Multi-Dimensional Array Signal Processing
Applied to MIMO Systems
Prof. Dr.-Ing. João Paulo C. Lustosa da Costa
University of Brasília (UnB)
Department of Electrical Engineering (ENE)
Laboratory of Array Signal Processing
PO Box 4386
Zip Code 70.919-970, Brasília - DF
de Brasília
Homepage:Universidade
http://www.pgea.unb.br/~lasp
Laboratório de Processamento de Sinais em Arranjos
1
Outline






Universidade de Brasília: A Short Overview
Motivation
Antenna Array Based Systems
Multi-Dimensional Array Signal Processing
 Multi-Dimensional Array Interpolation
 Model Order Selection
 Prewhitening
MIMO-OFDM System
Conclusions
UnB
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
2
Outline






Universidade de Brasília: A Short Overview
Motivation
Antenna Array Based Systems
Multi-Dimensional Array Signal Processing
 Multi-Dimensional Array Interpolation
 Model Order Selection
 Prewhitening
MIMO-OFDM System
Conclusions
UnB
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
3
Universidade de Brasília: A Short Overview (1)

Universidade de Brasília (UNB)
 One of the best federal universities in Brazil
 The best university in the central-west region of Brazil
• Region with 12 million inhabitants
 UNB is located in Brasília
• capital of Brazil
– political influence and cooperation with the Federal
Government 
• one of the most expensive cities in Brazil 
• one of the safest cities in Brazil 
• Great weather (avrg 20,6oC, avrg min 17oC, avrg max 26,6oC) 
• Several amazing waterfalls around Brasília 
– Itiquira, Pirinópolis, Chapada dos Veadeiros and others
• Cheap tickets to Rio de Janeiro and to the Northeast of Brazil 
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
4
Universidade de Brasília: A Short Overview (2)
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
5
Universidade de Brasília: A Short Overview (3)
Universidade de Brasília (UNB)
 In 2013, around 23234 candidates for 4219 places
 In 2013, 37465 students
 In 2013, 2594 professors
(including all departments and all semesters)
 Department of Electrical Engineering
 composed of three bachelor courses
• Communication Network Engineering
• Mechatronics
• Electrical Engineering
• Computer Engineering
 around 1560 bachelor students
 around 65 professors
Data retrieved from: http://www.dpo.unb.br/cursos_graduacao.php

Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
6
Outline






Universidade de Brasília: A Short Overview
Motivation
Antenna Array Based Systems
Multi-Dimensional Array Signal Processing
 Multi-Dimensional Array Interpolation
 Model Order Selection
 Prewhitening
MIMO-OFDM System
Conclusions
UnB
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
7
Motivation (1)

Mobile network subscribers forecast [1]
 ~90% of mobile subscriptions will be for mobile broadband by the end of 2020.
[1] Ericsson Mobility Report, Nov 2014
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
5
Motivation (2)

Mobile network traffic forecast [1]
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
5
Motivation (3)

5th generation mobile networks (5G) [2]
Generation
1G
2G
3G
4G
5G
Year
1981
1991
2001
2011
2020
< 1 kbps
9,6 kpbs
144 – 2000 kpbs
Throughput
100 – 1000 Mbps
100 Mbps
– 10 Gbps
 millimeter wave wireless communications (up to 90 GHz)
• compensation using massive MIMO
 Massive Distributed MIMO
 Multi-hop networks and device-to-device (D2D) communications
 Cognitive radio technology
 ….
[2] J. G. Andrews, S. Buzzi, W. Choi, S. Hanly, A. Lozano, A.C.K. Soong, and J. Zhang,
"What will 5G be?," IEEE Journal on Selected Areas in Communications, Vol. 32,
No. 6, pp. 1065 - 1082, June 2014
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
5
Outline






Universidade de Brasília: A Short Overview
Motivation
Antenna Array Based Systems
Multi-Dimensional Array Signal Processing
 Multi-Dimensional Array Interpolation
 Model Order Selection
 Prewhitening
MIMO-OFDM System
Conclusions
UnB
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
11
Antenna Array Based Systems (1)

