Equatorial Spread F(ESF) intensity quantification from ionograms M. A. Abdu1 , I. S. Batista1, B. W. Reinisch 2, J. W. MacDougall3, J. H. A. Sobral1 1Instituto Nacional de Pesquisas Espaciais, Sao Jose dos Campos, Brazil. [email protected] 2Center for Atmospheric Research, University of Massachusetts,600 Suffolk Street, Lowell, MA, USA 3 Department of Electrical Engineering, University Western Ontario, London, Ont., Canada N6A 5B9 Ionosondes are widely used in the investigation of the ESF, and therefore a quantitative assessment of the intensity of an ESF event from ionograms is an important question; The degree of range spreading of the F layer trace has been widely used as a very approximate index of the event intensity in such a way that the index numbers 1, 2 and 3 indicate, weak, medium and strong events, that corresponds to range spreading <100 km, >100 km <200 km and > 200 km respectively. Here we present and discuss what appears to be a more precise and practical way to quantify the ESF intensity, and it is based on the maximum frequency back-scattered by the irregularities and that is registered in the ionogram as fop. Chapagain et al-2009 Abdu and Brum, 2009 EPS Relationship between spread range and fop COPEX Sites & SL, Fz, CP 15 10 o 30 N 5 LATITUDE -5 -10 Boa Vista o 20 N 0 SL o 10 N r uato q E Dip JIC -15 FZ Cachimbo o 10 S -20 Campo Grande o 20 S -25 CP 30 S o -30 o S 40 -35 -80 -75 -70 -65 -60 -55 -50 LONGITUDE -45 -40 -35 -30 SAO LUIS, BRAZIL Monthly averaged Spread F Distribution in terms of fop, the top frequency of the spread F trace for the year 2002-2003 12 10 8 6 4 2 0 12 10 8 6 4 2 0 12 10 8 6 4 2 0 12 10 8 6 4 2 0 Monthly averaged Spread F Distribution in terms of the Spread Range in KM for the year 2002-2003 SAO LUIS 250 Jul. 2002 Aug. Sep. 200 July 2002 Aug Sep 150 100 50 0 KM Oct. Nov Dec. 200 00 03 06 09 12 15 18 21 24 00 03 06 09 12 15 18 21 24 00 03 06 09 12 15 18 21 24 Oct Nov Dec 150 100 50 0 250 Jan. 2003 Feb. Mar. 200 00 03 06 09 12 15 18 21 24 00 03 06 09 12 15 18 21 24 00 03 06 09 12 15 18 21 24 Jan 2003 Feb Mar 150 100 50 0 00 03 06 09 12 15 18 21 24 00 03 06 09 12 15 18 21 24 00 03 06 09 12 15 18 21 24 KM Apr. May Jun.2003 200 Apr May Jun 2003 150 100 50 00 03 06 09 12 15 18 21UT 00 03 06 09 12 15 18 21 UT 00 03 06 09 12 15 18 21 UT 0 00 03 06 09 12 15 18 21 LT 00 03 06 09 12 15 18 21 LT 00 03 06 09 12 15 18 21 LT 250 SAO LUIS, 2002-03 Spread Range (KM) 200 150 100 50 Equation y = a + b* Adj. R-Squar 0.98435 0 0301h'p 0301h'p 0 2 4 Intercept Slope Value Standard Erro -1.5752 1.28609 18.659 0.24139 6 fop (MHz) 8 K h'p 0209h'p 0210h'p 0211h'p 0212h'p 0301h'p 0302h'p 0303h'p 0304h'p 0305h'p 0306h'p 0307h'p Linear Fit of 0301h'p 10 12 250 SAO LUIS, 2002-03 150 100 K h'p 0209h'p 0210h'p 0211h'p 0212h'p 0301h'p 0302h'p 0303h'p 0304h'p 0305h'p 0306h'p 0307h'p Linear Fit of 0301h'p 50 Equation y = a + b* Adj. R-Squar 0.98435 0 0301h'p 0301h'p Intercept Slope Value Standard Erro -1.5752 1.28609 18.659 0.24139 250 0 2 4 6 fop (MHz) 8 10 12 There is higher probability of intense events when the occurrence is more frequent SL - 07/2002 - 06/2003 0207 0208 0209 0210 0211 0212 0301 0302 0303 0304 0305 0306 200 Spread F range (km) Spread Range (KM) 200 150 100 50 0 -10 0 10 20 30 40 50 60 70 80 Monthly SF Occurrence Percentage (%) 90 100 110 RESULTS FROM CONJUGTE POINT OBSERVATIONS 350 300 Cachimbo All days 250 h`P 200 150 100 50 Equation y = a + b*x Adj. R-Square 0.32452 Value h`P Intercept h`P Slope Standard Error -5.02237 5.08362 16.2918 0.51096 0 2 4 6 8 10 12 14 16 18 20 foP 350 350 BOA VISTA 300 250 250 200 200 h`P h`P 300 150 100 CAMPO GRANDE 150 100 50 Equation y = a + b*x Adj. R-Square 0.4435 h`P h`P Intercept Slope Value Standard Error 25.1258 5.44391 6.64726 0.26015 50 0 Equation Adj. R-Square y = a + b*x 0.40327 h`P h`P Intercept Slope Value Standard Error 23.58915 3.30501 5.17468 0.15889 0 0 5 10 15 foP 20 25 30 0 5 10 15 foP 20 25 30 Linear Fit of h`P-Spread Fange (KM) 220 COPEX 2002 200 BV 180 160 140 CX 120 100 CG 80 60 40 20 0 5 10 15 fop 20 25 MHz For a given spread range the fop is larger over low latitude than near the equator. This means that the irregularities grow more intense over low latitude than over dip equator. There is an asymmetry between the conjugate sites. Abdu et al., 2009 Conclusions Ionogram signature of the ESF/plasma bubble irregularities can provide a quantification of the event intensity; Coherent back-scattering is an important component of signal returns constituting spread F trace in equatorial ionograms; The spread range increases with increase of the top frequency of the irregularity trace; While the degree of range spreading (in km) is a measure of the ESF intensity, it is less suitable as an index of the ESF intensity than is the fop; The ESF irregularity growth is more intense over low latitude than over the equatorial region; Hemispheric asymmetry exists in the irregularity intensity due probably to local conditions favoring the irregularity growth.