Sair
6ª Conferência sobre
Tecnologia de Equipamentos
METODOLOGIA ULTRA-SÔNICA PARA DETERMINAÇÃO
DO TAMANHO DE GRÃOS EM MATERIAIS METÁLICOS
Diogo Rodrigo Correia
CEFET/RJ
Mauricio Saldanha Motta
CEFET/RJ
Trabalho apresentado no XXI Congresso
Nacional de Ensaios Não Destrutivos,
Salvador, agosto, 2002.
Sair
6ª Conferência sobre
Tecnologia de Equipamentos
As informações e opiniões contidas neste trabalho são de exclusiva responsabilidade
do (s) autor(es) .
SINOPSE
Apresenta-se uma metodologia ultra-sônica para determinação do tamanho de grãos
em materiais metálicos, tendo com princípio físico a atenuação ultra-sônica, gerada
por meio de ondas ultra-sônicas retroespalhadas, na região do espalhamento de
Rayleigh. Os resultados obtidos demonstram ser promissores, através da comparação
com medidas de ensaios metalográficos, para a utilização da metodologia na
caracterização microestrutural de materiais metálicos.
1.INTRODUÇÃO
O tamanho de grão é um dos fatores de influência sobre propriedades mecânicas,
como resistência mecânica e tenacidade à fratura, sendo largamente utilizado no
monitoramento da qualidade de produtos durante os processos de fabricação.
As estimativas mais utilizadas para a determinação do tamanho de grão, são as
obtidas pelo ensaio metalográfico de amostras, onde estão, normalmente, presentes
as etapas de corte da amostra, lixamento, polimento, ataque químico e observação ao
microscópio. Sendo, desta forma, caracterizada como uma metodologia destrutiva,
com uma demanda de tempo razoável para sua realização, bem como gerar imagens
de planos de cortes, para determinação do tamanho de grão, as quais não representam
as dimensões reais de todos os grãos. Assim, outras técnicas têm sido desenvolvidas
visando superar esses inconvenientes, em particular, análises não destrutivas.
Atualmente os ensaios não destrutivos encontram-se em franca expansão quanto à
sua utilização pela indústria, como meio de caracterização de materiais e controle de
processos. Tal fato decorre da necessidade de acompanhamento em tempo real, das
variáveis de processos, bem como o monitoramento das características dos produtos
diretamente na linha de produção.
A técnica ultra-sônica, em especial, tem-se mostrado de grande utilidade, seja pela
quantidade de informação contida nos sinais ultra-sônicos como pela facilidade de
tratamento destes sinais e possibilidade de automatização dos procedimentos de
inspeção.
As metodologias utilizando ondas ultra-sônicas para estimativa de tamanho de grão
tornaram-se um tópico de interesse nos últimos anos, tendo como principais atrativos
para implementação, a sua praticidade, baixo custo e principalmente por ser um
método de natureza não destrutiva e desta forma não invasiva. Outra vantagem, vem
do fato dos sinais serem gerados por um volume, ou seja o grão, e assim estarem
diretamente ligados aos tamanhos reais dos grãos.
A propagação de ondas ultra-sônicas em materiais policristalinos, como os metais,
está sujeita a atenuação, freqüentemente dominada pelo espalhamento nos contornos
de grão. A forte correlação entre atenuação ultra-sônica e tamanho de grão encontrase bem estabelecida e extensivamente utilizada nos últimos anos (1)(2)(3).
Entretanto, os fundamentos baseados em correlações empíricas entre medidas do
espalhamento ultra-sônico e microestrutura, são altamente complexos, verificando-se
Sair
6ª Conferência sobre
Tecnologia de Equipamentos
a falta de um modelo teórico satisfatório. As técnicas aplicadas, atualmente, na
caracterização de materiais e estimativa do tamanho de grão são geralmente baseadas
em modelos simplificados de espalhamento e restritas a determinados propósitos.
Esta caracterização, normalmente, é realizada através do tamanho médio do grão
(4)(5), onde a existência de uma distribuição de tamanhos de grão não é levada em
consideração, assim tem-se como resultado um único ponto, no caso o médio, para
uma classificação de materiais, bem como das propriedades físicas e mecânicas,
decorrentes do tamanho de grão.