Standard (Matrix) Array Signal Processing
 Four gains: array gain, diversity gain, spatial multiplexing gain and
interference reduction gain
RX
TX
 Array gain: 3 for each side
 Diversity gain: same information for each path
 Spatial multiplexing gain: different information for each path
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
5
Antenna Array Based Systems (2)

Standard (Matrix) Array Signal Processing
 Four gains: array gain, diversity gain, spatial multiplexing gain and
interference reduction gain
RX
TX
 Array gain: 3 for each side
 Diversity gain: same information for each path
 Spatial multiplexing gain: different information for each path
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
5
Antenna Array Based Systems (3)

Standard (Matrix) Array Signal Processing
 Four gains: array gain, diversity gain, spatial multiplexing gain and
interference reduction gain
RX
TX
Interferer
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
5
Antenna Array Based Systems (3)

Standard (Matrix) Array Signal Processing
 Four gains: array gain, diversity gain, spatial multiplexing gain and
interference reduction gain
RX
TX
Interferer
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
5
Outline






Universidade de Brasília: A Short Overview
Motivation
Antenna Array Based Systems
Multi-Dimensional Array Signal Processing
 Multi-Dimensional Array Interpolation
 Model Order Selection
 Prewhitening
MIMO-OFDM System
Conclusions
UnB
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
16
Multi-Dimensional Array Signal Processing (1)

MIMO channel model
Direction of Departure (DOD)
Transmit array: 1-D or 2-D
Direction of Arrival (DOA)
Receive array: 1-D or 2-D
Delay
Frequency
Doppler shift
Time
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
5
Multi-Dimensional Array Signal Processing (2)

Multi-Dimensional Array Signal Processing
 Dimensions depend on the type of application
• MIMO
– Received data: two spatial dimensions, frequency and time
– Channel: 4 spatial dimensions, frequency and time
• Microphone array
– Received data: one spatial dimension and time
– After Time Frequency Analysis
• Space, time and frequency
• EEG (similarly as microphone array)
• Psychometrics
• Chemistry
• Food industry
…
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
5
Multi-Dimensional Array Signal Processing (3)

Multi-Dimensional (Tensor) Array Signal Processing
 Advantages: increased identifiability, separation without imposing
additional constraints and improved accuracy (tensor gain)
RX: Uniform
Rectangular Array (URA)
 9 x 3 matrix: maximum rank is 3.
• Solve maximum 3 sources!
m1
1
1
1
2
m2
1
2
3
1
2
2
3
3
3
2
3
1
2
3
n
1
2
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
3
5
Multi-Dimensional Array Signal Processing (4)

Multi-Dimensional (Tensor) Array Signal Processing
 Advantages: increased identifiability, separation without imposing
additional constraints and improved accuracy (tensor gain)
1
2
m1
3
1
RX: Uniform
Rectangular Array (URA)
2 3 1
m2
2
3
n
 3 x 3 x 3 tensor: maximum rank is 5 [3].
• Solve maximum 5 sources!
[3] J. B. Kruskal. Rank, decomposition, and uniqueness for 3-way and N-way arrays.
Multiway Data Analysis, pages 7–18, 1989
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
5
Multi-Dimensional Array Signal Processing (5)

Multi-Dimensional (Tensor) Array Signal Processing
 Advantages: increased identifiability, separation without imposing
additional constraints and improved accuracy (tensor gain)
• For matrix model, nonrealistic assumptions such as
orthogonality (PCA) or independence (ICA) should be done.
• For tensor model, separation is unique up to scalar and
permutation ambiguities.
=
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
+
+
5
Multi-Dimensional Array Signal Processing (6)

