PROVA DE FÍSICA 2º ANO - 1ª MENSAL - 1º TRIMESTRE TIPO A 01) Assinale verdadeira (V) ou falsa (F) para as seguintes afirmativas. (F) Calor é a energia interna em trânsito entre dois ou mais corpos devido ao fato de estarem à mesma temperatura. (V) Substância termométrica tem como objetivo "enxergar" o grau de agitação dos átomos de uma substância. (F) Calor é o mesmo que quente. (V) Temperatura é uma grandeza associada ao grau de agitação das partículas que formam o corpo. (F) Termômetro é um instrumento utilizado para medir a quantidade de calor das partículas que compõem um corpo. 02) Baseando-se no que foi discutido nas aulas de termometria, analise as afirmações abaixo. I. Equilíbrio térmico é um estado em que não existe transferência de calor entre dois corpos que estão à mesma temperatura. II. Um corpo A está em equilíbrio térmico com um corpo B, que está em equilíbrio térmico com um corpo C. Assim podemos afirmar que, entre o corpo A e o C, há trocas de calor. III. Propriedade termométrica é uma característica da substância termométrica que muda com a temperatura. IV. No processo de dilatação, ocorre um aumento no número de partículas da substância, por isso o volume desta aumenta. V. Quando aquecemos um anel, o orifício também tem suas dimensões aumentadas como se este fosse do mesmo material que o anel. Está(ão) correta(s): a) somente a I. b) apenas a II. c) somente I e III. d) apenas I, III e V. e) todas. 03) João, chefe de uma oficina mecânica, precisa encaixar um eixo de aço em um anel de latão, como mostrado nesta figura. À temperatura ambiente, o diâmetro do eixo é maior que o do orifício do anel. Sabe-se que o coeficiente de dilatação térmica do latão é maior que o do aço. Diante disso, são sugeridos a João alguns procedimentos, descritos nas alternativas a seguir, para encaixar o eixo no anel. Assinale a alternativa que apresenta um procedimento o qual não permite esse encaixe. a) Resfriar apenas o eixo. b) Aquecer apenas o anel. c) Resfriar o eixo e o anel. d) Aquecer o eixo e o anel. e) N.d.a. 04) Um estudante desenvolve um termômetro para ser utilizado especificamente em seus trabalhos de laboratório. Sua idéia é medir a temperatura de um meio fazendo a leitura da resistência elétrica de um resistor, um fio de platina por exemplo, quando em equilíbrio térmico com esse meio. Assim, para calibrar esse termômetro na escala Celsius, ele toma como referências as temperaturas de fusão do gelo e de ebulição da água. Depois de várias medidas, ele obtém a curva apresentada na figura abaixo. Após determinar a equação de conversão entre as duas escalas, verifique a temperatura, em celsius, quando a leitura da resistência for de 40. R C 20 R C R − 16 C −0 = 20 − 16 100 − 0 R − 16 C = 4 100 C R − 16 = 25 C = 25R − 400 C = 25R − 400 C = 25.40 − 400 C = 1000 − 400 C = 600º C 05) A imprensa tem noticiado as temperaturas anormalmente altas que vêm ocorrendo no atual verão do Hemisfério Norte. Determine a dilatação que um trilho de 100 m sofreria devido a uma variação de temperatura igual a 20 °C sabendo que o coeficiente linear de dilatação térmica () do trilho vale 1,2.10-5 por grau Celsius. Apresente o resultado em notação científica. ∆L = ? L0 = 100m ∆L = L0 .