Resoluções comentadas das questões de Estatística da prova para
ANALISTA DE GERENCIAMENTO DE PROJETOS E METAS da PREFEITURA/RJ
Realizada pela Fundação João Goulart em 06/10/2013
41. A idade média de todos os estudantes de uma universidade é de 20 anos. As idades
médias dos estudantes dos sexos masculino e feminino são 21 e 18 anos, respectivamente.
Neste caso, a percentagem de estudantes do sexo masculino da universidade é,
aproximadamente, igual a:
(A) 33,3%
(B) 46,3%
(C) 53,3%
(D) 66,6%
(E) 73,3%
RESOLUÇÃO:
A melhor forma de resolver este tipo de questão, bem recorrente em concursos, é utilizar o
que eu chamo de “método das amplitudes”. Torna fácil e rápida a resolução.
A média do sexo masculino é 21
A distância (amplitude) entre as médias é 3 (21 – 18)
A média do sexo feminino é 18
OBSERVEMOS QUE: A média geral (de todos os estudantes, sem distinção de sexo) é 20.
Só com essa observação, já poderíamos eliminar as opções de resposta A e B, pois se a média
geral está mais próxima da média do sexo masculino, isto significa que este sexo tem maior
influência sobre a média geral e, portanto, a proporção de estudantes do sexo masculino será
superior a 50%. Mas, concluindo:
A média do sexo masculino é 21
MÉDIA GERAL = 20
A média do sexo feminino é 18
A amplitude entre a média do sexo
masculino e a média geral é igual a 1
A amplitude entre a média geral e a
média do sexo feminino é igual a 2
A proporção (fração) de estudantes do sexo feminino terá: como numerador a amplitude entre
a média do sexo oposto (masculino) e a média geral; e como denominador a amplitude total
entre as médias dos dois sexos. Portanto, o % feminino =
1
≅ 33,3%;
3
A proporção (fração) de estudantes do sexo masculino terá: como numerador a amplitude
entre a média do sexo oposto (feminino) e a média geral; e como denominador a amplitude
total entre as médias dos dois sexos. Portanto, o % masculino =
2
≅ 66,6%.
3
Gabarito: Letra D.
Rua das Marrecas, 15 – Centro – CEP 20031-120. Rio de Janeiro – RJ. Telefax: (21) 2544-3752/2544-9202
Considere o texto a seguir para responder às questões de números 42 e 43.
A fim de incentivar os funcionários a participarem de um programa de emagrecimento, fez-se
um levantamento dos pesos dos 150 funcionários de determinado departamento. Os
resultados estão na tabela a seguir:
Peso (kg)
60 |– 70
70 |– 80
80 |– 90
90 |– 100
100 |– 110
110 |– 120
Percentagem
8
18
30
22
16
6
42. O 20º percentil dessa distribuição é, aproximadamente, igual a:
(A) 78,7
(B) 76,7
(C) 74,7
(D) 72,7
(E) 70,7
RESOLUÇÃO:
Basta acrescentar uma coluna de frequência acumulada crescente (Fac) na tabela dada e
observar que:
Peso (kg)
60 |– 70
70 |– 80
80 |– 90
90 |– 100
100 |– 110
110 |– 120
Percentagem
8
18
30
22
16
6
Fac
8
26
56
78
94
100
A classe que conterá o 20º percentil (20%) da distribuição será a 2ª classe (70 |– 80), pois até
a 1ª classe temos apenas 8% da distribuição. A melhor maneira (sem usar fórmula) para
encontrar o valor do P20, é através de interpolação, fazendo uma simples proporção:
18
12
⇒ 18x = 120 ⇒ x ≅ 6,7
=
10
x
Explicando a proporção: a frequência na classe (18) está para a amplitude de classe (10) assim
como a frequência procurada (12, é o que falta para chegar a 20, considerando a frequência
acumulada da classe anterior) está para uma amplitude x (que desejamos descobrir).
Para encontrar o valor do P20, basta acrescentar o valor encontrado (x = 6,7) ao limite inferior
da classe do P20, que é igual a 70.
Portanto: do P20 = 76,7
Gabarito: Letra B.
Rua das Marrecas, 15 – Centro – CEP 20031-120. Rio de Janeiro – RJ. Telefax: (21) 2544-3752/2544-9202
43. A média aritmética dessa distribuição é, aproximadamente, igual a:
(A) 80,8
(B) 82,8
(C) 84,8
(D) 86,8
(E) 88,8
RESOLUÇÃO:
A forma mais rápida de resolver a questão é usar o Método Simplificado para cálculo da média,
criando uma variável reduzida (que vamos chamar de Z), fazendo:
Z=
X − X0
, onde X é o ponto médio de cada classe, X0 é o ponto médio da classe em que
h
iremos arbitrar o valor 0 (zero) e h é a amplitude de classe.
