelet aggregation - Platelets from patients with acute malaria are highly sensitive to adenosine diphosphate (ADP) addition in vitro (Essien & Ebhota 1981), and it is believed that ADP release following haemolysis could contribute to higher platelet aggregation. Actually, the incubation of platelets with P. falciparum-parasitised RBCs also increases platelet aggregation per se in vitro, especially after ADP and thromboxane A2 addition (Inyang et al. 1987). Even electron microscopic examination of non-stimulated, fresh platelets from malarial patients show centralisation of dense granules, glycogen depletion and microaggregates and phylopoids as a sign of in vivo activation, which could be responsible for a pseudothrombocytopenia due to sequestration of these activated particles in the interior of the vessels (Mohanty et al. 1988). Contradictory data were presented showing aggregation impairment in severe falciparum patients after ADP addition in vitro (Srichaikul et al. 1988). P. falciparum induces systemic acute endothelial cell activation and the release of activated von Willerbrand factor (vWF) immediately after the onset of the blood-stage infection (Mast et al. 2007). Even without consumptive coagulopathy, the increase in soluble glycoprotein-1b (GP1b) concentrations results from vWF-mediated GP1b shedding, a process that may prevent excessive adhesion of platelets and parasitised erythrocytes (Mast et al. 2010). Antimalarial drugs have also been shown as potential inhibitors of platelet aggregation in vivo and in vitro, what precludes careful inclusion and exclusion criteria of patients to be used in clinical research (Cummins et al. 1990). The relationship between thrombocytopenia and severe malaria - Severe thrombocytopenia (platelet count under 50,000/mm3), despite not being considered severe malaria according to World Health Organization criteria (WHO 2010) due to the inability to cause death per se, has been occasionally associated with severity (Gerardin et al. 2002, Rogier et al. 2004) or not (Moulin et al. 2003). But thrombocytopenia has also been described in severe vivax patients (Kochar et al. 2005, Andrade et al. 2010). In 17 patients from Manaus affected by any of the WHO malaria severity criteria with confirmed P. vivax monoinfection, 14 presented with thrombocytopenia, suggesting that this haematological complication can be explored as a marker of the severity for this species (Alexandre et al. 2010). From the case reports described in Table II, the association between severe cases with thrombocytopenia is evident. However, that can be due to bias publication, where prospective studies would be needed to validate this association. On the other hand, considering that many studies point to a clear negative correlation between platelet count and parasitaemia (Grynberg et al. 2007, Silva 2009), it should be investigated if thrombocytopenia could be used in the surveillance of drug resistance, where higher parasitaemias for prolonged periods are usually found. Interestingly, in areas where thrombocytopenia and other types of clinical severity are Malaria and thrombocytopenia • Marcus Vinícius Guimarães Lacerda et al. frequently reported, resistant parasites are also being simultaneously detected (Santana Filho et al. 2007, Tjitra et al. 2008), possibly explaining why the prevalence of thrombocytopenia worldwide is not homogeneous. On the other side of the clinical presentation of plasmodial infection, platelet counts were never performed in asymptomatic parasite carriers. However, due to the very low parasitaemia (sometimes submicroscopic) presented by these patients, it is possible that platelet counts are normal and parallel clinical symptoms (Suarez-Mutis et al. 2007). Avoiding the consensual understanding that platelets are particles devoted to the maintenance of primary haemostasis, it has been shown that platelets participate in the pathogenesis of microvascular malaria, adhering to the endothelium when it is previously stimulated with tumor necrosis factor (TNF) (Lou et al. 1997). Even in the nonstimulated cerebral endothelium, platelets may adhere and facilitate the adhesion of P. falciparum-parasitised RBCs, through CD36 is ubiquitous in endothelial cells and, coincidentally, platelets (Wassmer et al. 2004). Platelets therefore act by stabilising and strengthening bridges between RBCs and endothelial cells, which is considered the cornerstone of severe falciparum malaria. Rosetting of parasitised RBCs is also mediated through CD36 in platelets in severe malaria (Pain et al. 2001, Chotivanich et al. 2004). In mice infected with P. berghei ANKA, mice deficient of tissue and uroquinase plasminogen activators demonstrated less capillary sequestration of platelets and less severe malaria (Piguet et al. 2000). Blocking GPIIb with anti-CD41 monoclonal antibodies in the first day of murine infection with P. berghei also led to higher production of interleukin (IL)-10, IL-1α, IL-6, interferon-α and TNF and less mortality among mice, suggesting that platelets may act as cofactors of severe malaria (Sun et al. 2003, van der Heyde et al. 2005). There was also an inverse correlation between platelet count and TNF in patients with vivax infection and no association between specific mutation G→A in the position 308 in the TNF gene (a polymorphism whose functional effect upon severe disease is hypothesised) and platelet count was observed. More severe patients presented more severe thrombocytopenia and higher TNF levels (Silva 2004). Platelets stimulated by parasitised RBCs may also trigger apoptosis in endothelial cells pre-treated with TNF in a pathway mediated by tumor growth factor (TGF)-β1 from platelets (Wassmer et al. 2006a, b). Recent evidence showing P. vivax-infected RBCs adhering to lung endothelial cells and to the placental tissue ex vivo indicates that in vivax, mechanisms similar to those associated with falciparum severity may be involved (Carvalho et al. 2010). The contribution of platelets to this adhesion, however, requires further investigation. In children in Kenya suffering from falciparum malaria, an inverse correlation between platelet count and plasmatic IL-10 was seen (Casals-Pascual et al. 2006). This interpretation is not straightforward, because IL10 is generally associated with protection against severe disease. The authors hypothesise, though, that IL-10 could reduce platelet counts to avoid infected-RBC adhesion to the endothelium, as if thrombocytopenia was a mechanism of defence against severe disease and not 57 the cause. Studies of vivax infection have shown thrombocytopenia to be associated with an increase in IL-1, IL-6, IL-10 and TGF-β (Park et al. 2003). The role of platelet-derived microparticles (MPs) (submicron-sized vesicles released from cells upon activation or apoptosis) has yet to be determined in vivo. There is evidence that these MPs participate in the endothelial activation responsible for severe cerebral malaria in murine models (Combes et al. 2006). MPs were also associated with coma and thrombocytopenia in severe falciparum malaria patients (Pankoui Mfonkeu et al. 2010). Apparently, there is an increase in the amount of MPs in vivax malaria patients, which may play a role in the acute inflammatory symptoms of this disease (Campos et al. 2010); this role requires further investigation. Clinical management of malarial thrombocytopenia - To date, there is no robust evidence on how to manage patients with malaria and thrombocytopenia. Platelet transfusion has been widely followed, but with no confirmed efficacy. The indication of prophylactic platelet transfusion when platelet counts are under 10,000/mm3 probably applies only when the bone marrow is compromised and is not able to release efficacious platelets (Rebulla 2000). This does not seem to be the case in malaria. Keeping platelet counts between 50,000 and 100,000/ mm3 is a formal indication only in patients undergoing surgical procedures (Rebulla 2001). In a tertiary care centre in the Western Brazilian Amazon over a 12-month period, 10.4% (20/191) of patients who received platelet transfusion were diagnosed with vivax or falciparum malaria (Lacerda et al. 2006). The dosage was usually below that recommended in the literature (Schlossberg & Herman 2003). In 40% of patients, the only justifications for transfusion were maintaining a platelet count below 10,000/mm3 and discrete bleeding. In a further 6% of patients, only a very low platelet count was described. In this group of 40% of patients, the alleged reason was minor bleeding despite having non-severe thrombocytopenia; in 33%, no indication was verified. These data point to the little existing evidence of the recommendations for platelet transfusion in these patients. The corrected count increment to evaluate transfusion efficacy was not calculated for any patient. The low efficacy of platelet transfusion in general is well described for several acute infectious diseases (de Paula et al. 1993), probably due to peripheral immune mechanisms of destruction that do not spare the transfused platelets. Indications for platelet transfusion in cases when DIC is suspected and diagnosed, the formal clinical indication persists, as recommended elsewhere (Franchini 2005). Due to the impossibility of using frozen platelets in routine clinical practice, other platelet substitutes and preparations are being investigated (Blajchman 2003). Except in atypical cases of ITP with severe bleeding, there is no evidence for the use of human intravenous immunoglobulin, even in cases of severe thrombocytopenia (Lacerda et al. 2004). The use of corticoids has never been followed, probably due to the fact that the recovery of thrombocytopenia following antimalarial treatment is seen in almost all cases, with good prognosis for all species that infect humans (Lacerda 2007) and with the lack of robust evi- 58 Mem Inst Oswaldo Cruz, Rio de Janeiro, Vol. 106(Suppl. I), 2011 dence of immune-mediated destruction of platelets as a major mechanism. It was also found