Produção primária - Tópicos z Tipos de produtores e taxas de produção z Medição da produção primária z Mecanismos – Curvas PI e blooms z Distribuições e tendências z Variabilidade e erros de determinação z Aquecimento global CO2 + 2H2A Light Pigments CH2O + 2A + H2O Tipos de produtores Produtor Nutrientes Exemplos Fitoplâncton Microfitobentos Macroalgas (algas macrófitas) Vegetação de sapal Angiospérmicas (“seagrasses”) Coluna de água Coluna de água Coluna de água Sedimento Sedimento e/ou água Diatomáceas Diatomáceas Fucus Spartina Zostera z Oceano aberto, águas costeiras e estuários z Unicelulares z Razão P/B elevada (>50) z Zonas pouco profundas (Zf > Z) ou intertidais z Multicelulares z Razão P/B baixa Relevância à escala do ecossistema II Distribuição global de clorofila a estimada a partir de dados de satélite Clorofila a (mg m-3) Dados do SEAWIFS, Verão no Hemisfério Norte (1998-2001) Prod. primária (fitoplâncton) 200-360 X 1014 gC ano-1 (98.9%) Phytoplankton some examples Diatoms Dinoflagellates Coccoliths Phytoplankton - diatoms Nitschia bicapitata 5µm Chavez et al., 1991 - Limnol. & Oceanog. 36, p. 1816-33 SeaWifs images of cocollith blooms Cornwall, U.K. Tasmania Relevância para a gestão I “Bloom” de Noctiluca – California, E.U.A. Foto cortesia de P.J.S. Franks, WHOI Cyanobacteria bloom – Potomac estuary This dense bloom of cyanobacteria (blue-green algae) occurred in the Potomac River estuary downstream of Washington, D.C. Photo courtesy of W. Bennett USGS. Relevância para a gestão III “Bloom” de macroalgas na Florida Em Florida Bay, este “bloom” de macroalgas colmatou as fanerogâmicas marinhas, provocando o desaparecimento desta vegetação. Foto cortesia de Brian Lapointe, Harbor Branch Oceanographic Institute. Relevância para a gestão II Advecção de HAB (?) para a costa a partir de uma frente “offshore” PML Remote Sensing Group Cortesia Plymouth Marine Laboratory, UK http://pml.ac.uk/ Multi-sensor discrimination of harmful algal blooms, P. I. Miller, J. D. Shutler, G. F. Moore and S. B. Groom, Remote Sensing and Photogrammetry Society annual conference RSPSoc 2004, 7-10 September 2004, Dundee U.K. Kelp in Sanggou Bay, China Produtividade de diferentes ecossistemas (kg C m-2 ano-1) z Produtores marinhos Corais Laminarias Plantas de sapal Posidonia Mangal Microalgas bentónicas Fitoplâncton costeiro Fitoplâncton oceânico z Produtores de água doce Macrófitas Fitoplâncton (eutrófico) Fitoplâncton (oligotrófico) z Produtores terrestres Floresta tropical Floresta temperada Pastagens Pradarias Desertos, tundra 0 1 2 3 4 Produtividade e biomassa média, taxa de renovação e clorofila em diferentes ecossistemas Produtividade Área líquida 6 2 (10 km ) (gm-2 ano-1) Oceano aberto Afloramento Plataforma Macrófitas/recifes Estuários 332 0.4 27 0.6 1.4 • Total marinho Biomassa (kg m-2) 125 500 300 2500 1500 0.003 0.02 0.001 2 1 361 155 0.01 Ecossistemas terrestres Pântanos Lagos e rios 145 737 2 2 3000 400 15 0.02 • Total continental 149 782 12.2 12 Taxa de renovação (P/B, ano-1) Clorofila (g m-2) 42 25 300 1.3 1.5 0.03 0.3 0.2 2 1 0.05 0.061 0.2 20 0.064 1.54 3 0.2 1.5 Whittaker & Likens, 1975. The Biosphere and Man. Primary productivity of the biosphere. Springer-Verlag. Medição