i
UNIVERSIDADE POTIGUAR
ESCOLA DE ENGENHARIAS E CIÊNCIAS EXATAS
PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE PETRÓLEO E
GÁS – PPGEPG
MESTRADO PROFISSIONAL EM ENGENHARIA DE PETRÓLEO E GÁS MPEPG
GÊMINSON DE ARAÚJO PAULA
AVALIAÇÃO DO RESÍDUO DE CASCALHO DE PERFURAÇÃO DE POÇOS
DE PETRÓLEO DA BACIA POTIGUAR E ALTERNATIVAS PARA SUA
DESTINAÇÃO E REAPROVEITAMENTO
NATAL
2014
ii
GÊMINSON DE ARAÚJO PAULA
AVALIAÇÃO DO RESÍDUO DE CASCALHO DE PERFURAÇÃO DE POÇOS
DE PETRÓLEO DA BACIA POTIGUAR E ALTERNATIVAS PARA SUA
DESTINAÇÃO E REAPROVEITAMENTO
Dissertação apresentada ao Programa
de Pós-Graduação em Engeharia de
Petróleo e Gás. Escola de Engenharias
e Ciências Exatas, Universidade
Potiguar, como requisito parcial para a
obtenção do título de Mestre em
Engenharia de Petróleo e Gás Natural.
Orientadora: Profª. Drª. Carla Gracy
Ribeiro Meneses.
Co-orientador: Profº. Drª. Marcilio
Pelicano Ribeiro
NATAL
2014
iii
GÊMINSON DE ARAÚJO PAULA
AVALIAÇÃO DO RESÍDUO DE CASCALHO DE PERFURAÇÃO DE POÇOS
DE PETRÓLEO DA BACIA POTIGUAR E ALTERNATIVAS PARA SUA
DESTINAÇÃO E REAPROVEITAMENTO
Dissertação apresentada ao Programa
de Pós-Graduação em Engeharia de
Petróleo e Gás. Escola de Engenharias
e Ciências Exatas, Universidade
Potiguar, como requisito parcial para a
obtenção do título de Mestre em
Engenharia de Petróleo e Gás Natural.
APROVADO EM: _____/______/_______
BANCA EXAMINADORA
______________________________________________
Profª. Drª Carla Gracy Ribeiro Meneses
Orientadora
Universidade Potiguar
______________________________________________
Profª. Drª. Ana Catarina Fernandes Coriolano
Examinadora Interna
Universidade Potiguar
______________________________________________
Prof. Dr. Franklin Silva Mendes
Examinador Interno
Universidade Potiguar
______________________________________________
Profa. Dra. Regina Celia Oliveira Brasil Delgado
Examinadora Externa
Universidade Federal Rural do Semi-Árido
iv
Dedico este trabalho a Marize, Vitor, Raquel e Carolina, pelo amor, incentivo e
inspiração prestados.
v
AGRADECIMENTOS
Aos meus pais Aluisio Paula (in memorium) e a Francinete Paula pela graça da
vida e pelo infinito amor a mim dedicado.
Aos professores deste Programa de Mestrado Franklin Silva Mendes, Regina
Celia Oliveira Brasil Delgado e Ana Catarina Fernandes Coriolano pelo
relevante apoio prestado.
À amiga Netinha, pela presteza na disponibilização de laudos técnicos do
IDEMA/RN.
À minha orientadora Carla Gracy Ribeiro Meneses pela paciência, estimulo e
dedicação.
vi
RESUMO
A atividade petrolífera envolve grande potencial de riscos ao meio ambiente,
entre os quais se destaca a produção de grandes volumes de cascalhos na
perfuração de poços de petróleo. Tem se tornado grande desafio para os
governos e as empresas envolvidas a destinação final deste resíduo de forma
adequada às exigências ambientais. Para isso, faz-se necessário inicialmente
classificá-lo conforme a legislação ambiental pertinente para situá-lo ou não
entre os resídos potencialmente mais perigosos. Com base nesta classificação
e mediante pesquisa bibliográfica lastreada em artigos científicos que tratam do
assunto, é fundamental a relização de investigação de alternativas por meio de
pesquisa bibliográfica para solucionar o problema do acúmulo de grandes
volumes deste
resíduo
na
superfície, considerando-se
as exigências
ambientais e as técnicas atuais disponíveis, seja na forma de deposição em
aterros com tratamento térmico ou não, seja por meio de sua reciclagem a
partir de outros processos industriais. Concluiu-se pela viabilidade ambiental
tanto de sua destinação em aterros sanitários, como de sua reciclagem como
matéria prima na indústria da construção civil, sugerindo-se como melhor
alternativa o coprocessamento do resíduo de cascalho de perfuração em fornos
de clínquer para fabricação de cimento.
Palavras-Chave: Cascalho. Perfuração. Poluição. Fluido de perfuração.
Resíduo sólido. Reciclagem.
vii
ABSTRACT
The Petroleum activity involves a significant potential of risk to the environment,
among which stands out the production of large volumes of crushed rocks from
cutting in drilling wells an appropriate final destination of this residue according
to environmental demands has become a major challenge for governments and
companies involved. For this, it is necessary to initially classify the residues
according to pertinent environmental legislation to situate it or not in the group
of potentially more hazardous waste. Based on this rating and also by a
bibliography research backed by scientific articles dealing with the subject, it is
critical to conduct a research about the alternatives in the literature to solve the
problem of the accumulation of large volumes of this residue on the surface,
considerering the environmental demands and the current available techniques,
either as landfill with heat-treatment or not, or through recycleness from other
industrial processes. It was concluded that there is environmental viability for
both its destination in landfills and its recycleness as raw material in the
construction industry. The coprocessing of drilling cutting residue in clinker kilns
for cement manufacturing is being suggested as the best alternative.
Keywords: Crushed rock. Drilling. Pollution. Drilling fluid. Solid waste.
Recycling.
viii
LISTA DE FIGURAS
Figura 1 Desenho equemático da broca atuando no fundo do poço com
o auxílio da potência hidráulica promovida pelo fluido de
perfuração pressurizado ao passar pelos jatos da broca........
Figura 2 Esquema gráfico da circulação do fluido de perfuração..............
24
26
Figura 3 Dique para deposição provisória dos cascalhos e outros
materiais descartados..................................................................
26
Figura 4 Perfil litoestatigráfico das formações rochosas de um poço do
campo
de
Canto
do
Amaro
(Bacia
Potiguar
terrestre).......................................................................................
30
Figura 5 Diagrama esquemático da injeção do cascalhos em cavidades
subterrâneas de mina de salgema..............................................
57
ix
LISTA DE QUADROS
Quadro 1 Evolução histórica da Bacia Potiguar........................................
31
Quadro 2 Classificação dos resíduos sólidos com base na norma ABNT
NBR 10004:2004.......................................................................
37
Quadro 3 definições contidas na Instrução de Trabalho nº 3 – IT – RN –
003, item 3................................................................................
52
x
LISTA DE TABELAS
Tabela 1
Formulações adequadas para fluidos aquosos e não aquosos
Tabela 2
Formações geológicas
de
poços de petróleo
da
28
Bacia
Potiguar.......................................................................................... 29
Tabela 3
Volumes de Cascalhos de Perfuração gerados em algumas
regiões do Mundo........................................................................... 43
Tabela 4
Composição dos cascalhos de perfuração.................................
Tabela 5
parâmetros inorgânicos (mg/l) que ultrapassaram os limites da
43
NBR 10004:2004............................................................................ 46
Tabela 6
parâmetros orgânicos (mg/l) que ultrapassaram os limites da
NBR 10004:2004............................................................................ 46
Tabela 7
Valores médios obtidos pela média aritmética dos parâmetros
inorgânicos
(tabela
5)
e
orgânicos
(tabela
6)
em
desconformidade com a NBR 10004:2004..................................
47
Tabela 8
Formulações de misturas argila e cascalhos (% em peso).........
63
Tabela 9
Resultados de massa bruta constantes nos laudos amostrais
com
base
na
Norma
NBR
10004
(anexo
1).................................................................................................... 72
Tabela 10 Resultados de lixiviado constantes nos laudos amostrais com
base na Norma NBR 10005 (anexo 2)......................................... 73
Tabela 11 Resultados do solubilizado constantes nos laudos amostrais
com
base
na
Norma
NBR
10006
(anexo
3).................................................................................................... 75
Tabela 12 Resultados obtidos que ultrapassam os valores máximos
permitidos pela norma NBR 10004 relativos à amostra nº 1
(anexo 4)........................................................................................ 76
Tabela 13 Resultados obtidos que ultrapassam os valores máximos
permitidos pela norma NBR 10004 relativos à amostra nº 2
(anexo 5)........................................................................................ 77
Tabela 14 Resultados obtidos que ultrapassam os valores máximos
permitidos pela norma NBR 10004 relativos à amostra nº 3
xi
(anexo 6)........................................................................................ 78
Tabela 15 Resultados obtidos que ultrapassam os valores máximos
permitidos pela norma NBR 10004 relativos à amostra nº 4
(anexo 7)........................................................................................ 79
Tabela 16 Resultados obtidos que ultrapassam os valores máximos
permitidos pela norma NBR 10004 relativos à amostra nº 5
(anexo 8)........................................................................................ 80
Tabela 17 Resultados obtidos que ultrapassam os valores máximos
permitidos pela norma NBR 10004 relativos à amostra nº 6
anexo 9)......................................................................................... 81
Tabela 18 Resultados obtidos que ultrapassam os valores máximos
permitidos pela norma NBR 10004 relativos à amostra nº 7
(anexo 10)...................................................................................... 82
Tabela 19 Resultados obtidos que ultrapassam os valores máximos
permitidos pela norma NBR 10004 relativos à amostra nº 8
(anexo 11)...................................................................................... 83
Tabela 20 Resultados obtidos que ultrapassam os valores máximos
permitidos pela norma NBR 10004 relativos à amostra nº 9
(anexo 12)...................................................................................... 84
Tabela 21 Resultados obtidos que ultrapassam os valores máximos
permitidos pela norma NBR 10004 relativos à amostra nº 10
(anexo 13)...................................................................................... 85
Tabela 22 Resultados obtidos que ultrapassam os valores máximos
permitidos pela norma NBR 10004 relativos à amostra nº 11
(anexo 14)...................................................................................... 86
Tabela 23 Resultados obtidos que ultrapassam os valores máximos
permitidos pela norma NBR 10004 relativos à amostra nº 12
(anexo 15)...................................................................................... 87
xii
LISTA DE GRÁFICOS
Gráfico 1
Resultados obtidos na análise de solubilizados em relação ao
Alumínio......................................................................................... 47
Gráfico 2
Resultados obtidos na análise de solubilizados em relação ao
Cloreto...........................................................................................
Gráfico 3
Resultados obtidos na análise de solubilizados em relação ao
Ferro..............................................................................................
Gráfico 4
48
Resultados obtidos na análise de solubilizados em relação ao
Sódio.............................................................................................
Gráfico 5
48
49
Resultados obtidos na análise de solubilizados em relação ao
Sulfato...........................................................................................
50
xiii
LISTA DE FLUXOGRAMAS
Fluxograma 1 Blendagem de resíduos.........................................................
53
Fluxograma 2 Coprocessamento de resíduos.............................................
54
xiv
LISTA DE ABREVIATURAS
ABNT
Associação Brasileira de Normas Técnicas
ANP
Agência Nacional de Petróleo
API
American Petroleum Institute
CONAMA
Conselho Nacional do Meio Ambiente
DBO
Demanda Bioquímica de Oxigênio
CAP I
Cascalho de perfuração gerado na primeira fase de perfuração
CAP III
Cascalho de perfuração gerado na terceira fase de perfuração
DIGUAR
Distrito de Produção da Bacia Potiguar
DQO
Demanda Química por Oxigênio
E&P-RN/CE
Exploração e Produção do Rio Grande do Norte e Ceará
IDEMA
Instituto de Desenvolvimento Sustentável e Meio Ambiente do Rio
Grande do Norte
IT
Instrução de Trabalho
LCE
Lei Complementar Estadual
LQ
Limite de quantificação
Ma
Milhões de anos
mg/l
Miligrama por Litro
PNRS
Política Nacional de Resíduos Sólidos
pH
Potencial hidrogeniônico
RPNS
Região de Produção do Nordeste Setentrional
SISNAMA
Sistema Nacional do Meio Ambiente
SUASA
Sistema Unificado de Atenção à Sanidade Agropecuária
SNVS
Sistema Nacional de Vigilância Sanitária
t/a
Toneladas por ano
VMP
Valor Máximo Permitido
xv
SUMÁRIO
1
INTRODUÇÃO.................................................................................... 19
1.1
OBJETIVO GERAL.............................................................................. 21
1.2
OBJETIVOS ESPECÍFICOS............................................................... 21
2
REFERENCIAL TEÓRICO.................................................................. 22
2.1
A ATIVIDADE DE PERFURAÇÃO...................................................... 22
2.2
O FLUIDO DE PERFURAÇÃO............................................................ 22
2.3
CARACTERIZAÇÃO DA BACIA POTIGUAR...................................... 28
2.4
HISTÓRICO DA ATIVIDADE DE PERFURAÇÃO TERRESTRE NA
BACIA POTIGUAR.............................................................................. 31
2.5
ASPECTOS LEGAIS PERTINENTES................................................. 33
2.6
O PROBLEMA DA DESTINAÇÃO FINAL DO CASCALHO............... 38
2.7
POSSIBILIDADES QUANTO AO MANUSEIO E DESTINAÇÃO
FINAL DOS CASCALHOS................................................................. 39
2.8
CARACTERIZAÇÃO DOS CASCALHOS........................................... 41
3
MATERIAIS E MÉTODOS.................................................................. 44
3.1
ANÁLISE DOS DADOS DA COMPOSIÇÃO QUÍMICA DOS
CASCALHOS...................................................................................... 44
3.2
ANÁLISE
E
DESTINAÇÃO
SUGESTÃO
E
DE
ALTERNATIVAS
RECICLAGEM
DO
PARA
CASCALHO
A
DE
PERFURAÇÃO.................................................................................... 45
4
RESULTADOS.................................................................................... 46
4.1
ANÁLISE
DOS
DADOS
QUE
APRESENTAM
NÃO
CONFORMIDADES COM A NORMA NBR 1004:2004....................... 46
4.2
A DESTINAÇÃO FINAL DO CASCALHO DE PERFURAÇÃO........... 50
4.2.1
O processo de incineração dos cascalhos..................................... 51
4.2.2
A deposição do cascalho em aterros sanitários............................ 54
4.2.3
A alternativa de destinação de resíduos de cascalhos de
perfuração em mina de salgema..................................................... 55
4.3
TÉCNICAS
DE
RECICLAGEM
DO
CASCALHO
DE
PERFURAÇÃO.................................................................................... 58
4.3.1
O emprego do cascalho de perfuração na confecção de tijolos
xvi
solo-cimento...................................................................................... 58
4.3.2
O coprocessamento do resíduo de cascalho de perfuração em
fornos de clínquer para fabricação de cimento.............................. 59
4.3.2.1
O coprocessamento de cascalho realizado pela CINPOR –
cimentos de Portugal, SGPS, S.A....................................................... 60
4.3.3
O estudo do potencial de aplicação do cascalho de perfuração
em concreto....................................................................................... 61
4.3.4
O emprego do cascalho de perfuração na fabricação de
material cerâmico.............................................................................. 62
5
CONCLUSÃO..................................................................................... 65
6
SUGESTÕES PARA TRABALHOS FUTUROS................................. 67
7
REFERÊNCIAS BIBLIOGRÁFICAS................................................... 68
ANEXO 1 - resultados de massa bruta constantes nos laudos
amostrais............................................................................................ 72
ANEXO 2 - resultados de lixiviado constantes nos laudos
amostrais com base na Norma NBR 10005..................................... 73
ANEXO 3 - resultados do solubilizado constantes nos laudos
amostrais com base na Norma NBR 10006..................................... 75
ANEXO 4 - resultados obtidos que ultrapassam os valores
máximos permitidos pela norma NBR 10004 relativos à amostra
nº 1...................................................................................................... 76
ANEXO 5 - resultados obtidos que ultrapassam os valores
máximos permitidos pela norma NBR 10004 relativos à amostra
nº 2...................................................................................................... 77
ANEXO 6 - resultados obtidos que ultrapassam os valores
máximos permitidos pela norma NBR 10004 relativos à amostra
nº 3...................................................................................................... 78
ANEXO 7 - resultados obtidos que ultrapassam os valores
máximos permitidos pela norma NBR 10004 relativos à amostra
nº 4...................................................................................................... 79
ANEXO 8 - resultados obtidos que ultrapassam os valores
máximos permitidos pela norma NBR 10004 relativos à amostra
nº 5...................................................................................................... 80
xvii
ANEXO 9 - resultados obtidos que ultrapassam os valores
máximos permitidos pela norma NBR 10004 relativos à amostra
nº 6...................................................................................................... 81
ANEXO 10 - resultados obtidos que ultrapassam os valores
máximos permitidos pela norma NBR 10004 relativos à amostra
nº 7...................................................................................................... 82
ANEXO 11 - resultados obtidos que ultrapassam os valores
máximos permitidos pela norma NBR 10004 relativos à amostra
nº 8...................................................................................................... 83
ANEXO 12 - resultados obtidos que ultrapassam os valores
máximos permitidos pela norma NBR 10004 relativos à amostra
nº 9...................................................................................................... 84
ANEXO 13 - resultados obtidos que ultrapassam os valores
máximos permitidos pela norma NBR 10004 relativos à amostra
nº 10.................................................................................................... 85
ANEXO 14 - resultados obtidos que ultrapassam os valores
máximos permitidos pela norma NBR 10004 relativos à amostra
nº 11.................................................................................................... 86
ANEXO 15 - resultados obtidos que ultrapassam os valores
máximos permitidos pela norma NBR 10004 relativos à amostra
nº 12.................................................................................................... 87
19
1 INTRODUÇÃO
Há mais de meio século que a indústria de petróleo vem se
desenvolvendo no Brasil em busca da independência em relação à sua
importação e a de seus derivados.
