MOTORES DE INDUÇÃO TRIFÁSICOS Eletrônica Industrial II Danila Juliana 00028-3 01035-3 INTRODUÇÃO Motores elétricos – mais importantes acionadores industriais para qualquer potência ampla faixa de velocidade componentes padronizados elevado grau de automação industrial controle à distância fácil manutenção e reposição INTRODUÇÃO MOTORES DE INDUÇÃO MONOFÁSICOS E TRIFÁSICOS: 95% do total de motores instalados nos setores: rural, industrial, comercial e residencial. 75% do total de potência instalada dos motores em geral. TIPOS DE MOTORES ELÉTRICOS MOTORES DE INDUÇÃO TRIFÁSICOS Características Construtivas Princípio Básico de Operação Curva Característica do MIT Perdas no MIT Tipos de MIT: Gaiola de Esquilo e Rotor Bobinado Tipos de Partida do MIT Operação e Manutenção Prática Aplicações CARACTERÍSTICAS CONSTRUTIVAS Estator (parte estática): chapas ferromagnéticas finas empilhadas e isoladas entre si. Rotor (parte móvel): núcleo ferromagnético laminado – enrolamento de condutores paralelos. CARACTERÍSTICAS CONSTRUTIVAS CARACTERÍSTICAS CONSTRUTIVAS Bobinas: localizadas em cavas abertas no estator e alimentadas pela rede de CA. Podem ser ligadas em triângulo (∆) ou estrela (Y). ANALOGIA TRANSFORMADOR / MIT Estator Primário Rotor Secundário VISTA EXPLODIDA DOS DIVERSOS ELEMENTOS DO MOTOR Motor Gaiola de Esquilo MOTORES DE INDUÇÃO TRIFÁSICOS Características Construtivas Princípio Básico de Operação Curva Característica do MIT Perdas no MIT Tipos de MIT: Gaiola de Esquilo e Rotor Bobinado Tipos de Partida do MIT Operação e Manutenção Prática Aplicações PRINCÍPIO BÁSICO DE OPERAÇÃO Lei de Faraday: “Sempre que através da superfície abraçada por um circuito tiver lugar uma variação de fluxo, gera-se nesse circuito uma força eletromotriz induzida. Se o circuito é fechado será percorrido por uma corrente induzida”. Lei de Lenz: “O sentido da corrente induzida é tal que esta pelas suas ações magnéticas tende sempre a opor-se à causa que lhe deu origem”. CAMPO MAGNÉTICO Correntes trifásicas aplicadas às bobinas do estator: iA(t) = I.sen(ωt) [A] iB(t) = I.sen(ωt - 120º) [A] iC(t) = I.sen(ωt + 120º) [A] CAMPO MAGNÉTICO A fmm produzida pelas correntes trifásicas é dada por: ŢA(t) = I.sen(ωt) [A] ŢB(t) = I.sen(ωt - 120º) [A] ŢC(t) = I.sen(ωt + 120º) [A] CAMPO MAGNÉTICO Para as três bobinas defasadas de 120º, temos: Ţ(t) =1,5.N. I.sen(ωt) [A] CAMPO MAGNÉTICO DISPOSIÇÃO ESPACIAL DAS BOBINAS Ponto 4 FORÇA RESULTANTE Ponto 1 FORÇA RESULTANTE Ponto 2 FORÇA RESULTANTE Ponto 3 REPRESENTAÇÃO DE ENERGIA DO MOTOR PRINCÍPIO DE FUNCIONAMENTO O número de pólos irá determinar a velocidade do campo girante. Velocidade de rotação do campo girante (Velocidade Síncrona): 120 . f RPM NS n NS = velocidade do campo girante f = freqüência n = número de pólos ESCORREGAMENTO Diferença de velocidade que existe entre a velocidade síncrona do campo magnético girante e a velocidade um pouco menor na qual gira o disco é chamada escorregamento: NS NR s NS s = escorregamento NS = velocidade do campo girante NR = velocidade do rotor ESCORREGAMENTO R S s 1 S S S S = freqüência angular na corrente do estator R = freqüência angular na corrente do rotor = velocidade do rotor [rad/s] CORRENTE SOLICITADA PELO MOTOR O rendimento do motor é dado pela expressão: Pmec % Pel PMEC= Potência Mecânica PEL= Potência Elétrica A corrente nominal do motor, em amperes, pode ser obtida da seguinte expressão : HP 746 I K V fp V = tensão entre fases fp = fator de potência K = constante igual a 3 para trifásico HP = potência mecânica no eixo FORÇA ELETROMOTRIZ INDUZIDA Três condutores do rotor e sua relação com um campo magnético multipolar produzido por um enrolamento trifásico: FORÇA ELETROMOTRIZ INDUZIDA Corrente induzida Interação entre campos TORQUE NO MOTOR DE INDUÇÃO O Torque Desenvolvido em cada um dos condutores individuais do rotor na situação de motor parado: T = KT . Ø . IR . cos θR T = torque KT = constante de torque para o nº de pólos, enrolamento unidades empregadas etc Ø = fluxo produzido por cada pólo unitário do campo magnético girante que concatena o condutor do rotor IR . cos θR = componente da corrente do rotor em fase com Ø TORQUE NO MOTOR DE INDUÇÃO Torque de Partida TP = K . Ef2 Torque Máximo TMAX = (K . Ef2)/[2.(sT MAX.Xrb)2] CIRCUITO EQUIVALENTE PARA MOTOR DE INDUÇÃO O motor de indução pode ser analisado como um transformador contendo um entreferro e tendo uma resistência variável no secundário. por fase CIRCUITO EQUIVALENTE MODIFICADO MOTORES DE INDUÇÃO TRIFÁSICOS Características Construtivas Princípio Básico de Operação Curva Característica do MIT Perdas no MIT Tipos: Gaiola de Esquilo e Rotor Bobinado Tipos de Partida do MIT Operação e Manutenção Prática Aplicações CURVA CARACTERÍSTICA MOTORES DE INDUÇÃO TRIFÁSICOS Características Construtivas Princípio Básico de Operação Curva Característica do MIT Perdas no MIT Tipos: Gaiola de Esquilo e Rotor Bobinado Tipos de Partida do MIT Operação e Manutenção Prática Aplicações PERDAS NO MIT Perdas Elétricas Perdas Magnéticas Perdas Mecânicas Perdas Parasitas PERDAS ELÉTRICAS do tipo R.I2 Aumentam com a carga Para reduzir – aumenta-se a seção dos condutores do estator e do rotor PERDAS MAGNÉTICAS Lâminas e ferro do estator e do rotor Devidas a: - efeito histerese - correntes induzidas (de Foucault) Variam com a densidade de fluxo e a freqüência Para reduzir: - aumenta-se a seção do ferro (estator e rotor) - utiliza-se lâminas delgadas - melhoramento dos materiais magnéticos PERDAS MECÂNICAS Devidas a: - fricção por atrito - ventilação - oposição do ar Para reduzir – aperfeiçoar o sistema de ventilação PERDAS PARASITAS Stray losses ou perdas extraviadas Devidas a: - fuga do fluxo - distribuição de correntes não uniforme - imperfeições mecânicas - irregularidade na densidade de fluxo do ar Para reduzir: - otimização do projeto do motor - produção mais dedicada MOTORES DE INDUÇÃO TRIFÁSICOS Características Construtivas Princípio Básico de Operação Curva Característica do MIT Perdas no MIT Tipos de MIT: Gaiola de Esquilo e Rotor Bobinado Tipos de Partida do MIT Operação e Manutenção Prática Aplicações TIPOS DE MIT MIT tipo Gaiola de Esquilo MIT tipo Rotor Bobinado MIT TIPO GAIOLA DE ESQUILO ROTOR DO GAIOLA DE ESQUILO robusto barato rápida produção não exige coletor rápida ligação à rede VANTAGENS E DESVANTAGENS Construção do induzido mais: - rápida - prática - barata Torque de arranque reduzido em relação a corrente absorvida pelo estator MIT TIPO ROTOR BOBINADO CARACTERÍSTICAS Funcionamento Regime nominal – elementos do rotor em curto-circuito Para potências muito elevadas Preferencialmente quando as velocidades de serviço são variáveis MOTORES DE INDUÇÃO TRIFÁSICOS Características Construtivas Princípio Básico de Operação Curva Característica do MIT Perdas no MIT Tipos de MIT: Gaiola de Esquilo e Rotor Bobinado Tipos de Partida do MIT Operação e Manutenção Prática