OBS.: Esse método só pode ser utilizado quando as amplitudes das classes são iguais.
Escolhendo a 3ª classe (quanto mais próximo da classe central, melhor), ficará: Z =
Peso (kg)
60 |– 70
70 |– 80
80 |– 90
90 |– 100
100 |– 110
110 |– 120
Z
−2
−1
0
1
2
3
Percentagem
8
18
30
22
16
6
Σ=
A média da variável Z será:
X − 85
.
10
Z⋅F
−16
−18
0
22
32
18
38
38
= 0,38.
100
Para encontrar a média da variável X basta entender que, se a transformação de X em Z foi
Z=
X − X0
, a de Z em X será: X = Z⋅h + X0. Aplicando as propriedades da média, teremos:
h
X = Z ⋅ h + X 0 e, portanto: X = 0,38⋅10 + 85 ⇒ X = 3,8 + 85 = 88,8.
Gabarito: Letra E.
44. Somando-se 5 a cada um dos números do conjunto 4, 8, 3, 2, 7 e 6, a média aritmética e
a variância ficarão aumentadas, respectivamente, de:
(A) 5 e 0
(B) 5 e 5
(C) 5 e 25
(D) 1 e 0
(E) 1 e 5
Rua das Marrecas, 15 – Centro – CEP 20031-120. Rio de Janeiro – RJ. Telefax: (21) 2544-3752/2544-9202
RESOLUÇÃO:
Não necessita de cálculo. Basta saber as propriedades da média e da variância.
Para a média: Somando ou subtraindo uma constante a uma variável aleatória, a sua média
ficará somada ou subtraída da mesma constante;
Para a variância: Somando ou subtraindo uma constante a uma variável aleatória, a sua
variância não se altera.
Gabarito: Letra A.
45. Numa cidade, duas empresas A e B são responsáveis por 30% e 70% do volume total de
contratos negociados, respectivamente. Do volume de cada empresa, 30% e 5%,
respectivamente, são contratos de longo prazo. Se um contrato, escolhido ao acaso, é de longo
prazo, a probabilidade de ter sido negociado pela empresa A é, aproximadamente, igual a:
(A) 32%
(B) 42%
(C) 52%
(D) 62%
(E) 72%
RESOLUÇÃO:
Probabilidade Condicional, resolveremos fazendo a árvore de probabilidades e usando o
Teorema de Bayes, que relaciona uma das probabilidades com a probabilidade total.
Denominando de L o contrato de longo prazo, a probabilidade condicional pedida na questão é:
“qual a probabilidade do contrato ter sido negociado pela empresa A, sabendo que
(dado que) esse contrato é de longo prazo”.
P(A | L ) será igual a
P(A ∩ L )
, ou seja, no numerador a probabilidade conjunta de A e L e no
P(L )
denominador a probabilidade total de ser L (sendo da empresa A ou da empresa B).
0,30
L
A ∩ L = 0,090
L
B ∩ L = 0,035
(Probabilidade de o contrato ser da
empresa A e ser de longo prazo)
A
0,30
0,70
0,05
0,70
P(L) = 0,125
B
(Probabilidade total de que
contrato seja de longo prazo).
o
0,95
P(A | L ) =
P(A ∩ L )
0,090
=
= 0,72.
P(L )
0,125
Gabarito: Letra E.
Rua das Marrecas, 15 – Centro – CEP 20031-120. Rio de Janeiro – RJ. Telefax: (21) 2544-3752/2544-9202
46. O peso de crianças recém-nascidas do sexo feminino numa comunidade tem distribuição
normal com média de 2.400g e desvio padrão de 40g. O 25º percentil desta distribuição é,
aproximadamente, igual a:
(A) 2.173 g
(B) 2.223 g
(C) 2.273 g
(D) 2.323 g
(E) 2.373 g
RESOLUÇÃO:
Até o ponto de abscissa em z = 0 (correspondente à média 2.400) teremos, debaixo da curva
da Normal Padrão, 50% da distribuição. O 25º percentil acumulará à esquerda uma área de
0,25 da curva normal. Basta ver, na tabela dada na prova, que uma área de 0,75 à direita do
25º percentil corresponderá a uma abscissa em z de, aproximadamente, 0,67. Esta abscissa
será negativa, pois estará antes da média. Portanto, z = −0,67.
Substituindo os dados do enunciado na fórmula de padronização, dada por: z =
X−µ
, onde z é
σ
a abscissa da tabela normal padronizada, σ é o desvio padrão, µ é a média e X é o valor
procurado (correspondente à abscissa em z = −0,67).
Logo: − 0,67 =
X − 2.400
⇒ X = (−0,67 ⋅ 40) + 2.400 ⇒ X = −26,8 + 2.400 ⇒ X = 2.373,2.
40
Gabarito: Letra E.
