Química I H2SO4 + 2NaOH Na2SO4 + 2H2O 1 mol 2 mol z 0,010 mol Módulo 9 z = 0,020 mol de Na OH Questões de Aplicação 1. t Ma = Molaridade do ácido ------------------------- 2 mol/L Massa de NaOH (puro): Xa = número de hidrogênios ionizáveis do ácido-----1 n = nM = 0, 080 mol . 40 Va = Volume da solução ácida (litros)------------------- 100 mL ou 0,1 L m = 3, 2g Como: nH+ = MaXaVa tem-se, nH+ = 2 . 1 . 0,1 = 0,2 mol de íons H+ 4,0 g de NaOH (impuro) 3,2 g de NaOH (puro) 100 g de NaOH (impuro) w g de NaOH (puro) Mb = Molaridade da base ---------------------------1 mol/L Xb = Número de íons hidroxila (OH–) do da base----1 w = 80 4. Mfinal = 1, 0 . 100 Minicial . Vinicial ⇒ Mfinal = Vfinal 200 Mfinal = 0, 05 mol / L 1 NaC Assim, haverá 0,1 mol de íons H+ em excesso em 0,2 L de solução. 1 Na1+ 0,05 mol/L 1 KC Conclusão: M = n/V então: M = 0,1/0,2 = 0,5 M + 0,05 mol/L 1K 1+ 0,05 mol/L Observe que: o número de mol íons H+ (nH+) = número de mol de íons OH– (nOH–) 1C + 1C –1 0,05 mol/L : –1 0,05 + 0,05 = 0,1 MCl = 0,1 mol L –1 5. Cálculo da concentração em mol/L de cada sal: a) Em relação ao iodeto de sódio, Nal: Minicial . Vinicial = Mfinal . Vfinal Va = Volume da solução ácida (litros)------------------- X Mb = Molaridade da base -----------------------0,25 mol/L Mfinal = Xb = Número de íons hidroxila (OH-) do da base----1 0, 5 . 80 Minicial . Vinicial ⇒ Mfinal = Vfinal 200 Vb = Volume da solução básica (litros)--------1000 mL L Mfinal = 0, 2 mol / L Aplicando os dados fornecidos e solicitados no exercício na fórmula da neutralização total: MaXaVa = MbXbVb Em relação ao iodeto de bário, Bal: Minicial . Vinicial = Mfinal . Vfinal Tem-se: Mfinal = 0,50 . 2 . Va = 0,25 . 1 . 1000 Logo, Ma = 250 mL –1 0,05 mol/L 0,05 mol/L Em relação ao íon C Assim, tem-se: Xa = Número de hidrogênios ionizáveis do ácido----- 2 Como o volume e a concentração em mol/L são iguais para as duas soluções, podemos calcular: Minicial . Vinicial = Mfinal . Vfinal Observe que o número de mols do reagente em excesso será a diferença entre o nH+ e o nOH–, ou seja: 0,2 – 0,1 = 0,1 . Ma = Molaridade do ácido --------------------- 0,50 mol/L 80% Em relação aos sais NaC e KC : Como nOH– = MbXbVb tem-se, nOH– = 1 . 1 . 0,1 = 0,1 mol de íons OH- Dados fornecidos e solicitados: g mol Resposta: 80% Vb = Volume da solução básica (litros)------------100 mL ou 0,1 L 3. 0,020 mol de NaOH 100 mL de NaOH (aq) T = 0,080 mol de NaOH Determinação separada do número de mols de íons H+: Determinação separada do número de mols de íons OH– 2. 