α .∆T ∆L = 100.1, 2.10−5.20 ∆T = 20º C α = 1, 2.10−5 º C ∆L = 2400.10−5 ∆L = 2, 4.10−2 m 06) Uma chapa quadrada de aço de 2 m de lado que está, inicialmente, à temperatura ambiente (25 °C) é aquecida até atingir a temperatura de 115 °C. Se o coeficiente de dilatação térmica linear da chapa é igual a 10.10-6 °C-1, calcule o aumento da área da chapa. Apresente o resultado em notação científica. ∆S = ? ∆S = S0 .β .∆T T0 = 25º C ∆S = 4.2α .90 T = 115º C α = 10.10 º C −6 S0 = 4m −1 2 ∆S = 4.2(10.10−6 ).90 ∆S = 7200.10−6 ∆S = 7, 2.10−3 m 2 07) Um pesquisador verifica que uma certa temperatura obtida na escala Kelvin é igual ao correspondente valor na escala Fahrenheit acrescido de 145 unidades. Determina a indicação nas duas escalas. ⎧TK = TF + 145 ⎪ ⎨ TK − 273 TF − 32 = ⎪⎩ 5 9 TF + 145 − 273 TF − 32 = 5 9 TF − 128 TF − 32 = 5 9 9(TF − 128) = 5(TF − 32) 9TF − 1152 = 5TF − 160 4TF = 992 TF = 248º F ⇒ TK = TF + 145 TK = 248 + 145 TK = 393K PROVA DE FÍSICA 2º ANO - 1ª MENSAL - 1º TRIMESTRE TIPO B 01) Três triângulos são construídos soldando-se nos vértices pedaços de um mesmo vergalhão de cobre. Os triângulos estão inicialmente à temperatura ambiente. O primeiro (I) é eqüilátero; o segundo (II), isósceles; o terceiro (III), qualquer. Os triângulos são colocados num forno, onde são aquecidos uniformemente a algumas dezenas de graus. Em qual (ou quais) dos triângulos os ângulos conservarão os valores respectivos que tinham antes do aquecimento? a) Somente em I. b) Apenas em I e II. c) Somente em III. d) Em I, II e III. e) Em nenhum deles. 02) Assinale verdadeira (V) ou falsa (F) para as seguintes afirmativas. (F) Equilíbrio térmico é um estado em que não existe transferência de calor entre dois corpos que estão a diferentes temperaturas. (V) Um corpo A está em equilíbrio térmico com um corpo B, que está em equilíbrio térmico com um corpo C. Assim podemos afirmar que, entre o corpo A e o C, não há trocas de calor. (V) Propriedade termométrica é uma característica da substância termométrica que muda com a temperatura. (F) No processo de dilatação, ocorre um aumento no número de partículas da substância, por isso o volume desta aumenta. (V) Quando aquecemos um anel, o orifício também tem suas dimensões aumentadas como se este fosse do mesmo material que o anel. 03) Baseando-se no que foi discutido nas aulas de termometria, analise as afirmações abaixo. I. Calor é a energia interna em trânsito entre dois ou mais corpos devido ao fato de estarem à mesma temperatura. II. Substância termométrica de um termômetro tem como objetivo "enxergar" o grau de agitação dos átomos de uma substância. III. Calor é o mesmo que quente. IV. Temperatura é uma grandeza associada ao grau de agitação das partículas que formam o corpo. V. Termômetro é um instrumento utilizado para medir a quantidade de calor das partículas que compõem um corpo. Está(ão) correta(s): a) somente a I. b) apenas II e IV. c) somente I e III. d) apenas I, II e IV. e) todas. 