III Workshop sobre Filosofía, Lógica e Historia de la Mecánica Cuántica en el Cono Sur VIII Encuentro de Filosofía e Historia de la Ciencia del Cono Sur 16 al 20 de octubre de 2012 - Universidad de Santiago de Chile – CENI La teoría cuántica permite predecir con exactitud sorprendente los resultados de experimentos y desarrollar nuevas tecnologías, desde la criptografía cuántica y teleportación cuántica hasta el desarrollo de nuevas computadoras cuánticas. Sin embargo, después de más de un siglo de su creación, muchas de las preguntas planteadas originalmente permanecen sin respuesta: ¿de qué habla la mecánica cuántica? Luego del VI Encuentro AFHIC en Montevideo y del VII Encuentro AFHIC en Canela-RS, Brasil, por tercera vez nos encontramos varios grupos del cono sur para trabajar conjuntamente y discutir cuestiones referentes a la interpretación de la mecánica cuántica: la lógica subyacente, las nociones de posibilidad, determinación, indeterminación, substancia y objetividad, la lógica de la computación cuántica, la posibilidad o no de una ontología de individuos, etc. Buscamos, en definitiva, analizar la teoría cuántica para comprender su significado, su referencia y su alcance. Organizado por: Décio Krause, Christian de Ronde y Hector Freytes. TRABAJOS QUE SE DISCUTIRAN EN EL WORKSHOP: The “Unreasonable” Effectiveness of Mathematics in Quantum Mechanics Arezoo Islami - Stanford University. Why does mathematics work so well in describing some parts of the world- in theories of modern physics, for instance? In particular, can we provide an explanation for this phenomenon or is it completely unreasonable? Eugene Wigner’s seminal paper (1960) has reformulated this problem as the problem of ”The Unreasonable Effectiveness of Mathematics in Natural Sciences” . Since its publication, this paper has created much controversy in the literature and has provoked many philosophers, physicists and mathematicians alike to respond to this paper. In recent years, Mark Colyvan (2009) and Penelope Maddy (2009) have made substantial contributions to Wigner’s problem calling for further study of relevant history, e.g. history of Quantum mechanics, Maxwell equations, etc. This paper is an exercise in the study of the development of Hilbert space formalism of quantum mechanics, focusing on the employment of complex numbers in the postulates of quantum mechanics. I will argue that once we scrutinize what exactly we mean by ”effectiveness” of mathematics, it becomes rather clear that it is due to idealizations and approximations that mathematics plays such an important role in quantum mechanics. Finally, I will defend Wigner against objections to his account, most of which are based on a profound misunderstanding of his 1960 paper. El Estatuto Epistemológico del Principio de Simetría en Weizsäcker Cesar Fabián Ávila - Pontificia Universidad Católica de Chile. Nuestro trabajo pretende investigar en el pensamiento de Weizsäcker – caracterizado como un kantismo no estricto – el estatuto epistemológico del principio de simetría, principio que tendría lugar en la razón en su función reguladora y unificadora sintética, proyectaría esta unidad a la naturaleza, mostrando que la frontera entre la razón teórica y la practica no es tan rígida en el sentido kantiano. Para Weizsäcker es la mecánica cuántica, en continuidad de la interpretación de Niels Bohr, el lugar teórico adecuado para mostrar la libertad que posee el observador cuando define el tipo de explicación, en contra de una estricta interpretación kantiana de los principios metafísicos de la ciencia de la naturaleza. Carl Friedrich von Weizsäcker, Die Einheit der Natur, München. 1971 Carl Friedrich von Weizsäcker, Aufbau der Physik, München, 1985 Carl Friedrich von Weizsäcker, Zeit und Wissen, München, 1992 . Carl Friedrich von Weizsäcker, Der begriffliche Aufbau der theoretischen Physik, Stuttgart, 2004. Carl Friedrich von Weizsäcker, Zum Weltbild der Physik, Leipzig, 2007 Quantum metaphysics and quantum logic Hernán Pringe - Conicet-UBA-UDP Transcendental approaches to modern physics have received renewed attention from scholars. The aim of this talk is to contribute to this debate by investigating the possibility of providing quantum theory with metaphysical principles in a Kantian sense. For this purpose, we will attempt to show how such principles may be gained from the application to the quantum case of the general principles of metaphysics of nature established by Kant. We shall begin by briefly discussing Kant’s views on these principles (§1). We shall then analyze the transcendental status of quantum objectivity (§§2-3). This will give us the clue to identify certain synthetic a priori judgments as metaphysical principles of quantum theory, i.e., as the principles of quantum metaphysics (§4). Finally, we shall consider one of such principles (§5) and we shall discuss its role in a philosophical foundation of quantum logic (§6). ¿Qué prueba un experimento? El caso del efecto Compton Alejandro Cassini - CONICET-Universidad de Buenos Aires El efecto Compton se consideró en su momento, y todavía se