Boundary layer Equations Contents: – Boundary Layer Equations; – Boundary Layer Separation; – Effect of londitudinal pressure gradient on boundary layer evolution – Blasius Solution – Integral parameters: Displacement thickness and momentum thickness 2004 Mecânica dos Fluidos II Prof. António Sarmento - DEM/IST Laminar Thin Boundary Layer Equations (d<<x) over flat plate flow, constant r and m. p y 0 Streamlines slightly divergent p x dpe dx Steady 2D Navier-Stokes Equations along x direction: u u 1 p 2u 2u u v 2 2 x y r x x y dpe dx 2004 Mecânica dos Fluidos II 2u Compared with y 2 Prof. António Sarmento - DEM/IST Laminar Thin Boundary Layer Equations (d<<x) over flat plate Laminar thin boundary layer equations (d<<x) for flat plates u u 1 dpe 2u u v 2 x y r dx y pe external pressure, can be calculated with Bernoulli’s Equation as there are no viscous effects outside the Boundary Layer Note 1. The plate is considered flat if d is lower then the local curvature radius Note 2. At the separation point, the BD grows a lot and is no longer thin 2004 Mecânica dos Fluidos II Prof. António Sarmento - DEM/IST Turbulent Thin Boundary Layer Equations (d<<x) over flat plate 2D Thin Turbulent Boundary Layer Equation (d<<x) to flat plates: u u 1 dpe 2u uu uv uw u v 2 x y r dx y x y z 0 0 Resulting from Reynolds Tensions (note the w term) 2004 Mecânica dos Fluidos II Prof. António Sarmento - DEM/IST Boundary Layer Separation Boundary Layer Separation: reversal of the flow by the action of an adverse pressure gradient (pressure increases in flow’s direction) + viscous effects mfm: BL / Separation / Flow over edges and blunt bodies 2004 Mecânica dos Fluidos II Prof. António Sarmento - DEM/IST Boundary Layer Separation Boundary layer separation: reversal of the flow by the action of an adverse pressure gradient (pressure increases in flow’s direction) + viscous effects 2004 Mecânica dos Fluidos II Prof. António Sarmento - DEM/IST Boundary Layer Separation Bidimensional (2D) Thin Boundary Layer (d<<x) Equations to flat plates: u u 1 dpe 2u u v 2 x y r dx y Close to the wall (y=0) u=v=0 : 2u 1 dpe 2 y y 0 m dx 2004 Similar results to turbulent boundary layer - close to the wall there is laminar/linear sub-layer region. Mecânica dos Fluidos II Prof. António Sarmento - DEM/IST Boundary Layer Separation Outside Close 2u 0 2 y Boundary layer: to the wall (y=0) u=v=0 : 2u 1 dpe 2 y y 0 m dx The external pressure gradient can be: o dpe/dx=0 <–> U0 constant (Paralell outer streamlines): o dpe/dx>0 <–> U0 decreases (Divergent outer streamlines): dpe/dx<0 <–> U0 increases (Convergent outer streamlines): o 2004 Same sign Mecânica dos Fluidos II Prof. António Sarmento - DEM/IST Boundary Layer Separation Zero pressure gradient: dpe/dx=0 <–> U0 constant (Paralell outer streamlines): 2u 2 0 y y d y u Curvature of velocity profile is constant No separation of boundary layer 2u 2 0 y y 0 Inflection point at the wall 2004 Mecânica dos Fluidos II Prof. António Sarmento - DEM/IST Boundary Layer Separation Favourable pressure gradient: dpe/dx<0 <–> U0 increases (Convergent outer streamlines): 2u 2 0 y y d y No boundary layer separation 2u 2 0 y y 0 2004 Curvature of velocity profile remains constant Mecânica dos Fluidos II Prof. António Sarmento - DEM/IST Boundary Layer Separation Adverse pressure gradient: dpe/dx>0 <–> U0 decreases (Divergent outer streamlines): 2u 2 0 y y d y Boundary layer Separation can occur 2u 2 0 y y 0 P.I. Curvature of velocity profile can change Separated Boundary Layer 2004 Mecânica dos Fluidos II Prof. António Sarmento - DEM/IST Boundary Layer Separation Sum