da produção primária Produtor Medida Método Unidades Fitoplâncton e microfitobentos Macroalgas “Seagrasses” Sapal Biomassa Produção Biomassa Produção Biomassa Produção Clorofila a (amostra filtrada) 14C, O (incubação) 2 Cropping O2 (incubação), cropping Cropping O2 (incubação), cropping µg L-1 d-1 gDW m-2 gC m-2 d-1 gDW m-2 gC m-2 d-1 z Upscaling: SIG, modelação Saltmarsh definition – NDVI and bathymetry NDVI = (Near_Infrared - Red) / (Near_Infrared + Red) Near_Infrared e Red são duas bandas da imagem de satélite. O NDVI situa-se entre -1 e 1. Os pigmentos absorvem grandes quantidades de energia no vermelho (R), e poucas no infravermelho próximo (NIR), ao contrário dos objectos inertes que absorvem todos os espectros da mesma forma. Relação entre a taxa de fotosíntese (P) e a intensidade luminosa (I) Pmax I (qu nitial ant slo um pe yie ld) dP dI 0 PPL PPB R Ic Ik Iopt Phytoplankton blooms and vertical mixing Production and respiration 0 a e NPP=0 b Depth (z) Phytoplankton production (m-3 day-1) Integrated respiration aefd Compensation depth Phytoplankton respiration (m-3 day-1) d c f Integrated production(GPP) abcd Limit of mixed layer Conditions for blooming abcd > aefd Sverdrup, H.U., 1953. On conditions for the vernal blooming of phytoplankton. J. Cons. Perm. Int. Exp. Mer, 18: 287-295 Phytoplankton blooms in estuaries Phytoplankton growth: P0 = initial population, Pt = population at time t Pt = P0 ekt Freshwater inflow Q (m3s-1) Tidal exchange with the ocean Phytoplankton flushing: P0 = initial population, Pm = population after m tidal cycles, r = exchange ratio (proportion of estuary water which does not return each tidal cycle) Pm = P0 (1-r)m Ketchum (1954) Relation between circulation and planktonic populations in estuaries. Ecology 35: 191-200 Phytoplankton blooms in estuaries Combining the two equations (and expressing t in terms of m): Growth Flushing Pt = P0 ekt Pm = P0 (1-r)m Pm = P0 emk(1-r)m For a steady-state population , Pm = P0 : 1 (1 − r )m k = -ln(1-r) = e mk For phytoplankton to exist and potentially bloom in an estuary, growth must balance flushing, i.e. k > -ln(1-r) Phytoplankton blooms in estuaries Required coefficient of reproduction Barnstable Harbour 10 2.0 Population will increase 5 1.0 Alberni Inlet Raritan Bay Population will decrease 2 Raritan River Moriches Bay 0 0.5 1.0 Exchange ratio (r) Redrawn from Ketchum (1954) Multiplication of population each tidal cycle 20 3.0 CZCS derived sea-surface pigments Mediterranean Sea 5oW 5oE 0o 10oE 15oE 20oE 25oE 30oE 35oE 45oN 45oN 40oN 40oN 35oN 35oN 30oN 30oN 5oW 0.01 0.03 5oE 0o 0.05 0.10 0.20 10oE 0.30 0.50 15oE 1.00 20oE 25oE 30oE 35oE 3.00 http://www.obs-vlfr.fr/ Chlorophyll a in the Tagus estuary Hypereutrophic 90 80 70 60 50 High 40 30 20 Medium Chlorophyll a (µg L-1) Surface values on a longitudinal section 10 Low 0 0 50 100 150 200 250 300 350 400 Julian day Data from BarcaWin2000 - Stations #1.0, #2.0, #3.9, #4.0, #5.0 and #8.0 – 385 values Tidal freshwater zone (1980-1998) 90 Chlorophyll a trends in the Tagus estuary 80 70 Hypereutrophic 60 50 40 High 30 20 Medium Low 10 0 1/01/80 27/09/82 23/06/85 19/03/88 14/12/90 9/09/93 2/03/99 5/06/96 Mixing zone (1980-1999) 90 80 70 