HOW TO DETERMINE PHYTOPLANKTON? Silvana V. Rodrigues Determination of phytoplynkton composition and biovolume Utermöhl method:: Advantage: asy sampling, long storage times Disadvantage: requires a lot of time, and specialists Results: relative contribution of algas classes x biovolume HOW TO DETERMINE PHYTOPLANKTON ? peridinina O O O CH 3COO OH Dinoflagelados Clorophyta Cryptophyta Cyanobacterias OH aloxanthin HO http: //oceancolor.gsfc.nasa.gov/.../BIOLOGY/ Importance of chlorophyll a 1.000 milhão tons produzidas por ano na terra e no mar indicator único da biomassa aquática parâmetro bioquímico mais freqüentemente medido em oceanografia Cloroplasto struggle.net/history/images/ molecule.jpgwww.molecularexpressions.com fig.cox.miami.edu/.../phts/c8.10x21.overview.jpg Function of pigments in photosynthetic organisms chlorophyll a: light absorption (“Light harvesting complexes”) electron donor and acceptor in reative centers Carotenoids: Light absorption Protection of chlorophyll (“quenching “ of Chl photoinduced triplet state ) and quenching of O2 singlet state . divisão/classe nome comum gên espéc. Algas marrons(clorofilas a e c) Bacillariophyta diatomáceas 210 Desconh. Dinophyta dinoflagelados 550 4000 Crysophyta: Chrysophyceae Rapidophyceae Haptophyta Primnesiophyceae Xantophyta flagelados marrom-amarel. Crysophytas,silicoflagelados raphydophytas (cloromonadas) flagelados marrom-amarel. cocolitoforídeos algas verde-amareladas 120 4 1000 9 50 50 500 600 Cryptophyta criptomonadas 8 >50 Eustigmatophyta algas amarelo-esverdeadas 6 12 Chlorophyta Clorophyceae Algas verdes Prasinophyceae Flagelados verdes Euglenophyta Euglenoides Algas vermelhas (clorofila a e biliproteínas) 350 13 43 2500 120 650-800 Rhodophyta 3 10 Algas verdes (clorofilas a e b) Algas vermelhas Algas azuis (Cyanobacteria) ( clorofila a e biliproteínas) Cyanophyta Prochlorophyta Cianobactérias proclorofitas Characteristics which make it possible to use algal pigments (chlorophylls, carotenoids and phycobiliproteins) as chemotaxonomic markers They are present in all photosynthetic algae, but absent in most bacteria, protozoa and detritus Many occur only in specific classes or even genera, allowing the determination of phytoplankton taxonomic composition at least at class level, or better They are strongly coloured, and in the case of chlorophylls and phycobiliproteins are fluorescent, what allows their detection with high sensitivity, Most of them are labile and esily dgraded after cell death, allowing to distinguish living from dead cells Hystorical overview 1952: chlorophyll was recognized as a selective phytoplankton marker, in the presence of other biological components (zooplankton, bacteria, detritus) 1984-1987: HPLC methods for the determination of chls, carotenoids and phytoplankton degradation products Use of pigment chemotaxonomy for recognition, in field samples, of phytoplanktonic classes not detected since then, because of preservation problems or filtration losses. »alloxanthin (Cryptophyta) »chlor b (Chlorophyta and Prasinophyta) »zeaxanthin (Cyanobacteria) »19’-hexanoiloxifucoxanthin (Prymnesiophyta) »divynil-chlorophyill a (Proclorophyta) Chlorophylls: 132 -Metilcarboxilates of Mg-phytoporphyrin (double bond in D ring): Cl c, Mg-phytoclhorin: Cl a, Cl b Phytil at C-173 (Cl a and b) Acrílic acid at C17: Cl c Propionic acid at C17: Cl a and b Mg coordination complexes with cyclic tetra-pyrrols Macrocicles with five member rings Chlorophylls: 132 -Metilcarboxilates of Mg-phytoporphyrin (double bond in D ring): Cl c, Mg-phytoclhorin: Cl a, Cl b Phytil at C-173 (Cl a and b) Acrílic acid at C17: Cl c Propionic acid at C17: Cl a and b Oxo substituent at C-131 methyl-carboxilate groups at C-132 - H2C H2C CH3 Mg chlorophyll a N O H CH3 H3C H H3C H2C CH3 H3C H N N CH3 H3C H CH3 DVchlorophyll b H H CH3 Molecule drawings:N. Montoya N O O H3C H N H H3C O COOCH3 CH3 O Mg DV-chlorophyll a H CH2 N H H3C H H3C CH3 H H3C CH3 CH2 N O H3C H H2C Mg H3C H3C CH3 H3C N N O COOCH3 O O H H O O COOCH 3 chlorophyll b N CH3 H3C H H N H CH3 H3C N N Mg H CH3 H3C N N O CH3 H3C N H O COOCH 3 O CH3 H3C H3C H H3C H CH3 H2C CH3 CH3 H3C N N Mg N N H3C CH3 H O OH O COOCH 3 chlorophyll c1 H2C CH3 H2C H3C H3C N N Mg N H3C CH3 H O OH N CH3 H OH chlorophyll c2 N H3C O COOCH 3 Molecule drawings:N. Montoya N N Mg N COOCH 3 CH2 CH2 chlorophyll c3 O COOCH 3 Degradation by chemical processes: Molecules become chemically and fotochemically more labile in organic solvents than in the cells H2C CH3 H3C Loss of metal CH3 Chla Phaeophitin N N Mg N H H3C in organic solvents N CH3 In dilute acids H H O under high intensity of light O COOCH 3 O CH3 H3C H3C H H3C H CH3 Degradation by chemical processes: H2C CH3 H3C CH3 N N Mg N H Allomerization (oxidation by O2): H3C Epimerization (HPLC: in SiO2): N CH3 H H O Cl enolate Cla’, b’ O COOCH 3 O •Chl a 132 Hydroxiclhorophyll a H3C •Chl a Cl a - Hyidroxilactone. In alcoholic or hydro-alcoholic solutions Specially in pH >7 CH3 H3C H H3C H CH3 Both processes can be minimized by decreasing the temperature Degradation by chemical processes: H2C CH3 H3C CH3 N N Mg N H H3C N CH3 H H O COOCH 3 O O Loss of phytil group Cl chlorophyillide CH3 H3C H3C H H3C H CH3 In methanol or ethanol in basic medium Biodegradation: To cyclic tetra-pirrols perifercally modified (enzymatically, Specially in the absence of light and O2): H2C (chlorophyllase) chlorophillide formation CH3 CH3 H3C N N Mg N H Hydrolisis of the phytil ester Loss of metal: Mg-dequelatase Formation of phaeophytins H3C Decarboximetilation N Formation of CH3 pirophaeophytins e pirophaeophorbides H H O O COOCH 3 O CH3 H3C H3C H Allomerization Epimerization (Chl-oxidase) H3C H CH3 Biodegradation: To linear tetra pirrols H2C CH3 5 4 H3C N N Normally by oxidative opening of the macrocycle ring, between C-4 and C-5, C-5 stays as an aldehyde CH3 Mg N H H3C N CH3 H H O O COOCH 3 O CH3 H3C H3C H H3C H CH3 Carotenoids Derive from carotene: C40H56 β- β- carotene Isoprenoid units Polyen: Absorbtion of light. COLOUR -carotene: -carotene: -carotene: -carotene: lycopene: ,-carotene ,-carotene ,-carotene ,-carotene ,-carotene Properties More stable in phytoplankton and in plants than chlorophylls: they don‘t have N, so can‘t be used in enzymatic amino-acid building. Example: Leaves lose the green colour in autumn (chlorophyll), But don‘t lose colours due to carotenoids Polyene chain is responsible for instability: Oxidation by air or peroxides Electrophyle addition ( H+ and Lewis acids) Isomerization E/Z caused by heat, light or chemicals, Undergo reactions at the ends of the molecules Production of artefacts Acetil-CoA Geranylgeranyldiphosphate Geranylgeranyldiphosphate Biosynthesis: occurs in thylakoid membranes Phytoene Dessaturation Lycopene Ciclization , -carotene , -carotene Hydroxilation lutein Zeaxanthin Deepoxidation Dark Light Anteraxanthin Dark Light Deepoxidation Violaxanthin Epoxidation Epoxidation VIOLAXANTHIN CICLE Rearrangement Neoxanthin Hydroxilation Can occur in the dark Depends a lot on light DIADINOXANTHIN CICLE Diadinoxantin epoxidation + 2H + O2 - H2O Diatoxanthin DARK LIGHT + 2H - H2O Carotenoids C40H56 β- β- carotene Enzimatic hydroxilation Epoxidation Carboxi (CO2H), carbometoxi (CO2Me) ou metoxi (OMe) Acetates (OCOMe) e lactones Aldehydes, ketones Hydroxicarotenoids as fatty acid esters, or as Glycosides or glycosylesters, others as sulphates Xantophylls Isoprenoids Zeaxanthin isomers Lutein Acetilenic Diatoxanthin Alenic fucoxanthin Norcarotenoids ( skeleton C37) Peridinin C39H50O7 In acid medium Epoxides rearrange (5,6 to 5,8 form) 7 6 8 5 violaxanthin 7 6 8 5 neoxanthin In basic medium: In general stable exception: esters are hydrolysed some compounds suffer structural change (fucoxanthin, peridinin) fucoxanthin Distribution of chlorophylls among divisions/classes of phytoplankton Raphidophyceae Chrysophyceae Prymnesiophyceae DVChlb Dinophyta DVchla Bacillariophyta MgDVP Eustimatophyta Tipo pyhtilat. Chlc Euglenophyta Chl c3 Prasinophyceae Chl c2 Chlorophyceae Chl c1 Cryptophyta Chlb Rhodophyta / Pigment Cyanophyta Chl a Prochlorophyta Division or class Distribution of carotenes among divisions/classes of phytoplankton Raphidophyceae Chrysophyceae Prymnesiophyceae Dinophyta Bacillariophyta Eustimatophyta Euglenophyta , Prasinophyceae , Chlorophyceae , Cryptophyta , Rhodophyta / Pigment Cyanophyta , Prochlorophyta Division or class Distribution of xantophylls among divisions/classes of phytoplankton Astaxanthin 19‘-Butanoilfucoxanthin Cantaxanthin 2 Crocoxanthin Diadinoxanthin Diatoxanthin Dinoxanthin Echinenona Fucoxanthin 2 2 1 Raphidophyceae Anteraxanthin Chrysophyceae Aloxanthin Prymnesiophyceae 2 Dinophyta Euglenophyta 2 Bacillariophyta Prasinophyceae 2 Eustimatophyta Chlorophyceae Cryptophyta Rhodophyta Pigment Cyanophyta / Prochlorophyta Division or class Distribution of xantophylls among divisions/classes of phytoplankton Peridininol Prasinoxanthin Pirroxanthin Violaxanthin Zeaxanthin 14 14 Raphidophyceae Peridinina Chrysophyceae P457+P468 Prymnesiop. Neoxanthin Ést. Vaucheriax Dinophyta Monadoxanthin Sifoneina Bacillariophyta 1 Luteína Sifonaxanthin Eustimatophyta 19‘hexanoilfuco Euglenophyta Prasinophyceae Chlorophyceae Cryptophyta Rhodophyta Pigment Prochlorophyta / Cyanophyta Division or class Amphidinium carterae (Dinophyta) Rzi =[lpigmi]/[chlorophyll a] Rz =[peridinin]/[chlorophyll a] chlorophyll c2 chlorophyll a dinoxanthin peridinin diadinoxanthin Dunaliella tertiolecta (Chlorophyta) Rz =[lutein]/[chlorophyll a] Rzi =[lpigmi]/[chlorophyll a] chlorophyll b chlorophyll a neoxanthin violaxanthin anteraxanthin lutein Hierarchical guide to the use of pigments Pigment Chl a: S ignificance an index of t otal algal biomass, excluding prochlorophytes. Unambiguous markers for algal types DV-C hl a: DV-C hl b: S i ph on axanth in e sters: an index of prochlorophyt e biomass unambiguous marker for prochlorophytes unambiguous marker for Type 2 prasinophytes (Egeland et al., 1997) Prasi n oxan th n i: unambiguous marker for Type 3 prasinophytes Peri di n i n: Type 1 dinoflagellates Al loxan th n i: Crypt ophytes Gyroxan th n i die ster: Dinoflagellates Type 2 C hl c2 MGDG [14:0/14:0]: Chrysochrom ulinaspp. (Hapt ophyte Type 7, Zapata et al., 2004) S. Wright, Class notes Retention times and mean absorption properties (inHPLC eluant) of the major pigments detected in Erythrobacter longus (ATCC 33941) and isolates NAP1, MG3, and NJ3Y. Peak numbers correspond to those indicated in Fig. 5. Solvents and caroteneid band ratios from the literature data: 1 solvent=methanol+ water (4:1) containing 40mM NH4OH, %(III/II)=0; 2 solvent= methanol, %(III/II)=0; 3 solvent=acetone, %(III/II)=33; 4, 5 solvent=diethyl ether; 6 solvent=acetone, %(III/II)=21 Pea k no. Rt Pigment identification (min) Observed λmax Published λmax (nm) (nm) Reference 1 11.4 Erythroxanthin sulfate 465 469 Takaichi