of viscous forces: 2u 2 y Become zero with velocity Can not cause by itself the fluid stagnation (and the separation of Boundary Layer) 2004 Mecânica dos Fluidos II Prof. António Sarmento - DEM/IST Boundary Layer Separation Effect of longitudinal pressure gradient: dpe 0 dx (Convergent outer streamlines) dpe 0 (Divergent outer streamlines) dx Viscous effects retarded Viscous effects reinforced u 1 1 dpe ... Fuller velocity x u r dx Less full velocity profiles profiles Decreases BL growth 2004 Mecânica dos Fluidos II Increases BL growths Prof. António Sarmento - DEM/IST Boundary Layer Separation Effect of longitudinal pressure gradient: Fuller velocity profiles u 1 1 dpe ... x u r dx Less full velocity profiles Decreases BL growth Increases BL growths Fuller velocity profiles – more resistant to adverse pressure gradients Turbulent flows (fuller profiles)- more resistant to adverse pressure gradients 2004 Mecânica dos Fluidos II Prof. António Sarmento - DEM/IST Boundary Layer Sepaation Longitudinal and intense adverse pressure gradient does not cause separation => there’s not viscous forces 2004 Mecânica dos Fluidos II Prof. António Sarmento - DEM/IST Blasius Solution to Laminar Boundary Layer Equation over a flat plate with dpe/dx=0 Bidimensional (2D) Thin Boundary Layer (d<<x) Equations to flat plates: u u 2u u v 2 x y y u v 0 x y Boundary 2004 Condition: y=0 y=∞ Mecânica dos Fluidos II u=v=0 u=U Prof. António Sarmento - DEM/IST Blasius Solution to Laminar Boundary Layer Equation over a flat plate with dpe/dx=0 Blasius hypothesis: u f with U Ay xn The introdution of η corresponds to recognize that the nondimension velocity profile is stabilized. A and n are unknowns A Remark: e n y x y 2004 Mecânica dos Fluidos II nA n n 1 y x x x Prof. António Sarmento - DEM/IST Blasius Solution to Laminar Boundary Layer Equation over a flat plate with dpe/dx=0 Procedure: oUsing current function: u y v x o Replace u/U=f(η) e vatthe x boundary layer equation, choose n such that the resulting equation does not depend on x and A in order to simplify the equation. . o Remark: n n n d x x x u Uf U f d d y y A A A F 2004 Mecânica dos Fluidos II Prof. António Sarmento - DEM/IST Blasius Solution to Laminar Boundary Layer Equation over a flat plate with dpe/dx=0 n x From: U F A results: UF o u y u nU F o x x u UA n F o y x 2u UA2 o 2 n F 2 y x o 2004 U v nx n 1 F nx n 1 F x A Mecânica dos Fluidos II Prof. António Sarmento - DEM/IST Blasius Solution to Laminar Boundary Layer Equation over a flat plate with dpe/dx=0 We will obtain: u u 2u u v 2 x y y Unx2 n1 F FF 0 2 A o Making n=1/2 and A U the equation comes: 2F F F 0 with Boundary ux,0 0 vx,0 0 ux, U 2004 U y x Conditions: UF 0 0 F F 0 0 UF U Mecânica dos Fluidos II F 0 0 F 0 0 F 1 Prof. António Sarmento - DEM/IST Blasius Solution to Laminar Boundary Layer Equation over a flat plate with dpe/dx=0 Graphical Solution: U u u y x U F F F 1,2 U 0,8 0,4 0 0 2004 2 0 1 2 3 4 5 6 7 8 Mecânica dos Fluidos II 0 0,3298 0,6298 0,8461 F0,9555 0,9916 0,999 6 4 0,999 U 1 y x 0,3321 0,323 0,2668 0,1614 0,0642 0,0059 0,0024 8 0,0002 0,0001 Prof. António Sarmento - DEM/IST 10 Blasius Solution to Laminar Boundary Layer Equation over a flat plate with dpe/dx=0 Solution: U u F F y x U 0 1 2 3 4 5 6 7 8 2004 0 0,3298 0,6298 0,8461 0,9555 0,9916 0,999 0,999 1 0,3321 0,323 0,2668 0,1614 0,0642 0,0059 0,0024 0,0002 0,0001 Mecânica dos Fluidos II oShear stress at the wall u 0 m mU U F 0 y y 0 x o Friction coefficent 0 2 F 0 0,664 c f 1 2 Ux Re x rU 2 Prof. António Sarmento - DEM/IST Blasius Solution to Laminar Boundary Layer Equation over a