47. Em uma empresa, a probabilidade de o empregado A resolver uma tarefa é de 3/5, e a
probabilidade de o empregado B resolver a mesma tarefa é de 1/4. Se ambos tentarem
resolver a tarefa independentemente, a probabilidade de a tarefa ser resolvida é igual a:
(A) 50%
(B) 60%
(C) 70%
(D) 80%
(E) 90%
RESOLUÇÃO:
A probabilidade de a tarefa ser resolvida (por A, por B, ou pelos dois, A e B) será dada por:
P(A∪B) = P(A) + P(B) − P(A∩B). Sabemos que P(A) = 3/5; P(B) = 1/4. E P(A∩B)?
Como o enunciado fala em ambos tentarem resolver a tarefa independentemente, podemos aplicar
o teorema para eventos independentes: “Se A e B são independentes, P(A∩B) = P(A) ⋅ P(B), ou
seja, a probabilidade conjunta é igual ao produto das probabilidades individuais.”
Logo, P(A∩B) =
3 1
3
=
⋅
5 4
20
e P(A∪B) =
3 1
3
12 + 5 − 3
14
=
=
+ −
5 4 20
20
20
= 70%.
Gabarito: Letra C.
Rua das Marrecas, 15 – Centro – CEP 20031-120. Rio de Janeiro – RJ. Telefax: (21) 2544-3752/2544-9202
48. Um órgão do governo do estado deseja determinar padrões sobre a quantidade de lixo
produzido pelas prefeituras. De um levantamento de oito cidades, foram obtidos os valores,
em toneladas de lixo produzido (t), da tabela abaixo:
Cidade
Quantidade de lixo (t)
1
44,0
2
17,0
3
12,0
4
6,0
5
19,0
6
15,0
7
14,0
8
17,0
O valor mediano das quantidades de lixo observadas é igual a:
(A) 12,5 t
(B) 14,5 t
(C) 16,0 t
(D) 17,5 t
(E) 18,0 t
RESOLUÇÃO:
Fazendo o ROL (dados ordenados crescente ou decrescentemente) das quantidades, teremos:
6,0 ; 12,0 ; 14,0 ; 15,0 ; 17,0 ; 17,0 ; 19,0 ; 44,0. Como o número de observações é par, o
valor mediano será a média aritmética entre a 4ª e a 5ª observações.
Portanto, Md =
15 + 17
= 16,0.
2
Gabarito: Letra C.
Considere o enunciado a seguir para responder às questões de números 49 e 50.
A tabela que se segue resume dados amostrais, selecionados aleatoriamente, de 880 mortes
de pedestres por acidente de trânsito, de acordo com a região de procedência e o grau de
intoxicação por álcool do pedestre.
Pedestre alcoolizado?
Região de
procedência
Sim
Não
A
B
87
256
65
472
49. Se um elemento da amostra é selecionado aleatoriamente, a probabilidade de verificar-se
um pedestre alcoolizado é, aproximadamente, igual a:
(A) 17%
(B) 24%
(C) 31%
(D) 39%
(E) 61%
Rua das Marrecas, 15 – Centro – CEP 20031-120. Rio de Janeiro – RJ. Telefax: (21) 2544-3752/2544-9202
RESOLUÇÃO:
Façamos, na tabela dada, os totais de linhas e colunas:
Pedestre alcoolizado?
Região de
procedência
Sim
Não
A
B
TOTAIS
87
256
343
65
472
537
TOTAIS
A probabilidade de verificar-se um pedestre alcoolizado será:
152
728
880
343
≅ 39%.
880
Gabarito: Letra D.
50. Se um elemento da amostra é selecionado aleatoriamente e verifica-se que é da região B,
a probabilidade de ser pedestre alcoolizado é, aproximadamente, igual a:
(A) 17,3%
(B) 35,2%
(C) 61,0%
(D) 74,6%
(E) 82,7%
RESOLUÇÃO:
A probabilidade condicional pedida na questão é: “qual a probabilidade de ser pedestre
alcoolizado, sabendo que (dado que) esse pedestre é da região B”.
P(alcoolizado | B) será igual a
P(alcoolizado ∩ B)
, ou seja, no numerador a probabilidade conjunta
P(B)
de ser alcoolizado e ser da região B e no denominador a probabilidade total de ser da região B,
sendo ou não alcoolizado. Logo, verificando os valores na tabela, teremos:
P(alcoolizado | B) =
256
≅ 35,2%.
728
Gabarito: Letra B.
Prova fácil, mas bem elaborada, não havendo questões passíveis de recurso.
Disponibilizo o meu e-mail ([email protected]) para: dúvidas, críticas, sugestões,
indicação de livros e aulas.
Rua das Marrecas, 15 – Centro – CEP 20031-120. Rio de Janeiro – RJ. Telefax: (21) 2544-3752/2544-9202
Download

Resoluções comentadas das questões de