Federal University of Santa Catarina - UFSC Post-graduation in Electrical Engineering - PPGEEL Power Electronics Institute - INEP Master Thesis Presentation: Study and Design of a Voltage Line Conditioner with Serial Compensation and Fed by Load Side Eng. MSc Thiago Batista Soeiro July, 2007 Presentation Contents • Introduction • Voltage Line Conditioner: Power Stage • Voltage Line Conditioner: Control Stage • Experimental Results • Conclusions Motivations 1- The increase of voltage-sensitive equipments results in greater demand for high-quality voltage sources; 2- The existence of standards limiting the harmonic pollution in electric power system; 3- To aid the national industries in the development of high-quality voltage sources. Main Objectives 1- To study concepts and topologies of voltage line conditioners; 2- To establish general voltage compensation methods to be applied in voltage line conditioners; 3- To evaluate the performance of the topology proposed under unbalanced and distorted system voltages; 4- To study and formulate control techniques to provide the conditioning of the load voltage 5- To develop and test a voltage line conditioner prototype to validate the analysis. Important Concepts io The Studied Topology was based on two + concepts: ZL d − vri + vi • The Principle of Serial Voltage Compensation, applied in Stabilizers in 1950 by Patchett vo ( vi , io , d ) − − vr Lo Rectifier S1 S2 S3 + • Indirect ac-ac Converter with Direct link presented by BongHwan Kwon in 2002 + vri vri − S5 S7 a S4 S6 b S8 Inverter − vds vdp Co + Important Concepts The Voltage Line Conditioner Operation Principle: vi′ + = vds − vds = vdsF + vdsH vo + io = iF + iH ZS vi = vF + vH vo vi′ − vri + Voltage Line Conditioner Generalization of Serial Voltage Conditioners: • The Serial Voltage Compensation: −Δv + + vo − + + vo vi − Conversor ca − ca Direct Compensation Carga Conversor Conversor CA-CA ca − ca Inversor Carga − − Δv + + vi Transf. + Filter − Voltage Line Conditioner − Δv Filter by the load side + − Δv Conversor Conversor CA-CA ca − ca Inversor Transf. + Filter − + + vo vi − Conversor Conversor CA-CA ca − ca Inversor − Carga vo vi Carga + + − + Voltage Line Conditioner • Feeding the ac-ac Converter: Conversor Compensador CA-CA sérieInversor By the Load Side Conversor Compensador CA-CA sérieInversor vo vi − − + vi − By the Line Side + vo Carga + Carga + − Voltage Line Conditioner Conversor Compensador CA-CA sérieInversor vo − + vi vaux − Auxiliary Source Carga + + − Voltage Line Conditioner • ac-ac Converter Isolation: + − vds + Co T1 + vf − vi + Lo Converter ac − ac vo Inverter By the Rectifier side − − − + By the inverter side vi − vds Co + vf − Conversor Converter ac − ac CA-CA Retificador T1 Lo + + vo Inversor Inverter − Voltage Line Conditioner • Conditioner Topologies: − vds + vi + Co + vf − Lo T1 Conversor Converter vo vi vf − vo Co Retificador Inverter − − − − vds + vi + Lo ac − ac CA-CA Inversor Inversor Inverter − + vds + T1 + + Conversor Converter ac − ac CA-CA Retificador − Co T1 + vf − Lo − T1 + + Conversor Converter Converter ac − ac vo vi vds + vf ac − ac CA-CA In verso r Inverter − − Fed by the line side + Lo Co vo Retificador Inverter − Voltage Line Conditioner • Conditioner Topologies: − vds + − T1 + Lo Conversor Converter ac − ac CA-CA Inversor vf Co i Inversor vo vf Retificador Inverter −− − vds − − + Co Lo T1 + Conversor Converter ac − ac CA-CA Inversor − Conversor Converter ac − ac CA-CA Retificador Inverter − vi + Lo vov Co + T1 ++ vi + vds vf vo + vds + Co vi Retificador Inverter Lo Conversor Converter ac − ac CA-CA Inversor − − Fed by the load side T1 vf + vo Retificador Inverter − Voltage Line Conditioner • Conditioner Topologies: − vds + T1 + Conversor Converter vi vf Co vo − − Conversor Converter ac − ac CA-CA Inversor vi + vf − Lo Co vo ac − ac CA-CA R etificador vo Inversor Inverter − − + vi Retificador Inverter − + Lo T1 Conversor Converter − vds + + Co vds + T1 + vf + Retificador Inverter − − + Lo ac − ac CA-CA In verso r vi − vds Co T1 + vf − Lo + + Conversor Converter ac − ac CA-CA Retificador − Fed by an auxiliary source vo Inversor Inverter − Voltage Line Conditioner: Power Stage − vds