Busca em Grafos Katia S. Guimarães [email protected] 1 Busca em Grafos OBJETIVO: Visitar todos os vértices e arestas do grafo de forma sistemática, para evitar repetições e conseqüente desperdício. Se o grafo é uma árvore enraizada, isto é, uma árvore na qual os vértices obedecem a uma hierarquia, a tarefa é simples. [email protected] 2 Busca em Árvores Enraizadas 1. Busca em pré-ordem Raiz visitada antes dos descendentes A B C E F D [email protected] 3 Busca em Árvores Enraizadas 2. Busca em pós-ordem Raiz visitada depois dos descendentes B E F C D A [email protected] 4 Busca em Árvores Enraizadas 3. Busca em in-ordem Raiz é visitada entre os descendentes Só faz sentido para árvores binárias ou similares (2-3, B, etc.) (Applet) [email protected] 5 Algoritmo Pré-ordem Algoritmo Pré-ordem(raiz) Se raiz não nula então Visite (raiz) Pré-ordem (left.raiz) Pré-ordem (right.raiz) [email protected] 6 Algoritmo Pós-ordem Algoritmo Pós-ordem(raiz) Se raiz não nula então Pós-ordem (left.raiz) Pós-ordem (right.raiz) Visite (raiz) [email protected] 7 Algoritmo In-ordem Algoritmo In-ordem(raiz) Se raiz não nula então In-ordem (left.raiz) Visite (raiz) In-ordem (right.raiz) [email protected] 8 Busca em Grafos com Ciclos Se o grafo contém ciclos, é preciso cuidar para evitar que arestas sejam visitadas mais de uma vez. 5 6 1 3 7 4 2 [email protected] 9 Busca em Grafos com Ciclos Exemplo: A partir do grafo abaixo obtemos 5 6 1 1 3 7 4 6 4 2 2 3 7 [email protected] 5 10 Busca em Grafos com Ciclos Se o grafo não é uma árvore, nós definimos um subgrafo dele que é uma árvore, para servir de “espinha dorsal”. Algoritmo básico: – Tome um vértice qualquer s. Marque s. – Enquanto houver arestas não visitadas, tome uma aresta (v, w) incidente a algum vértice já marcado. Marque (v, w) (explorada) e v, w (visitados). [email protected] 11 Busca em Grafos com Ciclos Há duas técnicas principais para busca: – Busca em Profundidade Tomar a aresta não marcada incidente ao vértice visitado mais recentemente. – Busca em Largura Tomar a aresta não marcada incidente ao vértice visitado menos recentemente. [email protected] 12 Busca em Profundidade JAVA Applet para uma Busca em Profundidade JAVA Applet para Busca em grafo direcionado com pilha [email protected] 13 Controle para Busca em Profundidade Main Procedure Inicialize pilha Q como vazia; Desmarque todos os vértices e arestas; Tome um vértice v qualquer; Inclua v em Q; P(v); Remova v de Q. 14 Algoritmo para Busca em Profundidade Procedimento P(v) Marque v como visitado (cinza); Para toda aresta (v, w) incidente a v faça: Se w não marcado então /* aresta de árvore */ {d[w] time; time++; pred[w] v; P(w) fim[w] time; time++} senão se w pai(v) então /* aresta de retorno */ senão /* aresta de árvore */ [email protected] 15 Árvore de Busca em Profundidade A busca em profundidade biparticiona o conjunto de arestas em: 1 5 6 4 6 1 3 4 2 7 2 - Arestas de Árvore - Arestas de Retorno 3 7 5 16 Teorema 23.6 (Teorema dos parênteses) Em qualquer busca em profundidade de um grafo (direcionado ou não direcionado) G = (V, E), para quaisquer dois vértices u e v, exatamente uma das três condições vale: - Os intervalos [d[u],f[u]] e [d[v], f[v]] são disjuntos, - O intervalo [d[u],f[u]] está contido no intervalo [d[v],f[v]], e u é um descendente de v na árvore de busca em profundidade, ou - Vice-versa. 17 Corolário 23.7 (Nesting dos intervalos dos descendentes) Vértice v é um descendente próprio do vértice u na floresta de busca em profundidade de um grafo G sse d[u] < d[v] < f[v] < f[u]. 18 Variações de Busca em Profundidade O algoritmo de Busca em Profundidade é usado como controle para muitas aplicações em tempo linear. 1 Ex. Componentes Biconexos (Tolerância a falhas em redes) 4 6 Ex: No grafo ao lado, os seguintes subgrafos gerados permanecem conexos se cair um link qualquer: G{1, 6} G{3, 7} G{1, 2, 3, 4, 5} [email protected] 2 3 7 5 19 Busca em Largura Cria um centro no vértice inicial e forma “níveis” ou “camadas” a partir deste nó. 1 5 6 1 4 6 3 5 7 4 2 3 2 7 20 Vértices Brancos, Cinza e Pretos - Brancos – Valor inicial - Cinza – Após serem descobertos - Pretos – Após a descoberta de todos os adjacentes. s 1 1 4 6 2 5 3 7 s 1 6 4 6 2 5 3 7 6 s 4 2 5 3 7 21 Busca em Largura Applet para Busca em Largura 22 Algoritmo para Busca em Largura Tome um vértice qualquer v. Coloque v na fila F. Enquanto F não for vazia faça v Primeiro elemento da fila F Para toda aresta (v, w) incidente a v faça Se w não marcado então Inclua w em F /* aresta de árvore */ senão se v = pai (w) então /* aresta de árvore */ senão /* aresta de cruzamento */ 23 Ao término de Busca em Largura A busca em largura biparticiona as arestas do grafo em arestas de árvore e arestas de cruzamento. 1 5 6 3 4 2 4 6 1 7 2 5 3 7 24 Correção de Busca em Largura (BL) Teorema 23.4 (Correção de BL) Seja G = (V, E) um grafo direcionado ou não direcionado, e suponha que o algoritmo BL é executado em G a partir de um dado vértive s V. Então, durante a sua execução, BL descobre todo vértice v V alcançável a partir do nó fonte s, e ao término, d[v] = distância (s, v) para todo v V ... 25 Busca em Largura vs. Distâncias Teorema 23.4 (Correção de Busca em Largura) ...... Além disso, para qualquer vértice v <> s alcançável a partir de s, um dos menores caminhos de compr. mínimo de s a v é o caminho de s a pred(v) seguido pela aresta (pred(v), v). 26 Variações de Busca em Largura O algoritmo de Busca em Largura também é largamente usado como controle para aplicações em tempo linear. Ex. Broadcast de mensagens em uma rede 27 Referência Bibliográfica Leiam o Capítulo 23 do livro de Cormen, Leiserson, Rivest (Págs. 465 a 497). Não esqueçam os problemas. 28