04) Para se medir a temperatura de um certo corpo, utilizou-se um termômetro graduado na escala Fahrenheit, e o valor obtido correspondeu a 4/5 da indicação de um termômetro graduado na escala Celsius, para o mesmo estado térmico. Determine a indicação nas duas escalas. 4 ⎧ ⎪⎪TF = 5 TC ⎨ ⎪ TC = TF − 32 ⎪⎩ 5 9 4TC − 32 TC = 5 5 9 ⎛ 4T ⎞ 9TC = 5 ⎜ C − 32 ⎟ ⎝ 5 ⎠ 9TC = 4TC − 160 5TC = −160 TC = −32º C 4 TF = TC 5 4 TF = ( −32 ) 5 TF = −25, 6º F 05) A dilatação térmica dos sólidos é um fenômeno importante em diversas aplicações de engenharia, como construções de pontes, prédios e estradas de ferro. Considere o caso dos trilhos de trem serem de aço, cujo coeficiente de dilatação é α = 11.10–6 °C–1.Se a 10 °C o comprimento de um trilho é de 30 m, de quanto aumentaria o seu comprimento se a temperatura aumentasse em 30 °C? Apresente o resultado em notação científica. ∆L = ? L0 = 30m ∆L = L0 .α .∆T ∆L = 30.11.10−6.30 ∆T = 30º C α = 11.10−6 º C ∆L = 9900.10−6 ∆L = 9,9.10−3 m 06) Construiu-se um alarme de temperatura baseado em uma coluna de mercúrio e em um sensor de passagem, como sugere a figura a seguir. H C 28 H C A altura do sensor óptico (par laser/detetor) em relação ao nível, H, pode ser regulada de modo que, à temperatura desejada, o mercúrio, subindo pela coluna, impeça a chegada de luz ao detetor, disparando o alarme. Calibrou-se o termômetro usando-se os pontos principais da água e um termômetro auxiliar, graduado na escala Celsius, de modo que a 0 °C a altura da coluna de mercúrio é igual a 8 cm, enquanto a 100 °C a altura é de 28 cm. A temperatura do ambiente monitorado não deve exceder 60 °C. Após encontrar a equação de relação entre a escala celsius e a altura do sensor óptico, calcule a que altura deve estar o sensor para não exceder a temperatura de 60 °C. H −8 C −0 = 28 − 8 100 − 0 H −8 C = 20 100 C H −8 = 5 C + 40 H= 5 C + 40 5 60 + 40 H= 5 100 H= 5 H = 20cm H= 07) Uma chapa quadrada de alumínio (α = 2,2.10-5 °C-1) de lado 30 cm, inicialmente a 20 °C, é utilizada numa tarefa doméstica no interior de um forno aquecido a 270 °C. Após o equilíbrio térmico, determine a dilatação da chapa. Apresente o resultado em notação científica. ∆S = ? ∆S = S0 .β .∆T T0 = 20º C ∆S = 900.2α .250 T = 270º C α = 2, 2.10 º C −5 S0 = 900m 2 −1 ∆S = 900.2(2, 2.10−5 ).250 ∆S = 990000.10−5 ∆S = 9,9cm 2 PROVA DE FÍSICA 2º ANO - 1ª MENSAL - 1º TRIMESTRE TIPO C 01) Com relação aos conceitos de temperatura e calor, marque V para a(s) proposição(ões) verdadeira(s) e F para a(s) falsa(s). (V) Calor é a energia térmica em trânsito entre dois ou mais corpos devido ao fato de estarem com temperaturas diferentes. (F) Temperatura e calor são conceitos idênticos. (F) Os corpos de maior massa podem armazenar mais calor do que os de menor massa. (V) Temperatura é uma grandeza associada ao grau de agitação das partículas que formam o corpo. (V) Equilíbrio térmico é um estado em que não existe transferência de calor entre dois corpos que estão à mesma temperatura. 