Optoeletrônica - fotodetectores e fotoemissores Germano Maioli Penello Universidade do Estado do Rio de Janeiro - UERJ Faculdade de Engenharia - FEN Departamento de Eletrônica e Telecomunicações - DETEL Optoeletrônica Junção de duas áreas do conhecimento Óptica + eletrônica Área extremamente multidisciplinar! http://pt.wikipedia.org/wiki/%C3%93ptica_geom%C3%A9trica http://en.wikipedia.org/wiki/The_Dark_Side_of_the_Moon http://pt.wikipedia.org/wiki/Eletr%C3%B4nica http://en.wikipedia.org/wiki/Very-large-scale_integration 2 Optoeletrônica Junção de duas áreas do conhecimento Óptica + eletrônica http://pt.wikipedia.org/wiki/%C3%93ptica_geom%C3%A9trica http://en.wikipedia.org/wiki/The_Dark_Side_of_the_Moon http://pt.wikipedia.org/wiki/Eletr%C3%B4nica http://en.wikipedia.org/wiki/Very-large-scale_integration 3 Como juntar as duas áreas do conhecimento? Qual fenômeno da natureza existe a interação entre a luz e o elétron? Início da mecânica quântica. •Radiação de corpo negro Por que o ferro brilha quando aquecido? 4 Como juntar as duas áreas do conhecimento? Qual fenômeno da natureza existe a interação entre a luz e o elétron? Início da mecânica quântica. •Radiação de corpo negro •Absorção e emissão de um átomo Raias de emissão Raias de absorção Por que as cores das lâmpadas são diferentes? Lâmpada de sódio Lâmpada de mercúrio http://en.wikipedia.org/wiki/Mercury-vapor_lamp http://en.wikipedia.org/wiki/Sodium-vapor_lamp http://en.wikipedia.org/wiki/Spectral_line 5 Como juntar as duas áreas do conhecimento? Qual fenômeno da natureza existe a interação entre a luz e o elétron? Início da mecânica quântica. •Radiação de corpo negro •Absorção e emissão de um átomo •Efeito fotoelétrico Por que os elétrons são ejetados quando jogamos luz? http://en.wikipedia.org/wiki/Photoelectric_effect 6 Optoeletrônica Aproveitar o fenômeno de interação da luz com a matéria para criar dispositivos •Radiação de corpo negro •Absorção e emissão de um átomo Raias de emissão •Efeito fotoelétrico Raias de absorção Para poder criar novos dispositivos, precisamos primeiramente entender o que está acontecendo nestes fenômenos! 7 Absorção e emissão de luz Raias de emissão Raias de absorção Como explicar que um átomo emite e absorve luz? E que diferentes átomos tem espectros distintos? E n=3 n=2 n=1 Modelo de Bohr para o átomo http://en.wikipedia.org/wiki/Bohr_model 8 Absorção e emissão de luz Raias de emissão Raias de absorção O confinamento eletrônico é importante para que exista níveis de energia discretos! E são os níveis de energia discretos que explicam as raias. E n=3 n=2 n=1 Modelo de Bohr para o átomo http://en.wikipedia.org/wiki/Bohr_model 9 Absorção e emissão de luz Raias de emissão E Raias de absorção E n=3 n=3 n=2 n=2 n=1 n=1 Emissão e absorção de luz depende da diferença de energia entre os níveis 10 Absorção e emissão de luz Raias de emissão Raias de absorção O modelo de Bohr é ultrapassado! Ajuda a compreender o fenômeno, mas tem limitações. Modelo de Bohr para o átomo http://en.wikipedia.org/wiki/Bohr_model Schroedinger http://en.wikipedia.org/wiki/Hydrogen_atom 11 Átomos vs. cristais Até o momento só falamos de átomos e os níveis de energia! Para criar um dispositivo, utilizamos um conjunto grande de átomos na forma de um cristal. Região proibida Região proibida Arranjo cristalino do Silício Bandas de energia Ao agrupar os átomos na forma de um cristal, observamos novas propriedades para o elétron. Qual a diferença entre um condutor, um isolante e um semicondutor? http://en.wikipedia.org/wiki/Silicon http://www.optique-ingenieur.org/en/courses/OPI_ang_M05_C02/co/Contenu.html 12 Átomos vs. cristais E Cristais semicondutores Átomos n=3 Região proibida Região proibida Região proibida n=2 n=1 Níveis de energia Bandas de