25 mL de NaOH (aq) Minicial . Vinicial 1, 0 .120 ⇒ Mfinal = 200 Vfinal Mfinal = 0, 6 mol / L 1 L de H2SO4(aq) –––––– 0,50 mol de H2SO4 0,020 L de H2SO4(aq) ––––––y b) Em relação ao íon Na: y = 0,010 mol de H2SO4 1Nal 1 Na1+ + 1 l1– 0,2 mol/L 0,2 mol/L 0,2 mol/L 3. M Na = 0,2 mol/L 1+ Em relação ao íon Ba2+: 1 Bal 0,6 mol/L 1 Ba 1+ + 2 l 1– 0,6 mol/L 50 ⋅ 0, 10 ⇒ x = 0, 005 mol de H2SO4 1000 Em relação ao íon l–1: 0,40 mol de NaOH 1000 ml 0,2 + 2 . 0,6 = 1,4 x 50ml 50 ⋅ 0, 40 y= ⇒ x = 0, 02 mol de NaOH 1000 –1 Questões Complementares a) 1 H2SO4(aq) + 2 NaOH(aq) Concentração dos íons cálcio, Ca2+: Minicial . Vinicial = Mfinal . Vfinal Mfinal .V M = inicial inicial ⇒ Vfinal 0, 10 . 100 500 = 0, 02 mol / L Mfinal = Mfinal Minicial . Vinicial ⇒ Vfinal 0, 20 . 400 500 = 0, 16 mol / L Mfinal = 0,005 mol z z = 0,005 . 2 Conclusão: o meio ficar básico, pois há excesso de base. x = 0,01 mol de NaOH 4. w= 1000 ⋅ 0, 01 100 w = 0,1 mol/L de NaOH Observe que: o número de mol íons H+ (nH+) = número de mol de íons OH– (n OH–) Dados fornecidos e solicitados: Ma = Molaridade do ácido ------------------------- x mol/L Xá = Número de hidrogênios ionizáveis do ácido----- 2 Va = Volume da solução ácida (litros)------------- 7,50 mL Mb = Molaridade da base -----------------------0,75 mol/L Xb = Número de íons hidroxila (OH–) do da base----1 Vb = Volume da solução básica (litros)-------------40 mL Aplicando os dados fornecidos e solicitados no exercício na fórmula da neutralização total: MaXaVa = MbXbVb MCl = n. de íons na fórmula . Msubstância . MCl = 2 . 0,18 . 1 = 0,36 mol/L –1 Tem-se: Observe que: o número de mol íons H+ (nH+) = número de mol de íons OH– (n OH–) Dados fornecidos e solicitados: 1000mL Assim, tem-se: o Assim, teremos: 0,01 mol de NaOH (em excesso) 100mL Concentração dos íons cloreto, Cl1–: M . V = M·. V · + M·. V ·· M·. V · + M·. V ·· M= V 0, 10.100 + 0, 20.400 M= 500 M = 0, 18 8 mol / L –1 2 mol w Minicial . Vinicial = Mfinal . Vfinal Mfinal 1 mol Concentração dos íons estrôncio, Sr : Mfinal = 1 Na2SO4(aq) + 2 H2O b) Volume final = 100mL 2+ X . 2 . 7,50 = 0,75 . 1 . 40 Logo, Ma = 2,0 mol/L 5. Ma = Molaridade do ácido -------------------- 0,02 mol/L D M= Xá = Número de hidrogênios ionizáveis do ácido----- 1 ensino MÉDIO 2.a SÉRIE 50ml M I = 1,4 mol/L m ⇒ m = M ⋅ M ⋅ V (L ) M ⋅ V (L ) Va = Volume da solução ácida (litros)------------------- Pedido no exercício m = 0,1 . 36,5 . 0,25 m = 0,9125 g de HC HC + NaHCO3 NaC + H2O + CO2 Mb = Molaridade da base ---------------------0,010 mol/L 1 . 36,5 g de HC 1 . 84 g de NaHCO3 Xb = Número de íons hidroxila (OH-) do da base----2 0,9125 g de HC x Vb = Volume da solução básica (litros)-----------------100 mL ou 0, 1 L x= Aplicando os dados fornecidos e solicitados no exercício na fórmula da neutralização total: MaXaVa = MbXbVb Tem-se: 0,02 . 1 . Va = 0,01 . 2 . 