considera, como una evidencia experimental decisiva acerca de la composición cuántica de la luz, esto es, como una prueba experimental de la existencia del fotón. Sin embargo, en los experimentos de Compton no se realiza ninguna observación o medición de partículas o sus propiedades. Todas las magnitudes físicas observadas pueden describirse enteramente en términos ondulatorios: dirección, frecuencia y longitud 2 de onda de los rayos X dispersados por la materia. El fotón no es observado, sino postulado para explicar los resultados experimentales. En principio, sería posible explicar los mismos resultados mediante hipótesis que no postularan la existencia de fotones. Argumentaré que todos los experimentos existenciales en física de partículas tienen la misma estructura: la partícula “descubierta” constituye la mejor explicación causal, disponible en un momento determinado, de los resultados observados en el experimento en cuestión. Este hecho lleva a preguntarse qué es lo que prueba un experimento en general y cómo deben interpretarse las afirmaciones de existencia en física teórica. Sobre el pensamiento físico y epistemológico de Paul Dirac Nahuel Sznajderhaus - Universidad de Buenos Aires Paul Dirac fue uno de los físicos más importantes en la revolución cuántica. Entre sus trabajos fundacionales se encuentra la ecuación que determina la evolución de una partícula relativista de spin ½ y el desarrollo de la primera versión matemáticamente consistente de la mecánica cuántica presentada en su famoso libro de 1930. Dirac participó de las profundas discusiones referidas a la interpretación de la teoría sosteniendo una posición fundada en una concepción pragmática y positiva de la física. En este trabajo nos interesa exponer y analizar el pensamiento de Paul Dirac, señalando la importancia de su obra en la formulación e interpretación actual de la mecánica cuántica. Aspectos transcendentais do estruturalismo científico Patrícia Kauark-Leite - Departamento de Filosofia da Universidade Federal de Minas Gerais O realismo estrutural foi introduzido no debate contemporâneo sobre o realismo científico em 1989 por John Worrall. Quase dez anos depois, James Ladyman (1998) propôs uma distinção entre duas formas de interpretar o realismo estrutural: uma ôntica e outra epistêmica. A primeira, nomeada de realismo estrutural ôntico, defende que as teorias físicas contemporâneas só podem se comprometer com a existência de estruturas e relações e não com objetos, indivíduos e propriedades. Assim, a máxima: tudo o que existe são as estruturas. A segunda, nomeada realismo estrutural epistêmico, tem sido muita vezes identificada como uma posição kantiana, por enfatizar que só podemos conhecer as estruturas. O nosso objetivo é mostrar que essa última versão, por ser fundamentalmente uma posição realista, não é consistente com perspectiva transcendental. Procuraremos defender o estruturalismo transcendental como uma alternativa entre o realismo estrutural, defendido entre outros por James Ladyman e Steven French e o empirismo estrutural, de Bas van Fraassen e Otávio Bueno. Paraconsistent Quasi-Set Theory Décio Krause - Department of Philosophy, Federal University of Santa Catarina, Florianópolis, SC - Brazil Paraconsistent logics are logics that can be used to base inconsistent but non- trivial systems. In paraconsistent set theories, we can quantify over sets that in standard set theories (that are based on classical logic), if consistent, would lead to contradictions, such as the Russell set, R = {x : x ∉ x}. 3 Quasi-set theories are mathematical systems built for dealing with collections of indiscernible elements. The basic motivation for the development of quasi-set theories came from quantum physics, where indiscernible entities need to be considered (in most interpretations). Usually, the way of dealing with indiscernible objects within classical logic and mathematics is by restricting them to certain structures, in a way so that the relations and functions of the structure are not sufficient to individuate the objects; in other words, such structures are not rigid. In quantum physics, this idea appears when symmetry conditions are introduced, say by choosing symmetric and anti-symmetric functions (or vectors) in the relevant Hilbert spaces. But in standard mathematics, such as that built in Zermelo-Fraenkel set theory (ZF), any structure can be extended to a rigid structure. That means that, although we can deal with certain objects as they were indiscernible, we realize that from “outside” of these structures these objects are no more indiscernible, for they can be individualized in the extended rigid structures: ZF is a theory of individuals, distinguishable objects. In quasi-set theory, it seems that there are structures that cannot be extended to rigid ones, so it seems that they provide a “natural” mathematical framework for expressing quantum facts without certain symmetry suppositions. There may be situations, however, in which we may need to deal with inconsistent bits of information in a quantum context, even if these informations are concerned with