Para tanto, rastreando as jazidas geológicas existentes, a PETROBRAS
tem posicionado suas sondas ao longo do território brasileiro em sua
plataforma continental.
Não obstante o predomínio da produção de petróleo off-shore, a
atividade terrestre vem sendo exercida em alguns estados brasileiros, entre os
quais figuram Bahia, Sergipe, Alagoas, Espírito Santo, Amazonas e Rio Grande
do Norte.
Geograficamente, esta pesquisa se delimita aos contornos da Bacia
Potiguar em sua porção terrestre, que abrange os Estados do Rio Grande do
Norte e Ceará.
No Estado do Rio Grande do Norte, a exploração e a produção de
petróleo se desenvolvem no litoral e em algumas regiões continentais, em
especial nos campos de petróleo terrestres, situados nos municípios de
Mossoró, Areia Branca, Alto de Rodrigues, Apodi e Macau, notadamente na
região oeste do Estado.
A escolha desta região como cenário para a pesquisa ora em comento
se deve à sua relevância entre os campos produtores de petróleo em nosso
país, uma vez que já figurou em primeiro lugar na produção de petróleo e gás
terrestre, à época sendo o Canto do Amaro considerado o maior campo de
petróleo terrestre em atividade no país, bem como que atualmente representa
uma bacia madura e consolidada, que responde por grande parte da produção
nacional terrestre de petróleo e gás.
A indústria petrolífera, durante suas operações, gera grandes volumes
de resíduos líquidos e sólidos nocivos ao meio ambiente e à saúde pública.
Evidentemente, quando adequadamente tratados, destinados e até reciclados,
com balizamento em padrões internacionais inclusive, seus efeitos nefastos
podem ser reduzidos a níveis aceitáveis.
20
Entre estes resíduos ocupam posição de relevância os cascalhos de
perfuração. A preocupação maior da indústria de petróleo e gás se deve à
quantidade destes resíduos gerada e a seus contaminantes, sejam orgânicos
ou inorgânicos. Esforços têm sido empreendidos, tanto pelos gestores públicos,
quanto pela iniciativa privada, com vistas a atender as determinações legais,
bem como prevenir danos ao meio ambiente e à saúde pública, porém muito
ainda há que ser feito para que seja alcançado o tão sonhado meio ambiente
equilibrado.
O presente estudo é direcionado ao impacto ambiental eventualmente
provocado pelos cascalhos provenientes da perfuração no âmbito dos campos
de petróleo terrestres da bacia potiguar, que são, num primeiro instante,
carreados para fora do poço através da circulação do fluido de perfuração e,
posteriormente, destinados a local previamente estabelecido onde serão
depositados ou mesmo incinerados ou ainda reaproveitados na composição de
produtos industriais.
É importante ressaltar o papel relevante de normatizador e fiscalizador
ambiental do IDEMA (Instituto de Desenvolvimento Sustentável e Meio
Ambiente do Rio Grande do Norte) em relação à grande demanda das
empresas quanto ao seu licenciamento operacional e de instalação, que
viabiliza a fiscalização e adequação da produção industrial aos limites
ambientais determinados para evitar a poluição do meio ambiente, sendo
exigência
inclusive
constitucional
a
busca
por
um
meio
ambiente
ecologicamente equilibrado e sustentável.
A pesquisa que ora se inicia reveste-se de grande importância, tendo em
vista que a atividade de perfuração mobiliza grandes volumes de fluidos e
materiais sólidos aptos a promoverem a poluição do solo nas proximidades do
poço perfurado, bem como do local para onde é enviado em seu destino final, o
que tem se transformado em grande preocupação para os estudiosos do
assunto.
21
1.1 OBJETIVO GERAL
Avaliar o cascalho de perfuração de poços na Bacia Potiguar terrestre e
analisar possíveis alternativas de sua destinação final e reaproveitmento
ambientalmente adequadas.
1.2 OBJETIVOS ESPECÍFICOS

Analisar dados obtidos a partir de laudos técnicos junto ao IDEMA
contendo ensaios em relação à massa bruta, lixiviado e
solubilizado do cascalho de acordo com a norma ambiental – NBR
10004:2004.

Investigar
e
sugerir
alternativas
de
destinação
reaproveitamento do cascalho, com base na análise acima.
final
e
22
2 REFERENCIAL TEÓRICO
2.1 A ATIVIDADE DE PERFURAÇÃO
A atividade de perfuração de poços de petróleo é imprescindível para a
confirmação da existência de hidrocarbonetos no reservatório com viabilidade
econômica de produção, bem como para propiciar a sua produção, uma vez
que após a perfuração do poço, este é equipado para produção, confirmada
sua economicidade.
Após os estudos sísmicos e geológicos realizados indicando provavél
existência de reservatórios contendo hidrocarbonetos, faz-se necessária a
intervenção nas formações rochosas através da perfuração do poço, com
vistas à comprovação da ocorrência da jazida, bem como à sua extração por
meio dos métodos de produção em momento posterior.
A sonda de perfuração é montada na locação e inicia-se a perfuração do
poço. Para avançar ao longo das formações, a coluna com a broca necessita
de rotação, peso sobre broca e potência hidráulica. Enquanto a potência
hidráulica, traduzida no binômio vazão-pressão, é proporcionada pelas bombas
de lama, toda a movimentação da coluna de perfuração é realizada mediante a
energia promovida pelo guincho, sob o comando do sondador.
2.2 O FLUIDO DE PERFURAÇÃO
O fluido de perfuração é definido pelo Instituto Americano de Petróleo –
API como sendo qualquer fluido circulante capaz de tornar a operação de
perfuração viável (GUIMARÃES & ROSSI, 2008). Para Thomas (2001), os
fluidos de perfuração são misturas complexas de sólidos, líquidos, produtos
químicos e, por vezes, até de gases. Do ponto de vista químico, eles podem
assumir aspectos de suspensão, dispersão coloidal ou emulsão, dependendo
do estado físico dos componentes (THOMAS, 2001). Do ponto de vista físico,
os fluidos de perfuração assumem comportamentos de fluidos nãonewtonianos, ou seja, a relação entre a taxa de cisalhamento e a taxa de
23
deformação não é constante (MACHADO, 2002, apud GUIMARÃES & ROSSI,
2008).
Para realização da perfuração de poço de petróleo, imprescindível se faz
a retirada dos fragmentos de rochas perfurados do interior do poço também
denominados de cascalhos, o que possibilita o avanço da broca ao longo das
formações a serem perfuradas e realizada a análise geológica dos mesmos.
Historicamente, quando primeiro se pensou em retirar do interior do
poço estas porções de rochas perfuradas, utilizou-se a lama que havia
disponível na locação,1 o que resultou em sucesso dada a pequena
profundidade do poço. Porém, com a necessidade de se alcançar
profundidades cada vez maiores, vieram dificuldades a serem vencidas, tais
como a existência de formações geológicas com diferentes pressões de poro e
composições químicas (argilosas, salinas, etc.), submetidas a altas pressões e
temperaturas, a trajetória do poço (poços verticais ou direcionais), condições
ambientais adversas (presença de aquíferos) e riscos de danos à formação
(GUIMARÃES & ROSSI, 2008), surgindo, assim, a necessidade de se
aperfeiçoar as propriedades do fluido de perfuração visando a atender a uma
gama de outras finalidades, até os dias atuais quando se reveste da maior
importância o programa projetado do fluido de perfuração para a perfuração de
poços.
Esta função primordial do fluido de perfuração é desempenhada
mediante a injeção do fluido de perfuração (mud) pelo interior da coluna de
perfuração, que, ao passar pelos jatos da broca, desenvolve energia hidráulica
hábil a potencializar a eficiência da perfuração das formações, ao mesmo
tempo em que retorna pelo espaço anular (coluna/paredes do poço),
arrastando até a superfície o volume cortado de rochas, que passa a ser
denominado de cascalhos de perfuração.
A ação do fluido de perfuração de limpar o fundo do poço e trazer para a
superfície o cascalho perfurado é mostrada na figura 1.
1
Este é o motivo pelo qual a indústria do petróleo consagrou a expressão ‘mud’ como
denominação do fluido de perfuração, que significa ‘lama’ em inglês.
24
Figura 1 - Desenho equemático da broca atuando no fundo do poço com o auxílio da potência
hidráulica promovida pelo fluido de perfuração pressurizado ao passar pelos jatos da broca
Fonte: CHIPALAVELA, 2013
Porém, além de realizar a limpeza do poço, outras são as funções
desempenhadas pelo fluido de perfuração, com vistas a possibilitar uma
perfuração segura, econômica e rápida, entre as quais exercer pressão
hidrostática sobre as formações, de modo a evitar o influxo de flluidos
indesejáveis e estabilizar as paredes do poço (THOMAS, 2001).
São consideradas imprescindíveis à sua operacionalidade as seguintes
características (THOMAS, 2001):










Ser estável quimicamente;
Estabilizar as paredes do poço, mecânica e quimicamente;
Facilitar a separação dos cascalhos na superfície;
Manter os sólidos em suspensão quando estiver em repouso;
Ser inerte em relação a danos às rochas produtoras;
Aceitar qualquer tratamento, físico e químico;
Ser bombeável;
Apresentar baixo grau de corrosão e de abrasão em relação à
coluna de perfuração e demais equipamentos do sistema de
circulação;
Facilitar as interpretações geológicas do material retirado do
poço;
Apresentar custo compatível com a operação.
25
Para o bom desempenho das funções acima elencadas, faz-se
necessário
a
preparação
e
contínuo
tratamento
do
fluido
segundo
determinadas propriedades físicas e químicas, dentre as quais se destacam a
densidade, os parâmetros reológicos, as forças géis, os parâmetros de
filtração, o teor de sólidos, o pH, as alcalinidades, o teor de cloreto (salinidade)
e o teor de bentonida (ou de sólidos ativos) (THOMAS, 2001).
Essa injeção do fluido para o interior do poço dá-se por meio de bombas
de lama que o succiona dos tanques de lama e o faz chegar até o interior da
coluna de perfuração direcionando-o através da mangueira de lama, passando
pela cabeça de injeção (swivel) até a haste quadrada (kelly) conectada no topo
da coluna, conforme se vê na figura 2.
Em seguida, o fluido de perfuração circula pelo interior da coluna de
perfuração passando pelos jatos da broca que atua no fundo do poço mediante
parâmetros de perfuração (vazão e pressão), ocasião em que limpa o fundo do
poço (retirando daí os pedaços de rochas perfurados), otimiza a taxa de
penetração da broca na formação e inicia o seu retorno até a superfície
deslocando-se pelo espaço anular (annulus) situado entre o poço e a coluna de
perfuração, carreando os cascalhos perfurados.
Ao chegar à superfície, a mistura de fluido de perfuração e cascalhos é
despejada numa peneira de lama vibratória, onde os cascalhos são separados
e direcionados para um dique onde permanecerão depositados até o final do
poço, enquanto que o fluido de perfuração passa pelo sistema de tratamento
composta de desareiadores, dissiltadores, centrifugadores e desgaseificadores,
retornando aos tanques de lama quando a sua injeção no poço é retomada,
submetendo-se ainda a tratamento químico se necessário.
A figura 2 mostra o esquema do sistema de circulação do fluido de
perfuração.
26
Figura 2 - Esquema gráfico da circulação do fluido de perfuração
Fonte: SOUZA & LIMA, 2002
A figura 3 contempla um dique para deposição provisória dos resíduos
sólidos oriundos do poço em perfuração e já separados do fluido de perfuração.
Figura 3 - Dique para deposição provisória dos cascalhos perfurados
Fonte: SOUZA & LIMA, 2002
27
Basicamente, os fluidos de perfuração se classificam em duas
categorias: fluidos à base de água e à base de óleo, não obstante existir outros
tipos de fluidos normalmente empregados em situações específicas de
perfuração, como é o caso dos fluidos aerados, o que certamente eleva o custo
da perfuração.
Os fluidos de perfuração à base de água são formulados a partir de
água, barita, argila, soda cáustica, polímeros solúveis e sais, provendo a água
o meio para dispersão dos materiais coloidais. Classificam-se em inibidos ou
não-inibidos a depender de haver ou não tratamento químico. São os mais
usados na perfuração de poços onshore, principalmente por apresentarem
como caracterísitcas (STEFAN, 1982):



Custo mais baixo;
Facilidade com que é encontrada a água na natureza;
Atendem, na maioria dos casos, às exigências operacionais.
Os poços de petróleo perfurados na Bacia Potiguar terrestre não
apresentam grandes profundidades, bem como não demandam alta tecnologia
para o seu desiderato, tendo sido possível a obtenção de água em quantidade
suficiente, em que pese sua situação geográfica na região semi-árida brasileira,
razão pela qual optou-se pelo emprego de fluido à base água.
Os fluidos à base de óleo possuem a fase contínua constituída por uma
fase óleo geralmente composta de hidrocarbonetos líquidos, e por pequenas
gotículas de água acreescidas ou não de sólidos coloidais (de natureza
orgânica ou inorgânica) como fase dispersa (THOMAS, 2001).
São bastante utilizados na perfuração off-shore (plataformas marítimas)
devido ao seu alto custo e por ser necessário que atendam a diversas
exigências técnicas ineretnes a poços de grande profundidade. Apresentam as
seguintes características (THOMAS, 2001):






Grau de inibição elevado em relação às rochas ativas;
Baixíssima taxa de corrosão;
Propriedades controláveis a temperaturas acima de 350 ºF até
500 ºF;
Grau de lubrificidade elevado;
Amplo intervalo de variação de densidade – 0,89 a 2,4;
Baixíssima solubilidade de sais inorgânicos.
28
Em síntese, as composições adequadas para um fluido à base água e
para um fluido à base óleo são mostradas na tabela 1.
Tabela 1 – Formulações adequadas para fluidos aquosos e não aquosos
Fluido à base aquosa
Controladores de densidade
Sólidos de perfuração
Controladores de viscosidade
Emulsificador
Fase aquosa
6%
5%
3%
6%
80%
Fluido à base de óleo
Controladores de densidade
Aditivos
Água
CaCl2 ou NaCl
Óleo diesel
9%
3%
30%
4%
54%
Fonte: GUIMARÃES & ROSSI, 2008
2.3 CARACTERIZAÇÃO DA BACIA POTIGUAR
A Bacia Potiguar situa-se no extremo leste da Margem Equatorial
brasileira, compreendendo um segmento emerso e outro submerso ao longo
dos Estados do Rio Grande do Norte e Ceará, ao longo de uma área de 48.000
km2, destes 21.500 km2 correspondem à sua parte emersa (FILHO, 2007), que
se limita ao norte com o Oceano Atlântico, ao sul, com o embasmento
cristalino, a noroeste com o Alto de Fortaleza/CE e ao leste com a Bacia
Pernambuco-Paraíba pelo Alto de Touros/RN (SOARES et al, 2003, apud
LIMA, 2006, apud CASTRO et al, 2010).
A porção terrestre da Bacia Potiguar se estende ao longo do território de
15 municípios produtores de petróleo no Rio Grande do Norte: Alto do
Rodrigues,Apodi, Areia Branca, Assu, Caraúbas, Carnaubais, Felipe Guerra,
Governador Dix-Sept Rosado, Guamré, Macau, Mossoró, Pendências, Porto do
Mangue, Serra do Mel e Upanema (ARAÚJO, 2010).
Buscando-se identificar as formações rochosas existentes na Bacia
Potiguar, tomou-se como base o campo de petróleo de Canto do Amaro, por
ser este o mais representativo entre os campos desta Bacia, seja por conter
grande quantidade de poços perfurados, seja por ser o campo que apresenta a
maior produção de petróleo.
As formações geológicas que compõem o perfil geológico dos poços do
campo de Canto do Amaro são as mostradas na tabea 2, com pequenas
alterações de profundidades de poço para poço.