flat plate with dpe/dx=0 Solution: U u F F y x U 0 1 2 3 4 5 6 7 8 0 0,3298 0,6298 0,8461 0,9555 0,9916 0,999 0,999 1 0,3321 0,323 0,2668 0,1614 0,0642 0,0059 0,0024 0,0002 0,0001 o Drag L D 0 dx o 1 U mU F 0 2 L o Drag Coefficent D 1,328 CD 1 Re L rU 2 L 2 Re L 2004 Mecânica dos Fluidos II Prof. António Sarmento - DEM/IST UL Blasius Solution to Laminar Boundary Layer Equation over a flat plate with dpe/dx=0 Solution : o Boundary layer thickness U u F F y x U u y d 0,99U 0 1 2 3 4 5 6 7 8 2004 0 0,3298 0,6298 0,8461 0,9555 0,9916 0,999 0,999 1 0,3321 0,323 0,2668 0,1614 0,0642 0,0059 0,0024 0,0002 0,0001 Mecânica dos Fluidos II η=5 d 5 5 x Ux Re x o Shear stress at y=d d F 5 1,8% 0 F 0 Prof. António Sarmento - DEM/IST Blasius Solution to Laminar Boundary Layer Equation over a flat plate with dpe/dx=0 Displacement thickness: 1 dd U 1 * d dd U d U u dy 0 d U u dy Ud d Ud udy 0 0 Ideal Fluid flow rate Déficit of flow rate due to velocity reduction at BD U d Mecânica dos Fluidos II Real Flow rate U u dy 0 2004 Prof. António Sarmento - DEM/IST Blasius Solution to Laminar Boundary Layer Equation over a flat plate with dpe/dx=0 Displacement thickness : 1 dd U d U u dy 0 1 dd U U u dy 0 d Ud d Ud udy 0 Déficit of flow rate due to velocity reduction at BD Ideal Fluid flow rate q U d d d 2004 Mecânica dos Fluidos II Prof. António Sarmento - DEM/IST Real Flow rate Blasius Solution to Laminar Boundary Layer Equation over a flat plate with dpe/dx=0 Displacement thickness : 1 dd U d 1 dd U U u dy 0 d U u dy 1 d d d udy U0 0 Deviation of outer streamlines Initial deviation of BD δ δd q/U LC Section where the streamline become part of boundary layer 2004 Mecânica dos Fluidos II Prof. António Sarmento - DEM/IST Blasius Solution to Laminar Boundary Layer Equation over a flat plate with dpe/dx=0 Blasius Solution for displacement thickness: dd x ou com Re x Ux dd 0,344 d δ dd q/U 2004 1,72 Re x LC Mecânica dos Fluidos II Prof. António Sarmento - DEM/IST Blasius Solution to Laminar Boundary Layer Equation over a flat plate with dpe/dx=0 Momentum thickness: 1 dm 2 U 1 dm 2 U d U u udy U u udy 0 0 d d d d 0 0 0 0 U 2d m U udy u 2 dy d 2 2 u dy U udy U dm 2 2 d d d d m u dy U U d d d 0 2004 Mecânica dos Fluidos II Prof. António Sarmento - DEM/IST Blasius Solution to Laminar Boundary Layer Equation over a flat plate with dpe/dx=0 Momentum flow rate through a section of BD: d qqmx ru 2 dy rU 2d rU 2d d rU 2d m 0 U rUd U rUd d Momentum flow rate of uniform profile Reduction due to deficit of flow rate 2004 Mecânica dos Fluidos II U rUd m Reduction due to deficit momentum flow rate at BD Prof. António Sarmento - DEM/IST Blasius Solution to Laminar Boundary Layer Equation over a flat plate with dpe/dx=0 Longitudinal momentum balance between the leading edge and a cross section at x: D qqmx x 0 qqmx x x rU 2 d d d rU 2d m rU 2 d d d dm δ dd d-dd LC x 2004 Mecânica dos Fluidos II Prof. António Sarmento - DEM/IST Blasius Solution to Laminar Boundary Layer Equation over a flat plate with dpe/dx=0 Blasius Solution to momentum thickness: dm 0,664 x Re x or 2004 with Re x dm 0.133 d Mecânica dos Fluidos II Prof. António Sarmento - DEM/IST Ux Laminar Boundary Layer Equations Contents: – Thin Boundary Layer Equations with Zero Pressure Gradient; – Boundary Layer Separation; – Effect of longitudinal pressure gradient on the evolution of Boundary Layer – Blasius Solution – Local Reynolds Number and Global Reynolds Number – Integral Parameters: displacement thickness and momentum thickness 2004 Mecânica dos Fluidos II Prof. António Sarmento - DEM/IST Blasius Solution to Laminar Boundary