energia Emissão e absorção de luz depende da diferença de energia entre os estados http://www.infoescola.com/quimica/atomo/ http://en.wikipedia.org/wiki/Silicon http://www.optique-ingenieur.org/en/courses/OPI_ang_M05_C02/co/Contenu.html 13 Átomos vs. cristais Não temos controle sobre as propriedades de um átomo mas temos controle sobre as propriedades de um cristal! Podemos controlar os elementos que formam o cristal, o tamanho do cristal, a concentração de portadores, … É esse controle que nos permite criar dispositivos com propriedades nunca antes vistas! http://www.infoescola.com/quimica/atomo/ http://en.wikipedia.org/wiki/Silicon http://www.optique-ingenieur.org/en/courses/OPI_ang_M05_C02/co/Contenu.html 14 Dispositivos optoeletrônicos Com o entendimento dos fenômenos naturais, podemos criar dispositivos com propriedades inéditas controlando as propriedades da luz e do elétron simultaneamente. LEDs Lasers CCD ou CMOS Os dispositivos se dividem em dois grupos: emissores e detectores http://en.wikipedia.org/wiki/Laser http://en.wikipedia.org/wiki/Light-emitting_diode 15 Fotoemissores Diodo emissor de luz (LED) Junção pn (polarização direta) E n=3 n=2 n=1 Átomo Cristal semicondutor Note a similaridade entre a emissão do átomo e a do cristal http://en.wikipedia.org/wiki/Light-emitting_diode 16 LED Junção pn (polarização direta) A cor do LED depende do cristal utilizado na sua fabricação Infravermelho e vermelho – AlGaAs Verde – GaP Azul – InGaN Cada cristal tem uma estrutura de banda diferente e, consequentemente, emite uma cor diferente. Lembre-se do exemplo de átomos! http://en.wikipedia.org/wiki/Light-emitting_diode 17 LASER Amplificação de luz por emissão estimulada da radiação Propriedades da luz emitida por um laser que não são obtidas num LED: Coerência espacial (colimação), coerência temporal (monocromaticidade) 18 LASER Amplificação de luz por emissão estimulada da radiação E E Emissão espontânea LED Emissão estimulada LASER O fenômeno de emissão estimulada é utilizado para a construção de um laser Propriedades da luz emitida por um laser que não são obtidas num LED: Coerência espacial (colimação), coerência temporal (monocromaticidade) 19 LASER Amplificação de luz por emissão estimulada da radiação Construindo um laser: Cristal Espelho totalmente refletor Espelho parcialmente refletor 20 LASER Amplificação de luz por emissão estimulada da radiação Construindo um laser: Cristal E Espelho totalmente refletor Espelho parcialmente refletor Emissão espontânea 21 LASER Amplificação de luz por emissão estimulada da radiação Construindo um laser: Cristal Luz emitida pelo laser Meio de ganho E Espelho totalmente refletor Espelho parcialmente refletor n=1 Emissão estimulada 22 LASER Amplificação de luz por emissão estimulada da radiação Construindo um laser: Cristal Luz emitida pelo laser Meio de ganho E Espelho totalmente refletor Espelho parcialmente refletor n=1 Emissão estimulada 23 LASER Amplificação de luz por emissão estimulada da radiação Construindo um laser: Cristal Luz emitida pelo laser Meio de ganho Espelho totalmente refletor Espelho parcialmente refletor Quando o sistema entra em um equilibrio dinâmico de perdas e ganhos, o laser entra em uma operação de emissão de luz constante. Como explicar o laser pointer verde? 