Pontifícia Universidade Católica do Paraná Curso de Especialização em Inteligência Computacional 2004/2005 Computação Evolutiva: Programação Evolutiva Luiz Eduardo S. Oliveira, Ph.D. [email protected] http://www.ppgia.pucpr.br/~soares PUCPR (2005) Computação Evolutiva 1 Introdução A Programação Evolutiva (PE) foi proposta por Fogel, Owens e Walsh em meados da década de 60 “Artificial Intelligence Through Simulated Evolution” Proposta original: Predição de comportamento de máquinas de estado finito. Predição PUCPR (2005) Computação Evolutiva 2 Introdução Procedure EC{ Não existe cruzamento, t = 0; somente mutação Initialize P(t); Evaluate P(t); While (Not Done) { Parents(t) = Select_Parents(P(t)); Offspring(t) = Procreate(Parents(t)); Evaluate(Offspring(t)); P(t+1)= Select_Survivors(P(t),Offspring(t)); t = t + 1; } PUCPR (2005) Computação Evolutiva 3 Introdução Na PE, cada indivíduo gera um único descendente através de mutação. A melhor metade da população ascendente e a melhor metade da população descendente são reunidas para formar a nova geração PUCPR (2005) Computação Evolutiva 4 Introdução Diferentemente dos AGs, a PE enfatiza os desenvolvimento de modelos comportamentais Modelar o comportamento afim de prever o que pode acontecer (PREDIÇÃO). Capturar a interação do sistema com seu ambiente. PUCPR (2005) Computação Evolutiva 5 Maquinas de Estado Finito Uma maneira comum de se prever uma ação consiste na análise de ações passadas. No contexto de uma máquina de estado finito, cada ação pode ser representada por um símbolo. Dado uma seqüência de símbolos, deve-se prever qual será o próximo símbolo. PUCPR (2005) Computação Evolutiva 6 Máquinas de Estado Finito Assim como nos AGs, os símbolos devem pertencer a um alfabeto finito. Máquina de Estado Finito: Analisar a seqüência de símbolos Gerar uma saída que otimize uma dada função de fitness, a qual envolve a previsão do próximo símbolo da seqüência. PUCPR (2005) Mercado financeiro, previsão do tempo, etc... Computação Evolutiva 7 Máquinas de Estado Finito Podem ser vistas como transdutores: Quando estimulado por um alfabeto finito de símbolos, responde com um outro alfabeto finito de símbolos e possui um número finito de estados. Alfabetos de entrada e saída não são necessariamente idênticos. PUCPR (2005) Computação Evolutiva 8 Máquinas de Estado Finito: Um Exemplo Alfabeto de entrada de dois símbolos: I = {1, 0} Alfabeto de saída de três símbolos: O = {X, Y, Z} Máquina de três estados S = {A, B, C} PUCPR (2005) Computação Evolutiva 9 Máquinas de Estado Finito Sub-conjunto das máquinas de Turing Capazes de resolver todos os problemas matemáticos de uma classe definida. Capazes de modelar ou representar um organismo ou um sistema. PUCPR (2005) Computação Evolutiva 10 Máquinas de Estado Finito Tarefa: Prever a próxima entrada Medida da Qualidade: Estado Inical: C Sequência de Entrada 011101 Sequência de Saida Número de previsões corretas 110111 Qualidade: 3 de 5 S = {A,B,C} I = {0,1} O = {0,1} PUCPR (2005) Computação Evolutiva 11 Operados usados na PE Diferentemente dos AGs onde o cruzamento é um importante componente para a produção de uma nova geração, a mutação é o ÚNICO operador usado na PE. Cada membro da população sobre mutação e produz UM filho. PUCPR (2005) Computação Evolutiva 12 Mutação Cinco tipos de mutação podem ocorrer em uma máquina de estado finitos: O estado inicial pode mudar. O estado inicial pode ser eliminado. Um estado pode ser adicionado. Uma transição entre estados pode ser mudada. O símbolo de saída para um determinado estado e símbolo de entrada pode ser mudado. PUCPR (2005) Computação Evolutiva 13 Seleção Uma vez que cada pai gera um filho após a mutação, a população dobra de tamanho a cada geração. Após o cálculo da fitness, conserva-se a melhor metade dos pais e a melhor metade dos filhos. População PUCPR (2005) de tamanho constante. Computação Evolutiva 14 Seleção Pais Filhos Nova População Mutação Ranking PUCPR (2005) Computação Evolutiva 15 Critério de Parada Fazer a predição utilizando o melhor indivíduo da população. Isso pode ocorrer a qualquer instante Se a fitness for satisfatória (Lei da Suficiência) o algoritmo pode ser terminado. Fixar um número de gerações. PUCPR (2005) Computação Evolutiva 16 Alterando o Tamanho do Indivíduo Diferentemente de outros paradigmas evolutivos, na PE a mutação pode mudar o tamanho do indivíduo. Estados podem ser adicionados ou eliminados, de acordo com as regras vistas anteriormente. Isso pode causar alguns espaços na tabela PUCPR (2005) Mutações