1 Publications 1.1 (updated on October 15, 2015) Papers (with peer review) in international journals 1. Morais, M.C., Ramos, P.F., Pacheco, A. and Schmid, W. (2015). On the misleading signals in simultaneous schemes for the mean vector and covariance matrix of multivariate i.i.d. output. Statistical Papers, http://link.springer.com/article/10.1007/s00362-015-0663-5 2. Morais, M.C., Okhrin, Y. and Schmid, W. (2015). Quality surveillance with EWMA control charts based on exact control limits. Statistical Papers, 56, 863–885. 3. Morais, M.C., Ramos, P.F., Pacheco, A. and Schmid, W. (2014). On the impact of falsely assuming i.i.d. output in the probability of misleading signals. REVSTAT, 12, 221–245. 4. Ramos, P.F., Morais, M.C., Pacheco, A. and Schmid, W. (2013). Stochastic ordering in the qualitative assessment of the performance of simultaneous schemes for bivariate processes. Sequential Analysis 32, 214–229. 5. Morais, M.C. and Pacheco, A. (2012). A note on the aging properties of the run length of Markov-type control charts. Sequential Analysis 31, 88–98. 6. Knoth, S., Morais, M.C., Pacheco, A. and Schmid, W. (2009). Misleading signals in simultaneous residual schemes for the mean and variance of a stationary process. Communications in Statistics — Theory and Methods 38, 2923–2943. (Special issue “Celebrating 50 Years in Statistics, Honoring Professor Shelley Zacks”.) 7. Morais, M.C, Okhrin, Y., Pacheco, A. and Schmid, W. (2008). EWMA charts for multivariate output: some stochastic ordering results. Communications in Statistics — Theory and Methods 37 (16), 2653–2663. 8. Morais, M.C. and Pacheco, A. (2007). Shewhart schemes with variable sampling intervals revisited. Sequential Analysis 26, 265–282. (Invited paper in the special volume of Sequential Analysis in honor of Walter Shewhart.) 9. Morais, M.C, Okhrin, Y., Pacheco, A. and Schmid, W. (2006). On the stochastic behaviour of the run length of EWMA control schemes for the mean of correlated output in the presence of shifts in σ. Statistics & Decisions 24, 397–413. 10. Morais, M.C. and Pacheco, A. (2006). Assessing the impact of head starts in the performance of one-sided Markov-type control schemes. Sequential Analysis 25, 405–420. 11. Morais, M.C. and Pacheco, A. (2006). Combined CUSUM-Shewhart schemes for binomial data. Economic Quality Control 41, 43–57. 12. Morais, M.C. and Pacheco, A. (2004). A note on the ageing character of the run length of Markov-type quality control schemes. Journal of Applied Probability 41, 1243–1247. 1 13. Mateus, P., Morais, M.C., Nunes, C., Pacheco, A., Sernadas, A. and Sernadas, C. (2003). Categorical foundations for randomly timed automata. Theoretical Computer Science, 308: 393–427. 14. Morais, M.C. and Pacheco, A. (2001). Some stochastic properties of upper one-sided X̄ and EWMA charts for µ in the presence of shifts in σ. Sequential Analysis 20, 1–12. 15. Morais, M.C. and Pacheco, A. (2000). On the performance of combined EWMA schemes for µ and σ: a Markovian approach. Communications in Statistics — Simulation and Computation 29, 153–174. 16. Ramalhoto, M.F. and Morais, M. (1999). Shewhart control charts for the scale parameter of a Weibull control variable with fixed and variable sampling intervals. Journal of Applied Statistics 26, 129–160. 17. Morais, M.C. and Pacheco, A. (1998). Two stochastic properties of one-sided exponentially weighted moving average control charts. Communications in Statistics — Simulation and Computation 27, 937–952. 18. Morais, M. and Natário, I. (1998). Improving an upper one-sided c-chart. Communications in Statistics — Theory and Methods 27, 353–364. 19. Ramalhoto, M.F. and Morais, M. (1998). EWMA control charts for the scale parameter of a Weibull control variable with fixed and variable sampling intervals. Economic Quality Control — Journal and Newsletter for Quality and Reliability 13, 23–46. 