A existência de uma função distribuição, para os tamanhos de grãos, pode afetar de
forma significativa a interpretação dos resultados, simplesmente por admitir uma
gama de valores para os tamanhos de grão da amostra e não somente uma média.
Sendo possível, então, uma melhor classificação microestrutural de materiais, através
de tal distribuição, bem como, o conhecimento da faixa de variação das propriedades
físicas e mecânicas, como conseqüência da variação dos tamanhos de grãos.
Desta forma, a importância da determinação do tamanho de grão em aplicações
industriais, justifica o estudo das limitações dos atuais métodos, bem como a
investigação de métodos alternativos, relacionando atenuação ultra-sônica e tamanho
de grão (6).
Avalia-se neste trabalho metodologia proposta por GOEBBELS (7) para
determinação do tamanho médio de grãos em materiais metálicos, frente ao
conhecimento prévio da distribuição dos tamanhos de grãos no material, mostrando a
influência dos parâmetros desta distribuição sobre os resultados obtidos.
2.REVISÃO BIBLIOGRÁFICA
Uma onda ultra-sônica, propagando em um sólido, está sujeita ao espalhamento e
absorção, resultando em perdas de energia. Conforme a onda avança, através do
material, sua amplitude é atenuada conforme segue (8)(9):
Material homogêneo
p(x) = p0 exp(-αx)
Eq.(1)
Material heterogêneo
p( x ) = p 0 exp( −2 ∫
x/2
0
α( z )dz)
Eq.(2)
onde p0 é a pressão acústica inicial, p é a pressão acústica na distância percorrida x e
α é o coeficiente de atenuação da pressão (10)(11).
Em geral, o coeficiente de atenuação pode ser uma função do comprimento de onda
(λ) e tamanho do espalhador (D), podendo ser expresso por:
α = αa + αs
Eq.(3)
Sair
6ª Conferência sobre
Tecnologia de Equipamentos
onde αa é o termo devido à absorção e αs é a perda por espalhamento associado com
o contorno de grão.
A absorção nos metais é causada principalmente pelo comportamento inelástico dos
materiais, amortecimento por discordâncias e domínio magnético (12)(13). A
dependência da perda por absorção com a freqüência é normalmente presumida
linear (9). Muitos pesquisadores assumem que as perdas devido ao espalhamento
pelos grãos nas freqüências ultra-sônicas é tão grande, se comparada com a absorção,
que esta última é negligenciada (14)(15)(16).
O desenvolvimento teórico relaciona a atenuação devido ao espalhamento dos
contornos de grãos ao comprimento de onda e em muitos casos à dependência das
constantes elásticas e velocidades ultra-sônicas no material. A atenuação devido ao
espalhamento (αs) varia em função do comprimento de onda (λ) e tamanho do
espalhador (D) de acordo com a região de espalhamento, como segue:
• região de Rayleigh
αs = Cr D3λ -4
(λ>>D)
• região estocástica
αs = Cs D λ-2
(λ≈D)
• região difusa
αs = Cd / D
(λ<<D)
Eq.(4)
onde Cr, Cs e Cd são constantes do material (8)(17).
Para grãos esféricos, D é o diâmetro e no caso de grãos de forma não esférica, D é
interpretado como a maior medida do grão.
GOEBBELS (7)(9) apresenta um método para determinação do tamanho de grão, o
qual constitui-se em um refinamento de propostas anteriores, onde a informação é
retirada do sinal retroespalhado. O autor utiliza a relação da atenuação como a soma
das parcelas da absorção e espalhamento, conforme equação 3.
Logo:
α = a1f + CrD3f 4
Eq.(5)
onde a1 é uma constante referente a absorção, Cr é um parâmetro do espalhamento,
sendo dependente somente do material, conforme demonstrado por PAPADAKIS
(18).
Assim, tendo-se como valores desconhecidos a1 e D, constroe-se um sistema linear
de equações, sendo a técnica repetida para duas freqüências diferentes. O valor de α
sendo calculado experimentalmente através do sinal retroespalhado.