Multi-Dimensional (Tensor) Array Signal Processing
 Advantages: increased identifiability, separation without imposing
additional constraints and improved accuracy (tensor gain)
• Array interpolation due to imperfections
– Application of tensor based techniques
• Estimation of number of sources d
– also known as model order selection
– multi-dimensional schemes: better accuracy
• Prewhitening schemes
– multi-dimensional schemes: better accuracy and lower
complexity
• Parameter estimation
– Drastic reduce of computational complexity
• Multidimensional searches are decomposed into several
one dimensional searches
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
5
Multi-Dimensional Array Signal Processing (7)
Measurements
Array
Interpolation
Model order
selection
Is the noise
colored?
No
Parameter
Estimation
Yes
Subspace
Prewhitening





Measurements or data from several applications, for instance,
 MIMO channels, EEG, stock markets, chemistry, pharmacology, medical imaging,
radar, and sonar
Array interpolation
 SPS, FBA, ESPRIT and multidimensional techniques
Model order selection
 estimation of the number of the main components (total number of parameters)
Parameter estimation techniques
 extraction of the parameters from the main components
Subspace prewhitening schemes
 application of the noise statistics to improve the parameter estimation
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
23
Outline






Universidade de Brasília: A Short Overview
Motivation
Antenna Array Based Systems
Multi-Dimensional Array Signal Processing
 Multi-Dimensional Array Interpolation
 Model Order Selection
 Prewhitening
MIMO-OFDM System
Conclusions
UnB
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
24
Multi-Dimensional Array Interpolation (1)

Data model

Unfoldings and sample covariance matrices
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
25
Multi-Dimensional Array Interpolation (2)

Power response for r-th dimension
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
26
Multi-Dimensional Array Interpolation (3)

Interpolation in each r-th mode
obtained from measurements.

obtained from
power response.
Interpolated data
 Structure closer to PARAFAC structure
• Tensor
is attenuated.
• SPS, FBA and ESPRIT can be applied.
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
27
Multi-Dimensional Array Interpolation (3)


d = 3, 8 x 8 antenna array, N = 100
Standard deviation of the elements of
:
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
28
Outline






Universidade de Brasília: A Short Overview
Motivation
Antenna Array Based Systems
Multi-Dimensional Array Signal Processing
 Multi-Dimensional Array Interpolation
 Model Order Selection
 Prewhitening
MIMO-OFDM System
Conclusions
UnB
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
29
Model Order Selection (1)

Noiseless case
=

+
+
Matrix data model
Our objective is to estimate d from the noisy observations
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
.
30
Model Order Selection (2)

The eigenvalues of the sample covariance matrix
d = 2, M = 8, SNR = 0 dB, N = 10
10
Finite SNR, Finite N
 M - d noise eigenvalues follow a
Wishart distribution.
 d signal plus noise eigenvalues
8
6
i

4
2
0
1
2
3
4
5
6
7
Eigenvalue index i
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
8
31
Model Order Selection (3)

Observation is a superposition of noise and signal
 The noise eigenvalues still exhibit the exponential profile: EFT
 We can predict the profile
of the noise eigenvalues
to find the “breaking point”
 Let P denote the number
of candidate noise eigenvalues.
• choose the largest P
such that the P noise
eigenvalues can be fitted
with a decaying exponential
d = 3, M = 8, SNR = 20 dB, N = 10
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
32
Multi-Dimensional Model Order Selection (1)
Noiseless data representation
=
+
+
Problem
where
is the colored noise tensor.
Our objective is to estimate d from the noisy observations
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
.
33
Multi-Dimensional Model Order Selection (2)

R-D exponential profile
 We can define global eigenvalues
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
34
Multi-Dimensional Model Order Selection (3)

R-D exponential profile
 Comparison between the global eigenvalues profile and the profile
of the last unfolding
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
35
Multi-Dimensional Model Order Selection (4)
Model Order Selection in Additive White Gaussian Noise Scenario
Probability of correct Detection vs. SNR


White Gaussian noise

Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
36
Outline






Universidade de Brasília: A Short Overview
Motivation
Antenna Array Based Systems
Multi-Dimensional Array Signal Processing
 Multi-Dimensional Array Interpolation
 Model Order Selection
 Prewhitening
MIMO-OFDM System
Conclusions
UnB
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
37
Motivation

Colored noise is encountered in a variety of signal processing applications, e.g.,
SONAR, communications, and speech processing.