1.2 Chapters (with peer review) in books published abroad 1. Knoth, S. and Morais, M.C. (2015). On ARL-unbiased control charts. In Frontiers in Statistical Quality Control (Vol. 11), 95–117. Knoth, S. and Schmid, W. (eds.), Springer International Publishing Switzerland. 2. Morais, M.C., Ramos, P.F. and Pacheco, A. (2015). Strategies to reduce the probability of a misleading signal. In Frontiers in Statistical Quality Control (Vol. 11), 183–199. Knoth, S. and Schmid, W. (eds.), Springer International Publishing Switzerland. 3. Salvador, T. and Morais, M.C. (2014). The Traveling Salesman Problem and the Gnedenko Theorem. In New Advances in Statistical Modeling and Applications, 197– 206. Pacheco, A., Santos, R., Oliveira, M.d.R., and Paulino, C.D. (eds.). SpringerVerlag, Berlin. 4. Ramos, P.F., Morais, M.C. and Pacheco, A. (2013). Misleading signals in simultaneous residual schemes for the process mean and variance of AR(1) processes: a stochastic ordering approach. In Advances in Regression, Survival Analysis, Extreme Values, Markov Processes and Other Statistical Applications, 91–100. J.L. Silva, F. Caeiro, I. Natário, and C.A. Braumann (eds.). Springer-Verlag, Berlin. 2 5. Ramos, P.F., Morais, M.C., Pacheco, A. and Schmid, W. (2013). Misleading signals in simultaneous schemes for the mean vector and the covariance matrix of a bivariate process. Em Recent Developments in Modeling and Applications in Statistics Studies in Theoretical and Applied Statistics, 225–235. P.E. Oliveira, M.G. Temido, M. Vichi, and C. Henriques (eds.). Springer-Verlag, Berlin. 6. Morais, M.C., Okhrin, Y. and Schmid, W. (2012). Limit properties of EWMA charts for stationary processes. Em Frontiers in Statistical Quality Control 10, 69– 84. (H.J. Lenz, P.Th. Wilrich and Schmid, W. (eds.). Physica-Verlag, Heidelberg. 7. Ramos, P.F., Morais, M.C., Pacheco, A. and Schmid, W. (2012). Assessing the impact of autocorrelation in misleading signals in simultaneous residual schemes for the process mean and variance: a stochastic ordering approach. Em Frontiers in Statistical Quality Control 10, 35–52. (H.J. Lenz, P.Th. Wilrich e W. Schmid (eds.). Physica-Verlag, Heidelberg. 8. Morais, M.C. and Pacheco, A. (2006). Misleading signals in joint schemes for µ and σ. Em Frontiers in Statistical Quality Control 8, 100–122. Lenz, H.-J. e Wilrich, P.-Th. (eds.). Physica-Verlag, Heidelberg. 9. Morais, M.C. and Pacheco, A. (2004). A note on stochastic ordering criteria in SPC for the case of correlated output. Em Frontiers in Statistical Quality Control 7, 237–260. Lenz, H.-J. e Wilrich, P.-Th. (eds.). Physica-Verlag, Heidelberg. 1.3 Papers accepted for publication 1. Ralha, T., Morais, M.C. and Oliveira, M.R. (2015). On valid signals in joint schemes for the process mean and variance. Economic Quality Control. 2. Morais, M.C. and Pacheco, A. (2015). On hitting times for Markov time series of counts with applications to quality control. REVSTAT. 1.4 Papers submitted for publication 1. Morais, M.C. (2015). An ARL-unbiased np−chart. 1.5 Papers (with peer review) in proceedings of international conferences 1. Knoth, S. and Morais, M.C. (2013). On ARL-unbiased charts. In Proceedings of the XIth International Workshop on Intelligent Statistical Quality Control, 31–50. Knoth, S., Schmid, W. and Sparks, R. (eds.). 2. Morais, M.C., Ramos, P.F. and Pacheco, A. (2013). Strategies to reduce the probability of a misleading signal. In Proceedings of the XIth International Workshop on Intelligent Statistical Quality Control, 229–244. Knoth, S., Schmid, W. and Sparks, R. (eds.). 3. Morais, M.C. and Pacheco, A. (2004). Misleading signals in joint schemes for µ and σ. In Proceedings of the VIIIth International Workshop on Intelligent Statistical 3 Quality Control, 151–173. Grzegorzewski, P., Mrówka, E., Hryniewicz, Lenz, H.-J. and Wilrich, P.-Th. (eds.). 