MODELOS ATÔMICOS Durante muito tempo, a constituição da matéria gerava curiosidade no homem. Desde a Antiguidade, filósofos tentavam descobrir como a matéria é formada. Dois filósofos gregos, Demócrito e Leucipo, sugeriram que toda a matéria era formada por pequenos corpos indivisíveis. Chamaram estes corpos de átomo, que em grego a significa não e tomos significa divisível. Demócrito, pai da atomística Então, átomo era a última partícula que podia dividida. Nos anos 500 e 1500 da era cristã, surgiram entre os árabes e europeus, os alquimistas. Seus trabalhos eram obter o elixir da longa vida, para que o ser humano se tornasse imortal. Era a pedra filosofal, capaz de tornar qualquer metal em ouro. No século XVI, surge a Iatroquímica, que era uma doutrina médica que atribuía a causa química para tudo o que eu se passava no organismo. Mais tarde, no século XVIII, nasce a idéia de química com os cientistas que estudaram as Leis Ponderais, Lavoisier e Proust. O que é Modelo Atômico? Os modelos atômicos são teoria baseadas na experimentação feita por cientistas para explicar como é o átomo. Os modelos não existem na natureza. São apenas explicações para mostrar o porquê de um fenômeno. Muitos cientistas desenvolveram suas teorias. Com o passar dos tempos, os modelos foram evoluindo até chegar ao modelo atual. Modelos Atômicos A estrutura da matéria é estudada desde o século V a.C., quando surgiu a primeira ideia sobre sua constituição. Os filósofos Leucipo e Demócrito afirmavam que a matéria não poderia ser dividida infinitamente, chegando a uma unidade indivisível denominada átomo. Essas especulações foram substituídas por modelos baseados em estudos experimentais após milhares de anos. O átomo seria parecido com uma bola de bilhar (Foto: Wikicommons) Baseado nas leis ponderais de Lavoisier e Proust, o cientista John Dalton, por volta do ano de 1808, elaborou sua teoria sobre a matéria, conhecida como teoria atômica de Dalton. As principais conclusões do modelo atômico de Dalton foram: ➢ A matéria é formada por partículas extremamente pequenas chamadas átomos; ➢ Os átomos são esferas maciças e indivisíveis; ➢ Os átomos com as mesmas propriedades, constituem um elemento químico; ➢ Elementos diferentes são constituídos por átomos com propriedades diferentes ➢ As reações químicas são rearranjos, união e separação, de átomos. Modelo de Thomson Modelo foi comparado a um pudim de passas (Foto: Wikicommons) Baseado em experiências com cargas elétricas, o cientista inglês Joseph John Thomson, no final do século XIX, concluiu que o átomo não era uma esfera indivisível, como sugeriu Dalton. A experiência que levou a elaboração desse modelo, consistiu na emissão de raios catódicos, onde as partículas negativas eram atraídas pelo polo positivo de um campo elétrico externo. Essas partículas negativas foram chamadas de elétrons, e para explicar a neutralidade da matéria, Thomson propôs que o átomo fosse uma esfera de carga elétrica positiva, onde os elétrons estariam uniformemente distribuídos, configurando um equilíbrio elétrico. O modelo atômico de Thomsom foi importante porque permitiu explicar a corrente elétrica e demais fenômenos eletrostáticos. A corrente elétrica consiste no movimento ordenado de elétrons através de um fio condutor. Modelo de Rutherford No início do século XX, o cientista Ernest Rutherford, utilizando a radioatividade, descobriu que o átomo não era uma esfera maciça, como sugeria a teoria atômica de Dalton. Surgia assim um novo modelo atômico. Rutherford bombardeou uma lâmina de ouro com 10-5 cm de espessura, envolvida por uma tela de sulfeto de zinco, com partículas α (lê-se: alfa) provenientes do elemento polônio protegido por um bloco de chumbo perfurado. Essa experiência revelou que a grande maioria das partículas atravessavam a lâmina de ouro, enquanto outras partículas passavam e sofriam pequenos desvios, e uma quantidade muito pequena não atravessava a lâmina. O percurso seguido pelas partículas α foi detectado devido à luminosidade refletida na tela de sulfeto de zinco. Modelo de Rutherford (Foto: Wikicommons) Comparando o número de partículas emitidas com o de desviadas, Rutherford deduziu que a massa da lâmina de ouro estaria localizada em pequenos pontos, denominados núcleos, e que o raio do átomo deveria ser 10.000 a 100.000 vezes maior que o raio do núcleo, sendo o átomo formado por espaços vazios. A maioria das partículas atravessou a lâmina por meio desses espaços. A explicação para as partículas α que sofreram desvios