that in patients with cerebral falciparum malaria, dexamethasone exacerbated the neurological symptoms and increased the frequency of gastrointestinal bleeding (Warrell et al. 1982, Hoffman et al. 1988). However, in none of these studies was platelet recovery analysed as a secondary endpoint. Immune modulators are also candidates in the adjuvant antimalarial therapy (Muniz-Junqueira et al. 2005, Mohanty et al. 2006), based on the drug-induced inhibition of adhesion molecules in RBCs and platelets (Muniz-Junqueira 2007). The exploration of drugs known by their anti-inflammatory effect, modulating TNF, e.g., pentoxyfylline and thalidomide, upon severe malaria, could not only contribute to the understanding of the mechanisms of severity but also clarify the association between platelets and severe disease. Thrombocytopenia in other infectious diseases Many other acute and chronic infectious diseases share similar thrombocytopenia as part of the clinical picture and these mechanisms may be used by proxy to explain malarial disease. Chronic thrombocytopenia is found in approximately 10% of patients with human immunodeficiency virus (HIV)-1 infection and in one-third of those with acquired immunodeficiency syndrome (Scaradavou 2002). The first cases of homosexuals with profound thrombocytopenia in New York were classified as ITP (Karpatkin 2002), involving the presence of serum IgG anti-GPIIIa (Karpatkin et al. 1995). Later on, this IgG was found to be directed against GPIIIa49-66 (Nardi et al. 1997). More recently, molecular mimicry was proposed between nef HIV-1 protein and GPIIIa49-66 (Li et al. 2005). Other chronic infectious diseases known to cause thrombocytopenia include chronic viral hepatitis, where CIC (Samuel et al. 1999) and PAIgG (Doi et al. 2002) are also implicated. In the case of hepatitis C virus infection, the blockage in the maturation of megakaryocytes is mediated by the viral RNA itself (Almeida 2003). Despite an associated medullary compromise in visceral leishmaniasis in the canine model of Leishmania infantum infection, antiplatelet IgG and IgM were also observed (Terrazzano et al. 2006). In acute infection with Trypanosoma cruzi, frequent thrombocytopenia is related to the presence of parasite trans-sialidase (Tribulatti et al. 2005). Furthermore, during infection with any of the four dengue viruses, thrombocytopenia is frequent and is supposed to be a criterion of dengue hemorrhagic fever (Mourão et al. 2007). Platelet phagocytosis ex vivo has already been shown as a potential mechanism in this acute viral disease (Honda et al. 2009). Thrombocytopenia is also observed in leptospirosis (Nicodemo 1993), typhoid fever (Huang & DuPont 2005), hantavirus infection (Santos et al. 2006), yellow fever (Monath 2001) and sepsis (Becchi et al. 2006), whose mechanisms are poorly understood. The high frequency of thrombocytopenia in other infectious diseases, as a rule, changes the paradigm that platelets are essential only to haemostasis, supporting their role as important contributors to modulate the immune response. In any case, studies focusing on the pathogenesis of thrombocytopenia in malarial patients should Major mechanisms associated to malaria-triggered thrombocytopenia and the possible relationship with severe disease. always rule out other concomitant infectious diseases, which is difficult in socio-economically deprived study populations suffering large burdens of multiple diseases. The frequency of thrombocytopenia (i.e., platelet count below 150,000/mm3) in malarial infection ranges from 24-94% in the literature, despite the low occurrence of severe bleeding, even in the case of severe malaria. It is still unclear whether this haematological complication is more frequent in P. vivax or P. falciparum malaria. In Figure, the major mechanisms involved in the pathogenesis are highlighted, but further studies are still needed to clarify the impact of each mechanism and its clinical relevance. The clinical management of malarial thrombocytopenia is expectant and the level of evidence for platelet transfusion is insufficient to recommend this practice. It is not clear whether platelets are diminished during acute malarial infection as a consequence of the immune response to the parasite present or whether platelets are actually involved in the generation of severe disease. ACKNOWLEDGEMENTS To Alex Kumar, for critical and linguistic review of the manuscript, and to Mary Galinski, for inspiring the title. This review is dedicated to Simon Karpatkin and Vanize Oliveira Macêdo. REFERENCES Aggarwal A, Rath S, Shashiraj 2005. Plasmodium vivax malaria presenting with severe thrombocytopenia. J Trop Pediatr 51: 120-121. Alecrim MGC 2000. Clinical aspects, resistance and parasitary polymorphism of Plasmodium vivax malaria in Manaus, PhD Thesis, Universidade de Brasília, Brasília, 176 pp. Alexandre MA, Ferreira CO, Siqueira AM, Magalhaes BL, Mourao MPG, Lacerda MVG, Alecrim MGC 2010. Severe Plasmodium vivax malaria, Brazilian Amazon. Emerg Infect Dis 16: 1611-1614. Almeida AJ 2003. Trombocitopenia associada ao HCV: aspectos clínico-laboratoriais e virológicos, Md Thesis, Fundação Oswaldo Cruz, Rio de Janeiro, 110 pp. Andrade BB, Reis-Filho A, Souza-Neto SM, Clarencio J, Camargo LM, Barral A, Barral-Netto M 2010. Severe Plasmodium vivax malaria exhibits marked inflammatory imbalance. Malar J 9: 13. Malaria and thrombocytopenia • Marcus Vinícius Guimarães Lacerda et al. 59 Anstey NM, Currie BJ, Dyer ME 1992. Profound thrombocytopenia due to Plasmodium vivax malaria. Aust N Z J Med 22: 169-170. Daniel-Ribeiro CT 2000. Is there a role for autoimmunity in immune protection against malaria? Mem Inst Oswaldo Cruz 95: 199-207. Araujo CF, Lacerda MV, Abdalla DS, Lima ES 2008. The role of platelet and plasma markers of antioxidant status and oxidative stress in thrombocytopenia among patients with vivax malaria. Mem Inst Oswaldo Cruz 103: 517-521. Daniel-Ribeiro CT, Zanini G 2000. Autoimmunity and malaria: what are they doing together? Acta Trop 76: 205-221. Araújo Filho JA, Bressan FR, Tourinho TM, Souza MVL, Pereira LI 2003. Plaquetopenia acentuada associada à malária pelo P. vivax. Anais do XIII Congresso Brasileiro de Infectologia, Goiânia. Braz J Infect Dis 7 (Suppl. 1): 25. Bashawri LA, Mandil AA, Bahnassy AA, Ahmed MA 2002. Malaria: hematological aspects. Ann Saudi Med 22: 372-376. Batista D 1946. O paludismo na Amazônia: contribuição à epidemiologia, à protozoologia e à clínica; estudo sôbre a febre biliosa-hemoglobinúrica; síntese, Imprensa Nacional, Rio de Janeiro, 212 pp. Beale PJ, Cormack JD, Oldrey TB 1972. Thrombocytopenia in malaria with immunoglobulin (IgM) changes. BMJ 1: 345-349. Becchi C, Al Malyan M, Fabbri LP, Marsili M, Boddi V, Boncinelli S 2006. Mean platelet volume trend in sepsis: is it a useful parameter? Minerva Anestesiol 72: 749-756. Bhatia V, Bhatia J 2010. Severe thrombocytopenia with bleeding manifestations in two children secondary to Plasmodium vivax. Platelets 21: 307-309. Blajchman MA 2003. Substitutes and alternatives to platelet transfusions in thrombocytopenic patients. J Thromb Haemost 1: 1637-1641. Brown KM, Kreier JP 1982. Plasmodium berghei malaria: blockage by immune complexes of macrophage receptors for opsonized plasmodia. Infect Immun 37: 1227-1233. Campos FM, Franklin BS, Teixeira-Carvalho A, Filho AL, de Paula SC, Fontes CJ, Brito CF, Carvalho LH 2010. Augmented plasma microparticles during acute Plasmodium vivax infection. Malar J 9: 327. Carvalho BO, Lopes SC, Nogueira PA, Orlandi PP, Bargieri DY, Blanco YC, Mamoni R, Leite JA, Rodrigues MM, Soares IS, Oliveira TR, Wunderlich G, Lacerda MV, Del Portillo HA, Araujo MO, Russell B, Suwanarusk R, Snounou G, Renia L, Costa FT 2010. On the cytoadhesion of Plasmodium vivax-infected erythrocytes. J Infect Dis 202: 638-647. Casals-Pascual C, Kai O, Newton CR, Peshu N, Roberts DJ 2006. Thrombocytopenia in falciparum malaria is associated with high concentrations of IL-10. Am J Trop Med Hyg 75: 434-436. Chagas C 1903. Hematological studies of impaludism, MD Thesis, Manguinhos Institute, Rio de Janeiro, 143 pp. Chotivanich K, Sritabal J, Udomsangpetch R, Newton P, Stepniewska KA, Ruangveerayuth R, Looareesuwan S, Roberts DJ, White NJ 2004. Platelet-induced autoagglutination of Plasmodium falciparum-infected red blood cells and disease severity in Thailand. J Infect Dis 189: 1052-1055. Combes V, Coltel N, Faille D, Wassmer SC, Grau GE 2006. Cerebral malaria: role of microparticles and platelets in alterations of the blood-brain barrier. Int J Parasitol 36: 541-546. Davidson RA 1985. Immunology of parasitic infections. Med Clin North Am 69: 751-758. de Paula LV, Klafke A, Bordin R, Pereira JPM, Job FM 1993. Avaliação da eficácia das transfusões de concentrados de plaquetas nos Serviços de Hematologia e Hemoterapia do Hospital de Clínicas de Porto Alegre. Bol Soc Bras Hematol Hemoter 15: 9-13. del Portillo HA, Lanzer M, Rodriguez-Malaga S, Zavala F, Fernandez-Becerra C 2004. Variant genes and the spleen in Plasmodium vivax malaria. Int J Parasitol 34: 1547-1554. Dennis LH, Eichelberger JW, Inman MM, Conrad ME 1967. Depletion of coagulation factors in drug-resistant Plasmodium falciparum malaria. Blood 29: 713-721. Doi T, Homma H, Mezawa S, Kato J, Kogawa K, Sakamaki S, Niitsu Y 2002. Mechanisms for increment of platelet associated IgG and platelet surface IgG and their implications in immune thrombocytopenia associated with chronic viral liver disease. Hepatol Res 24: 23. Echeverri M, Tobon A, Alvarez G, Carmona J, Blair S 2003. Clinical and laboratory findings of Plasmodium vivax malaria in Colombia 2001. Rev Inst Med Trop Sao Paulo 45: 29-34. Engwerda CR, Beattie L, Amante FH 2005. The importance of the spleen in malaria. Trends Parasitol 21: 75-80. Erel O, Kocyigit A, Bulut V, Avci S, Aktepe N 1998. Role of lipids, lipoproteins and lipid peroxidation in thrombocytopenia in patients with vivax malaria. Haematologia (Budap) 29: 207-212. Erel O, Vural H, Aksoy N, Aslan G, Ulukanligil M 2001. Oxidative stress of platelets