24 LED vs. LASER Largura espectral O LED pode ser considerado monocromático para algumas aplicações, mas o LASER é extremamente monocromático ao ser comparado com o LED. http://www.thefoa.org/tech/ref/appln/transceiver.html 25 Fotodetectores Câmeras fotográficas Sensor de proximidade Célula fotovoltaica (solar) 26 Fotodetectores Junção pn (polarização reversa) E n=3 n=2 n=1 Átomo Cristal semicondutor Note a similaridade entre a absorção do átomo e a do cristal 27 Fotodiodos Junção pn (polarização reversa) Como alterar a “cor” (comprimento de onda) a ser detectada? O Si absorve no espectro visível! Um dos motivos de termos camêras fotográficas digitais cada vez mais baratas. Responsividade do Si http://en.wikipedia.org/wiki/Photodiode 28 Infravermelho Até o momento, discutimos a emissão e detecção. Apenas frisamos utilizações na região de radiação visível do espectro eletromagnético Espectro IR - comprimento de onda entre 700 nm e 1mm http://www2.lbl.gov/MicroWorlds/ALSTool/EMSpec/EMSpec2.html 29 Infravermelho Pra que utilizar detectores e emissores em um espectro que não é visível? Controle remoto Imagens térmicas Detecção de gases Galaxia de andrômedra (imagem feita em l = 24mm) http://en.wikipedia.org/wiki/Remote_control Indústria Segurança Medicina Prevenção de falhas http://rebar.ecn.purdue.edu/ect/links/technologies/other/infraredgassensor.aspx 30 Infravermelho Espectro IR - comprimento de onda entre 700 nm e 1mm Não era pra ser invisível? Controle remoto – comprimento de onda típico é de 940 nm O Si não pode mais ser utilizado para a absorção no IR (acima de 1000 nm) Responsividade do Si http://en.wikipedia.org/wiki/Remote_control 31 Infravermelho Como o Si não detecta acima de 1000 nm, utilizamos outros materiais semicondutores InGaAs, InAlAs, InP, … Criamos heteroestruturas que nos permite um controle ainda maior dos estados eletrônicos Homoestrutura Apenas um material é utilizado Apenas um gap de energia Heteroestrutura Mais de um material é utilizado Mais de um gap de energia 32 Fotodetector de poços quânticos E Dois materiais semicondutores com diferentes gaps. Banda de condução E2 Absorção intrabanda E1 Absorção interbanda H1 H2 Absorção intrabanda Banda de valência Confinamento eletrônico em um poço de potencial. Controlando a espessura dos materiais, sintonizamos as transições ópticas. z Heteroestrutura do tipo I 33 Fotodetector de infravermelho de poços quânticos (QWIP) E Banda de condução E2 E1 Absorção intrabanda Absorção interbanda H1 H2 Absorção intrabanda Faixa de absorção no infravermelho médio 3~6 mm 400~200 meV. •Poços de InGaAs •Barreiras de InAlAs Banda de valência z 34 Fotodetector de infravermelho de poços quânticos (QWIP) E Banda de condução E2 E1 Absorção intrabanda z Note como estes níveis de energia são similares aos de um átomo! Faixa de absorção no infravermelho médio 3~6 mm 400~200 meV. •Poços de InGaAs •Barreiras de InAlAs Aumento do confinamento eletrônico níveis discretos seletividade 35 Inovações tecnológicas 5 cm 3 mm 2 cm •Fotodetectores de poços quânticos •Fotodetectores de pontos quânticos •Fotodetectores de cascata quântica 36 Inovações tecnológicas Non linear intracavity QCL (3.2 µm / 6.4 µm) Laser de cascata quântica Acoplamento de diversos poços quânticos para controlar os estados eletrônicos. Engenharia de bandas LASERs super compactos com alta potência que emitem no infravermelho! http://qcllab.princeton.edu/ 37 Inovações tecnológicas Câmera auto alimentável – publicada por um grupo da universidade de Columbia no mês passado 30 x 40 pixels Os sensores da câmera funcionam como células solares e detectores intercaladamente! http://engineering.columbia.edu/columbia-engineer-invents-video-camera-runs-without-battery http://www.cs.columbia.edu/CAVE/projects/self_powered_camera/ 38 Resumo Optoeletrônica Óptica + eletrônica Envolve duas grandes áreas do conhecimento: • Eletromagnetismo (Equações de Maxwell, propagação, geração, modulação e detecção da luz) • Mecânica quântica (Estrutura de bandas dos semicondutores, junções pn, heteroestruturas, confinamento eletrônico) O entendimento dos fenômenos da natureza nos permite criar dispositivos inéditos e aprimorar a tecnologia atual! Área extremamente multidisciplinar! 39 40