REGRA DE TRÊS SIMPLES E COMPOSTA REGRA DE TRÊS SIMPLES Regra de três simples é um processo prático para resolver problemas que envolvam quatro valores dos quais conhecemos três deles. Devemos, portanto, determinar um valor a partir dos três já conhecidos. Passos utilizados numa regra de três simples: 1º) Construir uma tabela, agrupando as grandezas da mesma espécie em colunas e mantendo na mesma linha as grandezas de espécies diferentes em correspondência. 2º) Identificar se as grandezas são diretamente ou inversamente proporcionais. 3º) Montar a proporção e resolver a equação. Exemplos: 1) Com uma área de absorção de raios solares de 1,2m², uma lancha com motor movido a energia solar consegue produzir 400 watts por hora de energia. Aumentando-se essa área para 1,5m², qual será a energia produzida? Solução: montando a tabela: Área (m²) Energia (Wh) 1,2--------400 1,5-------- x Identificação do tipo de relação: Área--------Energia 1,2---------400↓ 1,5---------- X↓ Inicialmente colocamos uma seta para baixo na coluna que contém o x (2ª coluna). Observe que: Aumentando a área de absorção, a energia solar aumenta. Como as palavras correspondem (aumentando - aumenta), podemos afirmar que as grandezas são diretamente proporcionais. Assim sendo, colocamos uma outra seta no mesmo sentido (para baixo) na 1ª coluna. Montando a proporção e resolvendo a equação temos: Área--------Energia 1,2---------400↓ 1,5-----------x↓ 1,2X = 400.1,5 x= 400.1,5 / 1,2 x= 500 Logo, a energia produzida será de 500 watts por hora. 2) Um trem, deslocando-se a uma velocidade média de 400Km/h, faz um determinado percurso em 3 horas. Em quanto tempo faria esse mesmo percurso, se a velocidade utilizada fosse de 480km/h? Solução: montando a tabela: 1) Velocidade (Km/h) Tempo (h) 400-----------------3 480---------------- x 2) Identificação do tipo de relação: velocidade----------tempo 400↓-----------------3↑ 480↓---------------- x↑ Obs: como as setas estão invertidas temos que inverter os numeros mantendo a primeira coluna e invertendo a segunda coluna ou seja o que esta em cima vai para baixo e o que esta em baixo na segunda coluna vai para cima velocidade----------tempo 400↓-----------------X↓ 480↓---------------- 3↓ 480X = 400 . 3 x = 400 . 3 / 480 X = 2,5 Inicialmente colocamos uma seta para baixo na coluna que contém o x (2ª coluna). Observe que: Aumentando a velocidade, o tempo do percurso diminui. Como as palavras são contrárias (aumentando - diminui), podemos afirmar que as grandezas são inversamente proporcionais. Assim sendo, colocamos uma outra seta no sentido contrário (para cima) na 1ª coluna. Montando a proporção e resolvendo a equação temos: Logo, o tempo desse percurso seria de 2,5 horas ou 2 horas e 30 minutos. 3) Bianca comprou 3 camisetas e pagou R$120,00. Quanto ela pagaria se comprasse 5 camisetas do mesmo tipo e preço? Solução: montando a tabela: Camisetas----preço (R$) 3------------- 120 5---------------x 3x=5.120 o três vai para o outro lado do igual dividindo x = 5.120/3 x= 200 Observe que: Aumentando o número de camisetas, o preço aumenta. Como as palavras correspondem (aumentando - aumenta), podemos afirmar que as grandezas são diretamente proporcionais. Montando a proporção e resolvendo a equação temos: Logo, a Bianca pagaria R$200,00 pelas 5 camisetas. 4) Uma equipe de operários, trabalhando 8 horas por dia, realizou determinada obra em 20 dias. Se o número de horas de serviço for reduzido para 5 horas, em que prazo essa equipe fará o mesmo trabalho? Solução: montando a tabela: Horas por dia-----Prazo para término (dias) 8↑------------------------20↓ 5↑------------------------x ↓ invertemos os termos Horas por dia-----Prazo para término (dias) 8↑-------------------------x↑ 5↑------------------------20↑ 5x = 8. 20 passando-e o 5 para o outro lado do igual dividindo temos: 5x = 8. 2 / 5 x = 32 Observe que: Diminuindo o número de horas trabalhadas por dia, o prazo para término aumenta. Como as palavras são contrárias (diminuindo - aumenta), podemos afirmar que as grandezas são inversamente proporcionais. Montando a proporção e resolvendo a equação temos: EXERCICIOS 1) Uma roda dá 80 voltas em 20 minutos. Quantas voltas dará em 28 minutos? (R:112) 2) Com 8 eletricistas podemos fazer a instalação de uma casa em 3 dias. Quantos dias levarão 6 eletricistas para fazer o mesmo trabalho?