and thrombocytopenia in patients with vivax malaria. Clin Biochem 34: 341-344. Essien EM, Ebhota MI 1981. Platelet hypersensitivity in acute malaria (Plasmodium falciparum) infection in man. Thromb Haemost 46: 547-549. Fajardo LF, Tallent C 1974. Malarial parasites within human platelets. J Am Med Assoc 229: 1205-1207. Franchini M 2005. Pathophysiology, diagnosis and treatment of disseminated intravascular coagulation: an update. Clin Lab 51: 633-639. George P, Alexander LM 2010. A study on the clinical profile of complicated Plasmodium vivax mono-infections. Asian Pac J Trop Med 3: 560-562. Gerardin P, Rogier C, Ka AS, Jouvencel P, Brousse V, Imbert P 2002. Prognostic value of thrombocytopenia in African children with falciparum malaria. Am J Trop Med Hyg 66: 686-691. Gonzalez B, Rodulfo H, De Donato M, Berrizbeitia M, Gomez C, Gonzalez L 2009. Hematologic variations in patient with malaria caused by Plasmodium vivax before, during and after treatment. Invest Clin 50: 187-201. Conte R, Tassi C, Belletti D, Ricci F, Tazzari PL 2003. Autoimmune thrombocytopenia in malaria. Vox Sang 85: 221. Gonzalez LM, Guzman M, Carmona J, Lopera T, Blair S 2000. Clinical and epidemiologic characteristics of 291 hospitalized patients for malaria in Medellin (Colombia). Acta Med Colomb 25: 163-170. Cummins D, Faint R, Yardumian DA, Dawling S, Mackie I, Machin SJ 1990. The in vitro and ex vivo effects of chloroquine sulphate on platelet function: implications for malaria prophylaxis in patients with impaired haemostasis. J Trop Med Hyg 93: 112-115. Grau GE, Piguet PF, Gretener D, Vesin C, Lambert PH 1988. Immunopathology of thrombocytopenia in experimental malaria. Immunology 65: 501-506. D’Acremont V, Landry P, Mueller I, Pecoud A, Genton B 2002. Clinical and laboratory predictors of imported malaria in an outpatient setting: an aid to medical decision making in returning travelers with fever. Am J Trop Med Hyg 66: 481-486. Greenwood BM 1968. Autoimmune disease and parasitic infections in Nigerians. Lancet 2: 380-382. Grynberg P, Fernandes Fontes CJ, Braga EM 2007. Association between particular polymorphic residues on apical membrane anti- 60 Mem Inst Oswaldo Cruz, Rio de Janeiro, Vol. 106(Suppl. I), 2011 gen 1 (AMA-1) and platelet levels in patients with vivax malaria. Clin Microbiol Infect 13: 1089-1094. Harish R, Gupta S 2009. Plasmodium vivax malaria presenting with severe thrombocytopenia, cerebral complications and hydrocephalus. Indian J Pediatr 76: 551-552. Hill GJ, Knight V, Jeffery GM 1964. Thrombocytopenia in vivax malaria. Lancet 39: 240-241. Hoffman SL, Rustama D, Punjabi NH, Surampaet B, Sanjaya B, Dimpudus AJ, McKee KT, Jr., Paleologo FP, Campbell JR, Marwoto H 1988. High-dose dexamethasone in quinine-treated patients with cerebral malaria: a double-blind, placebo-controlled trial. J Infect Dis 158: 325-331. Holland BH, Walker AN, Collier L, Stephens JL 2004. Severe thrombocytopenia and epistaxis secondary to Plasmodium vivax infection. Internet J Infect Dis 3. Available from: ispub.com/ostia/ index.php?xmlFilePath=journals/ijid/vol3n2/vivax.xml. Honda S, Saito M, Dimaano EM, Morales PA, Alonzo MT, Suarez LA, Koike N, Inoue S, Kumatori A, Matias RR, Natividad FF, Oishi K 2009. Increased phagocytosis of platelets from patients with secondary dengue virus infection by human macrophages. Am J Trop Med Hyg 80: 841-845. Huang DB, DuPont HL 2005. Problem pathogens: extra-intestinal complications of Salmonella enterica serotype typhi infection. Lancet Infect Dis 5: 341-348. Inyang AL, Sodeinde O, Okpako DT, Essien EM 1987. Platelet reactions after interaction with cultured Plasmodium falciparum infected erythrocytes. Br J Haematol 66: 375-378. Jadhav UM, Patkar VS, Kadam NN 2004. Thrombocytopenia in malaria - correlation with type and severity of malaria. J Assoc Physicians India 52: 615-618. Jaff MS, McKenna D, McCann SR 1985. Platelet phagocytosis: a probable mechanism of thrombocytopenia in Plasmodium falciparum infection. J Clin Pathol 38: 1318-1319. Kakar A, Bhoi S, Prakash V, Kakar S 1999. Profound thrombocytopenia in Plasmodium vivax malaria. Diagn Microbiol Infect Dis 35: 243-244. Karpatkin S 2002. HIV-1 related thrombocytopenia. In AD Michelson, Platelets, Elsevier Academic Press, California, p. 559-570. Karpatkin S, Nardi MA, Hymes KB 1995. Sequestration of antiplatelet GPIIIa antibody in rheumatoid factor immune complexes of human immunodeficiency virus 1 thrombocytopenic patients. Proc Natl Acad Sci USA 92: 2263-2267. Katira B, Shah I 2006. Thrombocytopenia in Plasmodium vivax infected children. J Vector Borne Dis 43: 147-149. Koltas IS, Demirhindi H, Hazar S, Ozcan K 2007. Supportive presumptive diagnosis of Plasmodium vivax malaria. Thrombocytopenia and red cell distribution width. Saudi Med J 28: 535-539. Komoda M, Fujimoto T, Kawaguchi Y, Tsushima H, Fukushima T, Hata T, Miyazaki Y, Tsukasaki K, Tomonaga M 2006. Plasmodium vivax malaria with clinical presentation mimicking acute type idiopathic thrombocytopenic purpura (abstract). Rinsho Ketsueki 47: 1453-1456. Kortepeter M, Brown JD 1998. A review of 79 patients with malaria seen at a military hospital in Hawaii from 1979 to 1995. Mil Med 163: 84-89. Kreil A, Wenisch C, Brittenham G, Looareesuwan S, Peck-Radosavljevic M 2000. Thrombopoietin in Plasmodium falciparum malaria. Br J Haematol 109: 534-536. Kumar A, Shashirekha 2006. Thrombocytopenia: an indicator of acute vivax malaria. Indian J Pathol Microbiol 49: 505-508. Lacerda MV, Alexandre MA, Santos PD, Arcanjo AR, Alecrim WD, Alecrim MGC 2004. Idiopathic thrombocytopenic purpura due to vivax malaria in the Brazilian Amazon. Acta Trop 90: 187-190. Lacerda MV, Hipolito JR, Passos LN 2008. Chronic Plasmodium vivax infection in a patient with splenomegaly and severe thrombocytopenia. Rev Soc Bras Med Trop 41: 522-523. Lacerda MVG 2007. Manifestações clínicas e patogênese da plaquetopenia na malária, PhD Thesis, Universidade de Brasília, 439 pp. Lacerda MVG, Cavalcante TB, Silva AC, Macêdo VO 2006. Avaliação das indicações de transfusão de concentrado de plaquetas. Anais do XLII Congresso da Sociedade Brasileira de Medicina Tropical, Teresina. Rev Soc Bras Med Trop 39 (Suppl. I): 104. Lacerda MVG, Mourão MPG, Alecrim WD, Alecrim MGC 2001. Clinical study of patients with falciparum malaria admitted to the Tropical Medicine Foundation of Amazonas - Brazil. Annals of the 50th Annual Meeting of the American Society of Tropical Medicine and Hygiene, Atlanta (USA). Am J Trop Med Hyg 65: 336. Lacerda MVG, Oliveira SL, Alecrim MGC 2007. Splenic hematoma in a patient with Plasmodium vivax malaria. Rev Soc Bras Med Trop 40: 96-97. Ladhani S, Lowe B, Cole AO, Kowuondo K, Newton CR 2002. Changes in white blood cells and platelets in children with falciparum malaria: relationship to disease outcome. Br J Haematol 119: 839-847. Lathia TB, Joshi R 2004. Can hematological parameters discriminate malaria from nonmalarious acute febrile illness in the tropics? Indian J Med Sci 58: 239-244. Kaur D, Wasir V, Gulati S, Bagga A 2007. Unusual presentation of Plasmodium vivax malaria with severe thrombocytopenia and acute renal failure. J Trop Pediatr 53: 210-212. Lee SH, Looareesuwan S, Chan J, Wilairatana P, Vanijanonta S, Chong SM, Chong BH 1997. Plasma macrophage colony-stimulating factor and P-selectin levels in malaria-associated thrombocytopenia. Thromb Haemost 77: 289-293. Kelton JG, Keystone J, Moore J, Denomme G, Tozman E, Glynn M, Neame PB, Gauldie J, Jensen J 1983. Immune-mediated thrombocytopenia of malaria. J Clin Invest 71: 832-836. Li Z, Nardi MA, Karpatkin S 2005. Role of molecular mimicry to HIV-1 peptides in HIV-1-related immunologic thrombocytopenia. Blood 106: 572-576. Khan FY, Lutof AK, Yassin MA, Khattab MA, Saleh M, Rezeq HY, Almaslamani M 2009. Imported malaria in Qatar: a one year hospital-based study in 2005. Travel Med Infect Dis 7: 111-117. Llanos C, Quintero G, Castellanos A, Arévalo-Herrera M, Herrera S 2006. Surgical bone marrow aspiration in Aotus lemurinus griseimembra. J Med Primatol 35: 131-135. Kochar DK, Das A, Kochar A, Middha S, Acharya J, Tanwar GS, Gupta A, Pakalapati D, Garg S, Saxena V, Subudhi AK, Boopathi PA, Sirohi P, Kochar SK 2010. Thrombocytopenia in Plasmodium falciparum, Plasmodium vivax and mixed infection malaria: a study from Bikaner (Northwestern India). Platelets 21: 623-627. Lou J, Donati YR, Juillard P, Giroud C, Vesin C, Mili N, Grau GE 1997. Platelets play an important role in TNF-induced microvascular endothelial cell pathology. Am J Pathol 151: 1397-1405. Kochar DK, Saxena V, Singh N, Kochar SK, Kumar SV, Das A 2005. Plasmodium vivax malaria. Emerg Infect Dis 11: 132-134. Maina RN, Walsh D, Gaddy C, Hongo G, Waitumbi J, Otieno L, Jones D, Ogutu BR 2010. Impact of Plasmodium falciparum infection on haematological parameters in children living in Western Kenya. Malar J 9 (Suppl. 