29
Tabela 2 – Formações geológicas de poços de petróleo da Bacia Potiguar
Formação Barreiras
Formação Jandaíra
Formação Açu
Formação Alagamar
Embasamento
0 a 30m
30 a 400m
400 a 855m
855 a 880 m
topo a 880 m
Fonte: PREDA et al, 2012
Conforme Cassab (2003), as formações geológicas presentes na Bacia
Potiguar terrestre se caracterizam da seguinte forma:
Formação
Jandaíra
seção
carbonática,
sobreposta
concordantemente aos arenitos da Formação Açu, sendo composto
por calcarenitos e calcilutitos bioclásticos, cujas cores variam do cinza
claro ao amarelado, com um nível evaporítico na base. A ocorrência
de foraminíferos bentônicos de algas verdes, a presença de marcas
de raízes e gretas de contração são características que apontam para
um ambiente de planície de maré, embra em alguns locais
predominasse uma plataforma rasa (ARARIPE & FEIÓ, 1994a, apud
CASSAB, 2003).
Formação Açu - são camadas espessas de arenitos finos e grossos,
esbranquiçados, intercalados com folhelhos, argilitos e siltitos,
especialmente em direção ao topo. Também são indentificados
sedimentos provenientes de leques, aluviais e de sistemas fluviais
entrelaçados e meandrantes e ainda uma transgressão estaurina.
Formação Alagamar - constitui-se de arenitos finos a grossos,
intercalados com folhelhos lagunares ricos em matéria orgânica,
depositados em ambiente transicional. Também ocorrem camadas de
carbonatos fossilíferos, depositados sob influência marinha restrita.
Ocorre somente em subsuperfície (BRASIL, 1998, apud CASSAB,
2003).
Formação Pendência - a idade absoluta do rifteamento foi calculada
em 140 Ma (Berrisiano). Os sedimetnos mais antigos depostados no
rifte estão associados à parte basal desta formação e foram datados
pela presença de pólens característicos do andar Rio da Serra. Em
sua maior parte es´ta em subsuperfície, só aflorando ao sul da bacia.
Estes sedimentos constituem-se de rochas vulcanoclásticas
contemporâneas a rocas siliclásticas, passando a arenitos finos
argilosos, intercalados com siltitos e folhelhos ricos em matéria
orgânica. Estes sedimentos foram depositados em ambiente lacustre
associado a deltas progradantes e planícies aluviais (DELLA
FÁVERA, 2001, apud CASSAB, 2003).
O perfil litoestratigráfico de um poço perfurado no campo de Canto do
Amaro é mostrado na figura 4.
30
Figura 4 – perfil litoestratigráfico das formações rochosas de um poço do campo de Canto do
Amaro (Bacia Potiguar terrestre)
Fonte: PREDA et al, 2012.
31
2.4 HISTÓRICO DA ATIVIDADE PETROLÍFERA NO ESTADO DO RIO
GRANDE DO NORTE
Conforme Larissa (2008) e Araujo (2010), o levantamento da evolução
histórica da atividade petrolífera na Bacia Potiguar apresenta os seguintes
marcos históricos:
Quadro 1 – Evolução histórica da Bacia Potiguar
Século
Na segunda metade, o padre Florêncio Gomes de Oliveira, enviou
XIX
carta ao cientista francês Jacques Brunet noticiando a ocorrência de
betume na lagoa do Apodi, pedindo que visitasse o Rio Grande do
Norte (ARAÚJO, 2010).
1922
Primeiras indicações de caráter científico pelo geólogo John Casper
Branner, que publicou notícia sobre possibilidades de óleo no Brasil
(LARISSA,2008).
1929
Luciano Jaques de Morais reafirmou a suspeita de ocorrência de
petróleo no Rio Grande do Norte apontando a necessidade de
estudos
mais
minuciosos:
“o
terreno
cretáceo
do
RN
é
particularmente interessante para a possibilidade da ocorrência de
petróleo, por ser marinho, fossilífero e apresentar-se cortado por
eruptivas”. (LARISSA,2008).
1943
Início de pesquisas no Rio Grande do Norte – alguns poços
perfurados apenas com vestígios de óleo (ARAÚJO, 2010).
Década
O deputado Floriano Bezerra reivindicou pesquisas no município de
de 1950 Macau, muito antes de ser descoberto petróleo nessa região
(ARAÚJO, 2010).
1956
A PETROBRAS resolve fazer a primeira sondagem no Rio Grande
do Norte na região de Gangorra/Grossos, com a perfuração do
primeiro poço terrestre (G-1-RN), não surtindo bons resultados
(LARISSA,2008).
1965
Enviada equipe de geólogos para estudar a Bacia Potiguar
(LARISSA,2008).
1966
O prefeito de Mossoró contratou firma para abrir um poço d’água,
32
supervisionado pelo geólogo Lúcio Cavalcante, na praça Pe. João
Mota. O poço jorrou petróleo misturado com água e serviu de
combustível para as lamparinas da população pobre “durante
meses” (ARAÚJO, 2010).
1973
Descoberta do campo marítimo de Ubarana com a perfuração do
primeiro poço RNS-1 (ARAUJO, 2010).
1976
Início das atividades petrolíferas do Rio Grande do Norte no campo
de Ubarana (município de Guamaré) (LARISSA,2008). Criado o
DIGUAR (Distrito de Produção da Bacia Potiguar), abrangendo o
Ceará, Rio Grande do Norte e Paraíba, com sede em Natal
(ARAUJO, 2010).
1979
Surgiu óleo nas piscinas do Hotel Termas em Mossoró, quando
foram abertas as torneiras com água. Entrou em operação o poço
MO-14, que produziu o primeiro carregamento de petróleo terrestre
da Bacia (LARISSA, 2008).
Década
No início, foram intensificadas as perfurações de poços nos
de 80
municípios de Macau, Areia Branca, Alto do Rodrigues e Mossoró
(ARAUJO, 2010).
1987
Criada a RPNS – Região de Produção do Nordeste Setentrional em
substituição à DIGUAR (ARAUJO, 2010).
1994
O Rio Grande do Norte alcançou a marca de segundo maior
produtor de petróleo do Brasil e primeiro em produção terrestre
ARAUJO, 2010).
1995
A PETROBRAS substituiu RPNS por E&P-RN/ CE (Exploração e
Produção do Rio Grande do Norte e Ceará), resultante da
reestruturação
das
atividades
de
exploração,
perfuração
e
produção, anteriormente departamentalizadas. No ano 2000, mudou
novamente a sigla: agora denominada UN-RNCE (Unidade de
Negócios do Rio Grande do Norte e Ceará) (ARAUJO, 2010).
2000
Alcançou-se a marca de 4000 poços terrestres e 200 poços
marítimos na Bacia Potiguar (ARAUJO, 2010).
Fonte: LARISSA, 2008 e ARAUJO, 2010
33
2.5 ASPECTOS LEGAIS PERTINENTES
A Constituição Federal prevê em seu artigo 225 que:
“Todos têm direito ao meio ambiente ecologicamente equilibrado,
bem de uso comum do povo e essencial à sadia qualidade de vida,
impondo-se ao Poder Público e à coletividade o dever de defendê-lo
e preservá-lo para as presentes e futuras gerações”.
Em consonância com o artigo 225 constitucional, a Política Nacional do
Meio Ambiente contida na Lei nº 6.938/81, tem como objetivos, dentre outros,
conforme o seu artigo 4º:
Art. 4º - A Política Nacional do Meio Ambiente visará:
I - à compatibilização do desenvolvimento econômico social com a
preservação da qualidade do meio ambiente e do equilíbrio ecológico;
II - à definição de áreas prioritárias de ação governamental relativa à
qualidade e ao equilíbrio ecológico, atendendo aos interesses da
União, dos Estados, do Distrito Federal, do Territórios e dos
Municípios;
III - ao estabelecimento de critérios e padrões da qualidade ambiental
e de normas relativas ao uso e manejo de recursos ambientais;
IV - ao desenvolvimento de pesquisas e de tecnologias nacionais
orientadas para o uso racional de recursos ambientais;
V - à difusão de tecnologias de manejo do meio ambiente, à
divulgação de dados e informações ambientais e à formação de uma
consciência pública sobre a necessidade de preservação da
qualidade ambiental e do equilíbrio ecológico;
VI - à preservação e restauração dos recursos ambientais com vistas
á sua utilização racional e disponibilidade permanente, concorrendo
para a manutenção do equilíbrio ecológico propício à vida;
VII - à imposição, ao poluidor e ao predador, da obrigação de
recuperar e/ou indenizar os danos causados, e ao usuário, de
contribuição pela utilização de recursos ambientais com fins
econômicos.
Para efeito desta Política Nacional, preocupou-se o legislador em
conceituar em seu art. 3º:
Art. 3º - Para os fins previstos nesta Lei, entende-se por:
I - meio ambiente, o conjunto de condições, leis, influências e
interações de ordem física, química e biológica, que permite, abriga e
rege a vida em todas as suas formas;
II - degradação da qualidade ambiental, a alteração adversa das
características do meio ambiente;
III - poluição, a degradação da qualidade ambiental resultante de
atividades que direta ou indiretamente:
a) prejudiquem a saúde, a segurança e o bem-estar da população;
b) criem condições adversas às atividades sociais e econômicas;
c) afetem desfavoravelmente a biota;
34
d) afetem as condições estéticas ou sanitárias do meio ambiente;
e) lancem matérias ou energia em desacordo com os padrões
ambientais estabelecidos;
IV - poluidor, a pessoa física ou jurídica, de direito público ou privado,
responsável, direta ou indiretamente, por atividade causadora de
degradação ambiental;
V - recursos ambientais: a atmosfera, as águas interiores, superficiais
e subterrâneas, os estuários, o mar territorial, o solo, o subsolo, os
elementos da biosfera, a fauna e a flora.
A Lei nº 12.305/2010 instituiu a Política Nacional de Resíduos Sólidos,
dispondo sobre seus princípios, objetivos e instrumentos, bem como sobre as
diretrizes relativas à gestão integrada e ao gerenciamento de resíduos sólidos,
incluídos os perigosos, às responsabilidades dos geradores e do poder público
e aos instrumentos econômicos aplicáveis, embora não seja aplicada aos
rejeitos radioativos, trazendo conceituações em seu art. 3º:
Art. 3º Para os efeitos desta Lei, entende-se por:
I - acordo setorial: ato de natureza contratual firmado entre o poder
público e fabricantes, importadores, distribuidores ou comerciantes,
tendo em vista a implantação da responsabilidade compartilhada pelo
ciclo de vida do produto;
II - área contaminada: local onde há contaminação causada pela
disposição, regular ou irregular, de quaisquer substâncias ou
resíduos;
III - área órfã contaminada: área contaminada cujos responsáveis
pela disposição não sejam identificáveis ou individualizáveis;
IV - ciclo de vida do produto: série de etapas que envolvem o
desenvolvimento do produto, a obtenção de matérias-primas e
insumos, o processo produtivo, o consumo e a disposição final;
V - coleta seletiva: coleta de resíduos sólidos previamente
segregados conforme sua constituição ou composição;
VI - controle social: conjunto de mecanismos e procedimentos que
garantam à sociedade informações e participação nos processos de
formulação, implementação e avaliação das políticas públicas
relacionadas aos resíduos sólidos;
VII - destinação final ambientalmente adequada: destinação de
resíduos que inclui a reutilização, a reciclagem, a compostagem, a
recuperação e o aproveitamento energético ou outras destinações
admitidas pelos órgãos competentes do Sisnama, do SNVS e do
Suasa, entre elas a disposição final, observando normas operacionais
específicas de modo a evitar danos ou riscos à saúde pública e à
segurança e a minimizar os impactos ambientais adversos;
VIII - disposição final ambientalmente adequada: distribuição
ordenada de rejeitos em aterros, observando normas operacionais
específicas de modo a evitar danos ou riscos à saúde pública e à
segurança e a minimizar os impactos ambientais adversos;
IX - geradores de resíduos sólidos: pessoas físicas ou jurídicas, de
direito público ou privado, que geram resíduos sólidos por meio de
suas atividades, nelas incluído o consumo;
X - gerenciamento de resíduos sólidos: conjunto de ações exercidas,
direta ou indiretamente, nas etapas de coleta, transporte, transbordo,
tratamento e destinação final ambientalmente adequada dos resíduos
35
sólidos e disposição final ambientalmente adequada dos rejeitos, de
acordo com plano municipal de gestão integrada de resíduos sólidos
ou com plano de gerenciamento de resíduos sólidos, exigidos na
forma desta Lei;
XI - gestão integrada de resíduos sólidos: conjunto de ações voltadas
para a busca de soluções para os resíduos sólidos, de forma a
considerar as dimensões política, econômica, ambiental, cultural e
social, com controle social e sob a premissa do desenvolvimento
sustentável;
XII - logística reversa: instrumento de desenvolvimento econômico e
social caracterizado por um conjunto de ações, procedimentos e
meios destinados a viabilizar a coleta e a restituição dos resíduos
sólidos ao setor empresarial, para reaproveitamento, em seu ciclo ou
em outros ciclos produtivos, ou outra destinação final ambientalmente
adequada;
XIII - padrões sustentáveis de produção e consumo: produção e
consumo de bens e serviços de forma a atender as necessidades das
atuais gerações e permitir melhores condições de vida, sem
comprometer a qualidade ambiental e o atendimento das
necessidades das gerações futuras;
XIV - reciclagem: processo de transformação dos resíduos sólidos
que envolve a alteração de suas propriedades físicas, físico-químicas
ou biológicas, com vistas à transformação em insumos ou novos
produtos, observadas as condições e os padrões estabelecidos pelos
órgãos competentes do Sisnama e, se couber, do SNVS e do Suasa;
XV - rejeitos: resíduos sólidos que, depois de esgotadas todas as
possibilidades de tratamento e recuperação por processos
tecnológicos disponíveis e economicamente viáveis, não apresentem
outra possibilidade que não a disposição final ambientalmente
adequada;
XVI - resíduos sólidos: material, substância, objeto ou bem
descartado resultante de atividades humanas em sociedade, a cuja
destinação final se procede, se propõe proceder ou se está obrigado
a proceder, nos estados sólido ou semissólido, bem como gases
contidos em recipientes e líquidos cujas particularidades tornem
inviável o seu lançamento na rede pública de esgotos ou em corpos
d’água, ou exijam para isso soluções técnica ou economicamente
inviáveis em face da melhor tecnologia disponível;
XVII - responsabilidade compartilhada pelo ciclo de vida dos
produtos: conjunto de atribuições individualizadas e encadeadas dos
fabricantes, importadores, distribuidores e comerciantes, dos
consumidores e dos titulares dos serviços públicos de limpeza urbana
e de manejo dos resíduos sólidos, para minimizar o volume de
resíduos sólidos e rejeitos gerados, bem como para reduzir os
impactos causados à saúde humana e à qualidade ambiental
decorrentes do ciclo de vida dos produtos, nos termos desta Lei;
XVIII - reutilização: processo de aproveitamento dos resíduos sólidos
sem sua transformação biológica, física ou físico-química, observadas
as condições e os padrões estabelecidos pelos órgãos competentes
do Sisnama e, se couber, do SNVS e do Suasa;
A norma ABNT NBR 10004:2004 dispõe sobre a classificação dos
resíduos sólidos, com a finalidade de fornecer subsídios para o seu
gerenciamento e destinação.
Esta classificação envolve:
36
a) a identificação do processo ou atividade que lhes deu origem;
b) a identificação de seus constituintes e características;
c) a comparação destes constituintes com listagens de resíduos e
substâncias cujo impacto à saúde e ao meio ambiente é conhecido.
Buscando propiciar sua melhor compreensão, a norma em comento traz
alguns conceitos que merecem ser mencionados em seu item 3:
3 Definições
Para os efeitos desta norma, aplicam-se as seguintes definições:
3.1 resíduos sólidos: resíduos nos estados sólido e semi-sólido, que
resultam de atividades de origem industrial, doméstica, hospitalar,
comercial, agrícola, de serviços e de varrição. Ficam incluídos nesta
definição os lodos provenientes de sistemas de tratamento de água,
aqueles gerados em equipamentos e instalações de controle de
poluição, bem como determinados líquidos cujas particularidades
tornem inviável o seu lançamento na rede pública de esgotos ou
corpos de água, ou exijam para isso soluções técnica e
economicamente inviáveis em face à melhor tecnologia disponível.
3.2 periculosidade de um resíduo: característica apresentada por um
resíduo que, em função de suas propriedades físicas, químicas ou
infecto-contagiosas, pode apresentar:
a) risco à saúde pública, provocando mortalidade, incidência de
doenças ou acentuando seus índices;
b) riscos ao meio ambiente, quando o resíduo for gerenciado de
forma inadequada.
3.3 toxicidade: propriedade potencial que o agente tóxico possui de
provocar, em maior ou menor grau, um efeito adverso em
conseqüência de sua interação com o organismo.
3.4 agente tóxico: qualquer substância ou mistura cuja inalação,
ingestão ou absorção cutânea tenha sido cientificamente comprovada
como tendo efeito adverso (tóxico, carcinogênico, mutagênico,
teratogênico ou ecotoxicológico).