neutras. Computação Evolutiva 17 Alterando o Tamanho do Indivíduo A mutação ainda pode criar uma transição que não seja possível, pois um estado pode ter sido eliminado durante a mutação. Esses problemas devem ser identificados e corrigidos durante a implementação Menos freqüentes em máquina com bastante estados. PUCPR (2005) Computação Evolutiva 18 PE com Indivíduos de Tamanho Fixo Embora PE possa ter indivíduos de tamanho variável, é possível evoluir uma máquina de estado finitos com PE onde os indivíduos tem tamanho fixo. Definir um número máximo de estados. Para exemplificar, vamos considerar a máquina de predição apresentada anteriormente, a qual pode ter no máximo 4 estados. PUCPR (2005) Computação Evolutiva 19 Exemplo Cada estado pode ser representado por 7 bits A Bit No. Representação 0 1 ativo; 0 não ativo 1 símbolo de entrada 2 símbolo de entrada 3 símbolo de saída 4 símbolo de saída 5 estado de saída 6 estado de saída B C D 11011AB10101BC11001AB00000DA PUCPR (2005) Computação Evolutiva 20 Exemplo Como visto,cada estado pode ser representado por uma string de 7 bits. A B C D 11011AB10101BC11001AB00000DA Sendo assim, cada indivíduo possui 28 bits Cada PUCPR (2005) um representa uma máquina completa. Computação Evolutiva 21 Exemplo II Máquina de estado finito para jogar o Dilema do Prisioneiro. O prisioneiro tem que tomar uma decisão em face da decisão do outro. Questão de altruísmo ou egoísmo. PUCPR (2005) Computação Evolutiva 22 Dilema do Prisioneiro Dois comparsas são pegos cometendo um crime. Levados à delegacia e colocados em salas separadas, lhes é colocada a seguinte situação com as respectivas opções de decisão: Se ambos ficarem quietos, cada um deles pode ser condenado a um mês de prisão. Se apenas um acusa o outro, o acusador sai livre. O outro, condenado em 1 ano. Se os dois se acusarem, ambos pegam seis meses. PUCPR (2005) Computação Evolutiva 23 Dilema do Prisioneiro As decisões são simultâneas e um não sabe nada sobre a decisão do outro. Esse jogo mostra que, em cada decisão, o prisioneiro pode satisfazer seu próprio interesse (desertar) ou atender ao interesse do grupo (cooperar). PUCPR (2005) Computação Evolutiva 24 Dilema do Prisioneiro Dilema Admito inicialmente que meu colega planeja cooperar. Se eu cooperar também ambos pegamos 1 mês (nada mau) Supondo a cooperação do meu colega, eu posso acusá-lo e sair livre (melhor situação) Porém se eu coopero e ele me acusa, eu pego 1 ano! Se eu acusar também, aí eu fico seis meses. Logo, ele cooperando ou não o melhor a fazer é desertar! PUCPR (2005) Computação Evolutiva 25 Dilema do Prisioneiro O problema é que seu colega pensa da mesma maneira, e ambos desertam. Se ambos cooperassem, haveria um ganho maior para ambos, mas na otimização dos resultados não é o que acontece. Ao invés de ficar um mês presos, ambos ficam 6 meses para evitar o risco de ficar 1 ano. PUCPR (2005) Computação Evolutiva 26 Dilema do Prisioneiro A repetição do jogo, entretanto, muda radicalmente a forma de pensar. Dois comparsas de longa data terão uma tendência muito maior à cooperação. Com isso formam-se outras opções de estratégias. A teoria dos jogos (John Nash) é bastante utilizada na economia para descrever e prever o comportamento econômico. PUCPR (2005) Computação Evolutiva 27 Máquina de estado finito para o dilema do prisioneiro [Fogel 95] Por exemplo: O rótulo C,D/C na flexa que vai de um estado X para um estado Y significa que o sistema está no estado X e no movimento anterior a máquina cooperou e o oponente desertou. Então coopere e vá para o estado Y. PUCPR (2005) C – Cooperar D Evolutiva – Desertar Computação 28 Exercício Evolua a máquina de estados finitos vista anteriormente Considerar 4 estados no máximo. Utilizar a codificação vista anteriormente. Considerar 5 indivíduos de 28 bits Considerar que somente os indivíduos que tenham pelo menos dois estados ativos sejam admitidos na população inicial. Para cada indivíduo, construa a máquina e calcule a qualidade da predição. PUCPR (2005) Computação Evolutiva 29 Realizando a Mutação Para cada indivíduo, gere um número aleatório entre 0 e 1. Escolha um gene aleatoriamente e tome uma das seguintes ações. Valor PUCPR (2005) Ação 0.0 – 0.2 0.2 – 0.4 0.4 – 0.6 0.6 – 0.8 Eliminar estado Mude o estado inicial Mude o símbolo de entrada Mude o símbolo de saída 0.8 – 0.1 Ativar estado Computação Evolutiva 30 Nova População Avaliar a fitness e manter os melhores 50%, resultando assim uma nova população do tamanho da inicial. PUCPR (2005) Computação Evolutiva 31