4. Morais, M.C. and Pacheco, A. (2001). Assessing the impact of correlation in the performance of residual schemes: a stochastic ordering approach. In Proceedings of the VIIth International Workshop on Intelligent Statistical Quality Control (Session: Statistical Product & Process Control II), 334–348. 5. Ramalhoto, M.F. and Morais, M. (1998). Some simple control charts for the location parameter of a Weibull control variable with fixed and variable sampling intervals. In Proceedings of the VI International Workshop on Intelligent Statistical Quality Control, 141–148. 6. Morais, M.C. and Pacheco, A. (1998). Comparing first passage times of Markovian processes. In Proceedings of the 2nd International Symposium on Semi-Markov Models: Theory and Applications (Session 4: Statistical Estimation II). Janssen, J. and Limnios, N. (eds.). 1.6 Dissertations 1. Morais, M.J.C. (2002). Stochastic Ordering in the Performance Analysis of Quality Control Schemes. Ph.D. thesis, Mathematics Department, Instituto Superior Técnico. Supervisor: Prof. Dr. A. Pacheco. 2. Morais, M.J.C. (1995). Cartas de controlo FSI e VSI para o parâmetro de escala da população Weibull tri-paramétrica. M.Sc. thesis, Mathematics Department, Instituto Superior Técnico. Supervisor: Prof. Dr. M.F. Ramalhoto. 3. Morais, M.J.C. (1992). Cartas de controlo com intervalos amostrais variáveis: Caracterı́sticas e Planeamento económico–estatı́stico (Control charts with variable sampling intervals: characteristics and econmical–statistical design). B.Sc. thesis, Mathematics Department, Instituto Superior Técnico. Supervisor: Prof. Dr. M.F. Ramalhoto. 1.7 Chapters (with peer review) in books published in Portugal 1. Casquilho, M., Constantino, M. and Morais, M.C. (2006). Sobre a amostragem de aceitação para a variável gaussiana inversa. (On acceptance sampling for the inverse Gaussian distribution.) In Ciência Estatı́stica, 267–277. Canto e Castro, L., Martins, E.G., Rocha, C., Oliveira, M.F., Leal, M.M. and Rosado, F. (eds.). Edições SPE, Lisboa. 2. Morais, M.C. and Pacheco, A. (2006). Ordenação estocástica. (Stochastic ordering.) In Ciência Estatı́stica, 81–84. Canto e Castro, L., Martins, E.G., Rocha, C., Oliveira, M.F., Leal, M.M. and Rosado, F. (eds.). Edições SPE, Lisboa. 3. Morais, M.C. and Pacheco, A. (2006). Ordenação estocástica: da curva de Lorenz ao controlo de qualidade. (Stochastic ordering: from the Lorenz curve to quality control.) In Ciência Estatı́stica, 85–98. Canto e Castro, L., Martins, E.G., Rocha, C., Oliveira, M.F., Leal, M.M. and Rosado, F. (eds.). Edições SPE, Lisboa. 4 4. Morais, M.C. and Pacheco, A. (2004). Taxas de alarme de esquemas de controlo markovianos. (Alarm rates of Markovian control schemes.) In Estatı́stica com Acaso e Necessidade, 483–491. Rodrigues, P.M.M., Rebelo, E.L. and Rosado, F. (eds.). Edições SPE, Lisboa. 5. Morais, M.C. and Pacheco, A. (2001). Ordenação estocástica na análise de desempenho de esquemas de controlo de qualidade. (Stochastic ordering in the performance analysis of quality control schemes.) In A Estatı́stica em Movimento, 247–260. Neves, M.M., Cadima, J., Martins, M.J. and Rosado, F. (eds.). Edições SPE, Lisboa. 6. Morais, M.C. and Pacheco, A. (2001). Misleading signals em esquemas conjuntos para µ e σ. (Misleading signals in simultaneous schemes for µ and σ.) In Um Olhar Sobre a Estatı́stica, 334–348. Oliveira, P. and Athayde, E. (eds.). Edições SPE, Lisboa. 7. Morais, M.C. and Pacheco, A. (1999). Comparação estocástica de tempos de primeira passagem: uma aplicação a controlo de qualidade, fiabilidade e filas de espera. (Stochastic comparison of first passage times: an application to quality control, reliability and queues.) In Afirmar a Estatı́stica: Um Desafio para o Século XXI, 303–314. Paulino, D., Pacheco, A., Pires, A. and Ferreira da Cunha, A. (eds.). Edições SPE, Lisboa. 