EE210 – Sistemas de Comunicação II
2ª Avaliação – 28/11/2012 – 13h30min
Prof. Dayan A. Guimarães
Prof. Rausley A. A. de Souza
Nota:
Aluno(a):
_______________________________________________________________________________________
•
•
•
•
Prova sem consulta, com duração de 1h40min.
Use os espaços em branco para a solução das questões. Não serão aceitas respostas fora destes
espaços.
“É proibido portar quaisquer aparelhos eletrônicos de comunicação e de gravação de sons e
imagens, bem como óculos escuros, protetor auricular ou quaisquer acessórios de chapelaria
durante a realização dessa avaliação. O aluno que desrespeitar essa determinação terá nota zero e
será penalizado de acordo com o artigo 63 do Regimento do Inatel.”
Formulário:
Pe = BER =
 E 
1
exp  − b 
 N 0 
2
J 
E
M J = 10log   = GP − b
P
J0
GP = 2k
GP = Rc / Rb
1ª questão (45 pontos)
Considere um sistema com espalhamento espectral por saltos em frequência (FHSS), com taxa de saltos igual
à taxa de bits. A modulação utilizada é BFSK com detecção não-coerente. O sistema opera com potência de
recepção de 1 mW a com taxa de 1 Mbit/s e está sob constante interferência de um sinal cuja banda é igual à
banda ocupada pelo sinal FHSS durante um salto, e cuja densidade espectral de potência é de 10–10 W/Hz.
Admita que a potência de ruído seja desprezível em comparação com a potência interferente. Os saltos de
frequência são controlados por grupos de 3 em 3 chips oriundos da saída de um gerador de sequência m cuja
conexão de realimentação é representada por [4,1].
a) Desenhe o gerador da sequência m.
1
b) Complete a tabela abaixo, referente aos estados de saída dos flip-flops do gerador encontrado no item “a”.
S1
S2
S3
S4
1
1
1
1
0
1
0
1
1
0
0
1
0
0
0
1
0
1
1
1
1
0
1
0
1
1
0
0
1
0
0
0
0
0
1
1
1
1
0
1
0
1
1
0
0
1
0
0
0
0
0
1
1
1
1
0
1
0
1
1
0
0
1
0
c) Determine os chips em um período da sequência m de saída do gerador.
000111101011001
d) Qual das expressões de BER dadas a seguir você deverá utilizar para determinar o desempenho do sistema
FHSS, sabendo que uma se refere à BER da modulação BFSK com detecção coerente e a outra se refere à
modulação BFSK com detecção não-coerente? Justifique sua escolha.
A detecção não-coerente tem desempenho inferior à detecção coerente. Portanto, deve-se escolher a expressão
de BER correspondente à curva mais acima: BER = ½exp(−Eb/2N0).
2
e) Determine a probabilidade de erro de bit instantânea do sistema FHSS quando um salto estiver
coincidindo com a posição espectral do sinal interferente. Caso não resolva o item “c”, considere a sequência:
... 000100110101111000100110101111...
Nesta situação a densidade espectral de potência do sinal interferente será J0 = 10–10 W/Hz. A energia média
por bit será Eb = P/Rb = 0,001/106. = 10–9 Joule. Então, 10log(Eb/J0) = 10 dB. Com este valor no gráfico dado
no item “d” se obtém aproximadamente BERi = 3,4×10–3.
f) Calcule a probabilidade de erro de bit média do sistema FHSS.
Pode-se observar que em um período da sequência de espalhamento dada se tem 5 grupos distintos de 3 chips.
Portanto, o sinal FHSS saltará em 5 posições espectrais, em uma delas coincidindo com o sinal interferente.
Portanto, a BER média será BERi/5 = 6,8×10–4.
g) Calcule o ganho de processamento do sistema FHSS.
Como o sinal FHSS saltará em 5 posições espectrais, GP = 5 = 7 dB.
h) Calcule e interprete a margem de interferência do sistema FHSS.