et al. (1991) 2 18.4 Bacteriorubixanthinal 513 510 Takaichi et al. (1988) 3 19.1 Zeaxanthin (428), 454, 482 (428), 454, 481 4 20.4 Bacteriochlorophyll a 359, 580, 771 358, 577, 773 Scheer (1991) 5 23.4 Bacteriophaeophytin a 358, 525, 750 357, 525, 749 Scheer (1991) 6 25.4 β,β-carotene (426), 454, 478 (426), 454, 480 Michal Kobližek Arch Microbiol (2003) 180 : 327–338 Jeffrey et al. (1997) Jeffrey et al. (1997) Reverse-phase HPLC chromatograms (360 nm) for acetone extracts prepared from whole cell pellets of a Erythrobacter longus ATCC 33941, b NAP1, c MG3, and d NJ3Y. Peak identities: 1 erythroxanthin sulfate, 2 bacteriorubixanthinal, 3 zeaxanthin, 4 bacteriochlorophyll a, 5 bacteriophaeophytin a, and 6 β,β-carotene Michal Kobližek Arch Microbiol (2003) 180 : 327–338 HPLC chromatogram of fuorescent pigments from a surface sample (2 m depth) collected at station C354-004. Excitation was at 365 nm, emission at 780 nm, with 20-nm slits. These wavelengths were chosen to maximize the signal from BChla, while minimizing the signal from the more abundant pigments, Chla and Chlb. (Inset) Fluorescence emission spectrum of the peak eluting at 16.7 min in (A). Excitation was at 365 nm and slits were 20 nm. Zbigniew S. Kolber et al, Science 292, 2492-2495; 2001. PIGMENTS IN SEDIMENTS Pigmentos Em geral são moléculas lábeis, atingem o sedimento em vários estágios de degradação. Degradação dos pigmentos originais principalmente na água e na superfície do sedimento, durante a deposição (Hodgson et al., 1997) Na água: rápida e extensa (≤95 % dos compostos em poucos dias) • digestão por herbívoros, • enzimática, na senescência celular • oxidação química, microbiológica e pela luz. Nos sedimentos: taxa de degradação menor, especialmente em condições anóxicas. Depende de: • intensidade de luz e da • bioturvação invertebrada Fatores que afetam a taxa de degradação: • Tempo para chegar ao fundo • Tipo de pigmento • Grau de ataque químico e biológico DEGRADATIN PRODUCTS: • degradation to uncoloured compounds • conversion to cis-carotenoids and phaeopigments more difficult to identify (Steenbergen et al., 1994 apud Hodgson et al., 1997). Separation and quantification of pigments in sediments More complex than in phytoplankton samples, due to the variety of degradation or transformation products (Mendes et al. 2007) . Chlorophyll b: occurs mainly ingreen algae and vascular plants, Chlorophylls c: in diatoms, dinophlagellates and some brown algae Kowalewska et al., 2004. Phaeophorbides: Degradation products due to zooplankton Chl a‘ and phaeophytin: degradação products due to Environmental stress Pirophaeophitins and steril Chlorins: degradation products due to zooplankton Jeffrey, 1997 apud Kowalewska et al., 2004). Fossile Pigments: Used in paleoclimatic and paleoenvironmental issues Chlorophylls : More labile than carotenoids , but phaephitins are persistent in sedimentary records Carotenoids: Stability depends on structure (decreases with the increase of the number of functional gruoups). Carotenoids: Pigmento Grupos Funcionais Afinidade taxonômica b,b-caroteno 0 Cianobactérias, algas eucarióticas e plantas vasculares b,e-caroteno 0 Criptofitas Aloxantina 2 Cryptofitas Luteina 2 Clorófitas Neoxantina 4 Clorófitas Violaxantina 4 Chrisofitas e Clorófitas Fucoxantina 5 Chrisofitas e Diatomáceas Diatoxantina 2 Diatomáceas Diadinoxantina 3 Dinoflagelados, Crisofitas e Diatomáceas Peridinina 6 Dinoflagelados Dinoxantina 4 Dinoflagelados Zeaxantina 2 Cianobactérias, Clorófitas Myxoxantofila 3 Cianobactérias Echinenona 1 Cianobactérias e zooplâncton (Cladocera) Cantaxantina 2 Cianobactérias e zooplâncton (Cladocera) Astaxantina 4 Zooplâncton (Crustacea) Okenona 2 Bactérias fotossintéticas (Chromatiaceae) Scytonemina-1, -2 4 Organismos fotossintéticos expostos a alta radiação UV Estáveis, abundantes (adaptado de Buchaca & Catalan 2008) Chlorophylls : Pigmento Afinidades taxonômicas Bacteriofeofitina-a Bactérias fotossintéticas (Rodospirillaceae e Chromatiaceae) Bacterioclorofila-e Bactérias fotossintéticas (variedades marrons de Chlorobiaceae) Clorofila-a Razão molar Cl-a/forbinas a como indicador de preservação Chlorofilídeo-a Produto de degradação da Cl-a, abundante em Diatomáceas Cl-a (alômero) Produto de degradação da Cl-a Cl-a (epímero) Produto de degradação da Cl-a Feofitina-a1, -a2 Produto de degradação da Cl-a (senescência) Feoforbídeo-a1, -a2, Produto de degradação da Cl-a („grazing“) -a3, -a30, -a4 Clorofila-b Clorófitas Feofitina-b1, -b2 Produto de degradação da Cl-b Clorofila-c1 Crisofitas e Diatomáceas Clorofila-c2 Crisofitas, Diatomáceas, Criptofitas e Dinoflagelados Clorofila-c3 Crisofitas e Diatomáceas (adaptado de Buchaca & Catalan 2008) UV/VIS absorption of pigments Chlorophylls Phaeophytin a Chlorophyll a - Mg - Mg - Phytil - Mg, -COOMe Phaephorbide a Pirophaephytin a Jeffrey et al.;1997 Polyene chain: chromophore UV7VIS: Electronic transitions Main transition Vibrational fine structure Calculation of % III/II for a caroteneid II 0 0 III Vibrational fine structure Molecular structure x spectroscopic properties Chromophore (polyene chain): Lenght Conjug. db. bonds max phytoene 3 276 286 297 -carotene 7 378 400 425 lycopene 11 444 470 502 carotenoid (hexane) Molecular structure x spectroscopic properties Geometrical cis-trans isomers: small hypsochromic effect Significant hypochromic effect Reduction of vibrational fine structure Appearance of a cis-peak (≈ 142 nm below the longest maximum of the all-rans,measurd in hexane Beta-Rings: fine structure much reduced, max shorter than in the acyclic Acetylenic groups: replacement of d.bond to triple bond - 15-20 nm shorter wavelength Allenic groups Carbonyl groups Britton, 1995, Carotenoids, 3 vol, Birkhäuser Molecular environment x spectroscopic properties Solvent Approx. bathochromic shift1 Hexane, light petroleum, ethanol, diethylether, acetonitrile 0 acetone 2-6 chloroform 10-20 dichlorometane 10-20 benzene 18-24 toluene 18-24 pyridine 18-24 Carbon disulphide 18-24 1: displacement of max to longer wavelength Identification of pigments by Mass Spectrometry HPLC method with improved resolution, LC–MS analysis and the automated acquisition of MS/MS data for pigments extracts from a sediment (Priest Pot, Cumbria, UK), a microbial mat (les Salines de la Trinital, South Catalonia, Spain) a culture (C. phaeobacteroides): SEPARATION OF A GREAT NUMBER OF PIGMENTS, INCLUDING NOVEL BACTERIOCHLOROPHYLL DERIVATIVES. Airs, 2001 More than 60 pigments during the run: QuickTime™ and a decompressor are needed to see this picture. Airs, 2001 QuickTime™ and a decompressor are needed to see this picture. HPLC coupled both to UV photodiode array detection and to atmospheric pressure mass spectrometric techniques (HPLC–DAD-APIMS) QuickTime™ and a decompressor are needed to see this picture. Pigments ( chlorophylls, carotenoid), galactolipids, alkaloids, sterols and mycosporine-like amino acids, Frassanito 2005 QuickTime™ and a decompressor are needed to see this picture. Extraction and separation of pigments Chemotaxonomic estimation of phytoplankton communities in aquatic and sedimentary environments involves not only the choice of marker pigments, but also efficient extraction and separation procedures and a reasonable treatment