(R: 4) 3) Com 6 pedreiros podemos construir um a parede em 8 dias. Quantos dias gastarão 3 pedreiros para fazer a mesma parede? (R:16) 4) Uma fabrica engarrafa 3000 refrigerantes em 6 horas. Quantas horas levará para engarrafar 4000 refrigerantes? (R: 8) 5) Quatro marceneiros fazem um armário em 18 dias. Em quantos dias 9 marceneiros fariam o mesmo armário? (R:8) 6) Trinta operários constroem uma casa em 120 dias. Em quantos dias 40 operários construiriam essa casa? (R: 90) 7) Uma torneira despeja em um tanque 50 litros de água em 20 minutos. Quantas horas levará para despejar 600 litros? (R: 4) 8) Na construção de uma escola foram gastos 15 caminhões de 4 m³ de areia. Quantos caminhões de 6 m³ seriam necessários para fazer o mesmo trabalho? (R: 10) 9) Com 14 litros de tinta podemos pintar uma parede de 35 m². Quantos litros são necessários para pintar uma parede de 15 m²? (R: 6) 10) Um ônibus, a uma velocidade média de 60 km/h, fez um percurso em 4 horas. Quanto levará, aumentando a velocidade média para 80 km/h? (R:3) 11) Para se obterem 28 kg de farinha, são necessários 40 kg de trigo. Quantos quilogramas do mesmo trigo são necessários para se obterem 7 kg de farinha? (R:10) 12) Cinco pedreiros fazem uma casa em 30 dias. Quantos dias levarão 15 pedreiros para fazer a mesma casa? (R:10) 13) Uma máquina produz 100 peças em 25 minutos. Quantoas peças produzirá em 1 hora? (R:240) 14) Um automóvel faz um percurso de 5 horas à velocidade média de 60 km/h. Se a velocidade fosse de 75 km /h quantas horas gastaria para fazer o mesmo percurso? (R:4) 15)Uma maquina fabrica 5000 alfinetes em 2 horas. Qauntos alfinetes ela fabricará em 7 horas? (R:17.500) 16) Quatro quilogramas de um produto químico custam R$ 24.000,00 quanto custarão 7,2 Kg desse mesmo produto? (R:43.200,00) 17) Oito operarios fazem um casa em 30 dias. quantos dias gastarão 12 operários para fazer a mesma casa? (R:20) 18) Uma torneira despeja 2700 litros de água em 1 hora e meia. Quantos litros despeja em 14 minutos? (R: 420) 19) Quinze homens fazem um trabalho em 10 dias, desejando-se fazer o mesmo trabalho em 6 dias, quantos homens serão necessários? (R:25) 20) Um ônibus, à velocidade de 90 Km/h, fez um percurso em 4 horas. Quanto tempo levaria se aumentasse a velocidade para 120 Km/h? (R: 3) 21) Num livro de 270 páginas, há 40 linhas em cada página. Se houvesse 30 linhas, qual seria o número de páginas desse livro?(R:360) REGRA DE TRÊS COMPOSTA regra de três composta é utilizada em problemas com mais de duas grandezas, direta ou inversamente proporcionais. Exemplos: 1) Em 8 horas, 20 caminhões descarregam 160m3 de areia. Em 5 horas, quantos caminhões serão necessários para descarregar 125m3? Solução: montando a tabela, colocando em cada coluna as grandezas de mesma espécie e, em cada linha, as grandezas de espécies diferentes que se correspondem: Horas --------caminhões-----------volume 8↑----------------20↓----------------------160↑ 5↑------------------x↓----------------------125↑ A seguir, devemos comparar cada grandeza com aquela onde está o x. Observe que: Aumentando o número de horas de trabalho, podemos diminuir o número de caminhões. Portanto a relação é inversamente proporcional (seta para cima na 1ª coluna). Aumentando o volume de areia, devemos aumentar o número de caminhões. Portanto a relação é diretamente proporcional (seta para baixo na 3ª coluna). Devemos igualar a razão que contém o termo x com o produto das outras razões de acordo com o sentido das setas. Montando a proporção e resolvendo a equação temos: Horas --------caminhões-----------volume 8↑----------------20↓----------------------160↓ 5↑------------------x↓----------------------125↓ 20/ x = 160/125 . 5/8 onde os temos da ultima fração foram invertidos simplificando fica 20/x = 4/5 4x = 20 . 