Escola Estadual de
Educação Profissional - EEEP
Ensino Médio Integrado à Educação Profissional
Curso Técnico em Química
Química Geral Aplicada
Governador
Cid Ferreira Gomes
Vice Governador
Domingos Gomes de Aguiar Filho
Secretária da Educação
Maria Izolda Cela de Arruda Coelho
Secretário Adjunto
Maurício Holanda Maia
Secretário Executivo
Antônio Idilvan de Lima Alencar
Assessora Institucional do Gabinete da Seduc
Cristiane Carvalho Holanda
Coordenadora da Educação Profissional – SEDUC
Andréa Araújo Rocha
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
Escola Estadual de
Educação Profissional - EEEP
Ensino Médio Integrado à Educação Profissional
Curso Técnico em Química
QUÍMICA GERAL
TEXTOS DE APOIO
Fortaleza – Ceará
2011
Téc. Em Química – Química Geral Aplicada
-2 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
SUMÁRIO
CAPÍTULO 1 : DISSOCIAÇÃO ELETROLÍTICA
CAPÍTULO 2 : ÓXIDOS
CAPÍTULO 3 : ÁCIDOS
CAPÍTULO 4 : HIDRÓXIDOS OU BASES
CAPÍTULO 5 : SAIS
CAPÍTULO 6 : ESTUDO DE REAÇÕES
CAPÍTULO 7 : REAÇÕES DE OXI-REDUÇÃO
CAPÍTULO 8 : GRANDEZAS E UNIDADES
CAPÍTULO 9 : CÁCULO ESTEQUIOMETRICO
REFERÊNCIAS BIBLIOGRÁFICAS
Téc. Em Química – Química Geral Aplicada
-3 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
CAPÍTULO 1
DISSOCIAÇÃO ELETROLÍTICA
A teoria da dissociação, desenvolvida por Svante Arrhenius, defendia a idéia de que
algumas substâncias, quando dissolvidas em água, são capazes de dar origem a íons positivos (cátions) e íons
negativos (ânions), o que possibilita a condução de corrente elétrica através delas.
As soluções
devem apresentar,
obrigatoriamente, íons, sendo denominadas soluções iônicas ou eletrolíticas. As substâncias capaz
de
produzir soluções iônicas são: substâncias iônicas substâncias moleculares polares
produzindo soluções que
, e que
denominadas soluções não-eletrolíticas ou moleculares. Na dissolução dessas substâncias
ocorre
simplesmente uma separação das moléculas que as constituem e estas soluções são formadas a
partir de
substâncias moleculares apolares.
Convém ressaltar que, na época dos estudos de Arrhenius, não existia o conceito de substância iônica e,
portanto, todas as substâncias eram consideradas moleculares. A teoria de Arrhenius, à luz dos conhecimentos
atuais, possui explicações distintas para os dois tipos de substâncias (iônica e molecular),
DISSOCIAÇÃO
A dissociação iônica é uma propriedade característica de substâncias iônicas.
Estas substâncias, formadas por um aglomerado de íons unidos por força eletrostática, ao interagirem
com água têm seus íons separados e hidratados. Os íons, agora livres, possuem a capacidade de se movimentar e
se orientar quando sujeitos à ação de um campo elétrico externo.
Veja, por exemplo, o que ocorre quando dissolvemos cloreto de sódio (NaCl ) em água.
Cl
(Na+
Na+ Cl
(sólido)
)
Solução aquosa de NaCl
A água é uma substância formada por moléculas polares, cujo pólo negativo está situado no átomo de
oxigênio e o pólo positivo está nos átomos de hidrogênio.
=
+
+
=
+
+
=
+
+
Como as partículas de sinais opostos se atraem, os pólos positivos das moléculas de água exercerão
atração sobre os íons Cl do NaCl, enquanto os pólos negativos das moléculas de água exercerão atração sobre
os íons Na+. O resultado dessas interações será a obtenção de uma solução iônica.
Téc. Em Química – Química Geral Aplicada
-4 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
molécula de água
ânion cloro
cátion sódio
Observação
As moléculas que envolvem os íons são denominadas água de solvatação.
A equação que representa todo o processo é dada por:
H 2O
NaCl
Na+
+
Cl
Há também outra maneira de equacionar a dissociação, um pouco mais detalhada:
Na+ (aq)
NaCl(s)
+ Cl
(aq)
Outros exemplos:
KBr (s)
? K+(aq) + Br (aq)
Al2(SO4)3 (s) ? 2 Al3+(aq) + 3 SO4 2
Fe(NO3)3 (s) ? Fe
3+
(aq) + 3 NO3
IONIZAÇÃO
A ionização é uma propriedade característica de algumas substâncias moleculares que, ao entrarem
em contato com a água, interagem dando origem a íons.
Vejamos, por exemplo, o gás clorídrico ( HCl ) que é formado por moléculas, em seu estado natural.
Observe que o hidrogênio está ligado ao ametal cloro e que há diferença de eletronegatividade entre o H e o Cl,
caracterizando uma polaridade na molécula. Quando esta molécula é dissolvida em água, os dipolos da
água podem enfraquecer suficientemente a ligação covalente, ocasionando a divisão da molécula. Na divisão,
o par eletrônico fica com o cloro, que é mais eletronegativo que o hidrogênio. A molécula HCl é
transformada em íons H+ e Cl pela ação da água , e dizemos que o HCl sofreu ionização.
Água
H
HCl
+
+
Cl
Na verdade, essa equação é uma representação simplificada. O fenômeno da ionização do HCl ( e
de outros ácidos ) ocorre, de fato, através da interação entre as moléculas de HCl e de água, e, o cátion H+ não
fica livre na solução, ocorrendo uma ligação química entre ele e a água, com formação do cátion H3O+,
chamado de
H 2O
+
HCl
H3O
+
+
+
Téc. Em Química – Química Geral Aplicada
-5 -
Cl
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
Como as espécies formadas são íons de carga oposta, tendem normalmente a recombinar-se, isto é,
tende a ocorrer também:
+
H3O +
HCl +
Dizemos então que o processo é reversível e a representamos:
HCl +
H3O
+
+
Assim, quando moléculas polares são dissolvidas em água, os dipolos da água podem enfraquecer a
ligação covalente, ocasionando a ionização das mesmas.
Outros exemplos da representação da ionização:
HCl
+ H2O
H3O
+
+
HNO3 + H2O
H3O
H2SO4
2H2O
2 H3O
+
3 H3O
+ Cl
+
+
+
NO 3
+ SO4 2
+ PO4
3
A ionização é um processo em que coexistem moléculas e íons num equilíbrio dinâmico denominado
equilíbrio químico. O equilíbrio químico é estabelecido quando a velocidade de formação dos íons se iguala à
velocidade de regeneração das moléculas.