foi dada pelo fato do núcleo positivo da lâmina de ouro repelir as partículas alfa também positivas. As partículas que não atravessaram teriam colidido frontalmente com esses núcleos, sendo rebatidas. O modelo atômico de Rutherford concluiu que o átomo era composto por um pequeno núcleo com carga positiva neutralizada por uma região negativa, denominada eletrosfera, onde os elétrons giravam ao redor do núcleo. Modelo de Bohr De acordo com Rutherford, em um átomo, os elétrons se deslocavam em órbita circular ao redor do núcleo. Porém, esse modelo contrariava a física clássica, que segundo suas teorias, o átomo não poderia existir dessa forma, uma vez que os elétrons perderiam energia e acabariam por cair no núcleo. Como isso não ocorria, pelo átomo ser uma estrutura estável, o cientista dinamarquês Niels Bohr aperfeiçoou o modelo proposto por Rutherford, formulando sua teoria sobre distribuição e movimento dos elétrons. Baseado na teoria quântica proposta por Plank, Bohr elaborou os seguintes postulados: I- Os elétrons descrevem ao redor do núcleo órbitas circulares, chamadas de camadas eletrônicas, com energia constante e determinada. Cada órbita permitida para os elétrons possui energia diferente. II- Os elétrons ao se movimentarem numa camada não absorvem nem emitem energia espontaneamente. III- Ao receber energia, o elétron pode saltar para outra órbita, mais energética. Dessa forma, o átomo fica instável, pois o elétron tende a voltar à sua orbita original. Quando o átomo volta à sua órbita original, ele devolve a energia que foi recebida em forma de luz ou calor. Modelo de Bohr (Foto: Wikicommons) O modelo Rutherford-Bohr apresenta alguns problemas, como por exemplo, ele não explica por que o elétron apresenta energia constante, não explica as reações químicas, descreve órbitas circulares ou elípticas ,quando na verdade os elétrons não descrevem essa trajetória, dentre outras restrições. Ao longo dos anos, foram realizados muitos estudos em relação à estrutura do átomo levando a criação de outros modelos, porém o modelo Rutherford-Bohr ainda é o mais difundido no ensino médio. Radioatividade Em 1896, o francês Henri Becquerel descobriu a radioatividade, ele estudava os efeitos da luz solar sobre determinados materiais fluorescentes, como o minério de urânio. À espera da melhora do tempo, que se apresentava nublado, guardou a amostra do minério numa gaveta. Ao retirá-la, alguns dias mais tarde, Becquerel observou que a pedra havia emitido radiações mesmo no escuro e obteve a primeira prova da existência da radioatividade natural. Radioatividade é a propriedade que alguns tipos de átomos instáveis apresentam de emitir energia e partículas subatômicas, o que se convenciona chamar de decaimento radioativo ou desintegração nuclear. As teorias físicas modernas atribuem a origem da radioatividade a um grau de instabilidade interna do átomo (nuclídeo pai), que ao se converter em outro átomo (nuclídeo filho) alcança maior estabilidade. História da radioatividade Após a descoberta da radioatividade dos minérios de urânio por Becquerel, o casal Pierre e Marie Curie comprovou a existência de outras substâncias com atividade radioativa. Simultaneamente com o alemão Gerhard Carl Schmidt, o casal encontrou alto índice de radioatividade no tório. Mais tarde, ao analisar alguns minérios de urânio, em especial as pechblendas, Marie Curie detectou uma intensidade radioativa maior do que a observada no urânio e supôs que esses minerais continham algum elemento químico radioativo ainda não descoberto. Prosseguindo em suas experiências, os Curie separaram da pechblenda um elemento 400 vezes mais radioativo que o urânio, a que chamaram polônio, em homenagem à terra natal da cientista. Mais tarde, conseguiram isolar a partir da pechblenda outro elemento milhares de vezes mais ativo que o urânio, que denominaram rádio. A pesquisa de novos materiais radioativos prosseguiu nas décadas seguintes e resultou na descoberta de elementos até então desconhecidos, como o actínio, isolado por André Louis Debierne, em 1899, e por Friedrich Otto Giesel, em 1902, além do mesotório e do radiotório, isótopos do rádio e do tório, respectivamente, descobertos por Otto Hahn. Os estudos sobre o comportamento dessas substâncias, junto com os avanços da teoria atômica, resultaram, durante as primeiras décadas do século XX, numa nova concepção sobre a estrutura da matéria e derrubaram a idéia de indivisibilidade do átomo enunciada no início do século XIX. A hipótese estabelecida sobre