02) Um termômetro foi graduado, em graus celsius, incorretamente. Ele assinala 1 °C para o gelo em fusão e 97 °C para a água em ebulição, sob pressão normal. Após encontrar a equação de conversão, pode-se afirmar que a única temperatura que esse termômetro assinala corretamente, em graus celsius, é: C'=C = X C’ C C '− 1 C '− 1 C −0 =C 97 = 0,96 97 − 1 100 − 0 X −1 C '− 1 C =X = 0,96 C’ C 96 100 X − 1 = 0,96 X 100C '− 100 = 96C 0, 04 X = 1 C '− 1 =C 1 0,96 X = 0, 04 X = 25º C 03) Uma temperatura em graus fahrenheit é expressa por um número que é 7/5 da temperatura em graus Celsius. Determine essa temperatura na escala Fahrenheit. 7 ⎧ T TC = F ⎪⎪ 5 ⎨ ⎪ TC = TF − 32 ⎪⎩ 5 9 7TC − 32 TC 5 = 5 9 ⎛ 7T ⎞ 9TC = 5 ⎜ C − 32 ⎟ ⎝ 5 ⎠ 9TC = 7TC − 160 7 TF = TC 5 7 TF = (−80) 5 TF = −112º F 2TC = −160 TC = −80º C 04) As afirmativas a seguir estão relacionadas com a dilatação dos corpos sólidos. I. A dilatação térmica de um sólido é conseqüência do aumento da intensidade de vibração de suas moléculas. II. A variação de volume de um corpo é proporcional à variação de sua temperatura. III. Materiais de coeficiente de dilatação maior dilatam mais do que materiais de coeficiente de dilatação menor. IV. Quando uma placa com um orifício é aquecida, o diâmetro do orifício diminui. V. Os corpos ocos se dilatam mais que os corpos maciços. Está(ão) correta(s) somente: a) a III. b) II, III e V. c) I, IV e V. d) I, II e V. e) I, II e III. 05) Uma chapa de aço, cujo coeficiente de dilatação linear é 1,0.10-6 °C-1, tem inicialmente um furo de 20 cm2 de área quando sua temperatura é de 20 °C. Qual deve ser a temperatura final da chapa para que a área do furo aumente de 1,0.10-4 do valor da área inicial? ∆S = S0 .β .∆T ∆S = 1.10−4 cm 2 1.10−4 = 20.2α .∆T T0 = 20º C T =? α = 1.10−6 º C −1 1.10−4 = 20.2(1.10−6 ).∆T ∆T = T − T0 1.10−4 = 40.10−6.∆T 2,5 = T − 20 1.10−4 4.10−6 ∆T = 2,5º C T = 22,5º C ∆T = S0 = 20m 2 06) A imprensa tem noticiado as temperaturas anormalmente altas que vêm ocorrendo no atual verão do Hemisfério Norte. Determine a dilatação que um trilho de 100 m sofreria devido a uma variação de temperatura igual a 30 °C sabendo que o coeficiente linear de dilatação térmica (α) do trilho vale 1,2.10-5 por grau celsius. Apresente o resultado em notação científica. ∆L = ? L0 = 100m ∆L = L0 .α .∆T ∆T = 30º C α = 1, 2.10 º C −5 ∆L = 100.1, 2.10−5.30 ∆L = 3600.10−5 ∆L = 3, 6.10−2 m 07) A figura a seguir ilustra um arame rígido de aço cujas extremidades estão distantes em L. Alterando-se sua temperatura de 293 K para 100 ºC, pode-se afirmar que a distância L: a) diminui, pois o arame aumenta de comprimento, fazendo com que suas extremidades fiquem mais próximas. b) diminui, pois o arame contrai com a diminuição da temperatura. c) aumenta, pois o arame diminui de comprimento, fazendo com que suas extremidades fiquem mais afastadas. d) não varia, pois a dilatação linear do arame é compensada pelo aumento do raio R. e) aumenta, pois a área do círculo de raio R aumenta com a temperatura. PROVA DE FÍSICA 2º ANO - 1ª MENSAL - 1º TRIMESTRE TIPO D 01) Uma chapa de zinco, cujo coeficiente de dilatação linear é 25.10-6 °C-1, sofre elevação de 10 °C na sua temperatura. Verifica-se que a área da chapa aumenta de 2,0 cm2. Nessas condições, quanto mede a área inicial da chapa? Apresente o resultado em notação científica. ∆S = 2, 0cm 2 ∆S = S0 .β .