Esse equilíbrio pode ser estabelecido em momentos diferentes para as diversas substâncias:
no momento do equilíbrio, há mais moléculas do que íons, dizemos que o eletrólito é fraco; se houver mais
ío do que moléculas, o eletrólito é forte.
O coeficiente que mede a extensão da ionização é denominado grau de ionização e é representado pela
letra a (alfa).
= número de moléculas ionizadas
número de moléculas dissolvidas
O grau de ionização, que é tabelado, varia entre 0 e 1 ou entre 0 e 100 %. Quando está próximo de
zero, a substância está pouco ionizada e é um eletrólito fraco; quando se aproxima de 1 (ou 100 %), a substância
está bastante ionizada e é um eletrólito forte.
Exemplos:
HCl :
= 92 / 100 = 0,92 ou 92 % ( eletrólito forte )
HF : =
8 / 100 = 0,08 ou 8 % ( eletrólito fraco )
ATENÇÃO
Téc. Em Química – Química Geral Aplicada
-6 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
Conceito de ácido e base, segundo Arrhenius
Em suas experiências, Arrhenius, que trabalhava com soluções aquosas de diversas
substâncias analisando seu comportamento quanto à condutibilidade elétrica, observou certos grupos de
substâncias que se comportavam de
maneira
semelhante
(possuíam propriedades químicas
semelhantes) e dividiu-as em dois grupos: ácidos e bases.
Segundo ele, ácido seria toda a substância que, em solução aquosa, liberaria o cátion H+
(próton) e
base, toda substância que, em solução aquosa, liberaria o ânion OH (hidroxila). Com esse tipo de abordagem
ele incluiu dentro desses dois grupos, substâncias que hoje enquadramos em funções que possue
FUNÇÕES INORGÂNICAS
Baseando-se nos estudos de Arrhenius, as substâncias ditas inorgânicas foram divididas em
grupos, chamados funções químicas, que apresentam propriedades químicas semelhantes ou
semelhanças na constituição de seus compostos. As principais funções são: ácidos, hidróxidos (ou bases), sais
e óxidos.
A seguir definiremos cada uma das funções, levando-se em consideração, além dos
conceitos de
Arrhenius, conceitos existentes atualmente.
+
ÁCIDOS:
SubstâncHiaNsOq3ue, e+m sHo2lO
ução aquosa, liberamHc3oOmo c+átioN
nsOs3omente íons H O (hidrônio).
H2CO3
+ 2
H3PO4 +
+
2 H3O
3
+
3 H3O
+ CO3 2
+ PO4
3
De acordo com Arrhenius, apenas se pode definir uma substância como ácido se, em solução aquosa,
+
+
ela produzir, como cátions, somente íons H3O (ou simplificadamente H ) .
Como as substâncias que se enquadram nesta classificação são moleculares, a produção
íons ocorre através do processo de ionização
BASES:
OH
Bases são substâncias que, em solução aquosa, liberam um único tipo de ânion: o ío
, chamado hidroxila ou oxidrila.
As principais bases inorgânicas são hidróxidos, que são iônicos e possuem cátions de
metais ligados ao grupamento OH ; consequentemente, em solução aquosa, sofrem dissociação iônica
NaOH (s)
?
Na
(aq)
Ca(OH)2(s) ?
Ca
(aq)
Al(OH)3 (s) ? Al
+
(aq) +
OH
(aq)
+
2 OH
(aq)
+
3 OH
Observação
OH
Téc. Em Química – Química Geral Aplicada
-7 -
em
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
SAIS:
Substâncias que, em solução aquosa, produzem pelo menos um cátion diferente do H + e pelo
menos um ânion diferente do OH
.
Assim como os hidróxidos, os sais também são compostos formados por aglomerados de íons e
água provoca, simplesmente, a separação destes íons, ou seja, sua dissociação
Exemplos:
+
NaCl(s)
?
Na (aq)
KNO3(s)
?
K
NaHSO4(s)
?
Na
CaOHCl(s)
?
?
(aq)
+
+ HSO4 (aq)
+
+ Cl (aq)
(CaOH) (aq)
+
2 Fe 3 (aq) +
Fe2(SO4)3(s) ?
Na3PO4(s)
+
+ Cl
(aq)
3 Na
+
(aq) +
3 SO42
PO43
(aq
ÓXIDOS:
Substâncias binárias (formadas por dois elementos) de oxigênio, onde o oxigênio é o element
mais eletronegativo entre eles.
Não se consegue um comportamento único dos óxidos em solução aquosa e, em decorrência
disso, Arrhenius não conseguiu caracterizar os óxidos como uma função. O comportamento que
cada um assume depende do elemento que está ligado ao oxigênio.
Exemplos: Na2O, CaO, ZnO, N2O3, P2O5
Função
Tipo de ligação
Em água
Íon característico em água
CARÁTER ÁCIDO E BÁSICO DE UMA SOLUÇÃO
Entre uma solução muito ácida e uma solução muito básica, a acidez e a basicidade (ou alcalinidade)
podem variar gradativamente.
Existem certas substâncias, capazes de adquirir diferentes colorações se colocadas em soluções ácidas
ou em soluções básicas e que são denominadas de indicadores ácido – base. São utilizadas para que se possa
reconhecer o caráter de uma solução.
A medida quantitativa da acidez ou da alcalinidade de uma solução pode ser feita
através da comparação com uma escala, denominada de escala de pH, introduzida na química pelo dinamarquê
Sörensen,
em 1909. Nessa escala, que vai de zero até quatorze, uma solução neutra tem pH = 7, uma solução ácida tem pH
Q uanto maior for a acidez, menor será o pH ; por outro lado, quanto maior for a alcalinidade,
maior será o pH.
Téc. Em Química – Química Geral Aplicada
-8 -
Escola Estadual de Educação Profissional [EEEP]
soluções ácidas
Ensino Médio Integrado à Educação Profissional
água pura e soluções neutras
pH 0
soluções básicas
pH 7
pH 14
Acidez crescente
Alcalinidade crescente
Os indicadores são ácidos ou bases (orgânicos) muito fracas, de estrutura complexa, que mudam de cor
em determinados intervalos de pH, denominados zonas (ou intervalos) de viragem.
Na tabela abaixo temos alguns desses indicadores e suas respectivas zonas de viragem.