100 Logo, Ma = 100 mol/L 2 1000 ml Cálculo da quantidade de matéria de NaOH na solução: +2 2. 0,10 mol de H2SO4 x x= 2.0,6 molL M Ba = 0,6 mol/L 1. Cálculo da quantidade de matéria de H2SO4 na solução: 0, 9125 ⋅ 1⋅ 84 ⇒ x = 2, 1 g de NaHCO3 1⋅ 36, 5 Módulo 10 Questões de Aplicação 1. A Envolve duas mudanças de estado absorção de calor para que as mesmas ocorram. 2. 1 cal........................................4,18 Joules 450cal ..................................... O calor liberado na combustão de 10 g do material é 471,63 KJ. 5. x x H = –110 kcal Reação exotérmica (libera energia). y b) H=H–H H = + 50 kcal H = –30 – 80 H = 70 – 20 y= Reação endotérmica (absorve energia). H = Hp – Hr Módulo 11 H=–A–O Questões de Aplicação A reação é endotérmica (absorve energia), uma vez que o valor de H é positivo. 1. 3 . 32 g de O2(g) absorvem 1g de O2(g) absorvex 2. a) Evaporação e liquefação. b) A evaporação na superfície da água salobra e a liquefação na superfície do plástico. c) A evaporação, que absorve energia do Sol. 322,3 g de Na2SO4 . 10 H2O 19,6 kcal 644000 g de Na2SO4 . 10 H2O x 322, 3 19, 6 644000 ⋅ 19, 6 = ⇒x= 644000 322, 3 x x = 39163,5 kcal A energia absorvida durante o dia é de 39163,5 kcal. No processo inverso, a energia que foi absorvida durante o dia é liberada durante a noite. 13300 kJ 10 g x x= 10 ⋅ 13300 ⇒ x ≅ 471, 63 kJ 282 Dividindo todos os coeficientes por 2n para obter 1 mol de produto, teremos: 3/2 H2(g) + 1/n Pn(s, vermelho) + 2 O2(g) 1 mol de HgO 90 KJ 100 mol de HgO 90 .100 KJ 1 mol de CH4 900 KJ x 90 . 100 KJ 2n H3PO4(s) Todas as reações são endotérmicas. III. H positivo. 4. CH = 58 g mol a) 58 g de C4H10 2900 KJ 1000 g de C4H10liberam x 1000 ⋅ 2900 ⇒ x = 50000 kJ 58 A energia liberada foi de 50000 KJ. x= b) 58 g de C4H10 24,5L 1000 g de C4H10 1000 ⋅ 24, 5 ⇒ y = 422, 4 kJ 58 O volume consumido foi de 422,4 L de butano. 5. liberam y y= 0,782 g de etanol 1 mL x 100 mL 100 ⋅ 0,782 x= ⇒ x = 78, 2 g de e tan ol 1 3,6 . 10 kcal 46 g de etanol 78,2 g de etanol GABARITO COMENTADO 282 g de C20H42 II. A energia participa como reagente. Como teoricamente o rendimento em todas as etapas é de 100%, então a energia liberada para a casa durante a noite é igual a 39163,5 kcal. 4. C20H42 = 282 g mol 2n H3PO4(s) I. A energia participa como reagente. H = –19,6 kcal 3n H2(g) + 2 Pn(s, vermelho) + 4n O2(g) X = 10 mol de CH4 3. 1 Na2SO4 . 10 H2O(s) b) Massa molar do Na2SO4 . 10 H2O = 322,3 g mol 90 ⋅ 100 ⋅ 1 x= 900 a) A combustão do hidrogênio não polui a atmosfera. 3. a) 1 Na2SO4(s) + 10 H2O(l) 1HS (g) c) Equação balanceada: 3 ⋅ 32 68 1⋅ 68 = ⇒x= x 1 3 ⋅ 32 x = 0,71 kcal (710 cal) b) A gasolina é obtida do petróleo que é uma fonte finita, enquanto que o hidrogênio é obtido a partir da água que é uma fonte inesgotável. 