Hypereutrophic 60 50 High 40 30 Seawater zone (1980-1999) 90 20 Medium Low 10 80 70 0 1/01/80 Hypereutrophic 60 27/09/82 50 40 High 30 20 Medium Low 10 0 1/01/80 27/09/82 23/06/85 19/03/88 14/12/90 9/09/93 5/06/96 2/03/99 23/06/85 19/03/88 14/12/90 9/09/93 5/06/96 2/03/99 OAERRE data + TICOR data Chlorophyll a and nutrients Maximum spring phytoplankton (chl a µg L-1) 30 Tejo GM 25 GF 20 Guadiana HF 15 10 Sado FC KF 5 Mira*1 Mondego Ria de Aveiro*2 Ria Formosa 0 0 10 20 30 40 50 60 70 80 90 100 110 120 Maximum winter DIN (µM) Tett, P., Gilpin, L., Svendsen, H., Erlandsson, C.P., Larsson, U., Kratzer, S., Fouilland, E., Janzen, C., Lee, J., Grenz, C., Newton, A., Ferreira, J.G., Fernandes, T., Scory, S., 2002. Eutrophication and some European waters of restricted exchange. Submitted to Coastal and Nearshore Oceanography, NEEA, and unpublished work from TICOR. *1 *2 – Chlorophyll determined from graphical data – Nitrate, not DIN GIS - Chlorophyll a Composite annual mean µg l-1 chl a 0 10 20 km GIS - Mean chlorophyll a Winter mean Winter, summer and global Summer mean 0 Data from 19801983, Tagus estuary, Portugal 10 20 km µg l-1 chl a <2 2-3 3-5 5-7 7-8 8-10 10-12 12-15 15-20 >20 Annual mean 0 10 20 km 0 10 20 km GIS - Comparison between January and April chlorophyll a µg l-1 chl a <2 2-3 3-5 5-7 7-8 8-10 10-12 12-15 15-20 >20 0 10 20 km January 0 10 20 km April Data from 1980-1983, Tagus estuary, Portugal GIS - Chlorophyll a Surface minus bottom µg l-1 chl a -1.35- 0 0-0.5 0.5-1 1-2 2-3.5 0 10 20 km Variação interanual de clorofila a no estuário do Tejo, durante 4 anos 80 70 Clorofila a (ug l-1) 60 50 40 30 20 10 0 0 365 730 1095 1460 Dias Dados para a estação #2.0, amostras de superfície colhidas ao longo de 4 anos Baía de S. Francisco – E.U.A. Baía de S. Pablo Baía de Suisun Oceano Pacífico South Bay Anos 70 Década de oitenta Anos 90 1977 Max: 6.9 1980 8 7 6 5 4 3 2 1 0 60 1978 Max: 6.9 5 1982 50 Max: 50.6 10 0 14 1987 12 10 Max: 12.3 6 4 100 200 300 1989 0 25 1998 100 Max: 53.2 20 0 120 1999 20 15 60 400 Max: 16.2 30 10 Max: 113.3 40 0 1984 50 2 80 Max: 34.2 0 18 16 14 12 10 8 6 4 2 0 60 40 8 1996 Max: 27.7 10 20 Max: 36.6 1979 15 30 1985 25 20 40 Max: 38.1 30 10 20 5 0 0 0 100 200 300 400 Max: 21.3? 0 100 200 300 # 30 - Redwood Creek, 37o33.3’N, 122o11.4’W, z= 12.8m Baía de S. Francisco (South Bay) - Clorofila a 8 7 6 5 4 3 2 1 0 45 40 35 30 25 20 15 10 5 0 40 35 30 25 20 15 10 5 0 40 35 30 25 20 15 10 5 0 400 Baía de S. Francisco (South Bay) Máximo de clorofila a (µg chl a l-1) 120 Anos setenta 100 Tendência crescente Anos oitenta 80 Anos noventa 60 40 20 Estação 30 - Redwood Creek, 37o33.3’N, 122o11.4’W, z= 12.8m 1999 1998 1997 1996 1995 1994 1993 1992 1991 1990 1989 1988 1987 1986 1985 1984 1983 1982 1981 1980 1979 1978 1977 0 Baía de S. Francisco (South Bay) Máximo de clorofila a (µg chl a l-1) 120 Anos setenta 100 Tendência decrescente Anos oitenta 80 Anos noventa 60 40 20 Estação 30 - Redwood Creek, 37o33.3’N, 122o11.4’W, z= 12.8m 1999 1998 1997 1996 1995 1994 1993 1992 1991 1990 1989 1988 1987 1986 1985 1984 1983 1982 1981 1980 1979 1978 1977 0 Baía de S. Francisco (South Bay) Máximo de clorofila a em função do número de amostras 120 Clorofila a (µg l-1) 