3): S4. Malaria and thrombocytopenia • Marcus Vinícius Guimarães Lacerda et al. Makkar RP, Mukhopadhyay S, Monga A, Gupta AK 2002. Plasmodium vivax malaria presenting with severe thrombocytopenia. Braz J Infect Dis 6: 263-265. Marques HO 2004. Alterações da hemostasia em pacientes com malária, MSc Thesis, Universidade Federal de São Paulo, São Paulo, 140 pp. Marques HO, Alexandre MAA, Oliveira VM, Marreira L, Lacerda MVG, Alecrim MGC, Morelli VM, Lourenço DM 2005. Hemostatic changes in patients with malaria. Annals of the XX Congress of the International Society on Thrombosis and Hemostasis, Sydney (Australia). J Thromb Haemost 3 (Suppl. I): 1452. Martin-Jaular L, Ferrer M, Calvo M, Rosanas-Urgell A, Kalko S, Graewe S, Soria G, Cortadellas N, Ordi J, Planas A, Burns J, Heussler V, Del Portillo HA 2011. Strain-specific spleen remodelling in Plasmodium yoelii infections in Balb/c mice facilitates adherence and spleen macrophage-clearance escape. Cell Microbiol 13: 109-122. Mast Q, de Groot PG, van Heerde WL, Roestenberg M, van Velzen JF, Verbruggen B, Roest M, McCall M, Nieman AE, Westendorp J, Syafruddin D, Fijnheer R, van Dongen-Lases EC, Sauerwein RW, van der Ven AJ 2010. Thrombocytopenia in early malaria is associated with GP1b shedding in absence of systemic platelet activation and consumptive coagulopathy. Br J Haematol 151: 495-503. Mast Q, Groot E, Lenting PJ, de Groot PG, McCall M, Sauerwein RW, Fijnheer R, van der Ven A 2007. Thrombocytopenia and release of activated von Willebrand Factor during early Plasmodium falciparum malaria. J Infect Dis 196: 622-628. Menendez C, Fleming AF, Alonso PL 2000. Malaria-related anaemia. Parasitol Today 16: 469-476. Mohanty D, Ghosh K, Nandwani SK, Shetty S, Phillips C, Rizvi S, Parmar BD 1997. Fibrinolysis, inhibitors of blood coagulation, and monocyte derived coagulant activity in acute malaria. Am J Hematol 54: 23-29. Mohanty D, Marwaha N, Ghosh K, Sharma S, Garewal G, Shah S, Devi S, Das KC 1988. Functional and ultrastructural changes of platelets in malarial infection. Trans R Soc Trop Med Hyg 82: 369-375. Mohanty S, Patel DK, Pati SS, Mishra SK 2006. Adjuvant therapy in cerebral malaria. Indian J Med Res 124: 245-260. Mohapatra MK, Padhiary KN, Mishra DP, Sethy G 2002. Atypical manifestations of Plasmodium vivax malaria. Indian J Malariol 39: 18-25. Monath TP 2001. Yellow fever: an update. Lancet Infect Dis 1: 11-20. Moulin F, Lesage F, Legros AH, Maroga C, Moussavou A, Guyon P, Marc E, Gendrel D 2003. Thrombocytopenia and Plasmodium falciparum malaria in children with different exposures. Arch Dis Child 88: 540-541. Mourão MP, Lacerda MV, Macedo VO, Santos JB 2007. Thrombocytopenia in patients with dengue virus infection in the Brazilian Amazon. Platelets 18: 605-612. Mourão MPG, Lacerda MVG, Magalhães L, Alecrim WD, Alecrim MGC 2001. Estudo clínico em crianças internadas com malária (P. falciparum) na FMT-AM. Anais do XXXVII Congresso da Sociedade Brasileira de Medicina Tropical, Salvador. Rev Soc Bras Med Trop 34 (Suppl. 1): 71. Muniz-Junqueira MI 2007. Immunomodulatory therapy associated to anti-parasite drugs as a way to prevent severe forms of malaria. Curr Clin Pharmacol 2: 59-73. Muniz-Junqueira MI, Silva FO, de Paula Júnior MR, Tosta CE 2005. Thalidomide influences the function of macrophages and increases the survival of Plasmodium berghei-infected CBA mice. Acta Trop 94: 128-138. Murthy GL, Sahay RK, Srinivasan VR, Upadhaya AC, Shantaram V, Gayatri K 2000. Clinical profile of falciparum malaria in a tertiary care hospital. J Indian Med Assoc 98: 160-162. 61 Nardi MA, Liu LX, Karpatkin S 1997. GPIIIa(49-66) is a major pathophysiologically relevant antigenic determinant for antiplatelet GPIIIa of HIV-1-related immunologic thrombocytopenia. Proc Natl Acad Sci USA 94: 7589-7594. Naveira JB 1970. Malária - aspectos hematológicos, Associate professorship Thesis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 104 pp. Nicodemo AC 1993. Análise de aspectos microscópicos, imuno-histoquímicos e ultra-estruturais do pulmão na leptospirose para a compreensão da patogenia da plaquetopenia, PhD Thesis, Universidade de São Paulo, São Paulo, 153 pp. Noronha EF 1998. Estudo clínico-epidemiológico da malária falciparum em crianças de 0 a 14 anos, atendidas no Instituto de Medicina Tropical do Amazonas em Manaus - AM - Brasil, MSc Thesis, Universidade de Brasília, Brasília, 126 pp. Oh MD, Shin H, Shin D, Kim U, Lee S, Kim N, Choi MH, Chai JY, Choe K 2001. Clinical features of vivax malaria. Am J Trop Med Hyg 65: 143-146. Ohtaka M, Ohyashiki K, Iwabuchi H, Iwabuchi A, Lin KY, Toyama K 1993. A case of vivax malaria with thrombocytopenia suggesting immunological mechanisms. Rinsho Ketsueki 34: 490-492. Pain A, Ferguson DJ, Kai O, Urban BC, Lowe B, Marsh K, Roberts DJ 2001. Platelet-mediated clumping of Plasmodium falciparum-infected erythrocytes is a common adhesive phenotype and is associated with severe malaria. Proc Natl Acad Sci USA 98: 1805-1810. Panasiuk A 2001. Autoimmune thrombocytopenia in recurrent polietiological malaria (Plasmodium falciparum, Plasmodium vivax). Wiad Parazytol 47: 85-89. Pankoui Mfonkeu JB, Gouado I, Fotso Kuate H, Zambou O, Amvam Zollo PH, Grau GE, Combes V 2010. Elevated cell-specific microparticles are a biological marker for cerebral dysfunctions in human severe malaria. PLoS ONE 5: e13415. Parakh A, Agarwal N, Aggarwal A, Aneja A 2009. Plasmodium vivax malaria in children: uncommon manifestations. Ann Trop Paediatr 29: 253-256. Park CHL, Ferreira CB, Bianchi CP, Fazio FS, Costa JC, Padilha A, Fonseca MO, Boulos M 2002. Plaquetopenia em pacientes com malária por Plasmodium vivax. Anais do XXXVIII Congresso da Sociedade Brasileira de Medicina Tropical, Foz do Iguaçu. Rev Soc Bras Med Trop 35 (Suppl. 1): 370. Park JW, Park SH, Yeom JS, Huh AJ, Cho YK, Ahn JY, Min GS, Song GY, Kim YA, Ahn SY, Woo SY, Lee BE, Ha EH, Han HS, Yoo K, Seoh JY 2003. Serum cytokine profiles in patients with Plasmodium vivax malaria: a comparison between those who presented with and without thrombocytopenia. Ann Trop Med Parasitol 97: 339-344. Patel U, Gandhi G, Friedman S, Niranjan S 2004. Thrombocytopenia in malaria. J Natl Med Assoc 96: 1212-1214. Peck-Radosavljevic M 2001. Hypersplenism. Eur J Gastroenterol Hepatol 13: 317-323. Piguet PF, Da Laperrousaz C, Vesin C, Tacchini-Cottier F, Senaldi G, Grau GE 2000. Delayed mortality and attenuated thrombocytopenia associated with severe malaria in urokinase- and urokinase receptor-deficient mice. Infect Immun 68: 3822-3829. Poespoprodjo JR, Fobia W, Kenangalem E, Lampah DA, Hasanuddin A, Warikar N, Sugiarto P, Tjitra E, Anstey NM, Price RN 2009. Vivax malaria: a major cause of morbidity in early infancy. Clin Infect Dis 48: 1704-1712. Prasad R, Das BK, Pengoria R, Mishra OP, Shukla J, Singh TB 2009. Coagulation status and platelet functions in children with severe falciparum malaria and their correlation of outcome. J Trop Pediatr 55: 374-378. 62 Mem Inst Oswaldo Cruz, Rio de Janeiro, Vol. 106(Suppl. I), 2011 Rasheed A, Saeed S, Khan SA 2009. Clinical and laboratory findings in acute malaria caused by various plasmodium species. J Pak Med Assoc 59: 220-223. Rebulla P 2000. Trigger for platelet transfusion. Vox Sang 78 (Suppl. 2): 179-182. Rebulla P 2001. Revisitation of the clinical indications for the transfusion of platelet concentrates. Rev Clin Exp Hematol 5: 288-310. Rifakis PM, Hernandez O, Fernandez CT, Rodriguez-Morales AJ, Von A, Franco-Paredes C 2008. Atypical Plasmodium vivax malaria in a traveler: bilateral hydronephrosis, severe thrombocytopenia, and hypotension. J Travel Med 15: 119-121. Rios-Orrego A, Alvarez-Castillo T, Carmona-Fonseca J, Blair-Trujillo S 2005. Temporal evolution of platelets and anti-platelet antibodies in patients of endemic area with non complicated malaria. An Med Interna 22: 561-568. Robinson P, Jenney AW, Tachado M, Yung A, Manitta J, Taylor K, Biggs BA 2001. Imported malaria treated in Melbourne, Australia: epidemiology and clinical features in 246 patients. J Travel Med 8: 76-81. Silva SL, Santana Filho FS, Arcanjo ARL, Alecrim WD, Alecrim MGC 2000. Perfil clínico e hematológico dos pacientes internados com malária por Plasmodium vivax e plaquetopenia, na Fundação de Medicina Tropical do Amazonas, no período de janeiro de 1997 a setembro de 1999. Anais do XXXVI Congresso da Sociedade Brasileira de Medicina Tropical, São Luís do Maranhão , Rev Soc Bras Med Trop 33 (Suppl. 1): 348. Skudowitz RB, Katz J, Lurie A, Levin J, Metz J 1973. Mechanisms of thrombocytopenia in malignant tertian malaria. BMJ 2: 515-518. Song JY, Park CW, Jo YM, Kim JY, Kim JH, Yoon HJ, Kim CH, Lim CS, Cheong HJ, Kim WJ 2007. Two cases of Plasmodium vivax malaria with the clinical picture resembling toxic shock. Am J Trop Med Hyg 77: 609-611. Srichaikul T, Pulket C, Sirisatepisarn T, Prayoonwiwat W 1988. Platelet dysfunction in malaria. Southeast Asian J Trop Med Public Health 19: 225-233. Srichaikul T, Puwasatien P, Karnjanajetanee J, Bokisch VA, Pawasatien P 1975. Complement changes and disseminated intravascular coagulation in Plasmodium falciparum malaria. Lancet 1: 770-772. Rodriguez-Morales AJ, Sanchez E, Vargas M, Piccolo C, Colina R, Arria M 2006. Anemia and thrombocytopenia in children with Plasmodium vivax malaria. J Trop Pediatr 52: 49-51. Srivastava S, Ahmad S, Shirazi N, Kumar Verma S, Puri P 2011. Retrospective analysis of vivax malaria patients presenting to tertiary referral centre of Uttarakhand. Acta Trop 117: 82-85. Rodriguez-Morales AJ, Sanchez E, Vargas M, Piccolo C, Colina R, Arria M, Franco-Paredes C 2005. Occurrence of thrombocytopenia in Plasmodium vivax malaria. Clin Infect Dis 41: 130-131. Suarez-Mutis MC, Cuervo P, Leoratti FM, Moraes-Avila SL, Ferreira AW, Fernandes O, Coura JR 2007. Cross sectional study reveals a high percentage of asymptomatic Plasmodium vivax infection in the Amazon Rio Negro area, Brazil. Rev Inst Med Trop Sao Paulo 49: 159-164. Rogier C, Gerardin P, Imbert P 2004. Thrombocytopenia is predictive of lethality in severe childhood falciparum malaria. Arch Dis Child 89: 795-796. Samuel H, Nardi M, Karpatkin M, Hart D, Belmont M, Karpatkin S 1999. Differentiation of autoimmune thrombocytopenia from thrombocytopenia associated with immune complex disease: systemic lupus erythematosus, hepatitis-cirrhosis, and HIV-1 infection by platelet and serum immunological measurements. Br J Haematol 105: 1086-1091. Santana Filho FS, Arcanjo AR, Chehuan YM, Costa MR, MartinezEspinosa FE, Vieira JL, Barbosa MG, Alecrim WD, Alecrim MG 2007. Chloroquine-resistant Plasmodium vivax, Brazilian Amazon. Emerg Infect Dis 13: 1125-1126. Santos MC, Lacerda MVG, Benedetti SM, Albuquerque BC, Aguiar Filho AA, Elkhoury MR, Rosa ES, Vasconcelos PF, Medeiros DB, Mourao MPG 2006. Human hantavirus infection, Brazilian Amazon. Emerg Infect Dis 12: 1165-1167. Santos PD 2000. Correlação entre níveis séricos de Intermediários Reativos de Nitrogênio (IRN) e malária em pacientes da Fundação de Medicina Tropical do Amazonas (FMT/IMT-AM), MSc Thesis, Universidade Federal do Amazonas, Manaus, 133 pp. Scaradavou A 2002. HIV-related thrombocytopenia. Blood Rev 16: 73-76. Schlossberg HR, Herman JH 2003. Platelet dosing. Transfus Apher Sci 28: 221-226. Shaikh QH, Ahmad