8. Morais, M.J.C. and Pacheco, A. (1998). Ordenação estocástica: um pouco de história e aplicações. (Stochastic ordering: some history and applications.) In Estatı́stica: A Diversidade na Unidade, 221–235. Souto de Miranda, M. and Pereira, I. (eds.). Edições Salamandra, Lisboa. 9. Morais, M.J.C. (1998). Esquemas CEWMA para o controlo simultâneo de µ e de σ 2 – Uma abordagem Markoviana. (CEWMA schemes for the simultaneous control of µ and σ 2 — a Markovian approach.) In Estatı́stica: A Diversidade na Unidade, 207–219. Souto de Miranda, M. and Pereira, I. (eds.). Edições Salamandra, Lisboa. 10. Morais, M. and Ramalhoto, M.F. (1997). Cartas EWMA unilaterais superiores para o parâmetro de escala da população Weibull de mı́nimos tri-paramétrica: Que vantagens? (Upper one-sided EWMA charts for the scale parameter of the Weibull distribution: what advantages? ) In A Estatı́stica a Decifrar o Mundo, 247–262. Vasconcelos, R., Fraga Alves, I., Canto e Castro, L. and Pestana, D. (eds.). Edições Salamandra, Lisboa. 11. Morais, M. and Ramalhoto, M.F. (1996). Cartas EWMA unilaterais: Uma aplicação ao controlo de um parâmetro de escala. (Upper one-sided EWMA charts: an application to the control of a scale parameter.) In Bom Senso e Sensibilidade – Traves Mestras da Estatı́stica, 291-306. Branco, J., Gomes, P. and Prata, J. (eds.). Edições Salamandra, Lisboa. 12. Morais, M. and Natário, I. (1996). Como tornar mais eficaz uma carta c unilateral superior. (How to improve an upper one-sided c-chart.) In Bom Senso e Sensibilidade – Traves Mestras da Estatı́stica, 307–321. Branco, J., Gomes, P. and Prata, J. (eds.). Edições Salamandra, Lisboa. 5 13. Ramalhoto, M.F. and Morais, M. (1994). Polı́tica VSI aplicada às cartas de controlo X̄, CUSUM e EWMA. (Variable sampling intervals applied to the X̄, CUSUM and EWMA charts.) In A Estatı́stica e Futuro e o Futuro da Estatı́stica, 99–114. Pestana, P., Turkman, A., Branco, J., Duarte, L. and Pires, A. (eds.). Edições Salamandra, Lisboa. 1.8 Papers (with peer review) in proceedings of national conferences 1. Morais, M.C. and Pacheco, A. (2001). Evaluating the impact of misleading signals in joint schemes for µ and σ. Revista de Estatı́stica — Statistical Review, Proceedings of the 23rd. European Meeting of Statisticians 2/2001, 285–286. 2. Morais, M.J.C. (1998). Grafos, caixeiros viajantes e estatı́stica. (Graphs, travelling salesmen and Statistics.) In Actas das Jornadas de Aplicações da Matemática, 17– 26. Azenha, A., Jerónimo, M.A. and Rodrigues, J. (eds.). 3. Morais, M.J.C. (1998). PCV: Um velho problema revisitado estatisticamente. (TSP: an old problem statistically revisited.) In Actas da V Conferência do CEMAPRE, 439–458. Proença, I. and Mendes, Z. (eds.). 4. Ramalhoto, M.F. and Morais, M. (1995). Cartas de controlo para o parâmetro de escala da população Weibull tri-paramétrica. (Control charts for the scale parameter of the Weibull distribution.) In Actas do II Congresso Anual da Sociedade Portuguesa de Estatı́stica, 345–371. 5. Ramalhoto, M.F., Morais, M., Nunes, C. and Silva, R. (1992). Estudo de uma fila de espera com número variável de servidores. (On a queue with a variable number of servers.) In Actas da I Conferência em Estatı́stica e Optimização, 281–300. Turkman, A. and Carvalho, M.L. (eds.). 6. Ramalhoto, M.F., Morais, M., Nunes, C. and Silva, R. (1992). Técnicas de uniformização aplicadas ao estudo do comportamento transeunte de cadeias de Markov em tempo contı́nuo. (Uniformization techniques applied to the study of the transient behaviour of continuous time Markov chains.) In Actas da I Conferência em Estatı́stica e Optimização, 301–320. Turkman, A. and Carvalho, M.L. (eds.). 1.9 Other publications 1. Morais, M.C. (1999). Problemas de probabilidades — desafio às células cinzentas!!! (Probability problems — a challenge for the brain cells!!! ) TI-MAT No. 9, 6–8. 2. Morais, M. (1997). Resultados, mentiras e estatı́stica. (Results, lies and Statistics.) TI-MAT No. 5, 2–3. 6