MJ = GP – Eb/J0 = 7 – 10 = –3 dB. Isto significa que a potência interferente poderá estar no máximo 3 dB
abaixo da potência de sinal, na entrada do receptor, para que se garanta a BER alvo.
i) Calcule a taxa de chips da sequência m. Explique como obteve o resultado.
Como cada 3 chips comandam um salto e os saltos estão sendo realizados à taxa de bits, a taxa de chips
deverá ser Rc = 3Rb = 3 Mchip/s.
2ª questão (35 pontos)
Considere um modulador DBPSK que utilize uma porta XNOR em seu codificador diferencial. Pretende-se
transmitir um feixe de dados a 2 Mbit/s. O modulador BPSK após o codificador diferencial usa o seguinte
mapeamento: bit 0 → (Eb)1/2; bit 1 → −(Eb)1/2. A função base utilizada para a geração da portadora é
2 Tb cos (2π f ct ) . Pede-se:
a) Admita que o bit inicial de saída do bloco de atraso do modulador seja 0 e que a fase inicial da portadora
seja 0. Considere a seguinte sequência de bits de entrada do modulador: 11010010. Encontre a sequência
codificada diferencialmente e os respectivos desvios de fase da portadora modulada. Considere que o bit mais
a esquerda é o bit a entrar primeiro no codificador.
Bits de informação
1
1
0
1
0
0
1
0
Bits de saída do codificador diferencial
0
0
0
1
1
0
1
1
0
Desvios de fase da portadora modulada
0
0
0
π
π
0
π
π
0
b) Para um determinado bit estimado, a variável de decisão calculada foi de +0,87. Qual deverá ser o bit
estimado? Justifique.
3
Conforme pode ser verificado pela Tabela do item a), a inversão de fase é provocada pelo bit de informação
“0”. Consequentemente, a não inversão de fase é provocada pelo bit “1”. Como a variável de decisão é
positiva (não inversão de fase), o bit estimado será o bit “1”.
c) Calcule a probabilidade de erro de bit média, sabendo que a potência média do sinal transmitido é de 12
mW, que a densidade espectral de potência do ruído na entrada do receptor é de 10−10 W/Hz e que o canal de
comunicação atenua a potência do sinal em 6 dB.
Sabemos que 6 = 10log(PTx/PRx). Como PTx = 12 mW, PRx = 3,014 mW, Eb = PRx×Tb = 1,507×10-9 J.
BER = 1/2 exp(−Eb/N0) = 1/2 exp(−1,507×10−9/10−10) ⇒ BER = 1,424×10−7.
3ª questão (20 pontos)
A figura a seguir mostra a tela do VisSim/Comm para o experimento realizado em laboratório sobre a
modulação BPSK. Sobre este experimento pergunta-se:
a) Qual a taxa de bits? Mostre como calculou.
A largura de faixa do lóbulo principal é 2/T = 2/Tb para a modulação BPSK. Então, Rb = 1 Mbit/s.
b) Identifique no gráfico de BER versus Eb/N0 a(as) curva(s) de BER teórica(s) e a(as) curva(s) de BER
obtida(s) por simulação.
A curva mais abaixo é a teórica e o aglomerado mais acima se refere a resultados de simulação.
c) Justifique porque as curvas mais acima no gráfico de BER versus Eb/N0 não estão passando sempre pelos
mesmos pontos.
Como tais curvas se referem a resultados de simulação de Monte Carlo, que são aleatórios, elas não passarão
sempre pelos mesmos pontos, mas ficarão concentradas em torno do desempenho real do sistema.
d) Justifique a diferença de desempenho teórico e real.
Observando a figura nota-se que a defasagem inicial da portadora de recepção em relação à portadora de
transmissão é de 30º, o que produz aumento na BER em relação ao seu valor teórico considerando detecção
coerente (defasagem nula).
4
Download

EE210_3av2s12