3.5 toxicidade aguda: propriedade potencial que o agente tóxico
possui de provocar um efeito adverso grave, ou mesmo morte, em
conseqüência de sua interação com o organismo, após exposição a
uma única dose elevada ou a repetidas doses em curto espaço de
tempo.
3.6 agente teratogênico: qualquer substância, mistura, organismo,
agente físico ou estado de deficiência que, estando presente durante
a vida embrionária ou fetal, produz uma alteração na estrutura ou
função do individuo dela resultante.
3.7 agente mutagênico: qualquer substância, mistura, agente físico ou
biológico cuja inalação, ingestão ou absorção cutânea possa elevar
as taxas espontâneas de danos ao material genético e ainda provocar
ou aumentar a freqüência de defeitos genéticos.
3.8 agente carcinogênico: substâncias, misturas, agentes físicos ou
biológicos cuja inalação ingestão e absorção cutânea possa
desenvolver câncer ou aumentar sua freqüência. O câncer é o
resultado de processo anormal, não controlado da diferenciação e
proliferação celular, podendo ser iniciado por alteração mutacional.
37
3.9 agente ecotóxico: substâncias ou misturas que apresentem ou
possam apresentar riscos para um ou vários compartimentos
ambientais.
De acordo com a norma NBR 10004:2004, um resíduo sólido é
classificado como Classe I (perigoso), quando um ou mais parâmetros do
lixiviado e/ou massa bruta estiverem acima dos valores máximos permitidos
pelos anexos da NBR 10004:2004.
É classificado como Classe II A (não inerte), quando um ou mais
parâmetros do solubilizado estiverem acima dos valores máximos permitidos
pelos anexos “G” da NBR10004:2004.
É classificado como Classe II B (inerte), quando todos os parâmetros,
tanto da massa bruta quanto dos ensaios de solubilização e lixiviado estiverem
abaixo dos valores máximos permitidos pelos anexos da NBR 10004, conforme
consta do quadro 2.
Quadro 2 – Classificação dos resíduos sólidos com base na norma ABNT NBR 10004:2004
– um ou mais parâmetros do lixiviado e/ou massa bruta
estiverem acima dos valores máximos permitidos pelos anexos
da NBR 10004.
Classe II A – um ou mais parâmetros do solubilizado estiverem acima dos
não inerte
valores máximos permitidos pelos anexos G da NBR10004.
Classe II B – todos os parâmetros, tanto da massa bruta quanto dos ensaios
inerte
de solubilização e lixiviado estiverem abaixo dos valores
máximos permitidos pelos anexos da NBR 10004.
Classe I
perigoso
Fonte: NBR 10004:2004
Os fragmentos de rochas cortados pela broca (cascalhos) são carreados
pelo fluido de perfuração até as peneiras vibratórias na superfície, onde são
separados do fluido e descartados para um dique. Por não haver uma remoção
total do fluido impregnado nos cascalhos, e ainda pela própria composição da
formações geológicas que compõem o perfil geológico do poço, os cascalhos
podem conter contaminantes, tais como (LUCENA et al, 2007):






Metais pesados;
Alta salinidade, uma vez que os fluidos, em sua maioria têm sais em
sua composição, cujo objetivo é o de minimizar o inchamento das
formações argilosas perfuradas, promovendo a estabilidade do poço;
Óleos e graxas;
Elementos que causam Demanda Bioquímica de Oxigênio (DBO);
Elementos que causam Demanda Química de Oxigênio (DQO);
Elementos que causam alcalinidade.
38
2.6 O PROBLEMA DA DESTINAÇÃO FINAL DO CASCALHO
A indústria petrolífera representa grave risco de poluição do meio
ambiente. Embora se reconheça residir nos derramamentos de petróleo de
poços descontrolados em ambiente marinho as maiores catástrofes ambientais,
a atividade de exploração e produção de petróleo apresenta diversos outros
riscos que lhe são inerentes, tais como a poluição de lençois freáticos situados
próximos à superfície, do solo e do ar, e ainda a poluição relacionada aos
grandes volumes de cascalhos que são carreados à superfície pelo fluido de
perfuração por ocasião da perfuração de poços, dentre outros, o que tem
trazido preocupações aos órgãos governamentais e à sociedade como um
todo.
As perdas condicionadas ao meio ambiente pela utilização de derivados
de petróleo, desde a extração até a distribuição, representam um problema de
extensão mundial com potencial de contaminação ao meio ambiente. A
necessidade crescente de preservação dos recursos naturais e dos espaços
designados à ocupação humana requer a criação de soluções tecnológicas
efetivas para a destinação final dos resíduos gerados nas diversas etapas de
produção, minimizando de forma eficaz os impactos ambientais (GANGHIS et
al, 2009).
Estima-se que na região nordeste do Brasil exista atualmente uma
quantidade de resíduos da ordem de 100 mil m³ oriundos do processo de
perfuração de poços para produção de petróleo e, ainda, em função do
crescente número de poços que estão em fase deconstrução, estima-se uma
geração anual de 50 mil m³. Embora comumente classificado pela legislação
brasileira como classe II, a destinação de grandes quantidades deste tipo de
resíduo com as características físico-químicas encontradas tem se mostrado
um grande desafio para as empresas do setor e órgãos ambientais (GANGHIS,
2009).
A acumulação deste resíduo exige a urgente implementação de medidas
ao menos atenuadoras de seus efeitos nefastos ao meio ambiente, já que não
é possível cessar sua geração.
39
2.7 POSSIBILIDADES QUANTO AO MANUSEIO E DESTINAÇÃO FINAL
DOS CASCALHOS
A melhor forma de tratar os resíduos é não gerá-los, seguindo a ordem de
prioridade na gestão e gerenciamento de resíduos sólidos prevista no art. 9º,
da Lei nº 12.305/2010 (Plano Nacional de Resíduos Sólidos). Entretanto, a
atividade de perfuração, inevitavelmente, gera o cascalho enquanto resíduo
sólido.
Art. 9º. Na gestão e gerenciamento de resíduos sólidos, deve ser observada
a seguinte ordem de prioridade: não geração, redução, reutilização,
reciclagem, tratamento dos resíduos sólidos e disposição final
ambientalmente adequada dos rejeitos.
Também, verifica-se não ser possível a redução de sua geração, uma
vez que não se trata de resíduos que são gerados por desperdício, erros
operacionais, etc, mas que são gerados como resultado natural da própria
atividade industrial – à medida que a broca avança no poço, todo o cascalho
perfurado há de ser retirado de seu interior. Pelo mesmo motivo, conclui-se
pela impossibilidade de minimização do volume gerado de cascalho ainda que
por modificações no processo de perfuração de poços (CARVALHO, 1993,
apud TOCHETTO, 2005).
Os estudos para o uso do cascalho em materiais de construção são
recentes. Eles apontam alternativas para a construção de sub-base de
pavimentação, materiais cerâmicos e cimentícios. Essa etapa do estudo tem
por objetivo realizar os ensaios para avaliar a influência da substituição de
parte da areia natural por cascalhos de perfuração em blocos de concretos
para pavimentação intertravada.
Segundo Miller (2011), podemos lidar com os resíduos sólidos que
produzimos de duas maneiras: por meio da redução de resíduos e do
gerenciamento.
As seis maneiras de reduzir a utilização de recursos, os resíduos e a
poluição, também chamada de “os seis passos da sustentatibilidade”, são
(MILLER, 2011):
40
a) consumir menos;
b) reprojetar processos de fabricação e produtos para que utilizem
menos matéria e energia;
c) reprojetar processos de fabricação para que produzam menos
resíduos e menos poluição;
d) desenvolver produtos fáceis de reparar, reutilizar, remanufaturar,
compostar ou recicilar;
e) reprojetar produtos para durarem mais tempo;
f) eliminar ou reduzir o uso de embalagem.
Quanto ao gerenciamento de resíduos, considera Miller (2011) uma
abordagem ligada à alta produção de dejetos inevitável para o crescimento
humano, buscando-se gerenciar os resíduos advindos do crescimento
econômico a fim de reduzir o dano ao meio ambiente, principalmente
misturando e compactando os resíduos para, depois, incinerá-los, enterrá-los
ou enviá-los para outro país. Ocorre, assim, a mesclagem dos resíduos e sua
transferência de um ambiente para outro.
Na perfuração de poços, levando-se em conta que a produção dos
cascalhos é inerente à própria atividade, não há como se aplicar os seis passos
da sustentabilidade. Resta, portanto, a possbilidade de aplicação do
gerenciamento destes resíduos.
A Lei nº 12.305/2010 define gerenciamento de resíduos sólidos como
sendo
o conjunto de ações exercidas, direta ou indiretamente, nas etapas de
coleta, transporte, transbordo, tratamento e destinação final
ambientalmente adequada dos resíduos sólidos e disposição final
ambientalmente adequada dos rejeitos, de acordo com plano municipal
de gestão integrada de resíduos sólidos ou com plano de gerenciamento
de resíduos sólidos, exigido na forma desta Lei.
Segundo Mendes & Sousa (2013), a necessidade de gerenciamento
adequado dos cascalhos é um grande desafio a ser vencido pela indústria
petrolífera em sua atividade de perfuração de poços:
41
A necessidade de gerenciar, reduzir e destinar adequadamente os
resíduos de cascalhos de perfuração, atendendo às legislações e
normas ambientais vigentes, dentro de uma perspectiva social e
econômicamente sustentável, é um grande desafio para a atividade
de perfuração dos poços de petróleo, mas torna-se possível mediante
parcerias com empresas que possam desenvolver técnicas de
tratamento e destinação definitivas, realização de estudos de
viabilidade técnica, operacional, assim como testes e ensaios
laboratoriais com a reciclagem do resíduo cascalho, dentro dos
parâmetros legais.
2.8 CARACTERIZAÇÃO DOS CASCALHOS
Conforme Serra (2003), apud Moraes (2010), o cascalho representa os
fragmentos de rocha deslocados pela broca e carreados para a superfície no
fluido de perfuração. São também denominados de amostra de calha. Essas
amostras de calha quando estão lavadas e secas, são analisadas pelos
geólogos para a obtenção de informações sobre as formações perfuradas. O
termo cascalho é utilizado na indústria do petróleo para qualquer sedimento
retirado do poço, seja de granulametria fina ou grossa.
Ao retornar à superfície, o fluido de perfuração traz consigo o cascalho,
além de lodo, areia e gases, quando é submetido a um processo de separação
de sólidos e, uma vez apresentando as características desejadas, é
rebombeado para o poço fechando, assiim, o ciclo de bombeamento.
Estima-se que cerca de 10 a 15% do volume do fluido de perfuração
permanece aderido aos cascalhos após o processo de separação (MORAES,
2010), o que, indubitavelmente, irá influenciar a composição do resíduo sólido a
ser transportado e destinado a aterro, reaproveitamento ou mesmo sua
incineração.
Desta
forma,
tem-se
a
composição
do
cascalho
determinada,
fundametalmente, pela composição da rocha cortada, que deixa o poço
bombeado pelo fluido de perfuração, predominando, assim, a composição
mineral da formação perfurada.
O volume de cascalhos produzidos durante a perfuração teoricamente
corresponde ao volume do poço acrescido de 20% em decorrência de
eventuais desmoronamentos das formações para dentro do poço de forma que
para cada 100 metros perfurados, produz-se cerca de 13 metros cúbicos de
cascalho (FIALHO, 2012).
42
Assim, um poço com profundidade de 900 metros (Canto do Amaro) e
diâmetro médio de 8,75 polegadas geraria em média o volume de 41,9 metros
cúbicos de cascalhos. Considerando-se uma densidade média do cascalho de
2,6 kg/dm3 (FIALHO, 2012), este volume corresponderia a 108,9 toneladas.
Da mesma forma, considerando 600 metros como profundidade média
dos poços da Bacia Potiguar terrestre e diâmetro médio do poço de 8,75
polegadas, e ainda o número de poços perfurados de 7.703 desde o início de
sua exploração até o ano de 2012 (ANP, BDEP-Banco de Dados de
Exploração e Produção. POÇOS – DADOS ESTATÍSTICOS - 2012), obtém-se
o volume gerado de cascalhos da ordem de 215.170 m 3, que correspondem à
massa de 559.443,2 toneladas, sendo necessário para o seu transporte a
utilização de cerca de 25.429 carretas com capacidade de carga de 22
toneladas.
Os resultados acima são elucidados a partir dos cálculos seguintes.
43
A tabela 3 apresenta o volume de cascalhos gerado em algumas regiões
do mundo, para efeito de comparação.
Tabela 3 – Volumes de Cascalhos de Perfuração gerados em algumas regiões do Mundo
Região
EUA (mar)
Reino Unido (mar)
Bahia (terra)
Esp. Santo (terra)
Esp. Santo (terra)
Volume
(t/ano)
1.560.000
50.000 a
80.000
80.000
7.000
10.000
Referência
Ano
American Petroleum Institute (API)
Al-ansary e Al-Tabbaa
2000
2004
PETROBRAS
PETROBRAS
PETROBRAS
2009
2008
2010
Fonte: Fialho, 2012
A composição química dos cascalhos é muito variada e depende da
composição das formações rochosas perfuradas principalmente, e da
composição química do fluido de perfuração (FIALHO, 2012). A tabela 4 mostra
os principais componentes químicos dos cascalhos em percentagem.
Tabela 4 – Composição dos cascalhos de perfuração
Determinações
(%)
SiO2
Al2O3
Fe2O3
BaO
CaO
MnO
MgO
K2O
Na2O
TiO2
P2O5
ABBE et
al (2009)
PIRES
(2009)
MEDEIROS
(2010)
37,60
13,54
6,34
11,39
2,78
0,17
2,31
2,33
1,17
0,65
0,10
43,96
21,48
5,40
2,38
18,12
N.A.
N.A.
4,51
N.A.
N.A.
N.A.
36,5
11,5
4,5
N.A.
35,3
0,09
N.A.
2,7
N.A.
0,81
N.A.
LEONARD e
STEGEMAN
(2010)
60,4
10,4
4,9
N.A.
2,5
0,06
2,0
1,7
2,4
0,6
0,1
VALORES
MÉDIOS
44,61
14,23
5,29
3,44
14,68
0,08
1,08
2,81
0,89
0,52
0,05
Fonte: FIALHO, 2012 adaptada
Embora seja variável sua composição, depreende-se da tabela 4 a
predominância de SiO2, Al2O3, Fe2O3, BaO e CaO na composição dos
cascalhos de perfuração.
44
3 MATERIAIS E MÉTODOS
Visando obter dados inerentes à composição química dos cascalhos
oriundos de poços perfurados após o seu término, buscou-se junto ao IDEMA
informações a respeito existentes em processos de licenceamento ambiental
relativos à destinação final destes resíduos.
Os dados correspondem a análise de cascalhos provenientes de poços
perfurados no campo de Canto do Amaro, concluída em 04/12/2009 feita por
empresa inteessada com vistas à caracterização de resíduo segundo
parâmetros da NBR 10004:2004, constantes do processo de requerimento de
licença de operação nº 2008-021678/TEC/LO-0387, tendo como objetivo a
instalação para recebimento e disposição final de resíduos, situados no
Município de Mossoró/RN.
O referido requerimento teve como objetivo o recebimento e disposição
final de resíduos inertes (Classe II) em empreendimento situado no município
de Mossoró/RN (BR-304, Km 50,5, na localidade do Rancho Santo André, s/n;
zona rural), datado de 10/07/2008, como base na LCE nº 272/2004 e
alterações introduzidas pela LCE nº 336/2006.
3.1 ANÁLISE DOS DADOS DA COMPOSIÇÃO QUÍMICA DOS CASCALHOS
As metodologias utilizadas para a elaboração dos laudos foram
baseadas na “SW 846 (USEPA 1986, Test Method for Evaluating Solid Waste
Report Number 846, Washington DC” e as referências são:
 Norma NBR 10004:2004 da ABNT – Classificação de Resíduos
Sólidos;
 Norma NBR 10005:2004 da ABNT – Ensaio de Lixiviação;
 Norma NBR 10006:2004 da ABNT – Ensaio de Solubilização.
Foram analisadas pela empresa 12 amostras no processo nº 2008021678/TEC/LO-0387. Basicamente, as análises foram feitas em relação à
massa bruta, ao lixiviado e ao solubilizado encontrado nas amostras, que são
mostradas nos anexos 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,14 e 15.
O procedimento para o ensaio de massa bruta é feito a partir de
amostras coletaddas no resíduo total e com base na norma NBR 10004:2004
45
para os parâmetros Ponto de fulgor, pH (suspensão 1:1), sulfeto (como H 2S)
porcentagem de sólidos e cianeto (como HCN) (IDEMA, processo nº 2008021678/TEC/LO-0387).