SM, Abbasi A, Malik SA, Sahito AA, Munir SM 2009. Thrombocytopenia in malaria. J Coll Physicians Surg Pak 19: 708-710. Shear HL 1984. Murine malaria: immune complexes inhibit Fc receptor-mediated phagocytosis. Infect Immun 44: 130-136. Silva IBA 2004. Malária vivax: manifestações clínicas e laboratoriais relacionadas com o fator de necrose tumoral alfa, PhD Thesis, Universidade Federal do Pará, Belém, 128 pp. Silva SBR 2009. Avaliação da frequência e dos fatores associados à plaquetopenia causada pelo Plasmodium vivax, MSc Thesis, Universidade Federal do Mato Grosso, 64 pp. Sun G, Chang WL, Li J, Berney SM, Kimpel D, van der Heyde HC 2003. Inhibition of platelet adherence to brain microvasculature protects against severe Plasmodium berghei malaria. Infect Immun 71: 6553-6561. Takaki K, Aoki T, Akeda H, Kajiwara T, Honda S, Maeda Y, Okada K, Sawae Y 1991. A case of Plasmodium vivax malaria with findings of DIC. Kansenshogaku Zasshi 65: 488-492. Tan SO, McGready R, Zwang J, Pimanpanarak M, Sriprawat K, Thwai KL, Moo Y, Ashley EA, Edwards B, Singhasivanon P, White NJ, Nosten F 2008. Thrombocytopaenia in pregnant women with malaria on the Thai-Burmese border. Malar J 7: 209. Taylor WR, Widjaja H, Basri H, Ohrt C, Taufik T, Tjitra E, Baso S, Fryauff D, Hoffman SL, Richie TL 2008. Changes in the total leukocyte and platelet counts in Papuan and non Papuan adults from northeast Papua infected with acute Plasmodium vivax or uncomplicated Plasmodium falciparum malaria. Malar J 7: 259. Terrazzano G, Cortese L, Piantedosi D, Zappacosta S, Di Loria A, Santoro D, Ruggiero G, Ciaramella P 2006. Presence of antiplatelet IgM and IgG antibodies in dogs naturally infected by Leishmania infantum. Vet Immunol Immunopathol 110: 331-337. Thapa R, Biswas B, Mallick D, Sardar S, Modak S 2009. Childhood Plasmodium vivax malaria with severe thrombocytopenia and bleeding manifestations. J Pediatr Hematol Oncol 31: 758-759. Tjitra E, Anstey NM, Sugiarto P, Warikar N, Kenangalem E, Karyana M, Lampah DA, Price RN 2008. Multidrug-resistant Plasmodium vivax associated with severe and fatal malaria: a prospective study in Papua, Indonesia. PLoS Med 5: e128. Touze JE, Mercier P, Rogier C, Hovette P, Schmoor P, Dabanian C, Campiadgi S, Laroche R 1990. Platelet antibody activity in malaria thrombocytopenia. Pathol Biol (Paris) 38: 678-681. Tribulatti MV, Mucci J, Van Rooijen N, Leguizamon MS, Campetella O 2005. The trans-sialidase from Trypanosoma cruzi induces thrombocytopenia during acute Chagas’ disease by reducing the platelet sialic acid contents. Infect Immun 73: 201-207. Malaria and thrombocytopenia • Marcus Vinícius Guimarães Lacerda et al. 63 Tyagi P, Biswas S 1999. Naturally occurring plasmodia-specific circulating immune complexes in individuals of malaria endemic areas in India. Indian J Malariol 36: 12-18. Wassmer SC, Combes V, Candal FJ, Juhan-Vague I, Grau GE 2006a. Platelets potentiate brain endothelial alterations induced by Plasmodium falciparum. Infect Immun 74: 645-653. Urban BC, Hien TT, Day NP, Phu NH, Roberts R, Pongponratn E, Jones M, Mai NTH, Bethell D, Turner GDH, Ferguson D, White NJ, Roberts DJ 2005. Fatal Plasmodium falciparum malaria causes specific patterns of splenic architectural disorganization. Infect Immun 73: 1986-1994. Wassmer SC, Lepolard C, Traore B, Pouvelle B, Gysin J, Grau GE 2004. Platelets reorient Plasmodium falciparum-infected erythrocyte cytoadhesion to activated endothelial cells. J Infect Dis 189: 180-189. van der Heyde HC, Gramaglia I, Sun G, Woods C 2005. Platelet depletion by anti-CD41 (alphaIIb) mAb injection early but not late in the course of disease protects against Plasmodium berghei pathogenesis by altering the levels of pathogenic cytokines. Blood 105: 1956-1963. Victoria MB, Victoria F, Coelho AHV, Santos LO, Alecrim MGC 1998. Púrpura trombocitopênica em paciente com malária por Plasmodium vivax: relato de caso. Anais do XXXIV Congresso da Sociedade Brasileira de Medicina Tropical, Manaus. Rev Soc Bras Med Trop 31 (Suppl. 1): 55. Wassmer SC, Souza JB, Frere C, Candal FJ, Juhan-Vague I, Grau GE 2006b. TGF-beta1 released from activated platelets can induce TNF-stimulated human brain endothelium apoptosis: a new mechanism for microvascular lesion during cerebral malaria. J Immunol 176: 1180-1184. Watier H, Verwaerde C, Landau I, Werner E, Fontaine J, Capron A, Auriault C 1992. T-cell-dependent immunity and thrombocytopenia in rats infected with Plasmodium chabaudi. Infect Immun 60: 136-142. WHO - World Health Organization 2010. Guidelines for the treatment of malaria [homepage on the Internet]: 2010. Available from: whqlibdoc.who.int/publications/2010/9789241547925_eng.pdf. Vij AS, Dandona PK, Aggarwal A 2008. Malaria with marked thrombocytopenia: report of 2 cases. J Indian Med Assoc 106: 123-125. Wickramasinghe SN, Abdalla SH 2000. Blood and bone marrow changes in malaria. Baillieres Best Pract Res Clin Haematol 13: 277-299. Warrell DA, Looareesuwan S, Warrell MJ, Kasemsarn P, Intaraprasert R, Bunnag D, Harinasuta T 1982. Dexamethasone proves deleterious in cerebral malaria. A double-blind trial in 100 comatose patients. N Engl J Med 306: 313-319. Yamaguchi S, Kubota T, Yamagishi T, Okamoto K, Izumi T, Takada M, Kanou S, Suzuki M, Tsuchiya J, Naruse T 1997. Severe thrombocytopenia suggesting immunological mechanisms in two cases of vivax malaria. Am J Hematol 56: 183-186. 113 ANEXO F: Normas da revista PLOS ONE PLOS ONE Manuscript Guidelines 1. Format requirements PLOS ONE does not consider presubmission inquiries. All submissions should be prepared as follows: Cover letter You should supply an approximately one page cover letter that: Concisely summarizes why your paper is a valuable addition to the scientific literature Briefly relates your study to previously published work Specifies the type of article you are submitting (for example, research article, systematic review, meta-analysis, clinical trial) Describes any prior interactions with PLOS regarding the submitted manuscript Suggests appropriate PLOS ONE Academic Editors to handle your manuscript (view a complete listing of our academic editors) Lists any recommended or opposed reviewers Your cover letter should not include requests to reduce or waive publication fees. You will have the opportunity to include these requests during the manuscript submission process. See the PLOS ONE Editorial Policy regarding publication fees for more information. Manuscript Organization PLOS ONE considers manuscripts of any length. There are no explicit restrictions for the number of words, figures, or the length of the supporting information, although we encourage a concise and accessible writing style. Most articles published in PLOS ONE begin with the ordered sections: Title Authors Affiliations Abstract Introduction and end with the sections of: Acknowledgments References Figure Legends Tables The title, authors, and affiliations should all be included on a title page as the first page of the manuscript file. Between these beginning and ending sections, articles may be organized in different ways according to what authors think is the best way to present and discuss their science. In most cases, internal sections include: Materials and Methods Results Discussion Conclusions (optional) PLOS ONE has no specific requirements for the order of these sections, and in some cases it may be appropriate to combine sections. Guidelines for individual sections can be found here. Abbreviations should be kept a minimum and defined upon first use in the text. Nonstandard abbreviations should not be used unless they appear at least three times in the text. Appropriate standardized nomenclature should be used as appropriate, including appropriate usage of species names and SI units. File type requirements Authors may submit their manuscript files in Word (as .doc or .docx), LaTeX (as .pdf), or RTF format. Only RTF and .doc files can be used during the production process. If you would like to submit your manuscript using LaTeX, you must author your article using the PLOS ONE LaTeX template and BibTeX style sheet. Articles prepared in LaTeX may be submitted in PDF format for use during the review process. After acceptance, however, .tex files and formatting information will be required as a zipped file. Please consult our LaTeX guidelines for a list of what will be required. If your manuscript is or will be in .docx format and contains equations, you must follow the instructions below to make sure that your equations are editable when the file enters production. If you have not yet composed your article, you can ensure that the equations in your .docx file remain editable in .doc by enabling "Compatibility Mode" before you begin. To do this, open a new document and save as Word 97-2003 (*.doc). Several features of Word 2007/10 will now be inactive, including the built-in equation editing tool. You can insert equations in one of the two ways listed below. If you have already composed your article as .docx and used its built-in equation editing tool, your equations will become images when the file is saved down to .doc. To resolve this problem, re-key your equations in one of the two following ways. 1. Use MathType to create the equation. MathType is the recommended method for creating equations. 