BDA WORKSHOP 04-05/9/2003, INPE On going and planned activities by LAC group: Processing, Visualization and Analysis of Spatio-temporal Dynamics Reinaldo R. Rosa [email protected] •Adriana P. Mattedi, Roberto A. Costa Junior, Erico L. Rempel. •Cristiane P. Camilo, Márcia Rodrigues, Rogério C. Brito, Mariana Baroni •F.M. Ramos, A Wilter Souza da Silva, A. Assireu, I. B. T. de Lima, N. Vijaykumar, A. Zanandrea, R. Sych, J. Pontes, H. Swinney, • A. J. Preto, S. Stephany, J.Demisio da Silva, Maria Conceição Andrade , NÚCLEO PARA SIMULAÇÃO E ANÁLISE DE SISTEMAS COMPLEXOS NUSASC LABORATÓRIO ASSOCIADO DE COMPUTAÇÃO E MATEMÁTICA APLICADA Related BDA Research at LAC: • Time Series Analysis of Solar Bursts and modelling for emission mechanisms • Loop Tomography • Image Processing, Interface Data Base Softwares and High Performance Computing • Neuronetworks for Solar Active Region Pattern Recognition • Space Weather using Gradient Pattern Analysis and Wavelets • 1997-2003: 08 papers, 05 masters and 02 posdocs Space Weather Data and Scientific Computing processing, visualization, data base, data mining and analysis Real time data: Time series (time and space) and Spectrograms from the solar-terrestrial plasma environment + warning devices + making decision tools Solar Data: Yohkoh, soft X-rays Solar Active Loops: X Ray and Radio Data: Nobeyama Radioheliograph Space Weather Today: “A Dinâmica de Padrões Espaço-Temporais é uma teoria fenomenológica que sistematiza as leis empíricas, sobre regimes não-lineares no domínio espaço-temporal, que ocorrem durante a formação e evolução de estruturas dinâmicas macroscópicas” Falaremos aqui sobre uma nova teoria geométrica analítica conhecida como Análise de Padrões Gradientes ( Gradient Pattern Analysis - GPA) cuja principal propriedade é a sua extrema sensibilidade para detectar flutuações não-lineares no domínio espaço-temporal. Spatio-Temporal Domain: *Characterization of Spatio-Temporal Pattern Formation and Evolution in: • • • • Chaotic Coupled Map Lattices Extended Difusion-Convection Osmosedimentation Reaction-Diffusion Systems: Amplitude Equations and Protein Folding • • • • 3D-Turbulence (“Turbulator-Phase I”) Granular Materials Extended Nonlinear Plasmas (Solar Physics) Activity Porosity *nonequilibrium regimes Nonequilibrium Regimes: • Common Source: High Gradients in the Field Symmetry (T, v or C) ==> system is driven away from thermodynamical equilibrium (initial system state becomes unstable)==> ==> symmetry breaking of the geometry ==> ==> spatial complex pattern formation (Graham’s nonequilibrium potential) In this context: What types of main nonequilibrium regimes? Spatio-Temporal Nonequilibrium Regimes: • Structure Fragmentation and Coalescence of Ch (“spatio-temporal velocity”) • Hysteresis and Dissipative regimes • “Spatio-temporal chaos” (activator-inhibitor model dynamics) • Long range spatio-temporal correlations and structures synchronization => • Local and Global spatio-temporal patterns stability rate (Ux,y,0 coherence and U0,0,t boundary influence) • Pattern Relaxation: normal and abnormal Gradient Pattern Analysis (GPA) (P/ entender e interpretar as causas da relaxão e da estabilidade==> nova metodologia) • Gt = [E(x,y,t]t • Gt is represented by 4 n.s. gradients moments: g1(t) h1 ({(r1,1, 11) … , (rij, ij) … , (rkk kk)}t) g2(t) h2 ({(r11), … , (rij), … , (rkk)}t) g3(t) h3 ({(11), … , (ij), … , (kk)}t) g4(t) h4 ({(z11) … , (zij) … , (zkk)}t) As {r} and {} are compact groups, spatially distributed, they can be geometrically constructed as Haar-like measures ==> rotational and amplitude translation invariant Gradient Pattern Analysis: How to compute g1,g2, g3 e g4 ? g1 (C - VA)/VA , C > VA VA = amount of asymmetric vectors, (v1 + v2 0) C = amount of geometric correlation lines (Delaunay triangulation TD(C,VA) ) (Asymmetric Amplitude Fragmentation - AAF, Rosa et al., Int. J. Mod. Phys. C, 10(1)(1999):147.) g2 (rij – rmn)2 /N ; g3 ( ij – mn)2 /N g4 : Sz = - zi,j/z ln (zi,j/z) = Re(Sz) eiSz | g4|=Re(Sz)=S(|z|) and (g4)=Im(Sz) Thus, |g4| and (g4) are invariant measurements of norm and phase of the gradient entropy (Complex Entropic Form (CEF) by Ramos et al. Physica A283(2000):171.) Characterization of Asymmetric Fluctuations, Amplitude Dynamics and Nonlinear Pattern Stability (Relaxation Regimes): g1 x t | g4| x t g1 (t) x phase(g4 )(t) g1 = 0 , g2 = 0 , g3 = 0 , |g4| = 0.20 , (g4)=0 g1 = (7 - 5) / 5 = 0.4, g2 = 0 , g3 = 0.20 , |g4| = 0.18, (g4)=0.20 Some Important Dynamical Properties of the Gradient Moments: (1) Amplitude x Phase Dynamics |g4|/ t < 0 ==> phase dynamics dominates and determine the relaxation (g1/ t > 0 => desordering vec. Norm) 2) Pattern Global Equilibrium (PGE) Conditions: C1: |g4|/ t = 0 + g1/ t = 0 “Weak PGE” C2: C1 e g4/ t = 0 “Strong PGE” ===> cluster around a characteristic point g2 ,g3) (More than 01 cluster ==> complex equilibrium regimes mainly due to more than 01 dynamical constraint (ex. Boundary) Physica A 283:156(2000), Physica D 168:397(2002), PRL (2003) Gradient Pattern Analysis of Relaxation Regimes Systems: • Oscillated Granular Layer: (> 104 0.15-0.18 mm bronze spheres - from CND Un.Texas) • Knobloch Amplitude Equation (Simplification of Proctor’s Model) tE = rE - (2E + 1)2E + . (|E|2 E), where E(x,y,t) is a measure of the vertically averaged temperature perturbation due to fluid motion. When the parameter r > 0, the conductive solution E=0 is unstable. Spatio-Temporal Relaxation: is it an universal regime? Results(Considering Charac. Scales): Concluding Remarks System Relaxation Oscillons normal Knobloch abnormal GPE Boundary Influence simple low complex (3sR) high • Abnormal relaxation comes from a strong Amplitude x Phase Dynamics where the amplitudes are very asymmetric in z (amplitude equations are not models for discrete oscillons) • Gradient moments from active regions time series: Monitoring + forecasting + modelling validation g1 x time-step 1 0,98 0,96 0,94 Seqüência1 0,92 0,9 0,88 1 2 3 4 5 6 7 8 Modelling validation: B=f(t,x,y,z;d)