Lecture 4
Pressure distribution in fluids.
Pressure and pressure gradient.
Hydrostatic pressure
1
Basic Principles of Fluid
Mechanics
• Mass conservation
•
dm
0
dt
=>


v j 

t
x j
• Lei de Newton:
•


dv
Fm
dt
=>
v
v
p

 i  v j i  

t
x j
xi x j
Engenharia do Ambiente
Mecânica dos Fluidos Ambiental
 vi

 x
j


  g z

xi

2
Methods for Fluid Mechanics
Engenharia do Ambiente
Mecânica dos Fluidos Ambiental
Chapter 2
• Concept of pressure and pressure gradient,
• Hydrostatics and centripetal force.
• Lei de Newton: Acceleration as the result of
the applied forces.
Engenharia do Ambiente
Mecânica dos Fluidos Ambiental
Forces in Fluids
• Surface or volumetric (or mass)
• Surface forces can be normal (pressure) or
tangential (friction)
• Tangential forces are always parallel to
velocity. Their equation can be complex if
velocity is not parallel to any reference axis.
Engenharia do Ambiente
Mecânica dos Fluidos Ambiental
Pressure is a scalar
• Could
px , p y , pn be different in one point?
Engenharia do Ambiente
Mecânica dos Fluidos Ambiental
In a fluid at rest:
Esta conclusão é independente de θ.
Engenharia do Ambiente
Mecânica dos Fluidos Ambiental
Pressure Gradient
• It will be shown that the pressure gradient can
generate acceleration, but not the pressure by
itself.
Engenharia do Ambiente
Mecânica dos Fluidos Ambiental
Pressure force resultant
Engenharia do Ambiente
Mecânica dos Fluidos Ambiental
Force resultant (including friction and
weight)
 
yx y  dy
 
xy y
 u 
   
 y  y
 u 
   
 y  y  dy
Weight  g dxdydz 
Engenharia do Ambiente
Mecânica dos Fluidos Ambiental
Summing up
p
pressure  
xi
  u 




u
dxdz   
    
  y 

2

y



u
y

dy
y


Friction 
 2
dxdydz
y
weight  g dxdydz 
dui
 ui
p


  2  gi
dt
xi
x j
2
Engenharia do Ambiente
Mecânica dos Fluidos Ambiental
General equation
dui
 ui
p


  2  gi
dt
xi
x j
2
2


dui
ui
ui 
 ui
p



uj

  2  g i
 t

dt

x
xi
x j
j 

At rest the fluid has null velocity and so are its derivatives. The pressure is
hydrostatic.
Se a aceleração vertical for nula a pressão continua a ser hidrostática.
Engenharia do Ambiente
Mecânica dos Fluidos Ambiental
Hydrostatic pressure
p
 g z
z
• If the vertical axes (zz) points downwards
gravity acceleration is positive, otherwise is
negative.
Engenharia do Ambiente
Mecânica dos Fluidos Ambiental
Hydrostatics
Engenharia do Ambiente
Mecânica dos Fluidos Ambiental
If  was constant:
Engenharia do Ambiente
Mecânica dos Fluidos Ambiental
In case of gas
Engenharia do Ambiente
Mecânica dos Fluidos Ambiental
Engenharia do Ambiente
Mecânica dos Fluidos Ambiental
Hydrostatic Forces
• Objectif:
• Compute the hydrostatic force over flat and curve
surfaces and the application point (pressure centre).
Engenharia do Ambiente
Mecânica dos Fluidos Ambiental
Força Hidrostática
h   sin 
Engenharia do Ambiente
Mecânica dos Fluidos Ambiental
Computing using former knowledge
F  pa A     sin  dA
F  pa A   sin   dA
Engenharia do Ambiente
Mecânica dos Fluidos Ambiental
OU
Engenharia do Ambiente
Mecânica dos Fluidos Ambiental
Pressure Centre (Measured from the
gravity centre)
   C .G.  y 
Engenharia do Ambiente
Mecânica dos Fluidos Ambiental
Pressure Centre (x coordinate)
On surfaces with vertical simetry CP lays on the axis.
Engenharia do Ambiente
Mecânica dos Fluidos Ambiental
Resumo
Engenharia do Ambiente
Mecânica dos Fluidos Ambiental
Download

Aula Teórica 4