of the data obtained. Extraction must be quantitative for all pigments HPLC separation must be able to: separate simultaneously groups of molecules of very different polarities Resolve very similar compounds, for instance isomers Extraction of phytoplankton pigments Solvents: Acetone 90 % Acetone 100 % Methanol Acetone :Methanol ( 1:1) N,N-dimetilformamide (DMF) Buffered Methanol ( 2% NH4Ac 0,5 M) Procedure: Sonication or criogenic homogenization „overnight“ or immediate extraction Filtration Separation (HPLC) GF/F 47mm Extration: Methanol: NH4Ac 0,5M (98:2) + Sonification, ice-bath (30 s) + Centrifugation (5 min, 4800 rpm) Chromatographic separation of Phytoplankton pigments Separation with C30 columns: Development of a Fase estacionária: computer-assisted method (Software Dry Lab) C30 (YMC, C30, 5µm, polimérica 250x4,6 mm ID c3 Fase móvel: c1c2 alo-, diato-xanthins e luteína DV, MV cl b DV, MV cl a A:CH3OH:TBA (28 mM) 70:30 (v/v) B: CH3CH2OH pH 6,5 Resolution: otimization for chlorophylls And for carotenoids in Sparate runs luteína chlorophylls: Fig A:30-100 % B, 50 min Vazão: 1,2 ml/min T: 47 oC Carotenóides: Fig B:25-63 % B, 35 min, 63-100%B/13 min Vazão: 1,4 ml/min T: oC aloxanthin diatoxanthin Gradiente: Mistura-teste Van Heukelem e Thomas, Journal of Chromatography A, 910 (2001) 31-49 Resolution: separation mono/divynil clh a, b They don‘t separate in C18 !! (depends on aliphatic chain?) Separation with C8 columns: 1) Development of a computer-assisted method (Software Dry Lab) C8 (Eclipse XDB, 3,5 µm 150x4,6 mm ID C2 +MgDVP Fase estacionária: c3 DV, MV cl b c1 +clorofilídeo a Zeaxanthin, luteína, DV, MV cl a Fase móvel: A:CH3OH:TBAA (28 mM) 70:30 (v/v), pH 6,5 B: CH3OH Mistura-teste.Van Heukelem e Thomas, Journal of Chromatography A, 910 (2001) 31-49 2) Zapata et al., 2000 Mar. Ecol Progr. Ser. 195: 29-45, 2000 Fase móvel: A: CH3OH : CH3CN : pirid.acet. (50:25:25); B: CH3OH : CH3CN : acetona (20:60:20) C8, Zapata R=0,8 Zeaxanthin, dihidroluteína Clor c2 R>1 4k Hex /9‘cis Neo R> 1,25 MgDVP R< 0,5 C8, Van Heukelem cl b/DV cl b R< 0,5 R=1 cl b/DV cl b R= 0,8 4k Hex /9‘cis Neo Não resolve Pigment mixture, S. Wright, Course Notes C8: better for chlorophyll c family Comparison of method sensitivity with C18 and C8 columns Fases estacionárias: C8 (Symmetry C8, 3,5 µm 150 x 4,6 mm) C18 (Supelcosil L-C18, 5 µM 250 x 4,6 mm) Fase móvel: Coluna C18: adap. Kraay, 1992 A:CH3OH:H2O (85:15) B: CH3CN.H2O (90:10) C: Acet. Etila (vazão 0,6 ml/min) Coluna C8: Zapata, 2000 Mendes et al., Limnol. Oceanogr. Methods 5, 2007, 363-370 C18: More sensitivity Lower limit of detection Better for low concentration pigments Separation of complex samples, method compatible with LC/MS Método SCOR 1997 Fase estacionária: 2 colunas „in line“ Waters Spherisorb ODS2 3 µM 150 x 4,6 mm) Fase móvel: A: NH4Ac 0,01M B: CH3OH C: CH3CN D: Acet. Etila Gradiente:5%A, 85% B, 15 % C isocr.5 min, 0%A, 20% B,15%C,65% D, 95 min, 0%A, 1%B, 1%C, 98%D, 5 min,isocr. 5 min Método Airs et Al. Adequado para LC/MS Extrato de amostra de sedimento (Priest Pot) Airs et al.; Journal of Chromatography a 917 (2001) 167-177 Cl a + DV cla Cl b + DV clb diadinoxanthin dinoxanthin aloxanthin diatoxanthin luteina zeaxanthin peridinina 19,-butanoilfuco fucoxanthin neoxanthin prasinoxanthin violaxanthin Cl c2 Cl c3 Fase estacionária: Spherisorb ODS1/ C18 250 x 4,6 mm – 5 m Fase móvel: A: CH3OH 0,3 M em NH4Ac : ACN : H20 (51:36:13) B: AcetEtila: ACN (70:30) Vazão: 1,2 ml/min Gradiente:0 a 25 % B em 5 min, isocr.5 min, 25% a 100% B em 20 min. Labor. UFF, Cromatógrafo Bischoffanalysentechn., Mistura-teste (DHI), 100µL injetados na