O procedimento para o ensaio de lixiviado é descrito pela norma NBR
10005:2004 (Procedimento para a obtenção de extrato lixiviado de resíduos
sólidos), que define lixiviação como sendo o processo pelo qual se determina a
capacidade de transferências de substâncias orgânicas e inorgânicas
presentes no resíduo sólido por meio de dissolução no meio exerior. A
lixiviação da amostra é feita por meio de filtração através de filtro de fibra de
vidro isento de resinas com porosidade entre 0,6 µm a 0,8 µm, após agitação
(por aproximadamente 18 horas, a 25 °C e a 30 rpm). O extrato lixiviado obtido
será objeto da análise, cuja classificação é feita por comparação dos dados
obtidos com os constantes do anexo “F” da norma NBR 10004:2004.
O procedimento para o ensaio de solubilizado é descrito pela norma
NBR 10006:2004 (Procedimento para a obtenção de extrato solubilizado de
resíduos sólidos):
a) Adicionar água destilada, desionizada e isenta de orgânicos à
amostra do resíduo seco a 42 °C e agitar com baixa velocidade por 5
minutos;
b) cobrir o frasco com filmes de PVC e deixar em repouso por 7 dias à
temperatura de 25° C;
c) Filtrar a solução com aparelho de filtração guarnecido com
membrana filtrante com 0,45 µm de porosidade, obtendo-se o extrato
solubilizado a ser analisado, cujos dados serão comparados aos
constantes do anexo “G” da norma NBR 10004:2004.
3.2 ANÁLISE E SUGESTÃO DE ALTERNATIVAS PARA A DESTINAÇÃO E
RECICLAGEM DO CASCALHO DE PERFURAÇÃO
A partir de pesquisa bibliográfica, analisou-se diversas alternativas
ambientalmente adequadas para a reciclagem dos cascalhos gerados na
perfuração de poços na Bacia Potiguar, sugerindo-se, ao final, a mais
adequada a ser empregada no âmbito local.
46
4 RESULTADOS
4.1 ANÁLISE DOS DADOS QUE APRESENTAM NÃO CONFORMIDADES
COM A NORMA NBR 1004:2004
Com relação aos parâmetros relativos à massa bruta e ao lixiviado,
conforme se vê nos anexos 1 e 2 respectivamente, não foi encontrada qualquer
não conformidade em relação aos limites impostos pela norma NBR
10004:2004. Porém, os parâmetros analisados referentes ao solubilizado
apresentaram não conformidades com os valores limtes desta norma.
A partir da análise dos dados condensados nos anexos 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14 e 15, foi possível a identificação de parâmetros que
apresentam não conformidades com a norma NBR 10004:2004, com relação
aos parâmetros inorgânicos e orgânicos dos ensaios de solubilizado, que são
apresentados nas tabelas 5 e 6.
Tabela 5 – Parâmetros inorgânicos (mg/l) que ultrapassaram os limites da NBR 10004:2004
MÉDIA
Valor
NBR
10004
0,738
0,2
2087
1602
250
0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,678 0,687 0,000 0,463 0,000
0,152
0,3
Número da amostra
1
Al
Cl
2
3
0,204 0,589 0,594
-
Fe
1985
1728
1890
4
5
6
7
8
9
10
11
12
0,2 0,704 0,488 1,400 1,100 0,980 0,383 0,762 1,451
1737
1686
1434
1640
1272
975
1410
1377
Na
914
971
875
1000
788
717
936
716
574
736
720
777
810
200
SO4
429
315
467
442
325
437
351
345
211
473
445
316
380
250
Fonte: IDEMA, processo nº 2008-021678/TEC/LO-0387
Tabela 6 – Parâmetros orgânicos (mg/l) que ultrapassaram os limites da NBR 10004:2004
MÉDIA
Valor
NBR
10004
0,282 0,604 0,606 0,000 0,704 0,488 1,600 0,660 1,400 0,538 0,700 0,457
0,647
0,2
2087
1614
1561
250
0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,712 0,603 0,000 0,535 0,000
Número da amostra
1
Al
Cl
-
Fe
2
1791
Na
926
879
SO4
395
357
3
1638
4
1720
5
1686
6
1434
7
1485
8
1578
9
1578
10
1481
11
1324
12
0,153
0,3
871
1040
830
788
869
902
555
781
706
921
819
200
426
424
322
325
320
451
220
483
418
339
376
250
Fonte: IDEMA, processo nº 2008-021678/TEC/LO-0387
Com base nos valores constantes das tabelas 5 e 6, elaborou-se a
tebela 7 contendo a média aritimética do correspondentes parâmetros
inorgânicos e orgânicos.
47
Tabela 7 – Valores médios obtidos pela média aritmética dos parâmetros inorgânicos (tabela 5)
e orgânicos (tabela 6) em desconformidade com a NBR 10004:2004
MÉDIA
Valor
NBR
10004
0,282 0,596 0,600 0,100 0,704 0,488 1,500 0,880 1,190 0,461 0,731 0,955
0,692
0,2
2036
1851
1581
250
0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,695 0,645 0,000 0,499 0,000
0,153
0,3
Número da amostra
1
Al
Cl
-
Fe
2
1760
3
1764
4
1728
5
1686
6
1434
7
1563
8
1425
9
1277
10
1446
11
1351
12
Na
920
925
873
1020
809
752
903
809
565
759
713
849
815
200
SO4
336
336
446
433
323
381
336
398
216
478
432
328
378
250
Fonte: IDEMA, processo nº 2008-021678/TEC/LO-0387
Plotando-se os valores da tabela 7 em função de cada substância com
não conformidades em relação à norma NBR 10004:2004 (alumínio, cloreto,
ferro, sódio e sulfato), são gerados os gráficos 1, 2, 3, 4 e 5.
Gráfico 1 – resultados obtidos na análise de solubilizados em relação ao Alumínio
Fonte: IDEMA, processo nº 2008-021678/TEC/LO-0387
Com relação ao alumínio, verificou-se a presença de não conformidades
em todas as amostras analisadas exceto na amostra nº 4, cujos valores médios
de solubilizados ultrapassaram o limite da norma,. O valor médio do desvio é
0,692 mg/l, quando o limite máximo permitido pela norma é 0,2 mg/l,
correspondentes a 3,46 vezes o valor permitido, conforme se vê no Gráfico 1.
Com relação ao cloreto, verificaram-se não conformidades em todas as
amostras analisadas. O valor médio do desvio é 1.561 mg/l, quando o limite
48
máximo permitido pela norma é 250 mg/l – o desvio médio coresponde a 6,244
vezes o limite da norma, de acordo com o gráfico 2.
Gráfico 2 – resultados obtidos na análise de solubilizados em relação ao Cloreto
Fonte: IDEMA, processo nº nº 2008-021678/TEC/LO-0387
Gráfico 3 – resultados obtidos na análise de solubilizados em relação ao Ferro
Fonte: IDEMA, processo nº nº 2008-021678/TEC/LO-0387
49
Detectou-se a presença de ferro apenas nas amostras nºs. 8, 9 e 11,
que apresentaram não conformidades (gráfico 3). Considerando-se todas as
amostras, o valor médio do desvio é 0,153 mg/l, abaixo do limite máximo
permitido pela norma que é 0,3 mg/l. Porém, se considerarmos a média apenas
dos valores obtidos com as três amostras desconformes (amostra 8 = 0,695
mg/l; amostra 9 = 0,645 mg/l; amostra 11 = 0,499 mg/l), o valor médio passa a
ser 0,613 mg/l, que ultrapassa o valor 0,3 mg/l permitido pela Norma NBR
10004:2004 em 104,3%.
Gráfico 4 – resultados obtidos na análise de solubilizados em relação ao Sódio
Fonte: IDEMA, processo nº nº 2008-021678/TEC/LO-0387
Com relação ao sódio, houve não conformidades em todas as amostras
analisadas. A média do desvio é 815 mg/l, quando o limite máximo permitido
pela norma é 200 mg/l, portanto, equivalente a mais de quatro vezes o limite
permitido pela Norma NBR-10004:2004, conforme demonstrado no gráfico 4.
Também, com relação ao sulfato (gráfico 5), houve não conformidades
em todas as amostras analisadas, cujo valor médio do desvio é de 378 mg/l,
enquanto que o valor máximo permitido pela norma NBR 10004:2004 é de 250
mg/l, estando o valor médio acima do permitido em mais de 50%.
50
Gráfico 5 – resultados obtidos na análise de solubilizados em relação ao Sulfato
Fonte: IDEMA, processo nº nº 2008-021678/TEC/LO-0387
Desta forma, com base na análise dos dados avaliados, constata-se
que os cascalhos de perfuração analisados se classificam como resídos sólidos
classe II-A – não inertes.
4.2 A DESTINAÇÃO FINAL DO CASCALHO DE PERFURAÇÃO
Tendo em vista a preocupação dos órgãos governamentais e da
sociedade com o risco de poluição ambiental causado pelos resíduos da
atividade de perfuração de poços, passou-se a se pesquisar alterantivas
ambientalmente adequadas para a solução do problema.
Assim, os cascalhos gerados na perfuração de poços de petróleo vem
sendo dispostos em aterros sanitários ou reciclados como matéria prima na
confecção de artefatos diversos da construição civil, em que pese serem
recentes os estudos realizados a respeito da matéria (FIALHO, 2012).
Atualmente, encontra-se em prática na Bacia Potiguar a deposição dos
cascalhos provenentes da perfuração em aterros sanitários situados no campo
de Canto do Amaro, conforme demonstram os processos de licença ambiental
nºs.
2006-005332/TEC/LP-0153,
021678/TEC/LO-0387.
2008-021312/TEC/RLO-0850
e
2008-
51
O reaproveitamento do cascalho mediante sua reciclagem como material
de construção vem trazendo benefícios econômicos para a indústria civil, além
de atenuar o volume depositado em aterros, contribuindo para atenuar a
poluição ambiental, uma vez que faz desaparecer o resíduo indesejado, ao
contrário do que ocorre com a sua deposição em aterro sanitário.
4.2.1 O processamento de incineração dos cascalhos
A incineração dos cascalhos constitui etapa que antecede a destinação
final a ser dada aos cascalhos, podendo servir de fase de preparação tanto
para a sua deposição em aterros como para a sua reciclagem.
Conforme consta no processo nº 2008-021312/TEC/RLO-0850 do
IDEMA (Renovação de Licença de Operação de 02/07/2009), a operação da
Unidade de Blendagem de Resíduos, situada no Canto do Amaro, no Município
de Areia Branca/RN consiste no manuseio, movimentação, segregação, préacondicionamento e blendagem de resíduos industriais oriundos do dique mãe
e Central de Resíduos, ambos do campo de petróleo do Canto do Amaro,
situado em Areia Branca/RN.
A Unidade de Incineração para o tratamento térmico dos resíduos
blendados do Canto do Amaro se encontra instalada na Unidade de
Blendagem de Resíduos.
De acordo com a Instrução de Trabalho nº 3 – IT – RN – 003, que define
práticas para a produção de blends para co-processamento e incineração, os
primeiros blends enviados para os fornos serão utilizados como substitutos
energéticos e/ou matéria prima de forma segura e em conformidade com os
requisitos internos e os requisitos legais. Já os blends preparados para
incineração in sito, sofrerão descontaminação através de destruição térmica da
sua carga orgânica.
Foram referenciadas as resoluções CONAMA 264 (procedimentos,
critérios e aspectos técnicos específicosde licenciamento ambiental para o coprocessamento de resíduos em fornos rotativos de clinquer, para a fabricação
de cimento) e CONAMA 316 (procedimentos e critérios para o funcionamento
de sistemas de tratamentos térmicos e resíduos).
52
O item 3 da instrução acima mencionada traz algumas definições
importantes para a compreensão da rotina dos serviços listadas no quadro 3:
Quadro 3 – definições da Instrução de Trabalho nº 3 – IT – RN – 003, item 3
Blend
Mistura de resíduos
Planta de Blend
Área disponibilizada para recebimento de resíduos a granel ou em
qualquer recipiente aprovado. Nessa área, são realizadas as atividades
de blendagem, segregação, manipulação e expedição de resíduos
Resíduos
Resíduos que após a análise técnica de suas características pelo centro
coprocessáveis
técnico, gestores de contratos e operação, são aprovados o aceite para
co-processamento
CoprocesTécnica de destruição para resíduos por via térmica em fornos de alta
samento
temperatura durante o processo de fabricação de cimento em unidades
devidamente licenciadas para este fim, com aproveitamento energético
e/ou de matéria prima sem geração de novos resíduos, contribuindo para
a redução de combustíveis e matéria prima sem alterar a qualidade
Manuseio
Qualquer atividade onde o resíduo ou seus continentes possam entrar
emcontato com os operadores e/ou meio ambiente
Armazenamento
Ato ou efeito de guardar provisoriamente o resíduo até uma posterior
destinação
Transporte
Ato ou efeito de traportar um resíduo, por via rodoviária, ferroviária,
marítima ou aérea
Misturar com o auxílio de pá mecânica os resíduos a fim de homogeneizar
o material para preparação do blend; o blend deve ser
Mistura/
estocado/empilhado e posteriormente ser amostrado de forma
blendagem
representativa e enviado para o laboratório para avaliação e garantia da
qualidade.
Iniciar a segregação de material impróprio para o peneiramento ainda nos
diques e no piso do galpão (material de grandes dimensões, material
metálico como tambores, tampas, etc.); verificar se o sistema de
peneiramento (alimentador vibratório, correia transportadora e peneira
vibratória) encontra-se em condição de operação, observando todas as
Peneiramento de
partes moveis – polias, correias, rolamentos, corpo da peneira, etc.); com
resíduos
a unidade de classificação granulomética (alimentador vibratório, correia
transportadora e peneira vibratória) em funcionamento; utilizar a pá
carregadeira para alimentar o material a ser peneirado; limpar a grelha do
alimentador vibratório e a tela da peneira vibratória sempre que houver
acúmulo de material que impeça a operação normal.
A análise química deve atender aos parâmetros definidos para
coprocessamento e incineração conforme especificação técnica em anexo
Análise química
para lotes 1.000 ton (+/- 200 ton). Ressalte-se que os resíduos nao tendo
grande variabilidade em função da sua origem conhecida e única,
poderemos autmentar a quantidade de resíduos por lote.
Fonte: IDEMA, processo nº 2008-021312/TEC/RLO-0850
O fluxograma 1 mostra a rotina da blendagem de resíduos (IDEMA,
processo nº 2008-021312/TEC/RLO-0850):
53
Fluxograma 1 – Blendagem de resíduos
início
Estocar resíduos
Segregar resíduos
Misturar previamente
Adicionar resíduos
peneirar
Analisar quimicamente
não
Blend atende
especificação?
sim
fim
Liberar Blend
para envio
Fonte: IDEMA, processo nº 2008-021312/TEC/RLO-0850
O fluxograma 2 mostra as etapas do coprocessamento de resíduos:
54
Fluxograma 2 – coprocessamento de resíduos
Licenças Ambientais
Segregar pré- condicionar
e/ou blendar os resíduos
Controle de qualidade dos
lotes para expedição
Carregamento de caminhões
Transporte de resíduos
Co-processamento dos resíduos
nas cimenteiras
Controle de qualidade do
processo produtivo e
ambiental
Entrega de certificado de
Tratamento Térmico
Fonte: IDEMA, processo nº 2008-021312/TEC/RLO-0850
4.2.2 A deposição do cascalho em aterros sanitários
Sendo o cascalho classificado como resíduo sólido não inerte (classe IIA), portanto não perigoso, a sua deposição em aterros sanitários deve seguir a
NBR-13.896/1997, que dispõe sobre “aterros de residuos não perigosos –
critérios para projeto, implantação e operação”.
Conforme a Norma NBR-13.896/1997, deve-se atentar para os seguintes
critérios:
 Impermeabilização: propiciada a partir de deposição de camadas de
materiais
artificiais
ou
naturais,
que
impeça
ou
reduza
substancialmente a infiltração no solo dos líquidos percolados,
através da massa de resíduos.
 Localização: deve ser tal que:
a) o impacto ambiental a ser causado seja minimizado;
b) a aceitação da instalação pela população seja maximizada;
c) esteja de acordo com o zoneamento da região;
d) possa ser utilizado por um longo espaço de tempo, necessitando
de um mínimo de obras para o início da operação;
55
e) recomenda-se locais com declividade superior a 1% e inferior a
30%;
f)
não deve o aterro ser executado em áreas sujeitas a inundações,
em períodos de recorrência de 100 anos.
Inicialmente, é feita uma separação do material coletado visando a sua
destinação para aterro ou a sua incineração, conforme sua classificação: a
parte do cascalho considerada não perigosa, será diretamente depositada em
aterros sanitários e a perigosa, destinada à incineração (IDEMA, processo nº
2006-005332/TEC/LP-0153).
A deposição de cascalhos de perfuração em aterrros sanitários demanda
a disponibilidade de grandes áreas destinadas ao seu armazenamento além do
monitoramento dos gases gerados no aterro, das águas subterrâneas e de
detecção de vazamentos, o que se perpetua ao longo do tempo.
4.2.3 A alternativa de destinação de resíduos de cascalhos de perfuração
em mina de salgema
Outra alternativa estudada para a destinação dos resíduos de cascalhos
de perfuração é a sua deposição em cavidades subterrâneas de minas de
salgema abandonadas. O estudo foi feito numa mina de salgema já desativada
e localizada em Maceió no Estado de Alagoas.