Indicador
zona de
viragem( pH)
cor abaixo da zona de
viragem
cor acima da zona de
viragem
1,2 a
Vermelho do congo
Alaranjado e Metila
3,0 a 5,2
Azul
3,1 a 4,
3,8 a 5,4
azul
4,4 a 6,2
5,0 a 8,0
Púrpura de Bromocresol
azul
5,2 A 6,8
6,0 A 7,6
Azul
6,4 a 8,2
7,0 a 8,8
8,0 a 9,6
Azul
8,2 a 9,8
incolor
9,3 a 10,5
incolor
azul
10,0 a 12,1
Azul de Épsilon
Pardo
11,6 a 13
alaranjado
violeta
Além dos indicadores em solução, existem papéis impregnados com indicador. O papel de
tornassol
vermelho e o papel de tornassol azul são exemplos desses papéis. O tornassol vermelho permanece vermelho
em soluções ácidas ou neutras e muda para azul em soluções básicas e o tornassol azul permanece azul em
Meio ácido
Meio básico
Meio neutro
Tornassol azul
vermelho
azul
azul
Tornassol vermelho
vermelho
azul
vermelho
Existe um papel, denominado papel indicador universal, impregnado com uma mistura de indicadores e
que adquire diferentes colorações para cada pH. Mergulhando-se esse papel indicador numa solução-problema e
comparando-se a cor adquirida com a de uma escala de cores, pode-se avaliar o valor numérico
pH da
Téc. Em Química – Química Geral Aplicada
-9 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
EXERCÍCIOS
1) Faça a fórmula estrutural dos compostos abaixo. Indique quais sofrem dissociação e quais sofrem ionização
em solução aquosa? Equacione os processos.
a) H2S
b) Na2S
c) NH3
d) NaOH
e) CaCl2
2) Faça a associação:
( a ) conduz corrente elétrica
( b ) não conduz corrente elétrica
( ) solução eletrolítica
(
) solução iônica
(
) solução não – eletrolítica
( ) solução molecular
3) Identifique as afirmações verdadeiras:
a) Numa solução iônica, o composto dissolvido é sempre iônico.
b) Numa solução iônica, o composto dissolvido pode ser iônico ou molecular.
c) Numa solução molecular, o composto dissolvido é sempre molecular.
d) Numa solução molecular, o composto dissolvido pode ser molecular ou iônico.
4) Sabendo que o gás clorídrico possui como fórmula HCl, identifique a(s) afirmativa(s) correta(s):
a) HCl (puro) nas condições ambientes conduz corrente elétrica.
b) HCl (puro) liqüefeito conduz corrente elétrica.
c) HCl em solução aquosa conduz corrente elétrica.
d) HCl (puro) no estado sólido conduz corrente elétrica.
5) Considere as afirmações a seguir a respeito do etanol (C2H5OH), um composto molecular que
quando dissolvido em água, produz uma solução molecular. Verifique se as afirmativas estão
corretas ou não e
justifique sua resposta.
a) O etanol puro conduz eletricidade.
6) Identifique quais das afirmativas a seguir, a respeito do composto NaOH, estão corretas e
justifique sua
resposta.
a) NaOH puro conduz corrente elétrica nas condições ambientes.
b) NaOH em solução aquosa conduz corrente elétrica.
c) NaOH no estado de vapor conduz corrente elétrica.
7) Com base na informação: ―O sal de cozinha pode ser extraído do mar e é constituído principalmente pelo
cloreto de sódio (NaCl) ― .
a) Em quais condições o NaCl conduz corrente elétrica ?
b) Por que a água do mar é um bom eletrólito?
8) Dadas as informações:
A fórmula do ácido sulfúrico é H2SO4 e ele é líquido nas condições ambientes.
Ao ser dissolvido em água, origina uma solução iônica.
Analise as afirmações abaixo e diga se são corretas ou não? Justifique sua resposta.
a) Ácido sulfúrico puro conduz corrente elétrica
b) Ácido sulfúrico dissolvido em água conduz corrente elétrica.
9) Dadas as informações:
A glicose (C6H12O6) é um composto sólido nas condições ambientes.
Dissolvida em água resulta em solução molecular.
Téc. Em Química – Química Geral Aplicada
- 10 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
Analise as afirmações a seguir e diga se são corretas ou não? Justifique sua resposta.
a) Glicose pura, no estado sólido, conduz corrente elétrica.
b) Glicose, quando fundida, conduz corrente elétrica
c) Glicose conduz corrente elétrica em solução aquosa
10) Quais das afirmações estão corretas:
a) O HCl liqüefeito conduz corrente elétrica.
b) O HCl em solução aquosa conduz corrente elétrica.
c) O HNO3 puro (anidro ou 100 % puro) conduz corrente elétrica .
d) O HNO3 em solução aquosa conduz corrente elétrica .
e) O H2SO4 puro (anidro ou 100 %puro) conduz corrente elétrica, no estado líquido
f) O NaCl conduz corrente elétrica no estado sólido.
g) O NaCl (anidro ou 100 %puro) conduz corrente elétrica, quando no estado líquido.
h) O NaCl em solução aquosa conduz corrente elétrica.
i) O NaOH conduz corrente elétrica no estado sólido
j) O NaOH (anidro ou 100 %puro) conduz corrente elétrica quando fundido.
k) O NaOH conduz corrente elétrica em solução aquosa .
11) Dê a fórmula estrutural das substâncias abaixo. Represente a ação da água sobre elas, indicando onde ocorre
dissociação e onde ocorre ionização:
a) HNO2
b) HI
c) KOH
d) HClO4
e) Fe2(SO4)3
f) KClO3
g) Ca(OH)2
h) H2S
i) MgCl2
j)
l)
m) HF
12) Dissolvendo-se 600 moléculas de uma substância em água, verificou-se que delas, 15 moléculas sofreram
ionização.
Qual o grau de ionização da substância em questão? Ela poderá ser considerada um eletrólito forte ou
fraco? Por quê?
13) O que distingue um eletrólito forte de um fraco é:
a) O grau de ionização
b) O forte é sempre iônico e o fraco sempre molecular
c) O eletrólito só é forte quando fundido
d) O eletrólito só é forte quando em solução
e) O caráter ácido do eletrólito forte
14) Qual dos itens abaixo representa o eletrólito mais forte?
a) = 40 %
b) = 0,85 %
c) Metade das moléculas se ionizou
d) Existem 40 moléculas ionizadas em cada 200 moléculas totais
e) 3 / 4 das moléculas estão ionizadas
15) Identifique a que função pertence cada uma das substâncias abaixo.