ways of speech. Furthermore, some authors think that superpositions may be understood in terms of paraconsistent logics, and even the notion of complementarity was already treated by such a means. This is, apparently, a nice motivation to try to merge these two frameworks. In this work, we develop the technical details, by basing our quasi-set theory in the paraconsistent system C1. For the finalities of this work, some philosophical questions are outlined, but this topic is left to a future work. Decoherence, Indivisibility and Complementarity Jairo Roldan – Universidad del Valle, Facultad de Ciencias, Cali Decoherence is considered as a solution to the measurement problem in quantum mechanics and, in general, as an answer to the problem of the kind of reality that can be assigned to the macroscopic bodies in a manner consistent with the consideration of quantum mechanics as a complete and universal theory. Niels Bohr is considered as one of founders of the “orthodox” interpretation of quantum mechanics, an interpretation that is also known as the Copenhagen interpretation. One of the basis of Bohr’s thought is his linguistic thesis about the language of classical physics. It will be shown that his linguistic thesis does not advocate any dualism between the macroscopic domain and the microscopic one; neither denies the universal validity of quantum physics and let alone claims a logical primacy of the classical physics over the quantum physics. It will be shown also how the theory of decoherence gives support to the linguistic thesis of Bohr. With the purpose of showing the coherence of his thought an analysis is also presented of Niels Bohr’s thesis about the interpretation of quantum mechanics. Two ideas are identified that can be considered as fundamental in Bohr’s interpretation: the indivisibility and the complementarity, which was considered by Bohr as an epistemological principle which has its clearest application in quantum mechanics, but could also be applied in other contexts with the same logical structure of quantum phenomena. A general conception of complementarity is finally presented which includes a definition of that notion as precise as possible. 4 Infinitary logic associated to the event structure of probability spaces Hector Freytes - Department of Mathematic FCEyA - UNR/CONICET Department of Philosophy - University of Cagliari - Italia A probability space is a triple < Ω, F, µ > consisting on the sample space Ω, an arbitrary nonempty set, the sigma-algebra F ⊆ ℘(Ω) whose elements are called events and a probability measure µ: F [0,1]. Recently, the theory of sigma-algebras, was studied by several authors [1,2,3] in the attempt to extend classical results related to the more general event structures as many valued sigma-algebras, etc. The event structure F is a Boolean algebra admitting denumerable suprema and infima. Thus, denumerable suprema and infima can be seen as infinatry operations in F. The aim of this work is to investigate, an infinitary logical system for the event structure of probability spaces. A standard completeness theorem is provided. [1] A. Di Nola and M. Navara, “A characterization of _-complete MV - algebras with enough states Colloq. Math. 103 (2005), 121-130. [2] A. Dvurecenskij, “Loomis-Sikorski Theorem for _-complete MV - algebras and l-groups” J. Austral. Marth. Soc. (Series A) 68 (2000), 261-277. [3] D. Mundici and B. Riecan, “Probability on MV-algebras”, In: Handbook of Measure Theory (E. Pap Ed.), 869-909, North Holland, Amsterdam, (2002). Representation and Causality in Quantum Mechanics Christian de Ronde - Dto. de Filosofía "Dr. A. Korn" UBA/CONICET Center Leo Apostel and Foundations of the Exact Sciences - Brussels Free University It is well known that both notions of 'causality' and 'representation' are problematic within quantum mechanics [Foreman 1971, Cassirer 1956, Kauark-]. We shall discuss the relation between these notions and both classical and quantum physics. More specifically, in this work we discuss these questions form a general realistic perspective according to which a physical theory must provide an answer to the question: 'what is the theory talking about?' In particular, as argued in [de Ronde 2011], by considering the two main problems of quantum mechanics, namely: i) the problem of contextuality and ii) the problem of superpositions; we discuss in what sense both causality and representation expose the limits of an interpretation of quantum mechanics in terms of a classical metaphysical scheme. Cassirer, E., 1956, Determinism and Indeterminism in Modern Physics, New Haven, Yale University Press. Foreman, P., 1971, “Weimar Culture, Causality, and Quantum Theory, 1918-1927: Adaptation by German Physicists and Mathematicians to a Hostile Intellectual Environment”, Historical Studies in the Physical Sciences, 3, 1-115. Kauark-Leite, P., 2012, “Causalidade e teoria quântica”, Scientiae Studia, Vol. 10., No. 1. 