Embora se reconheça a eficiência e importância dos modelos industriais
de transformação do resíduo em insumos da construção civil, esta alternativa
se embasa no fato de que as alternativas industriais nãoconseguem processar
os grandes volumes de cascalho produzidos pela indústria petrolífera
(GANGHIS et al, 2009).
Ressaltam Ganghis et al (2009), que a utilização de cavidades
subterrâneas
aberta
por
dissolução
em
maciços
evaporíticos
para
armazenamento seguro de produtos e rejeitos industriais tem sido largmente
praticada em países como Canadá e Estados Unidos.
O processo consiste na injeção do cascalho bombeado através de
tubulação instalada em poços de injeção perfurados e instalados para este fim,
56
em solução de salmoura saturada, que retornará à superfície através do
espaço anular existente entre a tubulação e as paredes do poço. Destarte, a
fase sólida será depositada na base da cavidade subterrânea de configuração
cilíndrica com seção transversal de cerca de cinquenta metros de diâmetro
ecento e vinte metros de altura, situada entre 850 m e 1.000 m de
profundidade, abaixo de um espesso pacote de rochas sedimentares formadas
por camadas de folhelho (GANGHIS et al, 2009).
O processo de injeção está representado na figura 5 e apresenta as
seguintes etapas (GANGHIS et al, 2009):



Transporte e descarregamento dos resíduos de cascalho de
perfuração em uma unidade adequada ao seu recebimento;
Bombeamento de salmoura da cavidade, misturando-a aos
resíduos em um tanque adequado a este fim, tendo por finalidade
transformar o cascalho em uma polpa uniforme, com uma
proporção estimada de 20% de sólidos e concentração muito
próxima a existente no interior da cavidade;
Injeção dessa polpa para o interior da mina através de
bombeamento,
utilizando-se
de
tubulação
instalada
exclusivamente para este fim. Ao atingir o final do poço ao redor
de 980 m de profundidade, a polpa é lançada no interior da
caverna e a parte sólida desta suspensão deposita-se
rapidamente na base da cavidade. A fase líquida da suspensão
que é injetada, constituída de salmoura saturada, desloca um
volume equivalente da solução existente na caverna, que fluirá
para a superfície através do espaço anular de um poço existente
na porção superior da cavidade, chegando ao tanque de
salmoura na superfície do terreno (completando assim o circuito
fechado), onde a salmoura utilizada para produção da polpa do
resíduo acaba voltando integralmente para dentro da caverna.
Entre os aspectos que viabilizam o processo segundo os autores estão
(GANGHIS et al, 2009):



Não há qualquer impacto na superfície visto que o líquido
utilizado para diluir e manter osresíduos em suspensão é a
própria salmoura saturada, retirada e, a seguir, retornada para o
interior da mina em circuito fechado (Figura 1.);
A rocha salina possui propriedades físicas extremamente
favoráveis à sua utilização para a finalidade proposta, como baixa
permeabilidade, da ordem de 10-7 cm/s, baixíssima porosidade e
elevada plasticidade do corpo salino a essa profundidade,
minimizando a possibilidade de ocorrência de fraturas no maciço;
Não há possibilidade de comprometimento da estabilidade
geomecânica da caverna pelo fato da diluição dos resíduos ser
feita com a salmoura já saturada pré-existente no interior da
mina. Como a salmoura encontra-se saturada, não haverá a
57
dissolução adicional da salgema das paredes e progressão do
volume da caverna.
A princípio, os três argumentados técnicos levantados pelos autores
acima são bastante importantes no tocante à viabilização do processo de
armazenamento do cascalho produzido, no entanto resolve o problema apenas
de forma localizada, vez que não só o volume gerado em todo o país
ultrapassa o volume disponível no subsolo, como se encontra espalhado no
vasto território brasileiro, inviabilizado o seu transporte ao seu destino final,
ainda que houvesse espaço disponível.
Figura 5 - Diagrama esquemático da injeção do cascalhos em cavidades subterrâneas de mina
de salgema
fonte: GANGHIS et al, 2009
Ou seja, esta alternativa somente é viável para campos de petróleo
situados nas proximidades de minas de sal gema abandonadas, como é o caso
do Estado de Alagoas.
58
4.3 TÉCNICAS DE RECICLAGEM DO CASCALHO DE PERFURAÇÃO
4.3.1
O emprego do cascalho de perfuração na confecção de tijolos
solo-cimento
O solo cimento consiste em material resultante da mistura homogênea
compactada e curada de solo, cimento e água em proporções adequadas, que
proporciona ao material boa resistência à compressão, bom índice de
permeabilidade, baixo índice de retração volumétrica e boa durabilidade
(MARQUES, 2010).
Conhecidos como tijolos ecológicos, apresentam a vantagem de serem
fabricados rapidamente no próprio canteiro de obras por mão-de-obra não
especializada, tendo como maior quantidade de matéria prima o solo,
possibilitando menor consumo de argamassa de assentamento e de
revestimento dada a boa qualidade e regularidade no aspecto final das peças,
reduzindo a duração da obra e promovendo uma relação custo-benefício mais
satisfatória (MARQUES, 2010).
Com a incorporação do resíduo do cascalho, igualmente são verificadas
as vantagens acima citadas, uma vez que sua utilização alcança proporção de
90% em quantidade da mistura (MARQUES, 2010).
Assim, esse modelo de destinação do cascalho apresenta a um só
tempo dupla vantagem: a reciclagem do próprio cascalho com a eliminação de
seu potencial de poluição e a fabricação de material de construção a baixo
custo.
Outro aspecto relevante a ser considerado é que esta técnica pode ser
implementada em qualquer atividade de construção civil que envolva a
utilização de tijolos assentados com argamassa de cimento independe de sua
localização geográfica.
59
4.3.2
O coprocessamento do resíduo de cascalho de perfuração em
fornos de clínquer para fabricação de cimento
Outra importante forma de reaproveitamento do cascalho de perfuração
é a sua utilização na fabricação de cimento Portland por meio do seu
coprocessamento, que consiste numa atividade que visa à reutilização de
materiais resultantes de processos produtivos e, no entanto, indesejáveis por
sua fonte geradora, como alternativa para substituição de matéria-prima para a
produção de cimento (MENDES & SOUSA, 2013).
Para isto, foram coletadas amostradas do cascalho em base seca, em
fase de teste em cimenteira de Mossoró/RN, de acordo com a recomendação
da NBR 10.007/2004 com vistas a compor o clínquer que serve de base para a
fabricação do cimento (MENDES & SOUSA, 2013).
Em seguida, determinou-se a taxa de alimentação do cascalho e do
calcário para a composição da matéria-prima conhecida como farinha
finamente moída para a produção do clínquer e obtida a partir de minerais e
outros materiais ricos em CaCO3, SiO2, Al2O3 e FeSO4 (MENDES & SOUSA,
2013).
Os resíduos de cascalho e calcário são homogeneizados juntos, por
terem características em comum quanto à sua composição química potencial,
como a cal (CaO), a sílica (SiO2), a alumina (Al2O3), o óxido de ferro (Fe2O3),
certa proporção de magnésia (MgO) e uma percentagem de anidrido sulfúrico
(SO3). Têm ainda, como constituintes menores, óxido de sódio (Na2O) e óxido
de potássio (K2O) que constituem os denominados álcalis do cimento (BAUER,
1994, apud MELLO, 2004, apud MENDES & SOUSA, 2013).
Isto porque, na realidade, o resíduo de cascalho é usado em substituição
ao calcário e de outros materiais na composição do clínquer, que é levado ao
forno com atingimento de temperaturas da ordem de 1.450 °C.
O
processo
de
fabricação
do
cimento
Portland
consiste
na
transformação de matérias-primas por meio do rearranjo de seus elementos
químicos em novos compostos, a partir da preparação destas matérias-primas,
que são moídas, transformando as rochas, fontes de cálcio, silício, ferro e
alumínio na farinha ou cru de clínquer (Mendes et De Sousa:2013).
60
Adquire-se, assim, o cimento Portland através da pulverização do
clínquer constituído essencialmente de silicatos hidráulicos de cálcio, sulfato
natural de cálcio natural e adições de substâncias que modificam suas
propriedades ou facilitam o seu emprego, ocorrendo a destruição total do
resíduo empregado (MENDES & SOUSA, 2013).
Para Mendes & Sousa (2013), o coprocessamento do cascalho de
perfuração além de viável, é vantajoso em comparação com sua deposição em
aterro sanitário:
A aplicação da técnica de coprocessamento com o resíduo cascalho
de perfuração, dentro dos padrões legais, é considerada adequada às
necessidades operacionais do forno de clínquer, contribuindo para o
objetivo dos aspectos legais sobre o tratamento de resíduos gerados
nos poços de perfuração onde, através desta técnica, se constata que
outra disposição deste resíduo em aterro controlado, somente adiaria
o tratamento do passivo, não sendo considerado eficaz.
O emprego desta técnica é viável para aproveitamento de cascalhos
gerados em campo de petróleo situados nas proximidades de fábricas de
cimento protland, a menos que haja viabiliade do seu transporte a locais onde
estão instaladas as fábricas de cimento, considerando a grande demanda.
4.3.2.1
O coprocessamento de cascalho realizado pela CINPOR –
cimentos de Portugal, SGPS, S.A.
Instalada na cidade de João Pessoa/PB, a empresa CINPOR –
Cimentos de Portugal, SGPS, S.A., mediante contrato assinado com a
PETROBRAS e em convêncio com empresa do grupo ODEBRECHT, já
economizou mais de 150 mil toneladas de recursos naturais ao implantar um
projeto de coprocessamento, através do qual substitui parte da matéria-prima
natural usada na fabricação de cimento por cascalho de perfuração que
aguardam há vários anos uma solução técnica e economicamente viável e
ambientalmente adequada. Só em 2011, cerca de 57% da argila necessária ao
processo de fabricação de cimento foi substituído por cascalho de perfuração
(CINPOR, 2013).
61
4.3.3
O estudo do potencial de aplicação do cascalho de perfuração em
concreto
A utilização do cascalho de perfuração no concreto produzido pode se
dar tanto pela substituição parcial da areia por cascalhos de perfuração,como
pela adição dos cascalhos em relação à massa do cimento.
Segundo Fialho (2012), para um melhor aproveitamento do resíduo, é
necessário um estudo particular do cascalho a ser utilizado, partindo-se de sua
caracterização exaustiva. O estudo foi feito com base no cascalho gerado na
atividade de perfuração de poços de petróleo realizada no norte do Estado do
Espírito Santo, que engloba os Municípios de Linhares, São Mateus, Jaguaré e
Conceição da Barra.
A pesquisa foi desenvolvida no trabalho de autoria de Poline Fernandes
Fialho denominado “Cascalho de Perfuração de Poços de petróleo e Gás.
Estudo do Potencial de Aplicação em concreto” de 2012, que foi dividido em
duas etapas: a primeira consistiu na substituição da areia fina por cascalho de
perfuração da primera fase de perfuração (denominado CAP I); a segunda, na
adição do cascalho de perfuração gerado na terceira fase de perfuração
(denominado CAP III) em diferentes percentuais em relação à massa de
cimento de concreto de referência.
Antes de serem utilizados, os cascalhos foram secos em estufa a 100ºC
por 24 horas, destorroados manualmente e quarteados e devidamente
preparados. Escolheu-se para os experimentos os concretos S100 e A15 por
conterem maior teor de substituição ou adiçao de cascalhos.
Para o preparo de 252 copros de prova, utilizou-se o cimento CP V ARI,
como agregado miúdo a areia de rio e a areia de jazida, como agregado graúdo
uma brita de origem granítica, aditivo superplastificante de 3ª geração e os dois
tipos de cascalhos de perfuração.
Para a mistura dos concretos foi utilizada uma betoneira de eixo
inclinado e os materiais foram vertidos na seguinte sequência: metade da água,
toda a brita, todo o cimento, toda a areia e todo o resíduo. Após a mistura, foi
adicionada o restante da água e o aditivo. As amostras continham substituição
da areia por cascalho nas proporções de 20%, 50% e 100%.
62
Os resultados obtidos com os concretos com substituição do cascalho
de perfuração da primeira fase - CAP I indicaram que todos os parâmetros
estabelecidos no programa experimental tais como resistência à compressão
axial, resistência à tração por compressão diametral, durabilidade, módulo de
elsaticidade e detecçao de cloretos livres foram devidamente atendidos.
Com relação aos concretos com adição do cascalho de perfuração da
terceira fase - CAP III, também os resultados apontam no sentido de que todos
os parâmetros estabelecidos no programa experimental acima elencados foram
devidamente atendidos.
Em resumo, os resultados apontaram no sentido de que existe o
potencial de substituição de cascalhos de perfuração em concretos nos teores
indicados nos experimentos acima quando comparados ao concreto de
referência.
4.3.4
O emprego do cascalho de perfuração na fabricação de material
cerâmico
Visando o emprego de tecnologias limpas para a destinação e
reaproveitamento do cascalho de perfuração na indústria, destaca-se o seu
emprego associado a argilas, exercendo estas o suporte para o resíduo, tendo
em vista suas características e natureza homogêneas, com vasto espectro de
composições de materiais plásticos e não plásticos, que permite a presença de
materiais residuais de vários tipos, mesmo em percentagens significantes
(MEDEIROS, 2010).
Medeiros (2010) estudou o processo industrial de aproveitamento dos
cascalhos
na
fabricação
de
material
cerâmico,
cujas
etapas
de
desenvolvimento são as seguintes:
a) Inicialmente, foram selecionados os materiais para composição dos
corpos
de
prova:
argila
comum
oriunda
do
Município
de
Goianinha/RN e cascalhos de perfuração de poços onshore situados
no Município de Serra do Mel/RN e devidamente caracterizadas,
conforme análise química (percentuais de óxidos mais estáveis dos
63
elementos químicos presentes), análise mineralógica (os materiais
foram moídos em almofariz, moinhos de bola e classificados por
peneiramento
na
granulometria
inferior
a
0,074mm),
análise
granulométrica (com o auxílio de granulômetro a laser com faixa de
0,04 a 2500 µm) e análise térmica (com variações de 25ºC a 1000
ºC);
b) Formulações de massas cerâmicas de acordo com a tebela 8, que
foram misturadas e homogeneizadas com 10% em peso de água,
pesadas com 13 g de massa e armazenadas evitando variações de
umidade:
Tabela 8 – formulações de misturas argila e cascalhos (% em peso)
Formulações (g)
Argila (% em peso)
Argila
Argila + Cascalhos
Argila + Cascalhos
Argila + Cascalhos
Argila + Cascalhos
Argila + Cascalhos
Argila + Cascalhos
Cascalhos
100
95
90
85
75
50
25
0
Cascalhos (% em
peso)
0
5
10
15
25
50
75
100
Fonte: MEDEIROS, 2010
c) Os corpos de prova foram formados mediante compactação de 25
MPa e, em seguida, devidamente secados à temperatura de 110 º C
por 24 horas;
d) Realizadas queimas nas temperaturas de 850, 950 e 1050 ºC à taxa
de aquecimento de 10 ºC/min, com patamar de 30 ºC, sendo
resfriados até a temperatura ambiente.
Ao final, foram obtidos tijolos maciços para alvenaria, conforme a norma
ABNT NBR 07170/1983, e blocos cerâmicos para alvenaria de vedação, de
acordo com a norma ABNT NBR 15270-1/2005 (MEDEIROS, 2010).
Constatou-se com o trabalho referido acima que, a utilização dos
cascalhos na fabricação de material cerâmico tanto contribui para a atenuação
do problema ambiental, como para a redução dos custos de materiais na
64
indústria da construção civil, agregando, ainda, valor a um material que não
estava sendo utilizado nos processos industriais (MEDEIROS, 2010).
Em que pese a viabilidade técnica do aproveitamento dos cascalhos
como matéria-prima na fabricação de tijolos cerâmicos, há que se verificar o
custo de seu transporte do campo de petróleo até o local onde é realizada a
fabricação cerâmica, buscando-se a sua viabilidade econômica, ambiental e
social em escala industrial, em comparação com a redução de custos de
materiais na indústria construção civil e a demanda disponível deste resíduo, o
que pode ser otimizado por meio de novos estudos a serem realizados a
respeito.
65
5 CONCLUSÃO
A destinação final dos cascalhos de perfuração tem sido motivo de
preocupação e, ao mesmo tempo, um verdadeiro desafio para os órgãos
gevernamentais e para as empresas petrolíferas não só no Brasil, mas em todo
o mundo, não existindo ainda uma padronização adequada para o caso, em
que pese os estudos até então realizados.
Esta preocupação decorre principalmente dos grandes volumes de
cascalhos gerados na perfuração de poços de petróleo, tendo em vista a
quantidade proveniente dos poços atuais que acrescem ao grande estoque
existente há várias décadas.
Convém deduzir-se que a geração de cascalhos é inerente à própria
atividade de perfuração, uma vez que, para que se perfure, há que ser retirado
do interior do poço e ser conduzido até à sua superfície, quando será coletada
ínfima porção para análise geológica, e a partir de então não terá mais utilidade
para a atividade.