Devido ao emprego de transdutores ultra-sônicos fase-sensitivos, GOEBBELS (9)
sugere a utilização de técnicas de processamento de sinais, a fim de eliminar o
padrão de interferência. A técnica utilizada pelo autor (7) é a da média espacial, onde
sinais são adquiridos em diversos pontos da amostra, retificados e somados entre si.
Como resultado tem-se uma curva alisada, mostrando o perfil do decaimento da
Sair
6ª Conferência sobre
Tecnologia de Equipamentos
amplitude do sinal retroespalhado, conforme figura 1. Esta amplitude, As(x) pode ser
representada pela equação a seguir:
A s (x ) = A 0 (α s ∆ x )1 / 2 exp (− αx )
Eq.(6)
onde ∆x é o comprimento do pulso ultra-sônico e A0 a amplitude inicial.
Aplicando-se o logaritmo à equação 6, tem-se como inclinação da reta o coeficiente
de atenuação α.
Figura 1. Método proposto por GOEBBELS, com média espacial dos sinais ultrasônicos retroespalhados (7).
3.METODOLOGIA
3.1.Corpos de Prova
Sair
6ª Conferência sobre
Tecnologia de Equipamentos
Foi utilizado como corpos de prova, chapas de aço do tipo IF (interstitial free) com
3mm de espessura, produzidas pela Companhia Siderúrgica Nacional. Este tipo de
material caracteriza-se por um controle rigoroso nos níveis de impurezas e baixos
teores de carbono, produzindo desta forma uma microestrutura monofásica e
homogênea de ferrita.
Abaixo pode-se verificar a composição química do material utilizado, a qual foi
fornecida pela própria Companhia Siderúrgica Nacional:
Tabela 1. Composição química das amostras (% em peso)
C
Mn
Si
P
S
N
0,004
0,143
0,014
0,011
0,003
0,003
Ti
0,072
Nb
<0,001
Al
0,053
Com o objetivo de produzir corpos de prova com variações nos seus tamanhos de
grão, cinco amostras com as dimensões de 50 x 130 x 3mm foram tratadas
termicamente, com a temperatura de forno de 970 0C. A temperatura escolhida foi
aquela em que, através do diagrama ferro/carbono, todo material apresentava-se
austenitizado.
Desta forma foram gerados cinco corpos de prova, denominados T1, T2, T3, T4 e
T5, os quais foram preparados metalograficamente e analisados por meio de
microscopia ótica, com uma magnificação da imagem de 100 vezes. As imagens
metalográficas foram digitalizadas e a medida dos tamanhos de grãos das amostras,
realizadas por meio do programa computacional Image-Pro 4.0 da Media
Cybernetics Corporation, onde foram medidas as menores e as maiores dimensões de
cada grão, segundo dois eixos perpendiculares.
Para cada amostra metalográfica, representativa de cada tipo de tratamento térmico
realizado, foram obtidas 20 imagens, gerando uma contagem, em média, de 1000
grãos por amostra.
Assim pôde-se levantar a função distribuição de cada amostra, para as menores e
maiores dimensões dos grão, bem como a média dos dois eixos medidos. Os
parâmetros de cada distribuição foram adotados como padrão para comparação aos
valores gerados pela metodologia ultra-sônica.
Para este trabalho, face a maior distinção entre as distribuições produzidas pelos
tratamentos térmicos, adotou-se as amostras T1, T2, T3 e T5.
3.2.Metodologia Ultra-sônica
Através da metodologia proposta por GOEBBLES (7), utilizou-se a técnica pulsoeco em contato, com transdutores de 5 e 10 MHz, banda estreita.
Para cada amostra foram adquiridos 100 sinais ultra-sônicos na região do
retroespalhamento, os quais foram retificados e somados entre si. A partir de cada
somatório foram obtidos os coeficientes de atenuação para cada uma das frequências
e seus valores inseridos na equação 5.
Os valores resultantes da metodologia ultra-sônica proposta foram então comparados
com os parâmetros da distribuição de tamanhos de grãos de cada corpo de prova.
Sair
6ª Conferência sobre
Tecnologia de Equipamentos
4.RESULTADOS E DISCUSSÃO
4.1.Parâmetros da Função Distribuição
Os histogramas da distribuição dos tamanhos de grãos, para cada corpo de prova,
podem ser visualizados na figura 2.