O tipo de interação que ocorre entre elas e a água é:
Ionização ( I );
Dissociação ( D );
A interação com a água depende do caráter da substância ( C )
a) HBrO3
b) Pb(OH)2
c) HCN
d) BaOHBr
e) Na2CO3
f) SO3
g) BaO
h)H4SiO4
i)
Fe(OH)3
j)KNO3
l) I2O5
m)Ca3(PO4)2
o) PbO2
p)H3BO3
q) NaH2PO4
s) Na2O
t)
u) N2O3
n) K2O2
Téc. Em Química – Química Geral Aplicada
- 11 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
16) Dados os compostos: KF; HClO2; C2H6O (o O está entre átomos de C)
a) Faça a fórmula estrutural de cada um deles;
b) Qual deles em água pode sofrer dissociação iônica? Mostre a equação do processo.
c) Qual deles em água pode sofrer ionização? Equacione o processo.
d) Qual deles não tem condições de ser um condutor eletrolítico? Justifique.
17) Assinale a equação na qual está representado um processo em que o produto formado é um bom condutor de
eletricidade.
+ energia
a) HI (l )
HI (g)
energia
b) HI (g)
HI (s)
+ energia
c) HI (s)
HI (l )
água
HI (g)
d) HI (aq)
HI (aq)
e) HI (g) + água
18) Indique, na afirmação a seguir, o que é correto ou incorreto, justificando sua resposta em poucas palavras.
―Uma solução aquosa de cloreto de hidrogênio (HCl ) apresenta o número de cátions H3O + igual ao de ânions
Cl .Portanto, é eletricamente neutra e não conduz a eletricidade.‖
19) A facilidade com que os hidrogênios ionizáveis saem de uma molécula está associada à
polarização da ligação que ele faz. Quanto mais polarizada, mais facilmente a ligação é rompida e mais íons
H+ existirão em solução. Partindo-se desse princípio, coloque os seguintes ácidos: HCl ; HClO4;
HCN; HBr em ordem crescente de força, justificando sua resposta.
20) Considerando os indicadores citados na tabela fornecida na teoria, que colorações devem adquirir quando
estiverem em seus intervalos de viragem?
21) Sabendo-se que o término da reação entre o hidróxido férrico e o ácido clorídrico se dá em torno de pH 2,
qual dos indicadores citados na tabela seria o mais indicado para podermos visualizar o término da reação?
22) A adição de um único indicador a uma solução é o suficiente para determinarmos seu pH? Por quê?
23) Associe, considerando o caráter da solução:
a) É uma solução ácida
b) É uma solução básica
c) É uma solução neutra
) Pode ser uma solução ácida ou neutra
e) Pode ser uma solução básica ou neutra
( ) Torna azul o papel vermelho de tornassol
( ) Mantém a cor azul do papel de tornassol
( ) Torna vermelho o tornassol azul
( ) Mantém a cor vermelha do papel de tornassol
( ) Adicionando-se gotas de fenolftaleína (incolor) à solução, ela fica avermelhada
( ) Descora a fenolftaleína previamente avermelhada por uma base
( ) Mantém a coloração da fenolftaleína previamente avermelhada por uma base
Téc. Em Química – Química Geral Aplicada
- 12 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
RESPOSTAS
11) Procurar as estruturas na apostila do 1º período
1) a) H - S - H
+
d) Na [O - H]
+
2
b) [Na ] 2 S
c) H - N - H
¦H
b) HI + H2 O
+
+
d) HClO4 + H2O
H3O
I
(I)
g) Ca(OH)2(s)
+ OH
2) a, a, b ,b
h) H2S
3) b ,c
i) MgCl2(s)
4) c
+
6) b ,d: NaOH : iônico. Conduz corrente
fundido ou em solução aquosa,pois a água
ou a fusão separam íons previamente existentes.
7) a) Sendo um composto iônico, conduz fundido e
em solução aquosa.
b) Pois há vários sais dissolvidos no mar,
todos iônicos e, portanto, há muitos íons que
permitem a condução da corrente elétrica.
8) a) A afirmativa não é verdadeira pois,
pquaon,dosó há moléculas no ácido
o
impede a condução de eletricidade.
idiotemema ágcuoan,duhçáão fodrm
íbo)nsQueandeostedsisspoelrvm
e ação
de
elétrica.
9) Nenhuma. Compostos moleculares que originam
soluções moleculares não conduzem eletricidade e
sólidos (exceto os metais) não conduzem
eletricidade.
- 13 -
+
(aq) + ClO3
ClO4 ( I )
(aq) +2 OH
2 H3O
2+
(aq) ( D )
2+
+ 2 H2O
? Mg (aq)
l) Ba(NO3)2(s) ?
5) As afirmativas não estão corretas, pois,
sendo um
composto
molecular,
não
pode
conduzir corrente
quando puro
e,
sua solução, por ser também molecular, não
possui íons, logo, não pode conduzir corrente.
+
3+
? Ca
j) Na2SO4(s) ?
(D)
2 Fe (aq) +3 SO4 2 (aq) ( D)
f) KClO3(s) ? K
+ S2
Téc. Em Química – Química Geral Aplicada
+
+
e) Fe2 (SO4 )3 (s) ?
2 H3O
+
H3 O
(I)
c) KOH(s) ? K (aq) + OH
Ionização : os moleculares
NH4
H3O + + NO2
a) HNO2 + H2O
2+
e) Ca [Cl ]2
Dissociação: os iônicos
+
Na2S(s) ? 2 Na (aq) + S 2
(aq)
+
NaOH(s)
(aq)
Na (aq) +
2+
CaCl2(s) ? Ca (aq) + 2 Cl (aq)
H2S + 2
H2O
Ionização – I ; Dissociação – D
+
(aq)
+ S2
+ 2 Cl
m) HF + H2O
H3 O
+
(I)
(aq)
2 Na + (aq) +
SO42+2
(D)
(D)
(aq) ( D )
(aq) (
+F
(I)
12) = 2,5 % ou 0,25. Eletrólito fraco,
pois há uma pequena quantidade de íons
formados em solução.
13) letra a
14) letra e
15) a) ácido
(I)
b)
base ( D ) c) ácido
(I)
d) sal
( D ) e) sal
(D)
f) óxido ( C )
g) óxido ( C )
h) ácido ( I )
i) base
(D)
j ) sal
(D)
l) óxido ( C )
m) sal
(D)
n) óxido ( C )
o) óxido ( C )
p) ácido ( I )
q) sal
(D)
r) base ( D ) s)óxido
(C)
t) sal
(D)
u) óxido ( C
(aq) + F
)
16) b) KF(s) ?
c) HClO 2 + H2O
10) b, d, g, h, j, k
K
+
H3O
+
+
ClO2
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
d) C2H6O, pois é um composto apolar.