Isto significa que, enquanto se realizar a pefuração de poços de
petróleo, ocorrerá sua geração, o que afasta a possibilidade de sua não
existência ou mesmo da redução do volume produzido.
Há que se ressaltar o importante papel que vem desempenhando o
IDEMA no tocante à viablização das alternativas viáveis, enquanto órgão
fiscalizador e regulamentador de riscos ao meio ambiente.
Através de informações colhidas da análise dos laudos obtidos junto ao
IDEMA, constatou-se que os cascalhos de perfuração são classificados
segundo a Norma NBR 10004:2004 como sendo de classe II-A, portanto, não
inertes e não perigosos, uma vez que se verificou não conformidades entre os
parâmetros analisados e os valores limites da norma técnica acima apenas nos
ensaios de solubilidade.
Esta classificação possibilita que sejam os cascalhos não só destinados
a deposição em aterros sanitários ou em outros locais ambientalmente viáveis,
mas também reaproveitados por meio de reciclagem em processos industriais,
em particular da construção civil.
66
A deposição do cascalho em aterros sanitários requer a observâncias de
regras previstas em normas técnicas, mas tem suas viabilidades técnica e
econômica calcadas na disponibilidade de áreas existentes nas proximidades
dos poços geradores, no entanto a sua viabilidade ambiental torna-se
ameaçada pelo fato de que não faz desaparecer o resíduo em estudo, que se
perpetuará no local destinado indefinidamente além de monitoramento
contínuo, o que não afasta a possibilidade da poluição de suas proximidades.
Entre as alternativas viáveis de reciclagem do cascalho de perfuração,
foram analisados a reciclagem de cascalho na confecção de solo-cimento, o
coprocessamento do resíduo de cascalho para a fabricação de cimento, o
estudo do potencial de aplicação do cascalho em concreto e, o emprego do
cascalho na fabricação de material cerâmico.
Estas alternativas apresentam grande viabilidade do ponto de vista
ambiental, tendo em vista que com a recicalgem dos cascalhos, faz
desaparacer
o
indesejável
resíduo,
embora
dependam
para
a
sua
implementação de outros fatores tais como a existência do processo industrial
pertinente em locais próximos da fonte geradora do cascalho, além de
parcerias com empresas industriais, considerando as viabilidades técnicas e
econômicas.
Por último, analisou-se a alternativa de destinação do cascalho em mina
de salgema abandonada (subsuperfície), verificando-se a sua inaplicabilidade
na Bacia Potiguar, ante a inexistência do espaço de subsuperfície essencial à
sua deposição.
Assim sendo, sugere-se como melhor alternativa o reaproveitamento do
cascalho no coprocessamento do resíduo em forno de clínquer para fabricação
de cimento, tendo em vista que existe em atividade uma fábrica de cimento na
cidade de Mossoró, o que viabiliza economicamente o empreendimento.
Verifica-se que, não obstante haver viabilidades técnica, econômica e
ambiental do emprego das tecnologias analisadas, há necessidade de
aprofundamento de pesquisas enfocando a reciclagem do cascalho de
perfuração na confecção de materiais de construção civil, bem como em outros
processos industriais a serem identificados, bem como que não está
descartada a sua deposição em em aterros sanitários.
67
6 SUGESTÕES PARA TRABALHOS FUTUROS
Os cascalhos produzidos no poços perfurados na Bacia Potiguar
carecem ainda de uma melhor caracterização com vistas à identificação de
eventuais elementos perigosos, tendo em vista sua disposição geográfica em
vasta área do território potiguar, o que se traduz em grande quantidade de
campos de petróleo existentes.
Da mesma forma, faz necessária a realização de pesquisas voltadas
para novas alternativas de destinação final e reaproveitamento destes
cascalhos, bem como para sua implementação.
Desta forma, sugere-se para trabalhos futuros:
1) Realização de análise em laboratório da composição química dos
cascalhos gerados na perfuração de poços nos diversos campos de
petróleo da Bacia Potiguar e sua respectiva classificação com base
na Norma NBR 10004:2004;
2) Estudos
de
viabilidade
técnica,
econômica
e
ambiental
de
alternativas de destinação final e reaproveitamento do cascalho
enfocando a realidade da Bacia Potiguar.
68
7 REFERÊNCIAS BIBLIOGRÁFICAS
ARAÚJO, Vagner. A história do petróleo no Rio Grande do Norte. Disponível
em
http://www.vagneraraujo.com/2010/08/historia-do-petroleo-no-rio-grandedo.html. Acesso em 15 set 2013.
ANP, BDEP-Banco de Dados de Exploração e Produção. POÇOS – DADOS
ESTATÍSTICOS
2012.
Disponível
em
www.bdep.gov.br/SITE/acao/download/?id=6236. Acesso em 02 jun 2014.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 10004: Resíduos
sólidos
Classificação.
Disponível
em
http://www.aslaa.com.br/legislacoes/NBR%20n%2010004-2004.pdf. Acesso em
7 jun 2014.
______. NBR 10005: Procedimento para obtenção de extrato lixiviado de
resíduos
sólidos.
Disponível
em
http://wp.ufpel.edu.br/residuos/files/2014/04/ABNT-NBR-10005-Lixiviacao-deResiduos.pdf. Acesso em 7 jun 2014.
______. NBR 10006: Procedimento para obtenção de extrato solubilizado de
resíduos
sólidos.
Disponível
em
http://patriciamirotti.files.wordpress.com/2012/04/nbr-10006-procedimento-paraobtenc3a7c3a3o-de-extrato-solubilizado-de-resc3adduos-sc3b3lidos.pdf.
Acesso em 7 jun 2014.
______. NBR 13896: Aterros de resíduos não perigosos – critérios para
projeto,
implantação
e
operação.
Disponível
em
ftp://ftp.cefetes.br/cursos/MetalurgiaMateriais/Joseroberto/P%D3S/NORMAS,%
20ARTIGOS%20E%20%20EXERC%CDCIOS/nbr13896.pdf. Acesso em 7 jun
2014.
CASSAB, Rita de Cassia Tardin. Paleontologia da formação Jandaíra,
cretáceo superior da Bacia Potiguar, com ênfase na paleobiologia dos
Gastrópodos. Dissertação para obtenção do grau em doutor em Ciências.
Programa de Pós-Graduação em Geologia, Universidade Federal do Rio de
Janeiro, 2003. Disponível em http://www.cpr.gov.br/publique/media/rita.pdf.
Acesso em 15 junho 2014.
CASTRO, Francker Duarte de; COSTA, Luzimar Pereira da; SAN TOS, Narja
Najara Barboza dos; SANTOS E SILVA, Clara Rafaela de Olveira. Aspectos
geomorfológicos, gelológicos e oceanográficos da margem continental
potiguar: uma fração do Brasil carente em informação. Disponível em
http://connepi.ifal.edu.br/ocs/index.php/connepi/CONNEPI2010/paper/viewFile/
563/342. Acesso em 12 maio 2014.
CHIPALAVELA, Ariana Francisco. Análise e Discussão das Operações de
Perfuração e Completação em Poços Petrolíferos. Dissertação para
obtenção do grau de mestre em Engenharia Geológica de Minas. Disponível
69
em
https://fenix.tecnico.ulisboa.pt/downloadFile/395145922656/tese%20final%20im
primir1.pdf. Acesso em 23 maio 2014.
CINPOR Cimentos de Portugal, SGPS, S.A.
Disponível
http://www.cimpor.pt/Default.aspx?lang=pt. Acesso em 30 mar 2013.
em
BRASIL.
Constituição
Federal
de
1988.
Disponível
em
http://www.planalto.gov.br/ccivil_03/Constituicao/Constituicao.htm. Acesso em
23 dez 2013.
______. Lei nº 6.938, de 31 de agosto de 1981 – Política Nacional do Meio
Ambiente. Disponível em Lei nº 6.938, de 3 de agosto de 1981 – Política
Nacional do Meio Ambiente. Acesso em 23 dez 2013.
______. Lei nº 12.305, de 2 de agosto de 2010 - Política Nacional de Resíduos
Sólidos.
Disponível
em
http://www.planalto.gov.br/ccivil_03/_Ato20072010/2010/Lei/L12305.htm. Acesso em 23 dez 2013.
FIALHO, Poline Fernandes. Cascalho de perfuração de poços de petróleo e
gás. Estudo do potencial de aplicação em concreto. 217 f., dissertação de
Mestrado em Engenharia Civil – Programa de Pós-Graduação em Engenharia
Civil, Universidade Fedeal do Espírito Santo, Vitória, 2012. Disponível em
http://portais4.ufes.br/posgrad/teses/tese_5089_Poline%Fernandes%20Fialho.
pdf. Acesso em 23 mai 2014.
FILHO, Antonio Costa. Riscos e Vulnerabilidade – Campo Petrolífero Canto
do Amaro, Mossoró-RN. 189 f., dissertação de Doutorado em Recursos
Naturais – Programa de Pós-Graduação em Rrecursos Naturais, Universidade
Federal de Campina Grande-PB, Setembro, 2007. Disponível em
http://www.recursosnaturais.ufcg.edu.br/teses/AntonioCFilho_2007.pdf. Acesso
em 23 mai 2014.
GANGHIS, Diógenes; ALARSA, Marcelo; TRENTINI, Sérgio. Alternativa para
destinação final de cascalho de perfuração de poços de petróleo on shore
gerados noNordeste do Brasil. Trabalho apresentado no I Congresso
Internacional de Meio Ambiente Subterrâneo, 2009. Disponível em
http://aguassubterraneas.abas.org/asubterraneas/article/view/21961/14330.
Acesso em 26 dez 2012.
GUIMARÃES, Ian Barros; ROSSI, Luciano Fernando dos Santos. Estudo dos
constituintes dos fluidos de perfuração: proposta de uma formulação
otimizada
e
ambientalmente
correta.
2008,
Disponível
em
http://www.ppgem.ct.utfpr.edu.br/lacit/publicacoes/congressos/Estudo%20dos%
20Constituintes%20dos%20Fluidos%20de%20Perfura%E7%E3o%20proposta
%20de%20uma%20Formula%E7%E3o%20Otimizada%20e%20Ambientalment
e%20Correta%20COBEQ%202008.pdf. Acesso em 04 out 2013.
IDEMA. Processo nº 2006-005332/TEC/LP-0153. Licença Prévia.
70
______. Processo nº 2008-021312/TEC/RLO-0850. Renovação de licença
operacional.
______. Processo nº 2008-021678/TEC/LO-0387. Licença Operacional.
Contém laudos de análise do cascalho em laboratório.
LARISSA, Karla. RN: onde tudo começou. 2008. Disponível em http://
nominuto.com/noticias/economia/rn-onde-tudo-comecou/23947/acesso em 14
dez 2013.
LUCENA, Adriano Elisio de F. L.; RODRIGUES, John Kennedy G.; FERREIRA,
Heber Carlos. LUCENA; Lêda Christianne de F. L.; LUCENA, Luciana de F. L..
Carcaterização térmica de resíduos de perfuração “Onshore”. 2007,
Disponível
em
www.portalabpg.org.br/PDPPetro/4/resumos/4PDPPETRO_6_2_0015-1.pdf.
Acesso em 14 dez 2013.
MARQUES, Sheyla Karolina Justino. Estudo da incorporação de cascalho
proveniente da perfuração de poços de petróleo em formulações para
tijolos de solo-cimento. Dissertação (Mestrado) – Universidade Federal do
Rio Grande do Norte.Centro de Ciências Exatas e da Terra. Programa de Pósgraduação em Ciência e Engenharia de Materiais. Natal, 2010. Disponível em
http://bdtd.bczm.ufrn.br//tde_busca/arquivo.php?codArquivo=4315. Acesso em
12 nov 2013.
MEDEIROS, Leonardo Coutinho de. Adição de cascalho de perfuração da
Bacia Potiguar em argilas para uso em materiais cerâmicos: influência da
concentração e temperatura de queima. Dissertação (mestrado) pela
Universidade Federal do Rio Grande do Norte - Programa de Pós-graduação
em Ciências e Engenharia da Materiais, 2010.
MENDES, Franklin Silva; SOUSA, Cacilda Alves de. Coprocessamento em
fornos de clínquer: uma alternativa sustentável para destinação do
resíduo cascalho de perfuração de poços de petróleo em Mossoró-RN.
rUnPetro, Ano I, n. 1 nov.2012/abr.2013. Acesso em 29 set 2013.
MILLER, G. Tyler. Ciência ambiental. Tradução da 11ª edição norteamericana, revisão técnica Welington Braz Carvalho Delitti, São Paulo,
Cengage Learning, 2011.
MORAES, Mariana Almeida de. Estudo Geoquímico, Ecotoxicológico do
sedimento nas proximidades de um poço de perfuração na Bacia de
Campos,
Rio
de
Janeiro,
Brasil.
Disponível
em
www.bdtd.ndc.uff.br/tde_arquivos/8/TDE-2011-05-09T110702Z-2916/Publico
/Dissert-MarianaMoraes.pdf. Acesso em 02 set 2012.
PREDA, Wagner Nogueira; ALENCAR FILHO, Martinho Quintas de; BORBA,
Genildo Luiz. Características gerais dos projetos de injeção de água nos
reservatórios produtores de petróleo da formação açu na Bacia Potiguar.
Trabalho apresentado no XV Congresso Brasileiro de Águas Subterrâneas.
71
Disponível
http://aguassubterraneas.abas.org/asubterraneas/article/view/23855.
em 29 nov 2012.
em
Acesso
SOUZA, Paulo Juvencio Berta de; LIMA, Valdir Luiz de. Avaliação das
técnicas de rejeitos da perfuração terrestre de poços de petróleo.
Disponível
em
http://teclim.ufba.br/site/material_online/monografias/mono_souza_e_lima.pdf.
Acesso em 31 out 2012.
STEFAN, Petru. Manual de Fluidos de Perfuração. 2 ed, Salvador,
PETROBRAS, 1982.
TOCHETTO, Marta Regina Lopes. Gerenciamento de resíduos sólidos
industriais. Departamento de Química, Universidade Federal de Santa
Maria/RS,
2005.
Disponível
em
http://marta.tocchetto.com/site/?q=system/files/Gest%C3%A3o+Ambiental++Parte+1.pdf. Acesso em 23 nov 2012.
THOMAS, José Eduardo. Organizador. Fundamentos de engenharia de
petróleo. Rio de Janeiro, Interciência, 2001.
72
ANEXO 1 - resultados de massa bruta constantes nos laudos amostrais
Tabela 09 – resultados de massa bruta constantes nos laudos amostrais
Parâmetros
Ponto d fulgor
pH (suspensão 1:1)
Sulfeto (como H2S)
Porcentagem de sólidos
Cianeto (como HCN)
Unidade
LQ
°C
mg/kg
% p/p
mg/kg
0 – 14
2
0,05
0,2
Resutados
Analíticos
>60
8,1 – 9,9
<3
84,6 – 96,2
<0,2
VMP –
10004
60 (a.d.)
2,0 - 12,5 (b)
500 (c)
250 (c)
Fonte: IDEMA, processo nº nº 2008-021678/TEC/LO-0387
Explicações a respeito dos parâmetros acima:
(a) = avaliação da inflamabilidade – item “a” do tópico 4.2.1.1 da NBR
10004:2004;
(b) avaliação da corrosividade – item “a” do tópico 4.2.1.2 da NBR 10004:2004;
(c) avaliação da reatividade – item “a” do tópico 4.2.1.1 da NBR 10004:2004;
(d) = valor máximo para resíduos líquidos.