2. Go to Insert > Object > Microsoft Equation 3.0 and create the equation. If, when saving your final document, you see a message saying "Equations will be converted to images," your equations are no longer editable and PLOS will not be able to accept your file. Back to top 2. Guidelines for Standard Sections Title Manuscripts must be submitted with both a full title and a short title, which will appear at the top of the PDF upon publication if accepted. Only the full title should be included in the manuscript file; the short title will be entered during the online submission process. The full title must be 150 characters or fewer. It should be specific, descriptive, concise, and comprehensible to readers outside the subject field. Avoid specialist abbreviations if possible. Where appropriate, authors should include the species or model system used (for biological papers) or type of study design (for clinical papers). Examples: Impact of Cigarette Smoke Exposure on Innate Immunity: A Caenorhabditis elegans Model Solar Drinking Water Disinfection (SODIS) to Reduce Childhood Diarrhoea in Rural Bolivia: A Cluster-Randomized, Controlled Trial The short title must be 50 characters or fewer and should state the topic of the paper. Authors and Affiliations All author names should be listed in the following order: First names (or initials, if used), Middle names (or initials, if used), and Last names (surname, family name) Each author should list an associated department, university, or organizational affiliation and its location, including city, state/province (if applicable), and country. If the article has been submitted on behalf of a consortium, all author names and affiliations should be listed at the end of the article. This information cannot be changed after initial submission, so please ensure that it is correct. PLOS ONE bases its criteria for authorship on those outlined by the International Committee of Medical Journal Editors (ICMJE), summarized below: Authors should meet conditions 1, 2, and 3 below to be assigned credit for authorship: 1. substantial contributions to conception and design of the work, acquisition of data, or analysis and interpretation of data 2. drafting the article or revising it critically for important intellectual content; and 3. final approval of the version to be published. All persons designated as authors should qualify for authorship, and all those who qualify should be listed. When a large, multicenter group has conducted the work, the group should identify the individuals who accept direct responsibility for the manuscript. These individuals should fully meet the criteria for authorship/contributorship defined above. Each author should have participated sufficiently in the work to take public responsibility for appropriate portions of the content. When submitting a manuscript authored by a group, the corresponding author should clearly indicate the preferred citation and identify all individual authors as well as the group name. The contributions of all authors must be described. Note that acquisition of funding, collection of data, or general supervision of the research group alone does not constitute authorship. Contributions that fall short of authorship should be mentioned in the Acknowledgments section of the paper. The National Library of Medicine (NLM) indexes the group name and the names of individuals the group has identified as being directly responsible for the manuscript. The NLM also lists the names of collaborators if they are listed in Acknowledgments. One author should be designated as the corresponding author, and his or her email address or other contact information should be included on the manuscript cover page. This information will be published with the article if accepted. See the PLOS ONE Editorial Policy regarding authorship criteria for more information. Abstract The abstract should not exceed 300 words. It should: Describe the main objective(s) of the study Explain how the study was done, including any model organisms used, without methodological detail Summarize the most important results and their significance Abstracts should not include: Citations Specialist abbreviations, if possible Introduction The introduction should: Provide some background to put the manuscript into context and allow readers outside the field to understand the purpose and significance of the study Define the problem addressed and why it is important Include a brief review of the key literature Note any relevant controversies or disagreements in the field Conclude with a brief statement of the overall aim of the work and a comment about whether that aim was achieved Materials and Methods This section should provide enough detail to allow suitably skilled investigators to fully replicate your study. Specific information and/or protocols for new methods should be included in detail. If materials, methods, and protocols are well established, authors may refer to other papers where those protocols are described in detail, but the submission should include sufficient information to be understood independent of these references. We encourage authors to submit detailed protocols for newer or less well-established methods as Supporting Information. These are published online only, but are linked to the article and are fully searchable. For more information about formatting Supporting Information files, click here. Methods sections of papers on research using human or animal subjects and/or tissue or field sampling must include required ethics statements. See the Reporting Guidelines for human research, clinical trials, animal research, and observational and field studies for more information. Methods sections of papers with data that should be deposited in a publicly available database should specify where the data have been deposited and provide the relevant accession numbers and version numbers, if appropriate. Accession numbers should be provided in parentheses after the entity on first use. If the accession numbers have not yet been obtained at the time of submission, please state that they will be provided during review. They must be provided prior to publication. Methods sections of papers using cell lines must state the origin of the cell lines used. See the Reporting Guidelines for cell line research for more information. Methods sections of papers adding new taxon names to the literature must follow the Reporting Guidelines below for a new zoological taxon, botanical taxon, or fungal taxon. Results, Discussion, and Conclusions These sections may all be separate, or may be combined to create a mixed Results/Discussion section (commonly labeled "Results and Discussion") or a mixed Discussion/Conclusions section (commonly labeled "Discussion"). These sections may be further divided into subsections, each with a concise subheading, as appropriate. These sections have no word limit, but the language should be clear and concise. Together, these sections should describe the results of the experiments, the interpretation of these results, and the conclusions that can be drawn. Authors should explain how the results relate to the hypothesis presented as the basis of the study and provide a succinct explanation of the implications of the findings, particularly in relation to previous related studies and potential future directions for research. PLOS ONE editorial decisions do not rely on the novelty or perceived impact, so authors should avoid overstating their conclusions. See the PLOS ONEPublication Criteria for more information. Acknowledgements People who contributed to the work but do not fit the PLOS ONE authorship criteria should be listed in the acknowledgments, along with their contributions. You must ensure that anyone named in the acknowledgments agrees to being so named. Funding sources should not be included in the acknowledgments, or anywhere in the manuscript file. You will provide this information during the manuscript submission process. References Only published or accepted manuscripts should be included in the reference list. Papers that have been submitted but not yet accepted should not be cited. Limited citation of unpublished work should be included in the body of the text only as “unpublished data.” All “personal communications” citations should be supported by a letter from the relevant authors. Style information: PLOS uses the numbered citation (citation-sequence) method and first five authors, et al. References are listed and numbered in the order that they appear in the text. In the text, citations should be indicated by the reference number in brackets. The parts of the manuscript should be in the correct order before ordering the citations: body, boxes, figure captions, tables, and supporting information captions. Abstracts and author summaries may not contain citations. Journal name abbreviations should be those found in the NCBI databases: http://www.ncbi.nlm.nih.gov/nlmcatalog/journals. Because all references will be linked electronically as much as possible to the papers they cite, proper formatting of the references is crucial. For convenience, a number of reference software companies supply PLOS style files (e.g., Reference Manager, EndNote). Published Papers 1. Hou WR, Hou YL, Wu GF, Song Y, Su XL, et al. (2011) cDNA, genomic sequence cloning and overexpression of ribosomal protein gene L9 (rpL9) of the giant panda (Ailuropoda melanoleuca). Genet Mol Res 10: 1576-1588. Note: Use of a DOI number for the full-text article is acceptable as an alternative to or in addition to traditional volume and page numbers. Accepted, unpublished papers Same as above, but “In press” appears instead of the page numbers. Electronic Journal Articles 1. Huynen MMTE, Martens P, Hilderlink HBM (2005) The health impacts of globalisation: a conceptual framework. Global Health 1: 14. Available: http://www.globalizationandhealth.com/content/1/1/14. Accessed 25 January 2012. Books 1. Bates B (1992) Bargaining for life: A social history of tuberculosis. Philadelphia: University of Pennsylvania Press. 