17) Letra e
Téc. Em Química – Química Geral Aplicada
- 14 -
Escola Estadual de Educação Profissional [EEEP]
Educação Profissional
Ensino Médio Integrado à
18) Uma solução aquosa de cloreto de hidrogênio (HCl ) apresenta o
+
número de cátions H3 O igual ao de ânions Cl : correto. A proporção de
hidrogênios e cloros
no ácido clorídrico é de 1:1, logo , em sua ionização o número de cátions será igual
ao número de ânions.
Portanto, é eletricamente neutra e não conduz a eletricidade: errado. Se há íons, há
condutividade. Mesmo tendo as cargas positivas sendo neutralizadas eletricamente
pelas negativas, isso não impede a migração dos íons e dos elétrons na solução.
19) HCN < HBr < HCl < HClO4
Considerando-se a polarização da ligação do hidrogênio com outro
elemento, a
ligação menos polarizada é a que ele faz com o carbono
(? = 0,4), seguida da
ligação com o bromo (? = 0,7), com o cloro (? = 0,9) e, finalmente com o oxigênio
(? = 1,4).
Não esqueça que nos ácidos oxigenados (salvo exceções), o hidrogênio encontra-se
ligado ao oxigênio!
20) As cores resultantes das misturas, por ex:
Azul de timol - laranja
Vermelho do Congo - roxo
Alaranjado de metila - laranja
Vermelho de metila - laranja
Azul de bromotimol - verde
Azul de timol - verde
Fenolftaleína - rosa
Timolftaleína - azul claro
21) Azul de timol
22) Não. A adição de um só indicador nos dá o intervalo de pH onde a solução se
encontra, e não o pH específico.
23)
( b ) Torna azul o papel vermelho de tornassol
( e ) Mantém a cor azul do papel de tornassol
( a ) Torna vermelho o tornassol azul
( d ) Mantém a cor vermelha do papel de tornassol
( b ) Adicionando-se gotas de fenolftaleína incolor à solução, ela fica avermelhada
( a ) Descora a fenolftaleína previamente avermelhada por uma base
( e ) Mantém a coloração da fenolftaleína previamente avermelhada por uma base
Téc. Em Química – Química Geral Aplicada
- 15 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
MAIS EXERCÍCIOS
BaBr2
KI
FeO
H3BO3
KOH
NH3
CO
HClO3
MgCl2
HI
Rb2CO3
Al2O3
Na2S
Ca(OH)2
Na3PO4
CuO
HBr
CO2
Al2(SO4)3
H2Se
CuI
KClO3
Fe(NO3)2
N2O3
(NH4)3PO4
Al(OH)3
Ag2O
AgNO3
Téc. Em Química – Química Geral Aplicada
- 16 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
RESPOSTAS
Ba
2+
[Br ]2
BaBr2
X
SAL
KI
X
SAL
K I
FeO
X
ÓXIDO
Fe O
H3BO3
X
ÁCIDO
X
KOH
BASE
NH 3
X
BASE
CO
X
ÓXIDO
HClO3
X
ÁCIDO
X
MgCl2
HI
X
SAL
ÁCIDO
+
2+
2
X
KI(s) ? K (aq) + I
H-?O-?B-?O-?H
¦
O-?H
+
H-?N-?H
¦H
2+
Mg [Cl
--
+
X
3+
--
ÓXIDO
Na2S
X
SAL
[Na ] 2[S]2
X
Ca(OH)2
X
BASE
Ca2+[ OH ]2
X
Na3PO4
X
SAL
[Na+]3 [PO4]3
X
CuO
X
ÓXIDO
Cu2+O2
--
ÁCIDO
H ? Br
X
Al2(SO4)3
H2Se
X
[Al ]2[ O2 ]3
+
SAL
[Al3+]2[ SO4 2 ]3
ÁCIDO
H?Se?H
--
Cu+I
X
KClO3
X
SAL
K+ [ClO3]
X
Fe(NO3)2
X
SAL
Fe2+[ NO 3 ]2
X
ÓXIDO
O - N?O ?N - O
--
X
SAL
Al(OH)3
X
BASE
Ag2O
X
ÓXIDO
AgNO3
X
SAL
Téc. Em Química – Química Geral Aplicada
+
+
+I
(aq)+ CO3 2 (aq)
------------------------------+
+
Na3PO4 (s) ?3 Na (aq)+ PO4 3
--
--
H 3O
+
+ Br
-----------------------------+
Al2(SO4 ) 3 (s)?2 Al3 (aq)+3SO4 2
H2Se + 2 H2 O
2 H3O
+
+
CuI(s) ? Cu (aq) + I
(aq)
+ S2
(aq)
+
KClO3 (s) ? K (aq)+ ClO3
+
(aq)
Fe(NO3) (s)? Fe2 (aq)+ 2NO3 (aq)
--
-------------------------------+
3
(NH4)3PO4(s)?3 NH
4 (aq)+PO4
Al3+[OH ]3
X
Al(OH)3 (s) ? Al
[Ag+]2O2
--
Ag+[NO3 ]
X
- 17 -
(aq)
---------------------------------------
X
[NH4 ]3 [PO4]
3
(aq)
Na2S (s) ?2 (aq) Na
(aq)+ S2
2+
Ca(OH)2 (s) ? Ca
(aq) +2OH
X
SAL
(NH4)3PO4
H3 O
+
--
+ ClO3
(aq) +2 Cl
Rb2CO3 (s) ?2 Rb
X
X
X
+
2+
HBr +
CuI
N2O3
MgCl2(s) ?Mg
H 3O
X
C - O
+
--------------------------------------
HI + H 2O
[Rb ]2[CO3]2
O -
NH 4
X
H ?
I
X
ÓXIDO
--
(aq)
+
NH 3 +
HClO3 + H2 O
Al2O3
X
+
3 H3O +BO3 3
H 3BO3+3H 2O
X
SAL
CO2
-------------------------------------
+
X
2]
(aq)
KOH(s) ? K (aq) + OH
X
X
X
--
X
Rb2CO3
HBr
+
X
C - O
H?O ? Cl? O
?
O
(aq) +2 Br (aq)
BaBr2(s) ?Ba
--
K OH
2+
X
--
3+
(aq) +3OH
--------------------------------------+
AgNO3 (s) ? Ag
(aq) +NO3 (aq)
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
CAPÍTULO 2
ÓXIDOS
Os óxidos são substâncias presentes no nosso dia-a-dia. Um bom exemplo de óxido é o gás carbônico,
expelido na respiração, principal responsável pelo efeito estufa. Outro óxido muito comum é a areia, utilizado
na fabricação de vidro e cimento.
