Matemática 8.ºano Isometrias Translação associada a um vetor – síntese Numa translação a figura final pode ser obtida deslocando a figura inicial ao longo de uma reta. Propriedades das translações Numa translação as propriedades das figuras transformadas são invariantes. Senão, vejamos: um segmento de reta é transformado noutro, paralelo ao primeiro e com o mesmo comprimento; um ângulo é transformado num outro com a mesma amplitude. Exemplo: Conceito de vetor Um vetor é uma entidade matemática que fica definida por um comprimento, uma direção e um sentido. Exemplo: Dois vetores com o mesmo comprimento, a mesma direção, mas sentidos opostos designam-se por vetores simétricos. Exemplo: ⃗ e ⃗⃗ são vetores simétricos Um vetor nulo é um vetor representado por qualquer segmento de reta em que a origem e a extremidade são coincidentes. Designa-se por ⃗⃗. Translação associada a um vetor www.escolavirtual.pt © Escola Virtual 1/3 Matemática 8.ºano Uma translação pode ser sempre definida por um vetor, de tal forma que a translação definida pelo vetor ⃗ se representa por ⃗⃗ . Exemplo: Soma e diferença de dois vetores A soma de dois vetores é ainda um vetor. Geometricamente a soma de dois vetores pode-se efetuar recorrendo às regras do paralelogramo ou do triângulo. Exemplo: A diferença entre dois vetores equivale à soma do primeiro com o simétrico do segundo. www.escolavirtual.pt © Escola Virtual 2/3 8.ºano Matemática Translações compostas Uma translação composta é uma sucessão de duas (ou mais) translações. Uma translação composta corresponde a uma única translação associada ao vetor sioma das translações que lhe dão origem. Ou seja, a translação composta das translações ⃗⃗ e ⃗ ⃗ ⃗⃗ . ⃗⃗ , é a translação ⃗ ⃗⃗ ⃗⃗ , onde Exemplo: www.escolavirtual.pt © Escola Virtual 3/3