5 de Ronde, C., 2011, The Contextual and Modal Character of Quantum Mechanics: A Formal and Philosophical Analysis in the Foundations of Science, PhD Dissertation, Utrecht University. Uma Axiomatização Empirista da Teoria Quântica Osvaldo Pessoa Jr. - Depto. Filosofia – FFLCH – Universidade de São Paulo Apresenta-se uma axiomatização “empirista” ou operacional da teoría quântica, ou seja, uma que busca definir os conceitos a partir de observações e operações físicas, postergando a introdução de estruturas matemáticas mais sofisticadas, como o espaço de Hilbert (que, nas axiomatizações usuais, é incorporado já no primeiro postulado). A motivação para tal abordagem é didática. A presente proposta envolve nove definições operacionais e quatro postulados. Após a definição de “medição”, apresenta-se o Postulado 1, que é um “postulado empírico” que caracteriza um sistema quântico, distinguindo-o de sistemas clássicos. O “estado” de um sistema quântico é definido pelo arranjo experimental macroscópico de sua preparação, e não por sua correspondência com vetores de um espaço de Hilbert. Um estado quântico é “puro” se satisfizer os postulados seguintes (senão será uma “mistura estatística”). Um “autoestado” é definido como um estado para o qual existe um arranjo experimental que leva um certo detector a disparar com probabilidade 1. Define-se também autovalor, ortogonalidade e base completa. O “observável” sendo medido em um experimento consiste da base completa de autoestados e dos correspondentes autovalores. O Postulado 2 exprime o princípio quântico de superposição, afirmando que qualquer estado acessível de um sistema quântico é ou um dos autoestados si da base completa, ou uma combinação linear desses autoestados, envolvendo quaisquer coeficientes ai escolhidos de tal maneira que satisfaçam a normalização e a regra de Born. O Postulado 3 enuncia o postulado da projeção, se o objeto quântico não é absorvido pelo detector (numa medição de não-demolição ou numa medição de resultado nulo). O Postulado 4 exprime a evolução contínua, determinista e reversível do estado quântico, entre a preparação e a medição, regido pela equação de Schrödinger. Na apresentação, pretendo mencionar outros sistemas operacionais de axiomatização propostos na literatura, e espero que a plateia encontre furos (corrigíveis) na presente abordagem, que ainda está em desenvolvimento. Quantum entities as objects? Jonas R. Becker Arenhart - Department of Philosophy Fronteira Sul Federal University, Chapecó, SC- Brazil Great part of the recent metaphysical debate about the nature of quantum entities focuses on the problem of their objecthood. Some philosophers claim that quantum entities are individual objects (Saunders (2006), Dorato and Morganti (2011)), others that they are objects, but are not individuals (see French and Krause (2006) chaps. 3 and 4), and a third party claim that they are not objects at all (French and Ladyman (2003)). The main motivation for the third option, a version of eliminativist ontic structural realism (OSR), concerns the desire to avoid falling in the dilemma of having to choose between individuals and non-individuals: to overcome the underdetermination situation created by both options, friends of OSR argue that it is better to leave particular objects behind and commit ourselves only with the relations posed by the theory, leaving the relata without any metaphysical priority. However, the precise meaning of objecthood, individuality, and non-individuality, are tied in such a way 6 that it is difficult to evaluate in a rigorous fashion the merits of the distinct proposals. To make matters worse, it is not as clear as some have claimed that quantum mechanics itself should be seen as endorsing one of the above proposals. That is, some version of ontological naturalism, the idea that quantum mechanics tells us all about the (metaphysical) nature of quantum entities, does not seem to be very promising concerning this particular problem, and yet it is usually assumed without much question in those contexts. We shall propose that a definition of what it is for something to be an object will in general encapsulate some metaphysical commitments that are hard to justify on the basis of quantum mechanics, but that should be debated rather on a metaphysical basis if we are to make some kind of progress in the debate. That is, the debate about the nature of quantum entities, mainly the one concerning whether they are objects or not, must necessarily make a detour through some kind of previous metaphysical discussion about the nature of objects, and such a debate is still missing when it comes to matters concerning quantum objecthood and the problem of the metaphysical nature of quantum entities in general. Dorato, M. and Morganti, M., Grades of Individuality. A pluralistic view of identity in quantum mechanics and in the sciences. Forthcoming in Philosophical Studies 2011. French, S., Krause, D., Identity in Physics. A historical, philosophical and formal analysis, Oxford: Oxford University Press, 2006. French, S. Ladyman, J., Remodelling structural realism: quantum physics and the metaphysics of structure. Synthese, 136, pp. 31-56, 2003. Saunders, S., Are Quantum Particles Objects?, Analysis 66, pp. 52-63, 2006. 7