Aplicações TIPOS DE PARTIDA DO MIT Tipo Gaiola de Esquilo: correntes de partida de 5 a 10 vezes a corrente nominal Partida direta – dispositivo de controle Partida indireta Após a aceleração do motor – tensão nominal restabelecida SISTEMAS PARA PARTIDA INDIRETA Partida com Chave Estrela-Triângulo Partida com Chave Compensadora Partida com Chave Estática (partida eletrônica) Partida com Chave Série-Paralelo PARTIDA COM CHAVE ESTRELA-TRIÂNGULO Ligação das bobinas do enrolamento do estator: - Y: no instante da partida - : durante toda a operação Para motores de 6 ou 12 terminais Manual ou automático VANTAGENS E DESVANTAGENS Baixo custo Sem limite quanto ao número de manobras Correntes de linha de partida reduzidas Só para motores com 6 ou 12 terminais Ocupam muito espaço Tensão de linha = tensão em do motor Correto ajuste do instante de comutação PARTIDA COM CHAVE COMPENSADORA Autotransformador trifásico com derivações de 50, 65 e 80% da tensão nominal Os terminais do estator não sofrem qualquer manipulação Para motores com qualquer número de terminais, ligados em estrela ou triângulo PARTIDA COM CHAVE COMPENSADORA VANTAGENS E DESVANTAGENS Tensão menor na comutação Variação do “tap” (de 65 para 80% da tensão) Limitação da freqüência de manobra Em relação a chave Y: - maior - mais cara para uma mesma potência PARTIDA COM CHAVE ESTÁTICA Dispositivos de estado sólido de potência (tiristor) O valor RMS da tensão é controlado pelo ângulo de disparo do tiristor 3 conjuntos de pares de tiristores antiparalelos VANTAGENS E DESVANTAGENS Variação suave do torque e da corrente Não apresenta componentes móveis que geram arco Aumento da vida útil do dispositivo de partida Número reduzido de partidas por hora Maior complexidade PARTIDA COM CHAVE SÉRIE-PARALELO Somente para motores com 9 ou 12 terminais Ligação dos terminais do enrolamento: - em série: durante a partida - em paralelo: a plena carga Para ligações Y-YY e - Reduz a corrente de partida a 25% do seu valor para partida direta Somente para partida a vazio MOTORES DE INDUÇÃO TRIFÁSICOS Características Construtivas Princípio Básico de Operação Curva Característica do MIT Perdas no MIT Tipos de MIT: Gaiola de Esquilo e Rotor Bobinado Tipos de Partida do MIT Operação e Manutenção Prática Aplicações OPERAÇÃO E MANUTENÇÃO PRÁTICA Lubrificação Verificação periódica Limpeza Condições ambientais LUBRIFICAÇÃO Reduzir ao mínimo a fricção do procedimento Lubrificante adequado: - perdas por fricção elevada - curto período de vida dos procedimentos Cuidado com o excesso de massa lubrificante Lubrificantes sintéticos VERIFICAÇÃO PERIÓDICA Temperatura Condições elétricas e mecânicas do motor Visualizar o uso e a erosão dos componentes Inspeção de 6 em 6 meses LIMPEZA E CONDIÇÕES AMBIENTAIS Limpar a carcaça de motores que operam em ambientes com pó abundante Um aumento de 25° na temperatura do motor aumenta as perdas Joule em cerca de 10% MOTORES DE INDUÇÃO TRIFÁSICOS Características Construtivas Princípio Básico de Operação Curva Característica do MIT Perdas no MIT Tipos de MIT: Gaiola de Esquilo e Rotor Bobinado Tipos de Partida do MIT Operação e Manutenção Prática Aplicações APLICAÇÕES Grande aplicação (industriais e domésticas) - robustez - baixo preço - arranque fácil - não possui coletor - não produz faísca - manutenção reduzida Motor Monofásico – para baixas potências (1 a 2 kW) Motor Polifásico – para potências superiores APLICAÇÕES APLICAÇÕES APLICAÇÕES