LS + Lds + T1 io + vi Lo + S5 iLo S7 S3 S1 b vr a S6 S8 Co S4 vo S2 − − Inverter Rectifier Modulation Strategy v0 (t ) PWM Inverter (S5 - S8) S1,4 (t ) S 2,3 (t ) vr (t) 0 Tr 2 Tr Bidirectional Rectifier (S1 - S4) t Main Waveforms Adding voltage vi vo 3 Level PWM Modulation Subtracting voltage Rectifier input voltage Rectifier input voltage vg1,4 vg 2,3 vr Rectifier vc vab Inverter 0 vds d⋅ Ts 2 Ts 2 vo vi t 0 π 2π t 0 π 2π Main Analytical Expression N g (t ) = N − d (t ) 1 N = ⋅ d (t ) Δ ΔI Leq = ΔVCo = Converter’s Static Gain Transformation ratio V0 ⋅ d ( t ) ⋅ (1 − d ( t ) ) 2 ⋅ N ⋅ f s ⋅ Leq ΔI Leq ⋅ ( N − d ( t ) ) 16 ⋅ N ⋅ f S ⋅ Co + Current ripple I o 2 ⋅ d ( t ) ⋅ (1 − d ( t ) ) 4 ⋅ f S ⋅ Co ⋅ ΔI Leq ⋅ ( N − d ( t ) ) ⋅ ( N − 1) Voltage ripple Voltage Line Conditioner: Control Stage LS LdP S5 S7 S3 S1 vi () t C0 S6 S8 S4 Sensor de Tensão S1 S2 S3 S4 vSrr vSrr Modulador Cv (s) Modulador v0(t) S2 Comando S5 S6 S7 S8 Carga Rede de Energia RS vo _ ref − + Compensador de Tensão Mathematical Model • Small signals model: • G(s), Transfer Function of output voltage vs. duty cycle; • F(s), Transfer Function of output voltage vs. input voltage . v0 ( s ) = F ( s ) ⋅ vi ( s ) + G ( s ) ⋅ d ( s ) vlo G (s) = = d vlo F (s) = = vl i − s ⋅ Leq ⋅ N 2 ⋅ Vo ZL ⋅ ( N − D) s ⋅ Leq ⋅ Co ⋅ N + 2 2 + Vo ⋅ ( N − D ) s ⋅ Leq ⋅ N 2 ZL N ⋅( N − D) s ⋅ Leq ⋅ Co ⋅ N + 2 2 s ⋅ Leq ⋅ N 2 ZL + ( N − D) + ( N − D) 2 2 Conditioner Analytical Study • Load Influence over circuit’s dynamic response: Conditioner Analytical Study There are some strategies to damp the voltage oscillation or compensate the absence of load: • To damp voltage oscillation with virtual resistance control strategy; • To insert a control loop to compensate abrupt voltage drop; • To insert input filter topologies; Virtual Resistance Line conditioner Block Diagram: N ⋅ RVirtual V0 ⋅ GPWM N −D N iˆ0 Vc ( s ) − + Gd̂PWM d̂ − Vo N + vˆLeq − + vˆi iˆLeq 1 s ⋅ Leq + D N RVirtual Vo ZL ⋅( N −D) − + + − iˆCo 1 sC0 v̂0 Converter Control RS LS LdP D5 S7 S6 Sensor de Corrente S3 D 3 S1 D1 a b vi () t D7 D6 S8 C0 D8 S4 D4 S2 v0(t) D2 Sensor de Tensão Comando S1 S2 S3 S4 S5 S6 S7 S8 Modulador + vSrr vSrr Carga S5 − Modulador Cv (s) vo _ ref − + + + Compensador de Tensão C Rv ( s ) − + Rede de Energia T Compensador de Rvirtual Ic ( s ) Experimental Results Prototype Vi = 220 ± 20% [ V ] Vo = 220 [ V ] So = 10 [ kVA ] Fr = 60 [ Hz ] FS = 20 [ kHz ] N =4 Leq ≈ 340 [ μ H ] Co = 20 [ μ F] Control Signals ac-ac converter voltage signals Rectifier Inverter Operation with Load Transient Without Virtual Resistance Control Loop With Virtual Resistance Control Loop 50% Load Transient Operation with input Transient • +20% transient in input voltage Vi(t): Operation with input Transient • -20% transient in input voltage Vi(t):. ): Operation with input Transient • THD correction: Nonlinear load Operation The greatest requirements in terms of dynamic response. + 100 μ H 10Ω vo − 10 mF Conclusions • Experimental Results: • The control strategy was efficient with instantaneous correction of the output voltage when faced with input voltage and load variations; • Capability of supplying an output voltage with low harmonic distortion; • When presented with the worst case scenario, a nonlinear load, the conditioner studied was able to correct the THD to fit the required standards of 5% (IEEE519/92); Conclusions • Contributions: • A generalization of serial line conditioners was presented through 12 possible topologies; • This work focused on the study of a serial line conditioner with an ac-ac indirect converter with direct link, fed by load side. The capacitive filter was positioned on the load side to make use of the line impedance as a multi-functional filter; • A control strategy was introduced to efficiently stabilize the output voltage of the studied structure; . Conclusions • Future works: • Study of three-phase voltage line conditioners: - Space vector Modulation; - Digital Control and Nonlinear Control Techniques; - Study of Rectifier control techniques; - Study of combined series and shunt active power filters for simultaneous compensation of voltage and current; - Hybrid and Matrix Converters; The End