Layer Equation over a flat plate with dpe/dx=0 Recommended study elements: – Sabersky – Fluid Flow: 8.3, 8.4 – White – Fluid Mechanics: 7.4 (sem método de Thwaites) 2004 Mecânica dos Fluidos II Prof. António Sarmento - DEM/IST Exercise Large plate with neglectable thickness, lenght L=2m. Parallel and non-disturbed air flow. (r=1,2 kg/m3, m=1,810-5 Pa.s) with U=2 m/s. Zero pressure gradient over the flat plate. Transition to turbulent at Rex=106. r=1,2 kg/m3, m=1,810-5 Pa.s (Rex)c =106. U=2m/s dpe dx 0 L=2m 2004 Mecânica dos Fluidos II Prof. António Sarmento - DEM/IST Exercise r=1,2 kg/m3, m=1,810-5 Pa.s (Rex)c =106. dpe dx 0 U=2m/s L=2m a) Find boundary layer thickness d at sections S1 and S2, at distance x1=0,75 m and x2=1,5 m of the leading edge Find xc: 5 1 , 8 10 1,2 6 xc Re x c 10 7,5m U 2 Laminar Boundary layer at x1 and x2 – We can apply Blasius Solution d 5 2004 Mecânica dos Fluidos II Prof. António Sarmento - DEM/IST x Re x Exercise a) Find boundary layer thickness d at sections S1 and S2, at distance x1=0,75 m and x2=1,5 m of the leading edge Laminar Boundary layer at x1 and x2 – We can apply Blasius Solution d 5 x 2 0,75 5 10 1,5 105 x1 0,75m Re x1 x2 1,5m Re x 2 2 105 2004 Mecânica dos Fluidos II d1 0,75 5 5 Re x 0,0119m 10 d 2 0,0168m Prof. António Sarmento - DEM/IST Exercise r=1,2 kg/m3, m=1,810-5 Pa.s (Rex)c =106. dpe dx 0 U=2m/s y=d(x) L=2m b) Check that it is a thin boundary layer. A: Thin Blayer if d/x<<1: Whyd/x at 2 is lower than d/x at 1? 2004 Mecânica dos Fluidos II 0,0119 d 0,0159 0,75 x 1 0,0168 d 0,0112 1,5 x 2 Prof. António Sarmento - DEM/IST Exercise r=1,2 kg/m3, m=1,810-5 Pa.s (Rex)c =106. dpe dx 0 U=2m/s Streamline d y1=? x1=0,75m L=2m x2=1,5m d) Find the value of y1 at x1 of the streamline passing through the coordinates x2=1,5 and y2=d. A: We have the same flow rate between the streamline and the plate at both cross sections q U d d d Flow rate through a cross section of BD: Flow rate through section 2: Flow rate through section 1: 2004 Mecânica dos Fluidos II q2 U d d d 2 y1 d 2 d d 2 d d1 y1 d1 y1 0 0 d1 q1 udy udy udy U d d d 1 U y1 d1 Prof. António Sarmento - DEM/IST Exercise r=1,2 kg/m3, m=1,810-5 Pa.s (Rex)c =106. dpe dx 0 U=2m/s Linha de corrente y1=? x1=0,75m L=2m d x2=1,5m d) Find the value of y1 at x1 of the streamline passing through the coordinates x2=1,5 and y2=d. A: We have the same flow rate between the streamline and the plate at both cross sections Laminar BD: d d 0,344d y d d d 1 2 d2 d1 0,0168m 0,0058m 0,0041m 2004 y1=0,0151m Mecânica dos Fluidos II Prof. António Sarmento - DEM/IST Exercise r=1,2 kg/m3, m=1,810-5 Pa.s (Rex)c =106. dpe dx 0 U=2m/s L=2m e) Find the force per unit leght between sections S1 and S2. A: There are no other forces applied except that imposed by the resistance (Drag) of plate: The applied force between the leading edge and the cross section at x is: Laminar BD: d m2 0,133d 2 0,00223m d m1 0,133d1 0,00158m D0, x rU 2 d m x d m 0,133d Drag force to section 2: D0,2=0,0107N/m Drag force to section 1: D0,1=0,0076N/m Drag force between 1 and 2: D1,2=D0,2-D0,1=0,0031N/m 2004 Mecânica dos Fluidos II Prof. António Sarmento - DEM/IST Exercise r=1,2 kg/m3, m=1,810-5 Pa.s (Rex)c =106. U=2m/s dpe dx 0 L=2m f) True or False?: ”Under the conditions of the problem, if the plate was sufficiently long (L ), the boundary layer would eventually separate? False: The BD will separate only with adverse pressure gradient. The drag forces will decrease with the velocity over the plate. The drga forces are not able to stop the fluid flow. 2004 Mecânica dos Fluidos II Prof. António Sarmento - DEM/IST