435 p. Book Chapters 1. Hansen B (1991) New York City epidemics and history for the public. In: Harden VA, Risse GB, editors. AIDS and the historian. Bethesda: National Institutes of Health. pp. 21-28. Figure legends Figures should not be included in the manuscript file, but figure legends should be. Figure legends should describe the key messages of a figure. Legends should have a short title of 15 words or less. The full legend should have a description of the figure and allow readers to understand the figure without referring to the text. The legend itself should be succinct, avoid lengthy descriptions of methods, and define all non-standard symbols and abbreviations. Further information can be found in the Figure Guidelines. Tables Tables should be included at the end of the manuscript. All tables should have a concise title. Footnotes can be used to explain abbreviations. Citations should be indicated using the same style as outlined above. Tables occupying more than one printed page should be avoided, if possible. Larger tables can be published as Supporting Information. Please ensure that table formatting conforms to our Guidelines for table preparation. Back to top 3. Specific Reporting Guidelines Additional information about reporting guidelines for specific article types can be found at the PLOS Editorial and Publishing Policies. Human Research Methods sections of papers on research using human subject or samples must include ethics statements that specify: The name of the approving institutional review board or equivalent committee(s). If approval was not obtained, the authors must provide a detailed statement explaining why it was not needed Whether informed consent was written or oral. If informed consent was oral, it must be stated in the paper: o Why written consent could not be obtained o That the Institutional Review Board (IRB) approved use of oral consent o How oral consent was documented For studies involving humans categorized by race/ethnicity, age, disease/disabilities, religion, sex/gender, sexual orientation, or other socially constructed groupings, authors should: Explicitly describe their methods of categorizing human populations Define categories in as much detail as the study protocol allows Justify their choices of definitions and categories, including for example whether any rules of human categorization were required by their funding agency Explain whether (and if so, how) they controlled for confounding variables such as socioeconomic status, nutrition, environmental exposures, or similar factors in their analysis In addition, outmoded terms and potentially stigmatizing labels should be changed to more current, acceptable terminology. Examples: "Caucasian" should be changed to "white" or "of [Western] European descent" (as appropriate); "cancer victims" should be changed to "patients with cancer." For papers that include identifying, or potentially identifying, information, authors must download the Consent Form for Publication in a PLOS Journal(PDF), which the individual, parent, or guardian must sign once they have read the paper and been informed about the terms of PLOS open-access license. The signed consent form should not be submitted with the manuscript, but authors should securely file it in the individual's case notes and the methods section of the manuscript should explicitly state that consent authorization for publication is on file, using wording like: "The individual in this manuscript has given written informed consent (as outlined in PLOS consent form) to publish these case details." For more information about PLOS ONE policies regarding human subject research, see the Publication Criteria and Editorial Policies. Clinical Trials Authors of manuscripts describing the results of clinical trials must adhere to the CONSORT reporting guidelines appropriate to their trial design, available on the CONSORT Statement website. Before the paper can enter peer review, authors must: 1. Provide the registry name and number in the methods section of the manuscript 2. Provide a copy of the trial protocol as approved by the ethics committee and a completed CONSORT checklist as Supporting Information (which will be published alongside the paper, if accepted) 3. Include the CONSORT flow diagram as the manuscript's "Figure 1" Any deviation from the trial protocol must be explained in the paper. Authors must explicitly discuss informed consent in their paper, and we reserve the right to ask for a copy of the patient consent form. The methods section must include the name of the registry, the registry number, and the URL of your trial in the registry database for each location in which the trial is registered. For more information about PLOS ONE policies regarding clinical trials, see the Editorial Policies. Animal research Methods sections of papers reporting results of animal research must include required ethics statements that specify: The full name of the relevant ethics committee that approved the work, and the associated permit numbers; where ethical approval is not required, the article should include a clear statement of this and the reason why Relevant details for efforts taken to ameliorate animal suffering Example: "This study was carried out in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. The protocol was approved by the Committee on the Ethics of Animal Experiments of the University of Minnesota (Permit Number: 27-2956). All surgery was performed under sodium pentobarbital anesthesia, and all efforts were made to minimize suffering." The organism(s) studied should always be stated in the abstract. Where research may be confused as pertaining to clinical research, the animal model should also be stated in the title. We encourage authors to use the ARRIVE (Animal Research: Reporting of In Vivo Experiments) guidelines as a reference. For more information about PLOS ONE policies regarding animal research, see the Publication Criteria and Editorial Policies. Observational and field studies Methods sections for submissions reporting on any type of field study must include ethics statements that specify: Permits and approvals obtained for the work, including the full name of the authority that approved the study; if none were required, authors should explain why Whether the land accessed is privately owned or protected Whether any protected species were sampled Full details of animal husbandry, experimentation, and care/welfare, where relevant For more information about PLOS ONE policies regarding observational and field studies, see the Publication Criteria and Editorial Policies. Work using cell lines Methods sections for submissions reporting on research with cell lines should state the origin of any cell lines. For established cell lines it should be stated from where/who the cell line was obtained, and references must also be given to either a published paper or to a commercial source. If previously unpublished de novo cell lines were used, including those gifted from another laboratory, details of institutional review board or ethics committee approval must be given, and confirmation of written informed consent must be provided if the line is of human origin. For more information about PLOS ONE policies regarding observational and field studies, see the Publication Criteria. Systematic Review/Meta-Analysis A systematic review paper, as defined by The Cochrane Collaboration, is a review of a clearly formulated question that uses explicit, systematic methods to identify, select, and critically appraise relevant research, and to collect and analyze data from the studies that are included in the review. These reviews differ substantially from narrative-based reviews or synthesis articles. Statistical methods (meta-analysis) may or may not be used to analyze and summarize the results of the included studies. Reports of systematic reviews and meta-analyses should use the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement as a guide, and must include a completed PRISMA checklist and flow diagram to accompany the main text. Blank templates of the checklist and flow diagram can be downloaded from the PRISMA website. Authors must also state in their "Methods" section whether a protocol exists for their systematic review, and if so, provide a copy of the protocol as Supporting Information and provide the registry number in the abstract. If your article is a Systematic Review or a Meta-Analysis you should: State this in your cover letter Select 'Research Article' as your article type when submitting Upload your PRISMA flowchart as Figure 1 (required where applicable) Include the PRISMA checklist as Supporting Information. Software Papers Manuscripts describing software should provide full details of the algorithms designed. Describe any dependencies on commercial products or operating system. Include details of the supplied test data and explain how to install and run the software. A brief description of enhancements made in the major releases of the software may also be given. Authors should provide a direct link to the deposited software from within the paper. See the PLOS ONE Editorial Policies and the PLOS Editorial and Publishing Policies for more information about submitting papers describing software. Database Papers For descriptions of databases, provide details about how the data were curated, as well as plans for long-term database maintenance, growth, and stability. Authors should provide a direct link to the database hosting site from within the paper. See the PLOS ONE Editorial Policies for more information about submitting papers describing databases. New Zoological Taxon PLOS ONE aims to comply with the requirements of the International Commission on Zoological Nomenclature (ICZN) when publishing papers that describe a new zoological taxon name. However, the ICZN does not yet recognize online-only journals. There is a proposal to amend the Code to accommodate such publications. Until acceptance of this amendment, the ICZN has proposed an interim solution for authors publishing in PLOS ONE to ensure that the scientific animal name is be considered "available" (legally published) under the rules of the Code. PLOS ONE provides a limited hardcopy print-run of the article and makes it publicly obtainable. Therefore, for all papers that include the naming of a new zoological taxon, PLOS will make a printed version available for outside parties (at a cost of $10, to cover postage and printing) at the same time as the publication of the online-only article (which remains freely available). The printed version of the article contains the text below in the footer of the first page. This text will be added by PLOS staff, and does not need to be included by the authors: Footer text: "This printed document was produced by a method that assures numerous identical and durable copies, and those copies were simultaneously obtainable for the purpose of providing a public and permanent scientific record, in accordance with Article 8.1 of the International Code of Zoological Nomenclature. Date of publication: XXXXXXXX. This document is otherwise identical to DOI: XXXXX For proper registration of the new taxon, we also require two specific statements to be included in your manuscript. In the Results section, the globally unique identifier (GUID), currently in the form of a Life Science Identifier (LSID), should be listed under the new species name, for example: Anochetus boltoni Fisher sp. nov. urn:lsid:zoobank.org:act:B6C072CF-1CA6-40C78396-534E91EF7FBB You will need to contact Zoobank to obtain a GUID (LSID). Please do this as early as possible to avoid delay of publication upon acceptance of your manuscript. It is your responsibility to provide us with this information so we can include it in the final published paper. Please also insert the following text into the Methods section, in a sub-section to be called "Nomenclatural Acts": The electronic version of this document does not represent a published work according to the International Code of Zoological Nomenclature (ICZN), and hence the nomenclatural acts contained in the electronic version are not available under that Code from the electronic edition. Therefore, a separate edition of this document was produced by a method that assures numerous identical and durable copies, and those copies were simultaneously obtainable (from the publication date noted on the first page of this article) for the purpose of providing a public and permanent scientific record, in accordance with Article 8.1 of the Code. The separate print-only edition is available on request from PLOS by sending a request to PLOS ONE, PLOS, 1160 Battery Street, Suite 100, San Francisco, CA 94111, USA along with a check for $10 (to cover printing and postage) payable to "PLOS". In addition, this published work and the nomenclatural acts it contains have been registered in ZooBank, the proposed online registration system for the ICZN. The ZooBank LSIDs (Life Science Identifiers) can be resolved and the associated information viewed through any standard web browser by appending the LSID to the prefix "http://zoobank.org/". The LSID for this publication is: (insert here). The online version of this work is archived and available from the following digital repositories: [INSERT NAMES OF DIGITAL REPOSITORIES WHERE ACCEPTED MANUSCRIPT WILL BE SUBMITTED (PubMed Central, LOCKSS etc)]. All PLOS ONE articles are deposited in PubMed Central and LOCKSS. If your institute, or those of your co-authors, has its own repository, we recommend that you also deposit the published online article there and include the name in your article. New Botanical Taxon When publishing papers that describe a new botanical taxon name, PLOS aims to comply with the requirements of the International Code of Nomenclature for algae, fungi, and plants (ICN). In association with the International Plant Names Index (IPNI), the following guidelines for publication in an online-only journal have been agreed such that any scientific botanical name published by us is considered effectively published under the rules of the Code. Please note that these guidelines differ from those for zoological nomenclature. Effective January 2012, "the description or diagnosis required for valid publication of the name of a new taxon" can be in either Latin or English. This does not affect the requirements for scientific names, which are still to be Latin. Also effective January 2012, the electronic PDF represents a published work according to the ICN for algae, fungi, and plants. Therefore the new names contained in the electronic publication of a PLOS ONE article are effectively published under that Code from the electronic edition alone, so there is no longer any need to provide printed copies. Additional information describing recent changes to the Code can be found here. For proper registration of the new taxon, we require two specific statements to be included in your manuscript. In the Results section, the globally unique identifier (GUID), currently in the form of a Life Science Identifier (LSID), should be listed under the new species name, for example: Solanum aspersum S.Knapp, sp. nov. [urn:lsid:ipni.org:names:77103633-1] Type: Colombia. Putumayo: vertiente oriental de la Cordillera, entre Sachamates y San Francisco de Sibundoy, 1600-1750 m, 30 Dec 1940, J. Cuatrecasas 11471 (holotype, COL; isotypes, F [F-1335119], US [US-1799731]). You will need to contact IPNI to obtain the GUID (LSID) after your manuscript is accepted for publication. You must then make sure to provide us with this information so we can include it in the final published paper. In the Methods section, include a sub-section called "Nomenclature" using the following wording: The electronic version of this article in Portable Document Format (PDF) will represent a published work according to the International Code of Nomenclature for algae, fungi, and plants, and hence the new names contained in the electronic version are effectively published under that Code from the electronic edition alone. In addition, new names contained in this work have been submitted to IPNI, from where they will be made available to the Global Names Index. The IPNI LSIDs can be resolved and the associated information viewed through any standard web browser by appending the LSID contained in this publication to the prefix http://ipni.org/. The online version of this work is archived and available from the following digital repositories: [INSERT NAMES OF DIGITAL REPOSITORIES WHERE ACCEPTED MANUSCRIPT WILL BE SUBMITTED (PubMed Central, LOCKSS etc)]. All PLOS ONE articles are deposited in PubMed Central and LOCKSS. If your institute, or those of your co-authors, has its own repository, we recommend that you also deposit the published online article there and include the name in your article. New Fungal Taxon When publishing papers that describe a new fungal taxon name, PLOS aims to comply with the requirements of the International Code of Nomenclature for algae, fungi, and plants (ICN). The following guidelines for publication in an online-only journal have been agreed such that any scientific fungal name published by us is considered effectively published under the rules of the Code. Please note that these guidelines differ from those for zoological nomenclature. Effective January 2012, "the description or diagnosis required for valid publication of the name of a new taxon" can be in either Latin or English. This does not affect the requirements for scientific names, which are still to be Latin. Also effective January 2012, the electronic PDF represents a published work according to the ICN for algae, fungi, and plants. Therefore the new names contained in the electronic publication of a PLOS ONE article are effectively published under that Code from the electronic edition alone, so there is no longer any need to provide printed copies. Additional information describing recent changes to the Code can be found here. For proper registration of the new taxon, we require two specific statements to be included in your manuscript. In the Results section, the globally unique identifier (GUID), currently in the form of a Life Science Identifier (LSID), should be listed under the new species name, for example: Hymenogaster huthii. Stielow et al. 2010, sp. nov. [urn:lsid:indexfungorum.org:names:518624] You will need to contact either Mycobank or Index Fungorum to obtain the GUID (LSID). Please do this as early as possible to avoid delay of publication upon acceptance of your manuscript. It is your responsibility to provide us with this information so we can include it in the final published paper. Effective January 2013, all papers describing new fungal species must reference the identifier issued by a recognized repository in the protologue in order to be considered effectively published. In the Methods section, include a sub-section called "Nomenclature" using the following wording (this example is for taxon names submitted to MycoBank; please substitute appropriately if you have submitted to Index Fungorum): The electronic version of this article in Portable Document Format (PDF) will represent a published work according to the International Code of Nomenclature for algae, fungi, and plants, and hence the new names contained in the electronic version are effectively published under that Code from the electronic edition alone. In addition, new names contained in this work have been submitted to MycoBank from where they will be made available to the Global Names Index. The unique MycoBank number can be resolved and the associated information viewed through any standard web browser by appending the MycoBank number contained in this publication to the prefix http://www.mycobank.org/MycoTaxo.aspx?Link=T&Rec=. The online version of this work is archived and available from the following digital repositories: [INSERT NAMES OF DIGITAL REPOSITORIES WHERE ACCEPTED MANUSCRIPT WILL BE SUBMITTED (PubMed Central, LOCKSS etc)]. All PLOS ONE articles are deposited in PubMed Central and LOCKSS. If your institute, or those of your co-authors, has its own repository, we recommend that you also deposit the published online article there and include the name in your article. Back to top 4. Language polishing services Prior to submission, authors who believe their manuscripts would benefit from professional editing are encouraged to use language-editing and copyediting services. Obtaining this service is the responsibility of the author, and should be done before initial submission. Submissions are not copyedited before publication. Please contact plosone [at] plos.org for assistance if needed. Submissions that do not meet the PLOS ONE Publication Criteria for language standards may be rejected.