∆T ∆T = 10º C α = 25.10−6 º C −1 β = 2α S0 = ? 2 = S0 .50.10−6.10 2 500.10−6 2 S0 = 5.10−4 S0 = S0 = 4.103 cm 2 02) Uma temperatura em graus fahrenheit é expressa por um número que é 5 vezes aquele o qual exprime a mesma temperatura em graus celsius. Determine essa temperatura na escala Fahrenheit. 03) ⎧TF = 5TC ⎪ ⎨ TC TF − 32 ⎪⎩ 5 = 9 TC 5TC − 32 = 5 9 9TC = 5 ( 5TC − 32 ) TF = 5TC 9TC = 25TC − 160 TF = 50º F TF = 5(10) −16TC = −160 TC = 10º C 03) Com relação aos conceitos de temperatura e calor, analise as afirmativas abaixo. I. Calor é a energia térmica em trânsito entre dois ou mais corpos devido ao fato de estarem com temperaturas diferentes. II. Temperatura e calor são conceitos idênticos. III. Os corpos de maior massa podem armazenar mais calor do que os de menor massa. IV. Temperatura é uma grandeza associada ao grau de agitação das partículas que formam o corpo. V. Equilíbrio térmico é um estado em que não existe transferência de calor entre dois corpos que estão à mesma temperatura. Está(ão) correta(s) somente: a) I. b) II. c) I, IV e V. d) II e III. e) I e V. 04) Uma barra de aço, cujo coeficiente de dilatação linear é 1,0.10-6 °C-1, tem inicialmente um comprimento de 20 cm quando sua temperatura é de 20 °C. Qual deve ser a temperatura final da chapa para que a barra aumente de 1,0.10-4 cm do valor do comprimento inicial? ∆L = 1.10−4 cm 2 T0 = 20º C ∆L = L0 .α .∆T 1.10−4 = 20.α .∆T 1.10−4 = 20.1.10−6.∆T ∆T = T − T0 α = 1.10−6 º C −1 1.10−4 = 20.10−6.∆T 5 = T − 20 L0 = 20cm ∆T = 1.10−4 2.10−6 ∆T = 5º C T = 25º C T =? 05) As afirmativas a seguir estão relacionadas com a dilatação dos corpos sólidos. Marque V para a(s) verdadeira(s) e F para a(s) falsa(s). (V) A dilatação térmica de um sólido é conseqüência do aumento da intensidade de vibração de suas moléculas. (V) A variação de volume de um corpo é proporcional à variação de sua temperatura. (V) Materiais de coeficiente de dilatação maior dilatam mais do que materiais de coeficiente de dilatação menor. (F) Quando uma placa com um orifício é aquecida, o diâmetro do orifício diminui. (F) Os corpos ocos se dilatam mais que os corpos maciços. 06) Um termômetro foi graduado, em graus fahrenheit, incorretamente. Ele assinala 30 °F para o gelo em fusão e 200 °F para a água em ebulição, sob pressão normal. Após encontrar a equação de conversão, pode-se afirmar que a única temperatura que esse termômetro assinala corretamente, em graus fahrenheit, é: F’ 200 F’ F F F '− 30 F − 32 = 200 − 30 212 − 32 F '− 30 F − 32 = 17 0 18 0 18F '− 540 = 17 F − 544 F'= F = X 18F ' = 17 F − 4 18 X = 17 X − 4 X = −4º F 18 F ' = 17 F − 4 07) Um quadrado foi montado com três hastes de alumínio (αAl = 24.10-6 °C-1) e uma haste de aço (αaço = 12.10-6 °C-1), todas inicialmente à mesma temperatura. O sistema é, então, submetido a um processo de aquecimento, de forma que a variação de temperatura é a mesma em todas as hastes. aço alumínio alumínio alumínio Podemos afirmar que, ao final do processo de aquecimento, a figura formada pelas hastes estará mais próxima de um: a) trapézio. b) retângulo. c) losango. d) círculo. e) quadrado. aço Alumínio Alumínio alumínio