100 Observado Previsto 80 y=-1.3+1.24x r=0.6 (P>0.99) 60 40 20 0 0 10 20 30 40 50 Nº de amostras por ano Estação 30 - Redwood Creek, 37o33.3’N, 122o11.4’W, z= 12.8m Primary production budget Tagus estuary (t C y-1) Pelagic producers Phytoplankton*1 Benthic producers 41160 (62%) Sub-total pelagic 41160 (62%) Total GPP N removal Pop. equivalent Microphytobenthos*2 4265 (6%) Seaweeds 13770 (21%) Saltmarsh vegetation*4 7700 (11%) Sub-total benthic 25735 (38%) 66895 t C y-1 ~10500 t N y-1 2.3 X 106 inhabitants Phytoplankton (62%) Saltmarsh (11%) *1 – EcoWin2000 ecological model, Ferreira (2000) – Modelling and field measurements, Serôdio & Catarino (2000) *3 – Modelling and field measurements, Alvera-Azcárate et al, (2002) *4 – Modelling and field measurements, Simas et al. (2001) *2 Microphytobenthos (6%) Seaweeds (21%) Alvera-Azcárate, A., Ferreira, J.G. & Nunes, J.P., 2002. Modelling eutrophication in mesotidal and macrotidal estuaries - The role of intertidal seaweeds. Est. Coast. Shelf Sci. In Press Global warming High nutrient - Low chlorophyll paradox Pigments (mg m-3) 0.05 0.10 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 5.00 Global climatology of annual mean wind stress Wind stress (nt m-2) 0.0 0.1 0.2 0.3 Global seven-year mean pigment fields Pigments (mg m-3) 0.05 0.10 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 5.00 Phytoplankton from 40m Fe enrichment incubations Nitschia sp. 2µm Chavez et al., 1991 - Limnol. & Oceanog. 36, p. 1816-33 PmB (mol O2 mol Chl-1 min-1) Pm (µmol O2 cell-1 min-1 X 10-10) Efeito de Fe em curvas P-I para Phaeodactylum tricornutum 40 Cell-specific P vs. I 30 +Fe 20 10 -Fe 0 +Fe 9 6 -Fe 3 Chlorophyll-specific P vs. I 0 0 1000 2000 3000 4000 I (µE m-2 s-1) Greene et al., 1991. Limnol. & Oceanog. 36, 8, 1772-1782 IronEx I - Large-scale patch experiment in 1993 Mixing Fe and SF6 (artificial tracer) in the equatorial Pacific Ocean. IronEx I was followed by IronEx II in 1995, which showed conclusively that phytoplankton production may be limited by Fe. Dissolved Fe profiles - Antarctic Polar Front North North South South Dissolved Fe profiles North (red) and South (blue) of the Polar Front during JGOFS experiment in the late 1990’s Phytoplankton growth rates versus initial Fe concentration Phytoplankton incubation experiments North and South of Polar Front during Survey I (blue) and Survey II (red) Phytoplankton growth rates versus initial Fe concentration Phytoplankton incubation experiments North and South of Polar Front during Survey I (blue) and Survey II (red) Phytoplankton growth rates versus initial Fe concentration Comparison between North and South results “The pseudo-Michaelis Menten response to added iron in deckboard enrichment experiments differs north of the APFZ relative to south of the APFZ, indicating: •All dissolved iron concentrations are below half saturation constants, indicating limiting conditions persist throughout the entire Southern Ocean. •Waters to the North may be limited by something in addition to iron (silicate). •Similar saturation values are consistent with other observations from other oceans.” http://color.mlml.calstate.edu/www/news/workshp2.htm High nutrient - Low chlorophyll paradox