5 4x = 100 x = 100 / 4 x = 25 Logo, serão necessários 25 caminhões 2) Numa fábrica de brinquedos, 8 homens montam 20 carrinhos em 5 dias. Quantos carrinhos serão montados por 4 homens em 16 dias? Solução: montando a tabela: Homens----- carrinhos------ dias 8-----------------20--------------5 4-------------------x-------------16 Observe que: Aumentando o número de homens, a produção de carrinhos aumenta. Portanto a relação é diretamente proporcional (não precisamos inverter a razão). Aumentando o número de dias, a produção de carrinhos aumenta. Portanto a relação também é diretamente proporcional (não precisamos inverter a razão). Devemos igualar a razão que contém o termo x com o produto das outras razões. Montando a proporção e resolvendo a equação temos: 20/x= 8/4 . 5/16 20 / x = 40 / 64 40x = 20 . 64 40 x = 1280 x = 1280 / 40 x = 32 Logo, serão montados 32 carrinhos EXERCICIOS 1) Uma olaria produz 1470 tijolos em 7 dias, trabalhando 3 horas por dia. Quantos tijolos produzirão em 10 dias, trabalhando 8 horas por dia? (R=5600) 2) Oitenta pedreiros constroem 32m de muro em 16 dias. Quantos pedreiros serão necessários para construir 16 m de muro em 64 dias?(R=10) 3) Um ônibus percorre 2232 km em 6 dias, correndo 12 horas por dia. Quantos quilômetros percorrerão em 10 dias, correndo 14 horas por dia? (R=4340) 4) Numa fábrica, 12 operários trabalhando 8 horas por dia conseguem fazer 864 caixas de papelão. Quantas caixas serão feitas por 15 operários que trabalhem 10 horas por dia? (R=1350) 5) Vinte máquinas, trabalhando 16 horas por dia, levam 6 dias para fazer um trabalho. Quantas máquinas serão necessárias para executar o mesmo serviço, se trabalharem 20 horas por dia durante 12 dias?(R=8) 6) Numa indústria têxtil, 8 alfaiates fazem 360 camisas em 3 dias quantos alfaiates são necessários para que sejam feitas 1080 camisas em 12 dias ? (R=6) 7) Um ciclista percorre 150 km em 4 dias pedalando 3 horas por dia. Em quantos dias faria uma viagem de 400 km, pedalando 4 horas por dia? (R=8) 8) Uma máquina fabricou 3200 parafusos, trabalhando 12 horas por dia durante 8 dias. Quantas horas deverá trabalhar por dia para fabricar 5000 parafusos em 15 dias? (R=10) 9) Três torneiras enchem uma piscina em 10 horas. Quantas horas levarão 10 torneiras para encher 2 piscinas? (R: 6 horas.) 10) Uma equipe composta de 15 homens extrai, em 30 dias, 3,6 toneladas de carvão. Se for aumentada para 20 homens, em quantos dias conseguirão extrair 5,6 toneladas de carvão? (R: 35 dias). 11) Vinte operários, trabalhando 8 horas por dia, gastam 18 dias para construir um muro de 300m. Quanto tempo levará uma turma de 16 operários, trabalhando 9 horas por dia, para construir um muro de 225m? (R: 15 dias.) 12) Um caminhoneiro entrega uma carga em um mês, viajando 8 horas por dia, a uma velocidade média de 50 km/h. Quantas horas por dia ele deveria viajar para entregar essa carga em 20 dias, a uma velocidade média de 60 km/h? (R: 10 horas por dia.) 13) Com uma certa quantidade de fio, uma fábrica produz 5400m de tecido com 90cm de largura em 50 minutos. Quantos metros de tecido, com 1 metro e 20 centímetros de largura, seriam produzidos em 25 minutos? (R: 2025 metros.) 14) Para pintar 20 m de muro de 80 cm de altura foram gastas 5 latas de tinta. Quantas latas serão gastas para pintar 16 m de muro de 60 cm de altura? (R: 3 latas) 15) Três máquinas imprimem 9000 cartazes em 12 dias. Em quantos dias 8 máquinas imprimem 12000 cartazes, trabalhando o mesmo número de horas por dia (R: 6 dias ) 16) Na fabricação de 20 camisetas, 8 máquinas gatam 4 horas. Para produzir 15 camisas, 4 máquinas quantas horas gastam? (R: 6 horas) 17) Nove operários produzem 5 peças em 8 dias. Quantas peças serão produzidas por 12 operários em 6 dias ? (R: 5 peças) 18) Em 7 dias, 40 cachorros consomem 100 Kg de ração, Em quantos dias 15 cachorros consumirão 75 kg de ração ? (R: 14 dias) posted by JMPIRES @ 3:35 PM 36 comments Links ATIVIDADES MATEMÁTICA ENSINO FUNDAMENTAL 6º SERIE - 7º ANO EQUAÇÕES 1º E 2ºGRAU EXPRESSÕES NUM.-ALG. PROGRESSÕES ARIT.-GEOM. EXERCÍCIOS DIVERSOS JOGOS E DESAFIOS Previous Posts REGRA DE TRES SIMPLES E COMPOSTA Archives March 2006