fase A, Separates:,-carotene, ,-carotene, Aloxanthin,Lutein, Neoxanthin, Violaxanthin, Fucoxanthin, Diatoxanthin,Diadinoxanthin, Peridinina, Dinoxanthin, Zeaxanthin, Mixoxantophyll, Equinenone, Cantaxanthin, Astaxanthin, Okenone, Scytonemin-1, -2, Bacteriophaeophytin-a, Bacteriochlorophyll-e, chlorophyll-a, Chlorophilide-a, Chl-a Allomer and Epimer, phaeophytin- a1, a2, phaeophorbide -a1, -a2, -a3, -a3’, -a4, chlorophyll b, phaeophytin -b1, -b2, chlorophyll –c1, -c2, -c3 Buchaca e Catalan (2008) HOW TO DETERMINE PHYTOPLANKTON ? ESTIMATION OF THE ABUNDANCE OF PHYTOPLANKTONIC COMMUNITY BY PIGMENT MARKERS Based on the contribution, in terms of chlorophyll a, of each group of taxonomical class (Chl a)c to total chlorophyll a in the sample (Chl a)t : (Chl a)t = (Chl a)c1 + (Chl a)c2 + (Chl a)c3 + ...... + (Chl a)cn Easy ! Calculation of (Chl a)cn ? METHOD 1: Calculation of (Chl a)c by the choice of one marker pigment for each class Class Marker pigment (Pm) Pm/Cla ratio in the class Cianobactérias zeaxanthin Clorophyta luteína Rzea/cla Rlut/cla Dinophyta peridinina Rper/cla Cryptophyta aloxanthin .......................... ....................... Bacyllariophyta fucoxanthin Problem: Ralo/cla Fixed R not necessarily ....................... Corresponds Rfuco/cla To the ratios In the samples { (Chl a)t = Rzea/cla x (Zea) + Rlut/cla x (Lut) + .........+ Rfuco x (Fuco) Fixed (Chl a)c and % of each class sample METHOD 2: Multilinear regression Sample 1: Sample 2: (Chl a)t1 = Rzea/cla x (Zea)1 + Rlut/cla x (Lut)1 + .........+ Rfuco x (Fuco)1 (Chl a)t2 = Rzea/cla x (Zea)2 + Rlut/cla x (Lut)2 + .........+ Rfuco x (Fuco)2 .................................................................................................................................... Sample n: (Chl a)tn = Rzea/cla x (Zea)n + Rlut/cla x (Lut)n + .........+ Rfuco x (Fuco)n Unknown Rs, determined by pela resolution of a system of n equations and n unknowns (Chl a)cn % of ech class Rs are determined, but many classes don‘t have a specific pigment MÉTODO 3: Determinação da composição fitoplanctônica por análise fatorial (MACKEY et al., 1996) „Software „CHEMTAX: problema de análise fatorial: matriz de dados S: concentrações encontradas para os pigmentos no ambiente num conjunto de amostras fatorizada em matrizes F : matriz das razões dos pigmentos para as diferentes classes de algas puras e C : abundâncias de cada classe de alga em cada amostra MATRIZ F: Razões Ri =[lpigmi]/[chlorophyll a para cada classe PER BUT FUC HEX NEO PRA VI0L ALO LUT ZEA CLB CLA Prasinophyt a 0 0 0 0 0,061 0,127 0 0,004 0 0 0,381 Dinophyta 0,515 0 0 0 0 0 0 0 0 0 0 0,403 0,485 Cryptophyta 0 0 0 0 0 0 0 0,186 0 0 0 0,814 Haptophyta3 0 0 0 0,630 0 0 0 0 0 0 0 0,370 Haptophyta4 0 0,104 0,247 0,227 0 0 0 0 0 0 0 0,422 Chorophyta 0 0 0 0 0,040 0 0,035 0 0,127 0,006 0,165 0,628 Synecho. 0 0 0 0 0 0 0 0 0 0,258 0 0,742 Diatomaceas 0 0 0,430 0 0 0 00 0 0 0 0,570 C: contribuição de cada MATRIZ S: experimental Amostra 1: Amostra 2: .................. Amostra n: (Chl a)t1 (Zea)1 (Lut)1 ....... (Fuco)1 (Chl a)t2 (Zea)2 (Lut)2 ....... (Fuco)2 ............ (Chl a)tn ......... ........ ....... (Zea)n (Lut) ....... (Fuco)n FxC=S classe (a ser determinada) Clpras ClDin ClCryp ClHapt3 ClHapt4 ClChlor ClSyn ClDiatom Para uma fatorização de S que tenha um significado físico: F : variável, Fo: dados da literatura (normalizados/Cl a) Estimativa inicial da matriz de abundâncias das classes (Co): calculada resolvendo-se a equação de mínimos quadrados: minimizar: S – Co Fo , sob as condições: [Co]ij 0 i, j [Co]ij = 1 j O resíduo é expresso por: o = S – Co Fo Um algoritmo de „decréscimo máximo“ do resíduo foi usado (variação dos elementos de F, 10% a cada iteração) Juturnaíba reservoir as a study model 42° 23° Rio de Janeiro State QuickTime™ and a decompressor are needed to see this picture. Marcelo Marinho e Silvana V. Rodrigues OBJETIVOS Avaliar a aplicabilidade do método de análise de pigmentos por HPLC para detecção das variações na biomassa e composição do fitoplâncton, comparando com os dados obtidos por microscopia METODOLOGIA Fitoplâncton –Coletas quinzenais - jun/96 - mai/97 (estação central) –Biovolume • método de sedimentação (Utermöhl, 1958) Pigmentos Amostra (0,25 - 1,8 L) • Filtração (GF/C) • Congelamento (CO2 sólido) Injeção e análise HPLC CONDIÇÕES CROMATOGRÁFICAS • Coluna C18 - fase reversa • Gradiente alta pressão (modificado de Garrido & Zapata, 1993) Extração Metanol 100% • Detecção - 440nm Biomass (chlorophyll a) Contribution calculated by marker pigments Razão Xan/Chl-a 150 250 200 150 100 100 50 50 0 0 100 100 Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr Aprb)May 1996 1997 80 60 40 20 0 Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr Apr May 1996 1997 relative contribution relative contribution µg L -1 200 300 a) -1 250 Cyanobacteria Chlorophyceae Cryptophyceae Bacillariophyceae Dinophyceae µg L 300 CHEMTAX Cyanobacteria Chlorophyceae Cryptophyceae Bacillariophyceae Dinophyceae a) Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr Aprb) May 1996 1997 80 60 40 20 0 Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr Apr May 1996 1997 Biovolume 0,2 L +Lugol’s solution sedimentation method (Utermöhl, 1958) biomass: product of population and mean unit volume of each species (specific density of cells = 1 g/cm3, cell size = mean of at least 30 measurements) Biomass (Biovolume) 90 mg/L cyanobacteria diatoms cryptomonads 60 dinoflagellates green algae 30 others 0 Jun Jul Aug Sep Oct 1996 Nov Nov Dec Jan Feb Mar 1997 Apr Microcystis aeruginosa May 20 mg/L Anabaena spiroides Cylindrospermopsis raciborskii Percentages of phytoplankton assemblages as dominant groups of species, by period in Juturnaíba Reservoir. Period 1 Period 2a Period 2b 12 Jun - 10 Dec 26 Dec - 17 Apr 30 Apr - 28 May 24% A. distans 72% M. aeruginosa 46% C. raciborskii 21% Cryptomonas sp. 11% A. spiroides 42% A. spiroides Correlations between contributions of the classes found by pigment data and by biovolume calculation (significant *p < 0.05, **p < 0.01; n = 25). Ratio Xan/Chl-a Dinophyceae Bacillariophyceae Cryptophyceae Chlorophyceae Cyanobacteria Biovolume total 0.20 0.64* 0.39 0.39 0.89** 0.97** CHEMTAX 0.27 0.76** 0.73** -0.35 0.97** 0.97** Biomass (CHEMTAX) x Biomass (biovolume) 2 periods in both methods CHEMTAX: Period 1 (June - November 96): 3.7 - 36.4 mg/L chl a Chlorophyceae, Cyanobacteria, Cryptophyceae Period 2 (December 96- May 97): 46.9 - 254.4 mg/L chl a 81% to 99 % Cyanobacteria. CONCLUSIONS • High correlation between biovolume and Chl-a. Chl-a can be used as a parameter to estimate biovolume. • Interpretation of pigment data with CHEMTAX: better correlation with biovolume than that based on Xan/Chla ratios from unialgal cultures. • Only Chlorophyceae and Dinophyceae did not present significant correlation with cell count. • Similar general pattern of the phytoplankton community dynamics by cell count and pigment analysis: two periods and the Cyanobacteria bloom recorded. 12 SAMPLING SITES: SAMPLING FREQUENCE: - 12 CAMPAIGNS - JANUARY TO AUGUST (SUMMER/AUTUMN) 2006 GUANABARA BAY RJ/BRAZIL HOMOGENEITY OF SAMPLES WITHIN EACH DATA MATRIX Data processing: CHEMTAX: Samples divided in 5 environmentally different groups 5 3 4 1 2