Without prewhitening the parameter estimation is severely degraded.

Traditionally, stochastic prewhitening schemes are applied.

By prewhitening the subspace via our proposed deterministic prewhitening
scheme, an improvement of the parameter estimation is obtained compared to the
stochastic prewhitening schemes.
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
38
Noise Analysis

Analysis via SVD
Stochastic
prewhitening schemes
With colored
noise the d main
components are
more affected.
Deterministic
prewhitening scheme
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
39
Simulations
Subspace Prewhitening for Colored Noise with Structure
RMSE vs. Correlation Level
The noise correlation
is known.
SE – Standard ESPRIT
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
40
Sequential GSVD

These matrix based prewhitening schemes have a worse accuracy for
multidimensional colored noise or interference with Kronecker correlation
structure,
 when applied in conjunction with the subspace-based parameter estimation
techniques, such as R-D Standard ESPRIT and R-D Standard Tensor-ESPRIT

Therefore, we propose the Sequential Generalized Singular Value
Decomposition (S-GSVD) of the measurement tensor and of the
multidimensional noise samples
 enables us to improve the subspace estimation
 based on the prewhitening correlation factors estimation
 has a low complexity and a high accuracy version
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
41
Simulations
Subspace Prewhitening for Multi-dimensional Colored Noise
RMSE vs. Number of Samples without Signal Components (Nl)
STE – Standard
Tensor-ESPRIT
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
42
Iterative S-GSVD

In some multidimensional applications,
 the noise samples
without the presence of signal components are not
available
 For these cases, we propose the Iterative Sequential GSVD (I-S-GSVD)
 jointly estimation of the signal data and of the noise statistics via a proposed
iterative algorithm in conjunction with the S-GSVD
 low computational complexity of the S-GSVD
 for intermediate and high SNR regimes similar accuracy as the S-GSVD, where
is required
 convergence with two or three iterations
 applied in conjunction with the subspace-based parameter estimation techniques,
e.g., R-D Standard Tensor-ESPRIT (R-D STE)
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
43
Simulations
Subspace Prewhitening for Multi-dimensional Colored Noise
RMSE vs. Correlation Level
STE – Standard
Tensor-ESPRIT
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
44
Simulations
Subspace Prewhitening for Multi-dimensional Colored Noise
RMSE vs. Number of Iterations
STE – Standard
Tensor-ESPRIT
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
45
Outline






Universidade de Brasília: A Short Overview
Motivation
Antenna Array Based Systems
Multi-Dimensional Array Signal Processing
 Multi-Dimensional Array Interpolation
 Model Order Selection
 Prewhitening
MIMO-OFDM System
Conclusions
UnB
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
46
MIMO-OFDM System (1)

Time dimensions: period and frames

Communication system
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
MIMO-OFDM System (2)
M: number of transmit antennas.
N: number of time-slots in the whole time frame.
P: number of symbol periods in each time-slot.
Known.
K: number of receive antennas.
Known.
F: number of subcarriers
Our objective is to estimate S and H from the noisy observations Y.
.
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
MIMO-OFDM System (3)

Matrix representation

Tensor representation
Solved first!
 Pairing solved: first row of S known
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
State-of-the-art MIMO-OFDM Schemes

Existing Solution: Alternating Least Squares (ALS) Receiver
 Drawback: iterative, higher complexity, requires pilot symbols (loss
in transmission efficiency)

Proposed Solution I: Least Squares Khatri-Rao factorization (LS-KRF)
 Closed-form, lower complexity for medium-to-high SNRs, requires
pilot symbols (loss in transmission efficiency)