Definição
.
Caráter de um óxido
O caráter de um óxido está relacionado diretamente à eletronegatividade do elemento ligado ao oxigênio.
Óxidos de caráter iônico: o elemento ligado
eletronegatividade baixa
(caracteristicamente metais alcalinos e alcalino-terrosos).
Óxidos de caráter covalente ou molecular:
eletronegatividade alta (caracteristicamente ametais).
Óxidos
de
caráter
intermediário
entre
o
ao
oxigênio
possui
o elemento ligado
covalente
caráter ácido
e o
ao oxigênio possui
iônico:
o elemento
caráter básico
caráter anfótero
Classificação e reações os ó xidos
Como conseqüência das características apresentadas, podemos classificar os óxidos em:
Óxidos básicos
São óxidos iônicos sólidos, formados por metais alcalinos, alcalino-terrosos e por metais que
apresentam número de oxidação baixo (+1 e +2).
Como exceção a essa regra, temos o óxido formado pelo zinco que, apesar de possuir nox fixo +2, forma óxido
anfótero. Os óxidos de estanho e chumbo (quando estes apresentam nox +2 ) também possuem caráter anfótero.
Ex: Na2O, MgO, K2O, CaO, CrO, FeO, Ag2O
Os óxidos básicos fazem as seguintes reações características:
Reagem com água produzindo hidróxido
K 2O +
H2O
CaO +
HO
?
2 KOH
?
Ca(OH)2
?
Fe(OH)2
Reagem com ácidos produzindo sal e água
Téc. Em Química – Química Geral Aplicada
- 18 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
Observação
Não existe o íon O
em solução aquosa já que ele reage com a água, gerando íons OH .
2
H
O2
+ O
OH
+
OH
H
CuO + H2O ?
Cu(OH)2
Ag2O + H2O
2AgOH
Ag2O
(insolúvel)
CuO
(insolúvel)
Óxidos ácidos ou anidridos
São óxidos moleculares gasosos formados por ametais, boro, silício
que apresentem número de oxidação elevado (+5, +6, +7).
metais de transição
Também são chamados de anidridos de ácidos por serem compostos que podem ser
obtidos pela
eliminação total de água de um ácido oxigenado.
Importante:
CO, N2O e NO são formados por ametais, mas são classificados como óxidos neutros ou indiferentes, pois
não reagem com água, ácidos ou bases. Sendo assim, na identificação do caráter de um óxido,
Os óxidos ácidos fazem as seguintes reações características:
Reagem com água produzindo ácidos oxigenados
CO2
+
?
H2O Cl2O3 + ?
H2O
?
H2CO3 (aq)
2 HClO2 (aq)
H2CrO4(aq)
Reagem com base produzindo sal e água
Reagem com óxidos básicos produzindo sal
CO2
+ CaO ?
CaCO3
SO3
+ MgO ?
MgSO4
Téc. Em Química – Química Geral Aplicada
- 19 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
Observação
Óxidos Anfóteros
São óxidos de caráter intermediário entre o iônico e o covalente, tendendo para o covalente.
São formados por elementos de eletronegatividade média que podem ser metais
ou semimetais
São, em geral, sólidos, insolúveis em água.
Ex: ZnO, PbO, PbO2, As2O3, As2O5, Al2O3, Sb2O3, Sb2O5, SnO, SnO2, Fe2O3
Os óxidos anfóteros possuem um comportamento ambíguo, pois ora agem como óxidos básicos,
ora como óxidos ácidos. O que determina o comportamento que terão em uma reação é a substância com a qual
estiverem em contato. Assim:
N ão reagem com a água
Reagem com ácidos fortes produzindo sal e água (comportamento básico)
Reagem com bases fortes produzindo sal e água (comportamento ácido)
Óxidos Duplos, Mistos ou Salinos
São óxidos de fórmula geral M3O4 ( sendo M um metal dos grupos III e IVA ou de transição
), formados pela associação de dois óxidos diferentes do elemento M. Correspondem aos minérios onde óxidos
do mesmo metal, com nox diferentes, encontram-se misturados e cristalizados numa proporção constante.
São óxidos metálicos, iônicos e sólidos nas condições ambientes.
Téc. Em Química – Química Geral Aplicada
- 20 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
O exemplo mais comum desse tipo de óxido é o Fe3O4, constituído pelos óxidos FeO + Fe2O3. O
Fe3O4 é denominado magnetita, pois é a "pedra-ímã natural‖.
Um outro exemplo é o Pb3O4, constituído pelos óxidos 2 PbO + PbO2. O Pb3O4 é conhecido
como zarcão e é normalmente utilizado para pintura de fundo em superfícies metálicas, com a finalidade de
evitar a formação de ferrugem.
A equação da reação dos óxidos salinos pode ser dada como a soma das equações de cada óxido do
qual é formado.
Peróxidos
São compostos que apresentam a estrutura ( O2 )2 , chamada de estrutura peróxido .
Os peróxidos mais comuns envolvem o hidrogênio, os metais alcalinos e os metais alcalino terrosos.
Peróxido de hidrogênio: H 2O 2
É líquido e molecular
Quando está dissolvido em água, o H2O2 origina uma solução conhecida por água oxigenada, muito
comum em nosso cotidiano.
Peróxido de metal alcalino:
São sólidos e iônicos.
Ex: Li2O2, Na 2O2, K2O2
Peróxido de metal alcalino - terroso :
São sólidos e iônicos.
Ex: MgO2, CaO2, BaO2
Os peróxidos metálicos fazem as seguintes reações características:
Reagem com água produzindo hidróxido e peróxido de hidrogênio
2 Na2O2
+ 4 H2O ?
4 NaOH
+ 2H2O2
2H2O + O2
Observação
Reagem com ácidos produzindo sal e peróxido de hidrogênio
Resumindo
M 3O 4
Téc. Em Química – Química Geral Aplicada
- 21 -
M
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
Nomenclatura
Regra geral
Usada para qualquer tipo de óxido, independente do seu caráter
Leva em conta o número de átomos presente no óxido. Através de prefixos, é indicado o número de
átomos de oxigênio e o número de átomos do elemento ligado a ele.
---- ------------------------ óxido de
nome do elemento
mono, di, tri, tetra, etc.
mono, di, etc.
Exemplos:
P2O5 – pentóxido de difósforo
Fe3O4
Cu2O –
dicobre
– tetróxido de triferro
Usada para
onde o
independente do seu caráter.
nox
do
monóxido de
elemento
ligado
ao
oxigênio
O número de oxidação do elemento ligado ao oxigênio é indicado por algarismos romanos.