T1
T2
T3
T5
Figura 2. Histogramas da distribuição de tamanho de grão dos corpos de prova.
A tabela 2 apresenta os principais parâmetros obtidos da função distribuição de
tamanhos de grãos de cada amostra. Foram determinados os parâmetros média,
desvio padrão e mediana, para as dimensões mínimas e máximas de cada grão, sendo
a dimensão média calculada. Cabe ainda ressaltar que as distribuições dos tamanhos
de grãos apresentaram a forma log-normal, característica típica para grãos em
materiais metálicos.
Conforme pode-se notar, através do parâmetro média, os tratamentos térmicos
produziram distribuições de tamanhos de grãos em ordem crescente para a seguinte
sequência: T5, T1, T3 e T2.
Sair
6ª Conferência sobre
Tecnologia de Equipamentos
Tabela 2. Resultados obtidos das distribuições dos tamanhos de grão de cada amostra
tratada termicamente, em função dos menores e maiores eixos de cada grão.
Corpo de Prova
Média (µm)
Desvio padrão
Mediana (µm)
(µm)
Tamanhos mínimos
T1
118,94
3,05
94,11
T2
141,14
2,98
118,39
T3
131,79
3,75
94,14
T5
101,73
1,73
80,27
Tamanhos máximos
T1
197,94
4,54
161,72
T2
229,46
4,27
197,17
T3
212,91
5,33
169,85
T5
166,05
2,57
135,32
Tamanhos médios
T1
158,44
3,71
128,42
T2
185,30
3,50
160,60
T3
172,35
4,46
137,23
T5
133,89
2,09
110,11
4.2.Valores da Metodologia Ultra-sônica
Os valores obtidos através da metodologia ultra-sônica, para o tamanho de grão dos
corpos de prova, estão apresentados na tabela 3. Compara-se, ainda nesta tabela, aos
valores do parâmetro mediana da distribuição do tamanhos mínimos de cada corpo
de prova.
Tabela 3. Comparação entre os tamanhos de grão determinados por ultra-som e a
mediana da distribuição dos tamanhos mínimos
Corpo de Prova
µ m)
µ m)
Diferença
Ultra-som (µ
Mediana (µ
Percentual (%)
T1
99,25
94,11
5,46
T2
127,71
118,39
7,87
T3
93,20
94,14
1,01
T5
76,80
80,27
4,52
Analisando-se os resultados obtidos, verifica-se que a maior correlação entre os
resultados da metodologia ultra-sônica e o padrão metalográfico ocorre com a
mediana dos tamanhos mínimos dos grãos. Tal fato difere das proposições de autores
anteriores, que sem levar em conta a função distribuição dos tamanhos de grãos,
preconizavam a correlação com o tamanho médio dos grãos. Ressaltando, desta
forma, a influência da função distribuição de tamanhos de grão do material.
A razão para maior correlação com o parâmetro mediana pode ser explicado pela
forma log-normal da distribuição, onde ocorrem uma grande frequência de valores
menores no trecho inicial da distribuição e poucos valores maiores no trecho final.
Sair
6ª Conferência sobre
Tecnologia de Equipamentos
Assim os parâmetros média estariam influenciados por estes maiores valores, apesar
de sua pequena frequência de ocorrência, o que não acontece com a mediana. Quanto
à correlação com os tamanhos mínimos, verifica-se a ocorrência, figura2, maior dos
tamanhos mínimos, quando comparados aos máximos e desta forma causando uma
maior influência sobre os resultados da metodologia ultra-sônica.
A correlação pode ser visualizada na figura 3, indicando um ajuste satisfatório entre
os valores, conforme mostrado na tabela 3, através de uma diferença percentual
máxima de 7,87 %, quando as normas para caracterização metalográfica indicam
uma incerteza da medição superior a 10 %.
Figura 3. Correlação entre os valores de tamanho de grão obtidos pela metodologia
ultra-sônica e a mediana dos tamanhos mínimos, medidos metalograficamente. A
reta representa a regressão linear da função.
5.CONCLUSÕES
A metodologia ultra-sônica mostrou-se eficaz na caracterização microestrutural de
materiais metálicos, através da determinação dos tamanhos de grãos.