1 NH3(g) b) 1 H (g) + 1/8 S8(s, rômbico) 68 kcal Questões Complementares Equações de entalpia de formação ocorrem em condições-padrão: 1 atm, a 25 oC. a) 3/2 H2(g) + 1/2 N2(g) Massas molares em g/mol: O2 = 32 e O3 = 48. 200 ⋅ 1 ⇒ y = 0, 645 mol de acetileno 310 Hr = O H = –A 200 kcal e 4. A. Hp = –A 2. 360 g de água 3.a)H = Hp – Hr 1. 10 kcal 360 ⋅ 10 x= ⇒ x = 200 kcal 18 310 kcal 1 mol de acetileno x = 1881 J 5. 18 g de água (1 mol) y 3 y= 4. 78, 2 ⋅ 3, 6 ⋅ 102 ⇒ y = 612 kcal 46 y = 612 . 103 cal H = + 2,8 . 106 J mol de glicose 1 mol de glicose absorve 2,8 . 106 J 0,5 mol de glicose absorve x x= Questões Complementares 1. 1. Os fatores que podem influenciar a variação da entalpia de uma reação são: 0, 5 ⋅ 2, 8 ⋅ 10 ⇒ x = 1, 4 ⋅ 106 J 1 6 5. a)C2H4O2 (l) + 3 O2 (g) 2 CO2 (g) + 2H2O (l) b)C4H10 (g) + 13/2 O2 (g) 4 CO2 (g) + 5 H2O (l) • Fase de agregação de reagentes e produtos. • Forma alotrópica de reagentes e produtos. • Temperatura em que ocorre a reação. Módulo 12 • Pressão em que ocorre a reação. Questões de Aplicação • Quantidade de reagentes e produtos. 1. • Meio reacional. 2. a) 1 H2(g) + 1/2 O2(g) 1 C2H5OH + 3 O2(g) 2 CO2(g) + 3 H2O(l) 1 C8H18 + 25/2 O2(g) ensino MÉDIO 2.a SÉRIE + 3 2 → 1 WO3( s ) O2(g) ∆Hcombustª o = −840 kJ / mol 8 CO2(g) + 9 H2O(l) → 1 CO2( g ) 1 C ( grafita ) + 1 O2( g ) liberam 242 KJ 1000 g de hidrogênio liberam x 2 242 1000 ⋅ 242 = ⇒x= x 1000 2 ∆Hcombustª o = +1196 kJ / mol x = 121000 KJ/kg de hidrogênio 1 C ( grafita ) + 1 W( s ) 46 g de álcool (1mol) liberam 1000 g de álcool liberam ∆Hcombustª o = −394 kJ / mol → 1 WC ( s ) + 1 WO3( s ) + 1 CO2( g ) 1230 kJ 46 1230 1000 ⋅ 1230 = ⇒y= y 1000 46 O hidrogênio é o mais eficiente. O2( g ) → 1 WC ( s ) H = –38 kJ/mol 2. 1 C ( grafita ) + 1 O2( g ) → 1 CO2( g ) ∆H = −94, 1 kcal / mol ∆H = +0, 4 kcal / mol 1 C ( grafita ) → C ( diamante ) c) 1 L de álcool possui massa igual a 800 g. 1 mol de grafita = 12 g 1000 g de álcool liberam 26739,13 kj 800 g de álcool z 12 g de C(grafita) 0,4 kcal x 1000 26739, 13 800 ⋅ 26739, 13 = ⇒z= 800 1000 z z = 21391,30 ou ≅ 21391 kj/L de álcool 2400 g de C(grafita) Combustão de 1 L de gasolina: 100 um (unidades monetárias) 31300 kj 1 um 2 → 1 C ( diamante ) + 1 O2( g ) ∆H = +94, 5 kcal / mol 1 CO2( g ) y = 26739,13 kJ/kg de álcool liberam 5 H = –840 + (–394) + 1196 y 4 1 W( s ) b) 2 (g) de hidrogênio (1 mol) 3. 1 H2O(l) C. Equação I + equação II + inverso da equação III = equação procurada: 100 31300 1⋅ 31300 = ⇒α= α 1 100 α = 313 kJ x= 3. a) A reação é exotérmica, pois a energia é um dos produtos da reação, logo o sinal de H é negativo. Combustão de 1 L de álcool (65% mais barato): 65 um (unidades monetárias) 21391 kJ 1 um 65 21391 1⋅ 21391 = ⇒β= 1 65 β β = 329 kJ O combustível mais econômico é o álcool. A equação II é mais exotérmica porque a quantidade de energia liberada na formação da água na fase líquida é maior do que na formação da água na fase gasosa. 