Óxido de
nome do elemento
nox do elemento em alg. romano
Exemplos:
MnO2 – óxido de manganês IV
P 2O 5
– óxido de fósforo V
Mn2O7 – óxido de manganês VII Fe2O3
Cl2O – óxido de cloro I
SnO
– óxido de ferro II
– óxido de estanho I
Regras que levam em conta o caráter do óxido
Regra para óxidos básicos e anfóteros
Se o elemento ligado ao oxigênio tem nox fixo
Óxido de
nome do elemento
Exemplos:
BaO – óxido de bário
Li2O – óxido de lítio
Al2O3 – óxido de alumínio
Na2O – óxido de sódio
ZnO – óxido de zinco
Ag2O – óxido de prata
Se o elemento tem nox variável
O número de oxidação do elemento ligado ao oxigênio é indicado por algarismos romanos.
Óxido de
nome do elemento
Téc. Em Química – Química Geral Aplicada
nox do elemento em alg. romano
- 22 -
é
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
Exemplos:
FeO – óxido de ferro II
Fe2O3
Mn2O3 – óxido de manganês II
Cu2O – óxido de cobre I
– óxido de ferro
Além da regra geral já vista para óxidos de elementos com nox variável, há também uma
regra que
denota o elemento de
e o sufixo ico, o de
Óxido
nome do elemento
-------------------------------------------------
oso (menor nox) ou ico (maior nox)
Exemplos:
FeO – óxido ferroso; Fe2O3 – óxido férrico
PbO – óxido plumboso; PbO2 – óxido plúmbico
Au2O – óxido auroso; Au2O3 – óxido áurico
SnO – óxido estanoso; SnO2 – óxido estânico
Sb2O3 – óxido antimonioso; Sb2O5 – óxido
antimônico
Regra para óxidos neutros
CO
Usam-se as duas regras gerais já vistas.
N 2O e NO
Podem ser nomeados pelas regras gerais já vistas ou podemos distingui-los através do o sufixos oso
(menor nox) e ico (maior nox). Logo:
N2O – Monóxido de dinitrogênio , óxido de nitrogênio I ou óxido nitroso
NO – Monóxido de nitrogênio , óxido de nitrogênio II ou óxido nítrico
Regra para óxidos ácidos (anidridos)
O elemento ligado ao oxigênio forma um único óxido ácido
Anidrido
ico
nome do elemento
Exemplos:
CO2
– anidrido carbônico
CrO3 – anidrido crômico
B2O3 – anidrido bórico SiO2 – anidrido silícico
O elemento ligado ao oxigênio forma dois óxidos ácidos
oso ( menor nox )
Anidrido
nome do elemento
ico ( maior nox )
Exemplos:
SO2
– anidrido sulfuroso; SO3 – anidrido sulfúrico N2O3 – anidrido nitroso; N2O5 – anidrido nítrico
P2O3 – anidrido fosforoso; P2O5 – anidrido fosfórico
Téc. Em Química – Química Geral Aplicada
- 23 -
Escola Estadual de Educação Profissional [EEEP]
Profissional
Ensino Médio Integrado à Educação
O elemento ligado ao oxigênio forma mais de dois óxidos ácidos
Hipo
------------------------------ oso
--------------------------------- oso aumento do nox
--------------------------------- ico
Anidrido
Per
-----------------------------ico nome do elemento
Nos anidridos, o prefixo per associado ao sufixo ico indica sempre que o nox do elemento é +7.
Exemplos:
MnO3 – anidrido mangânico
Cl2O – anidrido
hipocloroso
Mn2O7 – anidrido permangânico
Cl2O3 – anidrido
cloroso
Cl2O5 – anidrido clórico
O elemento forma anidridos mistos
Exemplos:
NO2
– anidrido nitroso – nítrico
Cl2O4 – anidrido cloroso - clórico
Cl2O6 – anidrido clórico - perclórico
Regra para óxidos duplos
Leva em conta a presença das duas valências (nox).
Exemplos:
Fe3O4
– Óxido ferroso - férrico
Mn3O4 – Óxido manganoso - mangânico
Pb3O4
– Óxido plumboso - plúmbico
Co3O4 – Óxido cobaltoso - cobáltico
Regra para peróxidos
Peróxido de
--------------------------------
nome do elemento
Exemplos :
Na2O2 – peróxido de sódio
CaO2 – peróxido de cálcio
H2O2
– peróxido de hidrogêni
BaO2 – peróxido de bário
Téc. Em Química – Química Geral Aplicada
- 24 -
Escola Estadual de Educação Profissional [EEEP]
Profissional
Ensino Médio Integrado à Educação
o
o
o
Cr+2O
Cr2+3O 3
óxido básico
Mn+2O
Mn+32O 3
óxidos básicos
Téc. Em Química – Química Geral Aplicada
Cr+6O 3
óxido anfótero
Mn+4O 2
óxido anfótero
- 25 -
óxido ácido
Mn+6O 3
Mn+72O 7
óxidos ácidos
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
OCORRÊNCIA DOS ÓXIDOS NA NATUREZA
Os óxidos são muito abundantes na crosta terrestre. As substâncias encontradas naturalme
crosta terrestre são chamadas de minerais. Alguns deles podem ser aproveitados pel de
indústria
Minério é o nome dado a um mineral a partir do qual é economicamente viável a extração de um
elemento químico.
A seguir, estão alguns minérios e os elementos que podem ser obtidos a partir deles:
hematita
magnetita
pirolusita
cassiterita
bauxita
b lenda
galena
calcosita
quartzo, sílica
ÓXIDOS MAIS COMUNS
ÓXIDOS BÁSICOS
Óxido de cálcio - CaO
Também conhecido como cal vi va ou cal vi rgem, não é encontrado na natureza e
por isso é obtido pela decomposição térmica do carbonato de cálcio (CaCO3), que existe em
grande quantidade na natureza (mármore ou calcário).
É usado pelos pedreiros no preparo da argamassa, misturando-o com água. Essa reação
provoca grande liberação de calor e produz a cal extinta ou cal apagada (Ca(OH)2), representada pela equação
CaO +
H2O
?
Ca(OH)2
calor
+
cal extinta
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
Por ser um óxido básico, é utilizado na agricultura para diminuir a acidez do solo. Além disso, é
utilizado para neutralizar o ácido sulfúrico derramado em acidentes rodoviários ou em
vazamentos nas indústrias.
É usado em pintura de paredes, denominada caiação.
Óxido de magnésio - MgO
É chamado de magnésia. Misturado com água, forma o chamado leite de magnésia
usado como antiácido estomacal.