Os resultados obtidos indicam a influência da função distribuição de tamanhos de
grãos sobre a metodologia ultra-sônica, acrescentando novas informação às
proposições de autores anteriores.
6.AGRADECIMENTOS
Os autores agradecem ao CEFET/RJ pelo suporte financeiro a esta pesquisa.
7.REFERÊNCIAS BIBLIOGRÁFICAS
(1)GOEBBELS, K., “Method of Quantitatively Determining the Grain Size of
Substances”, United States Patent 4,026,157, USPTO, 1977.
(2)TAKAFUJI, H., SEKIGUCHI, S., “Method of Determining Grain Size Using
Ultrasonic Waves”, United States Patent 4,539,848, USPTO, 1985.
Sair
6ª Conferência sobre
Tecnologia de Equipamentos
(3)SZILARD, J., “Examining the Grain Structure of Metals”, In. SZILARD, J. (ed.),
Ultrasonic Testing: Non-conventional Testing Techniques, 1st ed., chapter 6, New
York, John Wiley & Sons, 1982.
(4)ASTM, “Standard Methods for Determining Average Grain Size – E112-82”,
USA, American Society for Testing and Materials – ASTM, 1982.
(5)PICKERING, F.B, “The Basis of Quantitative Metallography”, 1st ed., London,
Institute of Metallurgical Technicians, 1976.
(6)MOTTA, M.S., “Estudo de Metodologia para Determinação de Tamanho de Grão
em Materiais Metálicos por Ultra-som”, Tese D.Sc., COPPE/UFRJ, 2000.
(7)GOEBBELS, K., WILLEMS, H., “Characterization of Microstructure by
Backscattered Ultrasonic Waves”, Metal Science, v.15, n.6, Nov-Dec.1981.
(8)NICOLETTI, D.W, “Scaling Properties of Ultrasonic Attenuation and Grain Size
in Metals”, Ph.D. thesis, Drexel University, Philadelfia, Pennsylvania, USA, 1991.
(9)GOEBBELS, K., “Structure Analysis by Scattered Ultrasonic Radiation”,
Research Techniques in Nondestructive Testing, v.IV, Academic Press, pp 87-157,
1980.
(10)KRAUTKRÄMER, J., KRAUTKRÄMER, H.,
Materials”, 2nd ed., New York, Springer-Verlag, 1983.
“Ultrasonic
Testing
of
(11)BROWN, A.E., “Rationale and Summary of Methods for Determining
Ultrasonic Properties of Materials”, Report UCRL-ID-119958, Lawrence Livermore
National Laboratory, California, USA, 1997.
(12)PAPADAKIS, E.P., “Grain-Size Distribution in Metals and its Influence on
Ultrasonic Attenuation Measurements”, The Journal of the Acoustical Society of
America, v.33, n.11, pp 1616-1621, Nov.1961.
(13)SMITH, R.L., “Ultrasonic Materials Characterization”, NDT International, n.20,
pp 43-48, 1987
(14)PAPADAKIS, E.P., “Ultrasonic Attenuation and Velocity in SAE 52100 Steel
Quenched from Various Temperature”, Metallurgical Transaction, pp 1053-1057,
1970.
(15)SERABIAN, S., WILLIAMS, R.S., “Experimental Determination of Ultrasonic
Attenuation Characteristics Using the Roney Generalized Theory”, Materials
Evaluation, n.36, pp 55-62, 1978.
(16)SMITH, R.L., REYNOLDS, W.N., WADLEY, H.N.G., “Ultrasonic Attenuation
and Microstructure in Low-Carbon Steels”, Metal Science, v.15, n.6, pp 554-558,
Nov-Dec.1981.
(17)PAPADAKIS, E.P., “Revised Grain-Scattering Formulas and Tables”, The
Journal of the Acoustical Society of America, v.37, n.4, pp 703-710, 1965.
(18)PAPADAKIS, E.P., “Ultrasonic Attenuation Caused by Scattering in
Polycrystalline Metals”, The Journal of the Acoustical Society of America, v.37,n.4,
pp 711-717, 1965.
Download

Metodologia Ultra-Sônica Para Determinação Do tamanho De