2400 ⋅ 0, 4 ⇒ x = 80 kcal 12 A reação parte de dois mol de reagente. Para encontrar o valor de H em kcal/mol, basta dividir o valor da energia liberada por dois. Fazendo isso, temos: H0 = –372,8 kcal/mol. b) A reação é exotérmica, pois a energia é retirada dos reagentes, portanto, liberada ( H é negativo). Para encontrar o valor de H em kcal/mol, basta dividir o valor da energia liberada por dois. Fazendo isso, temos: H0 = –400 kcal/mol. 4. C. O inverso da equação I + equação II = equação procurada: 1 CO2(g) 1 C(grafita) 1/2 O2(g) H = +26,4 kcal 1 C(grafita) + 1 O2(g) 1 CO2(g) H = –94,1kcal 1 CO2(g) + 12 O2(g) 1 CO2(g) H = –67,7 kcal 5. a) Na primeira fase ocorre a quebra das ligações interatômicas: H1. Na segunda fase ocorre a hidratação das partículas do soluto: H2. b) Reação endotérmica: H > 0 se ∆H1 > ∆H2 . Reação exotérmica: H < 0 se ∆H1 < ∆H2 . Questões Complementares 1. 1 Fe(s) + 1/2 O2(g) Dividindo todos os coeficientes por 2n para obter 1 mol de produto, teremos: 3/2 H2(g) + 1/n Pn(s,vermelho) + 2 O2(g) 5. 2n H3PO4(s) a) O calor faz parte do produto reacional. Logo, a reação é exotérmica. b)2 mols de Fe(s) ..........3 . 24 L CO2 (g) 1 mol de Fe (s ........... v v = 36 L de CO2 (g) 1 FeO(s) Aplicando a Lei de Hess (inverso da reação II + reação III + inverso da reação IV = reação de formação do óxido de ferro II, FeO(s)): 1 Fe(s) + 1 CO(g) 1 FeO(s) + 1 C(grafita) H = –155,8kJ 0 1C(grafita) + 1 O2(g) 1 CO2(g) H0 = –393,5kJ 1CO2(g) 1 CO(g) + 1/2 O2(g) H = +283,0 kJ 0 1Fe(s) + 1/2 O2(g) 1FeO(s) H = –266,3 kJ/mol 0 2. 2 Fe(s) + 3 CO(g) 1 Fe2O3(s) + 3C(grafita) H = –492,6 kJ 3 C(grafita) + 3 O2(g) 3 CO2(g) H = –1180,5 kJ 3 CO2(g) 3 CO(g) + 3/2 O2(g) H = +849,0 kJ 2 Fe(s) + 3/2 O2(g) 1 Fe2O3(s) H = –824,1 kJ 3. C. Verdadeiro. Decomposição do N2O4(g): a reação pode ser obtida pelo inverso da reação B. 1 N2O4(g) 1 N2(g) + O2(g) H = –9,6 kJ A decomposição do N2O4(g) libera 9,6 kJ de energia por mol. Dimerização do NO2(g): a reação pode ser obtida por: inverso da reação A + reação B. 2 NO2(g) 1 N2(g) + 2 O2(g) 1 N + 2 O2(g) H = –67,6 kJ 1 N2O4(g) 2 NO2(g) + 2 O2(g) 1 N2O4(g) H = +9,6 kJ H = –58 kJ 4. Equações de entalpia de formação ocorrem em condições-padrão: 1 atm, a 25 oC. a) 3/2 H2(g) + 1/2 N2(g) b) 1 H2(g) + 1/8 S8(s, rômbico) 1 NH3(g) 1 H2S(g) c) Equação balanceada: 3n H2(g) + 2 Pn(s,vermelho) + 4n O2(g) 2n H3PO4(s) GABARITO COMENTADO A dimerização do NO2(g) libera 58 kJ de energia. 5 6 ensino MÉDIO 2.a SÉRIE