a radioatividade, definida como a desintegração dos átomos, foi reforçada com a descoberta do nêutron por James Chadwick em 1932. Essa nova partícula, de carga elétrica neutra, complementou uma teoria da estrutura atômica que compreende o átomo como uma conjunção equilibrada de dois componentes: o núcleo, composto de nêutrons e prótons, partículas elementares de carga positiva, e os elétrons, partículas fundamentais de carga negativa, distribuídas na região extranuclear e responsáveis pelas propriedades químicas dos elementos. Assim, a radioatividade não é senão a conseqüência de uma perda, por parte do átomo, de alguns de seus componentes, ou a emissão de subpartículas por desequilíbrio dos campos de energia internos. Em 1934, o casal Frédéric Joliot e Irène Curie (filha de Pierre e Marie Curie) anunciou a descoberta da radioatividade artificial. Eles constataram que alguns núcleos atômicos, bombardeados com determinados tipos de radiações de partículas, tinham sua estrutura interna alterada e passavam a apresentar propriedades radioativas. Os procedimentos de transmutação artificial dos elementos químicos resultaram na obtenção de isótopos artificiais e radioativos da maioria dos átomos conhecidos e na descoberta de numerosos átomos novos, como os transurânicos (netúnio, plutônio, amerício etc). O emprego de técnicas de transmutação radioativa permite obter elementos químicos artificiais desconhecidos na natureza. De vida extremamente curta, devido a seu caráter fortemente radioativo, esses elementos sofrem imediatas transformações, que os convertem em elementos naturais. Tipos de radioatividade Os estudos realizados sobre o fenômeno da radioatividade, a partir do final do século XIX, comprovaram a existência de três tipos de radiações emergentes do interior dos átomos: os raios alfa, os raios beta e os raios gama. Raios alfa (a). De natureza eletropositiva e identificados como feixes de núcleos de hélio, os raios alfa são altamente energéticos e emitidos pelos elementos radioativos a milhares de quilômetros por segundo. São também chamados partículas alfa. Apesar de seu elevado conteúdo energético, possuem baixa penetrabilidade e são facilmente detidos por folhas de papel, de alumínio e de outros metais. Raios beta (b). Também chamados de partículas beta, de carga negativa (b+, elétrons) ou positiva (b- , pósitrons), os raios beta são identificados como partículas de alta energia expelidas pelos núcleos de átomos radioativos. Essas partículas não são constituintes do núcleo, mas surgem durante o decaimento beta, quando o núcleo emite elétrons (ou pósitrons) ou captura um elétron orbital para adquirir estabilidade. As partículas beta possuem menor energia que as alfa, mas apresentam maior poder de penetração, razão pela qual ultrapassam a barreira das lâminas metálicas finas usadas para deter as partículas alfa. Para isolar a radiação beta, é necessário usar lâminas muito mais espessas. Raios gama (g). Eletricamente neutros e constituídos de radiação eletromagnética (fótons) de freqüência superior ao do espectro da luz visível e a dos raios X, os raios gama são emitidos quando os núcleos efetuam transições, por decaimento alfa, de estados excitados para os de energia mais baixa. Sua energia e capacidade de penetração dificultam a manipulação. A excessiva exposição dos tecidos vivos a esses raios ocasiona malformações nas células, que podem provocar efeitos irreversíveis. Atualmente sabe-se que existem também radiações devidas a fissão espontânea do núcleo, que são observadas em núcleos pesados como os de urânio, plutônio e netúnio. Essa radiação ocorre devido à quebra espontânea do núcleo em dois núcleos mais leves, com liberação de nêutrons. Os principais métodos de detecção dessas radiações são a câmara de Wilson, que permite efetuar um traçado da trajetória das partículas radioativas num gás saturado de vapor d’água; os contadores Geiger-Müller e de outros tipos, que determinam o número de partículas radioativas que atravessam certa região do espaço; e as câmaras de ionização, generalização dos contadores Geiger-Müller, que distinguem a passagem das partículas por meio de pulsos de carga elétrica que produzem nos dispositivos de detecção. Propriedades dos materiais radioativos. Após a confirmação das hipóteses enunciadas por Ernest Rutherford e Frederick Soddy, segundo as quais a radioatividade resulta da transmutação de elementos químicos em outros, o próprio Soddy e Kasimir Fajans enunciaram as leis que levam seus nomes e que determinam