73
ANEXO 2 - resultados de lixiviado constantes nos laudos amostrais com
base na Norma NBR 10005
Tabela 10 - resultados de lixiviado constantes nos laudos amostrais com base na Norma NBR
10005
Parâmetros
inorgânicos
Arsênio
Bário
Cádmio
Chumbo
Cromo
Fluoreto
Mercúrio
Prata
Selênio
Parâmetros orgânicos
1.1-Dicloroeteno
1.2-Dicloroetano
1,4 - Diclorobenzeno
2,4,5 – T
2,4,5 – TP
2,4,5 - Triclorofenol
2,4,6 - Triclorofenol
2,4 – D
2,4 – Dinitrotolueno
Aldrin e Dieldrin
Benzeno
Benzo(a)pireno
Clordano (isômeros)
Cloreto de Vinila
Clorobenzeno
Clorofórmio
DDT (isômeros)
Endrin
Hexaclorobenzeno
Hexaclorobutadieno
Hexacloroetano
m-Cresol
Metoxicloro
Nitrobenzeno
o-Cresol
p-Cresol
Pentaclorofenol
Piridina
Unidade
LQ
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
0,01
0,01
0,001
0,01
0,01
0,1
0,00005
0,005
0,008
Unidade
LQ
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
0,001
0,001
0,001
0,001
0,001
0,001
0,0005
0,0005
0,001
0,00003
0,001
0,00005
0,0001
0,001
0,001
0,001
0,0005
0,0001
0,0005
0,001
0,001
0,001
0,0005
0,001
0,001
0,001
0,0005
5
Resutados
Analíticos
< 0,01
1,3
< 0,001
< 0,01
< 0,01
0,5
< 0,00005
< 0,005
< 0,008
VMP –
10004
1,0
70,0
0,5
1,0
5,0
150
0,1
5,0
1,0
Resutados
Analíticos
< 0,001
< 0,001
< 0,001
< 0,001
< 0,001
< 0,001
< 0,0005
< 0,0005
< 0,001
< 0,00003
< 0,001
< 0,00005
< 0,0001
< 0,001
< 0,001
0,022
< 0,0005
< 0,0001
< 0,0005
< 0,001
< 0,001
< 0,001
< 0,0005
< 0,001
< 0,001
< 0,001
< 0,0005
<5
VMP –
10004
3,0
1,0
7,5
0,2
1,0
400
20,0
3,0
0,13
0,003
0,5
0,07
0,02
0,5
100
6,0
0,2
0,06
0,1
0,5
3,0
200
2,0
2,0
200
200
0,9
5,0
74
Tetracloreto de carbono
Tetracloroeteno
Toxafeno
Tricloroeteno
Heptacloro
e
Heptacloro Epóxido
Lindano (g-BHC)
Metiletilcetona
mg/L
mg/L
mg/L
mg/L
mg/L
0,001
0,001
0,0001
0,001
0,00002
< 0,001
< 0,001
< 0,0001
< 0,001
< 0,00002
0,2
4,0
0,5
7,0
0,003
mg/L
mg/L
0,00005
5
< 0,00005
<5
0,2
200
Fonte: IDEMA, processo nº nº 2008-021678/TEC/LO-0387
75
ANEXO 3 - resultados do solubilizado constantes nos laudos amostrais
com base na Norma NBR 10006
Tabela 11 - resultados do solubilizado constantes nos laudos amostrais com base na
Norma NBR 10006
Resutados
Analíticos
0,282-1,500
< 0,01
0,328
< 0,001
< 0,01
< 0,05
1277-2087
0,034
< 0,01
0,157-0,695
0,4
0,010
< 0,01
< 0,00005
< 0,1
<0,005
< 0,008
565-1040
216-460
< 0,1
0,038
VMP –
10004
0,2
0,01
0,7
0,005
0,01
0,07
250
2,0
0,05
0,3
1,5
0,01
0,1
0,001
10,0
0,05
0,01
200
250
0,5
5,0
0,001
0,001
0,0005
0,00003
0,0001
0,0005
0,0001
0,0005
0,0005
0,0001
0,00002
Resutados
Analíticos
< 0,001
< 0,001
< 0,0005
< 0,00003
< 0,0001
< 0,0005
< 0,0001
< 0,0005
< 0,0005
< 0,0001
< 0,00002
VMP –
10004
0,002
0,03
0,03
0,00003
0,0002
0,002
0,0006
0,001
0,02
0,005
0,00003
0,00005
< 0,00005
0,002
Parâmetros
inorgânicos
Alumínio
Arsênio
Bário
Cádmio
Chumbo
Cianeto
Cloreto
Cobre
Cromo
Ferro
Fluoreto
Índice de Fenóis
Manganês
Mercúrio
Nitrato (como N)
Prata
Selênio
Sódio
Sulfato
Surfactantes
Zinco
Unidade
LQ
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
0,01
0,01
0,01
0,001
0,01
0,05
1
0,005
0,01
0,01
0,1
0,001
0,01
0,00005
0,1
0,005
0,008
0,5
1
0,1
0,01
Parâmetros orgânicos
Unidade
LQ
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
mg/L
2,4,5 – T
2,4,5 – TP
2,4 – D
Aldrin e Dieldrin
Clordano (isômeros)
DDT (isômeros)
Endrin
Hexaclorobenzeno
Metoxicloro
Toxafeno
Heptacloro
Heptacloro Epóxido
Lindano (g-BHC)
e
Fonte: IDEMA, processo nº nº 2008-021678/TEC/LO-0387
76
ANEXO 4 - resultados obtidos que ultrapassam os valores máximos
permitidos pela norma NBR 10004 relativos à amostra nº 1
Tabela 12 – resultados obtidos que ultrapassam os valores máximos permitidos pela norma
NBR 10004 relativos à amostra nº 1
Amostra 1
Parâmetro
analisado
Resultado
analítico (mg/l)
Valor
máx.
permitido (mg/l)
Massa bruta
parâmetros não ultrapassaram os limites máx. perm.
Lixiviado
parâmetros não ultrapassaram os limites máx. perm.
Solubilizado –
parâmetros inorgânicos
Alumínio
Cloreto
Sódio
Sulfato
0,359
2087
938
360
0,2
250
200
250
Solubilizado –
parâmetros orgânicos
Alumínio
Cloreto
Sódio
Sulfato
0,204
1985
914
429
0,2
250
200
250
Conclusão
os parâmetros alumínio, cloreto, sódio e sulfato
ultrapassaram os limites máximos permitidos.
Fonte: IDEMA, processo nº nº 2008-021678/TEC/LO-0387
77
ANEXO 5 - resultados obtidos que ultrapassam os valores máximos
permitidos pela norma NBR 10004 relativos à amostra nº 2
Tabela 13 – resultados obtidos que ultrapassam os valores máximos permitidos pela norma
NBR 10004 relativos à amostra nº 2
Amostra 2
Parâmetro
analisado
Resultado
analítico (mg/l)
Valor
máx.
permitido (mg/l)
Massa bruta
parâmetros não ultrapassaram os limites máx. perm.
Lixiviado
parâmetros não ultrapassaram os limites máx. perm.
Solubilizado –
parâmetros inorgânicos
Alumínio
Cloreto
Sódio
Sulfato
0,619
1853
786
399
0,2
250
200
250
Solubilizado –
parâmetros orgânicos
Alumínio
Cloreto
Sódio
Sulfato
0,589
1728
971
315
0,2
250
200
250
Conclusão
os parâmetros alumínio, cloreto, sódio e sulfato
ultrapassaram os limites máximos permitidos.
Fonte: IDEMA, processo nº nº 2008-021678/TEC/LO-0387
78
ANEXO 6 - resultados obtidos que ultrapassam os valores máximos
permitidos pela norma NBR 10004 relativos à amostra nº 3
Tabela 14 – resultados obtidos que ultrapassam os valores máximos permitidos pela norma
NBR 10004 relativos à amostra nº 3
Amostra 3
Parâmetro
analisado
Resultado
analítico (mg/l)
Valor
máx.
permitido (mg/l)
Massa bruta
parâmetros não ultrapassaram os limites máx. perm.
Lixiviado
parâmetros não ultrapassaram os limites máx. perm.
Solubilizado –
parâmetros inorgânicos
Alumínio
Cloreto
Sódio
Sulfato
0,618
1386
866
384
0,2
250
200
250
Solubilizado –
parâmetros orgânicos
Alumínio
Cloreto
Sódio
Sulfato
0,594
1890
875
467
0,2
250
200
250
Conclusão
os parâmetros alumínio, cloreto, sódio e sulfato
ultrapassaram os limites máximos permitidos.
Fonte: IDEMA, processo nº nº 2008-021678/TEC/LO-0387
79
ANEXO 7 - resultados obtidos que ultrapassam os valores máximos
permitidos pela norma NBR 10004 relativos à amostra nº 4
Tabela 15 – resultados obtidos que ultrapassam os valores máximos permitidos pela norma
NBR 10004 relativos à amostra nº 4
Amostra 4
Parâmetro
analisado
Resultado
analítico (mg/l)
Valor
máx.
permitido (mg/l)
Massa bruta
parâmetros não ultrapassaram os limites máx. perm.
Lixiviado
parâmetros não ultrapassaram os limites máx. perm.
Solubilizado –
parâmetros inorgânicos
Alumínio
Cloreto
Sódio
Sulfato
< 0,2
1702
1080
406
0,2
250
200
250
Solubilizado –
parâmetros orgânicos
Alumínio
Cloreto
Sódio
Sulfato
< 0,2
1737
1000
442
0,2
250
200
250
Conclusão
os parâmetros cloreto, sódio e sulfato
ultrapassaram os limites máximos permitidos.
Fonte: IDEMA, processo nº nº 2008-021678/TEC/LO-0387
80
ANEXO 8 - resultados obtidos que ultrapassam os valores máximos
permitidos pela norma NBR 10004 relativos à amostra nº 5
Tabela 16 – resultados obtidos que ultrapassam os valores máximos permitidos pela norma
NBR 10004 relativos à amostra nº 5
Amostra 5
Parâmetro
analisado
Resultado
analítico (mg/l)
Valor
máx.
permitido (mg/l)
Massa bruta
parâmetros não ultrapassaram os limites máx. perm.
Lixiviado
parâmetros não ultrapassaram os limites máx. perm.
Solubilizado –
parâmetros inorgânicos
Alumínio
Cloreto
Sódio
Sulfato
0,593
1686
872
318
0,2
250
200
250
Solubilizado –
parâmetros orgânicos
Alumínio
Cloreto
Sódio
Sulfato
0,704
1686
788
325
0,2
250
200
250
Conclusão
os parâmetros alumínio, cloreto, sódio e sulfato
ultrapassaram os limites máximos permitidos.
Fonte: IDEMA, processo nº nº 2008-021678/TEC/LO-0387
81
ANEXO 9 - resultados obtidos que ultrapassam os valores máximos
permitidos pela norma NBR 10004 relativos à amostra nº 6
Tabela 17 – resultados obtidos que ultrapassam os valores máximos permitidos pela norma
NBR 10004 relativos à amostra nº 6
Amostra 6
Parâmetro
analisado
Resultado
analítico (mg/l)
Valor
máx.
permitido (mg/l)
Massa bruta
parâmetros não ultrapassaram os limites máx. perm.
Lixiviado
parâmetros não ultrapassaram os limites máx. perm.
Solubilizado –
parâmetros inorgânicos
Alumínio
Cloreto
Sódio
Sulfato
0,398
1261
649
410
0,2
250
200
250
Solubilizado –
parâmetros orgânicos
Alumínio
Cloreto
Sódio
Sulfato
0,488
1434
717
437
0,2
250
200
250
Conclusão
os parâmetros alumínio, cloreto, sódio e sulfato
ultrapassaram os limites máximos permitidos.
Fonte: IDEMA, processo nº nº 2008-021678/TEC/LO-0387
82
ANEXO 10 - resultados obtidos que ultrapassam os valores máximos
permitidos pela norma NBR 10004 relativos à amostra nº 7
Tabela 18 – resultados obtidos que ultrapassam os valores máximos permitidos pela norma
NBR 10004 relativos à amostra nº 7.
Amostra 7
Parâmetro
analisado
Resultado
analítico (mg/l)
Valor
máx.
permitido (mg/l)
Massa bruta
parâmetros não ultrapassaram os limites máx. perm.
Lixiviado
parâmetros não ultrapassaram os limites máx. perm.
Solubilizado –
parâmetros inorgânicos
Alumínio
Cloreto
Sódio
Sulfato
1,4
1640
936
351
0,2
250
200
250
Solubilizado –
parâmetros orgânicos
Alumínio
Cloreto
Sódio
Sulfato
1,6
1485
869
320
0,2
250
200
250
Conclusão
os parâmetros alumínio, cloreto, sódio e sulfato
ultrapassaram os limites máximos permitidos.
Fonte: IDEMA, processo nº nº 2008-021678/TEC/LO-0387
83
ANEXO 11 - resultados obtidos que ultrapassam os valores máximos
permitidos pela norma NBR 10004 relativos à amostra nº 8
Tabela 19 – resultados obtidos que ultrapassam os valores máximos permitidos pela norma
NBR 10004 relativos à amostra nº 8
Amostra 8
Parâmetro
analisado
Resultado
analítico (mg/l)
Valor
máx.
permitido (mg/l)
Massa bruta
parâmetros não ultrapassaram os limites máx. perm.
Lixiviado
parâmetros não ultrapassaram os limites máx. perm.
Solubilizado –
parâmetros inorgânicos
Alumínio
Cloreto
Ferro
Sódio
Sulfato
1,1
1272
0,678
716
345
0,2
250
0,3
200
250
Solubilizado –
parâmetros orgânicos
Alumínio
Cloreto
Ferro
Sódio
Sulfato
0,660
1578
0,712
902
451
0,2
250
0,3
200
250
Conclusão
os parâmetros alumínio, cloreto, ferro, sódio e sulfato
ultrapassaram os limites máximos permitidos.
Fonte: IDEMA, processo nº nº 2008-021678/TEC/LO-0387
84
ANEXO 12 - resultados obtidos que ultrapassam os valores máximos
permitidos pela norma NBR 10004 relativos à amostra nº 9
Tabela 20 – resultados obtidos que ultrapassam os valores máximos permitidos pela norma
NBR 10004 relativos à amostra nº 9
Amostra 9
Parâmetro
analisado
Resultado
analítico (mg/l)
Valor
máx.
permitido (mg/l)
Massa bruta
parâmetros não ultrapassaram os limites máx. perm.
Lixiviado
parâmetros não ultrapassaram os limites máx. perm.
Solubilizado –
parâmetros inorgânicos
Alumínio
Cloreto
Ferro
Sódio
Sulfato
0,980
975
0,687
574
211
0,2
250
0,3
200
250
Solubilizado –
parâmetros orgânicos
Alumínio
Cloreto
Ferro
Sódio
Sulfato
1,4
1578
0,603
555
220
0,2
250
0,3
200
250
Conclusão
os parâmetros alumínio, cloreto, ferro, sódio e sulfato
ultrapassaram os limites máximos permitidos.
Fonte: IDEMA, processo nº nº 2008-021678/TEC/LO-0387
85
ANEXO 13 - resultados obtidos que ultrapassam os valores máximos
permitidos pela norma NBR 10004 relativos à amostra nº 10
Tabela 21 – resultados obtidos que ultrapassam os valores máximos permitidos pela norma
NBR 10004 relativos à amostra nº 10
Amostra 10
Parâmetro
analisado
Resultado
analítico (mg/l)
Valor
máx.
permitido (mg/l)
Massa bruta
parâmetros não ultrapassaram os limites máx. perm.
Lixiviado
parâmetros não ultrapassaram os limites máx. perm.
Solubilizado –
parâmetros inorgânicos
Alumínio
Cloreto
Sódio
Sulfato
0,383
1410
736
473
0,2
250
200
250
Solubilizado –
parâmetros orgânicos
Alumínio
Cloreto
Sódio
Sulfato
0,538
1481
781
483
0,2
250
200
250
Conclusão
os parâmetros alumínio, cloreto, sódio e sulfato
ultrapassaram os limites máximos permitidos.
Fonte: IDEMA, processo nº nº 2008-021678/TEC/LO-0387
86
ANEXO 14- resultados obtidos que ultrapassam os valores máximos
permitidos pela norma NBR 10004 relativos à amostra nº 11
Tabela 22 – resultados obtidos que ultrapassam os valores máximos permitidos pela norma
NBR 10004 relativos à amostra nº 11
Amostra 11
Parâmetro
analisado
Resultado
analítico (mg/l)
Valor
máx.
permitido (mg/l)
Massa bruta
parâmetros não ultrapassaram os limites máx. perm.
Lixiviado
parâmetros não ultrapassaram os limites máx. perm.
Solubilizado –
parâmetros inorgânicos
Alumínio
Cloreto
Ferro
Sódio
Sulfato
0,762
1377
0,463
720
445
0,2
250
0,3
200
250
Solubilizado –
parâmetros orgânicos
Alumínio
Cloreto
Ferro
Sódio
Sulfato
0,700
1324
0,535
706
418
0,2
250
0,3
200
250
Conclusão
os parâmetros alumínio, cloreto, ferro, sódio e
sulfato ultrapassaram os limites máximos
permitidos.
Fonte: IDEMA, processo nº nº 2008-021678/TEC/LO-0387
87
ANEXO 15 - resultados obtidos que ultrapassam os valores máximos
permitidos pela norma NBR 10004 relativos à amostra nº 12
Tabela 23 – resultados obtidos que ultrapassam os valores máximos permitidos pela norma
NBR 10004 relativos à amostra nº 12
Amostra 12
Parâmetro
analisado
Resultado
analítico (mg/l)
Valor
máx.
permitido (mg/l)
Massa bruta
parâmetros não ultrapassaram os limites máx. perm.
Lixiviado
parâmetros não ultrapassaram os limites máx. perm.
Solubilizado –
parâmetros inorgânicos
Alumínio
Cloreto
Sódio
Sulfato
1,451
2087
777
316
0,2
250
200
250
Solubilizado –
parâmetros orgânicos
Alumínio
Cloreto
Sódio
Sulfato
0,457
1614
921
339
0,2
250
200
250
Conclusão
os parâmetros alumínio, cloreto, sódio e sulfato
ultrapassaram os limites máximos permitidos.
Fonte: IDEMA, processo nº nº 2008-021678/TEC/LO-0387
Download

UNIVERSIDADE POTIGUAR ESCOLA DE ENGENHARIAS E