Proposed Solution II: Simplified Closed-form PARAFAC
 Avoid the knowledge on the first row in the symbol matrix
 Closed-form, lower complexity, same performance of the pilot
symbols based schemes for intermediate and high SNR regimes
(high transmission efficiency)
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
50
MIMO-OFDM Simulations (1)
Bit Error Rate vs. SNR @ K=2, M=4, F=4, N=5, P=3
Parameter Settings:
K=2, M=4, F=4, N=5, P=3
ALS (1= 2=0.0001)
(P-)LS-KRF
-1
10
-2
Channel estimate NMSE vs. SNR @ K=2, M=4, F=4, N=5, P=3
10
ALS (1= 2=0.0001)
(P-)LS-KRF
0
10
-3
10
-1
10
-4
NMSE
10
-15
-10
-5
0
5
10
SNR (dB)
15
20
25
30
-2
10
-3
10
-15
-10
-5
0
10
5
SNR (dB)
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
15
20
25
51
30
Mean Processing Time vs. SNR @ K=2, M=4, F=4, N=5, P=3
0.06
ALS (1= 2=0.0001)
LS-KRF
P-LS-KRF
0.04
0.02
Number of Itertations
Mean Processing Time (s)
MIMO-OFDM Simulations (2)
0
-15
-10
-5
0
5
10
15
20
25
SNR (dB)
Number of Iterations in ALS vs. SNR @ K=2, M=4, F=4, N=5, P=3
30
No. of Iters. Outer (1=0.0001)
20
No. of Iters. Inner (2=0.0001)
15
10
5
-15
-10
-5
0
5
10
SNR (dB)
15
20
25
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
30
52
MIMO-OFDM Simulations (3)
Bit Error Rate vs. SNR @ K=2, M=4, F=4, N=5, P=3
Parameter Settings I:
K=2, M=4, F=4, N=5, P=3
(P-)LS-KRF (w/ Overhead)
S-CFP w/ Pairing (w/o Overhead)
-1
10
Channel estimate NMSE vs. SNR @ K=2, M=4, F=4, N=5, P=3
1
10
(P-)LS-KRF (w/ Overhead)
S-CFP w/ Pairing (w/o Overhead)
-2
10
0
10
-3
NMSE
10
-15
-10
-5
0
5
10
SNR (dB)
15
20
25
30
-1
10
-2
10
-3
10
-15
-10
-5
0
10
5
SNR (dB)
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
15
20
25
53
30
Outline






Universidade de Brasília: A Short Overview
Motivation
Antenna Array Based Systems
Multi-Dimensional Array Signal Processing
 Multi-Dimensional Array Interpolation
 Model Order Selection
 Prewhitening
MIMO-OFDM System
Conclusions
UnB
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
54
Conclusions





In this presentation, we have present our state-of-the-art proposed schemes for
 array interpolation
 model order selection (MOS)
 subspace prewhitening
Multi-Dimensional Array Interpolation: measurements fit to PARAFAC structure
Important contributions in the MOS field
 Modified Exponential Fitting Test (M-EFT): Matrix data contaminated by
white noise
 R-D EFT: Tensor data contaminated by white noise
Important contributions in the subspace prewhitening field
 Deterministic prewhitening: Matrix data and noise with correlation structure
 Sequential GSVD: Tensor data and noise with tensor structure
 Iterative Sequential GSVD: Tensor data and noise with tensor structure
No availability of noise samples
In the MIMO-OFDM field:
 Simplified closed-form PARAFAC based scheme: no overhead (w/o pilots)
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
55
Thank you for your attention!
Prof. Dr.-Ing. João Paulo C. Lustosa da Costa
University of Brasília (UnB)
Department of Electrical Engineering (ENE)
Laboratory of Array Signal Processing
PO Box 4386
Zip Code 70.919-970, Brasília - DF
de Brasília
Homepage:Universidade
http://www.pgea.unb.br/~lasp
Laboratório de Processamento de Sinais em Arranjos
56
Download

Slides_COM - Universidade de Brasília