os produtos finais de uma decomposição radioativa, resumidas na chamada lei do deslocamento radioativo: o átomo radioativo que decai pela emissão de uma partícula alfa se transforma num elemento químico diferente, com dois prótons a menos em seu núcleo e com quatro unidades de massa atômica a menos; se o decaimento resulta da emissão de uma partícula beta, seu número atômico se eleva uma unidade. Por exemplo, uma emissão alfa de urânio produz tório, que por emissão beta produz um átomo de protactínio. A instabilidade dos núcleos atômicos, espontânea ou induzida, reduz, por emissão de radioatividade, a massa do material radioativo, que se transforma de forma progressiva em outra substância. A velocidade de transmutação de um elemento radioativo é determinada pela constante de desintegração, ou tempo de vida, valor que mede a probabilidade de um átomo radioativo sofrer uma transformação na unidade de tempo considerada, e o tempo de meia-vida (semidesintegração), definido como o tempo necessário para que uma quantidade de substância radioativa reduza sua massa à metade. A natureza probabilística da desintegração radioativa conduz à definição do conceito de meia-vida dos elementos — a média aritmética dos tempos de vida dos átomos do elemento radioativo antes de sofrerem decaimento. Os períodos de semidesintegração oscilam entre milésimos de segundos (por exemplo, nas variedades do polônio e o astato) e bilhões de anos (como nos isótopos mais estáveis do urânio e do tório). Fissão Nuclear A fissão nuclear é uma reação que ocorre no núcleo de um átomo. Geralmente o núcleo pesado é atingido por um nêutron, que, após a colisão, libera uma imensa quantidade de energia. No processo de fissão de um átomo, a cada colisão são liberados novos nêutrons. Os novos nêutrons irão colidir com novos núcleos, provocando a fissão sucessiva de outros núcleos e estabelecendo, então, uma reação que denominamos reação em cadeia. Um parâmetro importante para analisar a estabilidade de um núcleo é a razão entre o número de prótons e o número de nêutrons. Por um lado, a falta de nêutrons pode tornar a distância entre prótons tão pequena que a repulsão se torna inevitável, resultando na fissão do núcleo. Por outro lado, como a força nuclear é de curto alcance, o excesso de nêutrons pode acarretar uma superfície de repulsão eletromagnética insustentável, que também resultaria na fissão do núcleo. Assim, um dos principais fatores para a estabilidade do núcleo é que tenhamos N = Z. Quando o isótopo urânio-235 (235U) recebe um nêutron, ele passa para um estado excitado que corresponde ao urânio-236 (236U). Pouco tempo depois esse novo núcleo excitado se rompe em dois novos elementos. Esse rompimento, além de liberar novos nêutrons, libera uma grande quantidade de energia. Os nêutrons provenientes do rompimento do núcleo excitado vão encontrar novos núcleos, gerando, portanto, uma reação em cadeia. A fim de que os novos nêutrons liberados encontrem novos núcleos, para assim manter a reação em cadeia, após a fissão do núcleo de urânio, deve-se ter uma grande quantidade de urânio-235. Como a concentração de urânio-235 no mineral urânio é pouca, obtém-se o urânio 235 em grande escala através do processo de enriquecimento do urânio. Usinas nucleares Um reator nuclear é um dispositivo usado em usinas para controlar a reação de fissão nuclear. Essa reação ocorre de forma descontrolada, por exemplo, na explosão de bombas atômicas; mas os reatores possuem mecanismos que impedem isso, fazendo com que a reação seja controlada e reaproveitada para gerar energia elétrica. A energia gerada em forma de calor faz com que a temperatura da água se eleve no interior do reator, a ponto de ela ser transformada em vapor. Esse vapor aciona uma turbina, que gera a energia elétrica. Depois de deixar a turbina, o vapor passa por um trocador de calor, que funciona como um condensador, onde o vapor é resfriado por uma fonte externa natural localizada próxima à usina (normalmente trata-se da água de um rio, lago ou mar) e volta na forma líquida ao circuito principal, iniciando novamente todo o processo. É por isso que as usinas nucleares costumam se encontrar em regiões próximas ao mar. O Brasil possui três reatores nucleares na Usina de Angra dos Reis, localizada no litoral do estado do Rio de Janeiro. Atualmente existem em todo o mundo 438 reatores nucleares em operação, que correspondem a 14% da produção de energia elétrica mundial. Os Estados Unidos possuem 104 reatores, a França 59 e o Japão 55.