ÓXIDOS NEUTROS
Monóxido de carbono - CO
É um gás incolor, inodoro, extremamente tóxico por se ligar à hemoglobina do sangue, impedindo
que ela transporte o oxigênio durante o processo de respiração.
É um s ério poluente atmosférico.
Forma-se na queima incompleta de combustíveis (gasolina, álcool, diesel). Por isso, nunca se deve
ligar o motor de um veículo em ambientes fechados ou usar aquecedores a gás em ambientes sem ventilação,
uma vez que, nessas condições, pode ocorrer formação de CO em níveis perigosos e, até mesmo, fatais.
A quantidade de CO lançada na atmosfera pelos escapamentos dos
ônibus e caminhões, cresce na seguinte ordem, em relação ao combustível usado:
automóveis,
álcool (etanol) < gasolina < querosene < óleo diesel
Ó xido nitroso - N2O
É um gás incolor, de odor adocicado, usado como anestésico e conhecido como gás hilariante.
Óxido nítrico - NO
É um gás incolor, produzido quando ocorre reação entre o oxigênio e o nitrogênio, a temperaturas
muito elevadas.
No motor dos automóveis ocorre entrada de ar, cujo O2 é necessário à combustão. Junto com esse
oxigênio, entram outros componentes do ar, que não deveriam, em princípio, tomar parte das reações dentro do
motor. No entanto, devido à alta temperatura interna do motor, ocorre reação entre N2 e O2:
N2
+
O2
?
2 NO
Em contato com o oxigênio do ar, o NO se transforma em NO2, óxido ácido que ao reagir com a
água da chuva produz os ácidos nítrico (HNO3) e nitroso (HNO2). Por isso, o NO é considerado como poluente
atmosférico.
ÓXIDOS ÁCIDOS
Dióxido de carbono - CO2
É um gás incolor, inodoro, mais denso que o ar e por isso, pode acumular-se no chão
causar asfixia se sua concentração for maior que 0,5 % em volume.
O CO2 não é tóxico portanto não é poluente. O ar contendo teor de CO2 maior que o norma
(0,03 %) é impróprio para a respiração porque contém um teor de O2 menor que o normal.
- 25 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
Não é combustível nem comburente e, por isso, é usado como extintor de incêndios.
No estado sólido é conhecido como gelo seco e é usado em refrigeração e em shows e filmes, como
artifício cênico.
Quando bebemos água mineral gaseificada e refrigerante, estamos ingerindo uma mistu
que contém o gás carbônico, que sendo um óxido ácido, reage com a água produzindo ácido carbônico (H2CO3).
o fato de todo refrigerante gaseificado possuir um caráter ácido.
A adição de gás carbônico na fabricação de refrigerantes é feita sob uma pressão
maior que a atmosférica, o que aumenta sua solubilidade em água. Ao deixarmos uma garrafa
de refrigerante aberta, permitimos a saída de grande parte do gás carbônico para o meio ambiente, o que
torna o refrigerante "choco",
isto é, praticamente sem gás.
Plantas e animais, ao respirar, eliminam gás carbônico, sendo, portanto natural sua
presença na atmosfera. Quando chove, ocorre uma reação entre ele e a água, produzindo ácido
carbônico, o que deixa a chuva ligeiramente ácida. Ess a acidez n atural d a chu va é tão bai xa que não
faz nenh u m mal aos seres vivos.
A queima dos combustíveis (álcool, gasolina, diesel, etc.) produz uma mistura de CO2, CO, fuligem
( C ) e água, o que aumenta muito a concentração de gás carbônico na atmosfera.
O gás carbônico presente na atmosfera tem a propriedade de absorver parte das
radiações infravermelhas provenientes da reflexão da luz solar que incide sobre a Terra, agindo assim como um
espécie
de cobertor, que evita que as radiações escapem completamente para o espaço, mantendo assim
planeta
aquecido.
Dióxido de enxofre - SO2
É um gás incolor, tóxico, de cheiro forte e irritante e constitui um sério poluente atmosférico
É formado na queima do enxofre e dos compostos que o contêm:
S + O2
?
SO2
Uma das fases da fabricação do ácido sulfúrico (H2SO4) consiste na queima de
enxofre ou de minérios de enxofre, particularmente da pirita (FeS2). Por isso, nas regiões onde há fábricas de
ácido sulfúrico, o dióxido de enxofre é o principal poluente do ar.
A queima de combustíveis derivados de petróleo (gasolina, querosene, diesel)
também é responsável pelo lançamento de SO2
na atmosfera, uma vez que estes
combustíveis possuem compostos de enxofre em sua constituição.
Uma vez lançado na atmosfera, o dióxido de enxofre reage, em parte, com o
oxigênio do ar formando trióxido de enxofre (SO3). Esses dois óxidos interagem com a água das
chuvas formando ácidos, dando origem à denominada chuva ácida, que causa sérios problemas ambientais.
As reações que ocorrem para a formação da chuva ácida são:
Queima de enxofre
S + O2
? SO2
Transformação de SO2 em SO3
2 SO2
+
?
2
Reações com a água da chuva
SO2
+ H2O
?
H2SO3
e
- 26 -
SO3
+ H2O ? H2SO4
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
Dióxido de nitrogênio - NO2
É um gás de cor castanho - avermelhada, de cheiro forte e irritante, muito tóxico, e constitui um
poluente atmosférico
É o principal poluente do ar nas regiões onde há fábricas de ácido nítrico (HNO3). O gás castanho
que sai das chaminés das fábricas contém alto teor de NO2.
Já vimos que nos motores dos veículos, devido a alta temperatura, há formação de NO (monóxido
de nitrogênio) através da reação entre o oxigênio e o nitrogênio e que em contato com o ar, o NO se transforma
em NO2. A interação do NO2 com a água da chuva geram os ácidos nitroso (HNO2) e nítrico (HNO3),
dando origem, portanto, à chuva ácida, que, como já foi visto, causa sério impacto ambiental.
N2
+
O2
?
2 NO
2 NO + O2
?
2 NO2
2 NO2
?
HNO2
+
+
Além da
de chuva ácida, a presença de NO2 na atmosfera gera outro
produção de ozônio (O3). Considerado sério poluente atmosférico, é obtido através da seguinte reação:
NO2
+
?
NO +
Veja que contraste da natureza: o ozônio formado nas camadas inferiores da atmosfera é totalmente
indesejável e, por isso, é considerado um poluente, mas, na estratosfera, onde é absolutamente necessário, ele é
destruído. Para evitar sua produção, alguns automóveis modernos possuem dispositivos, chamados conversores
catalíticos, capazes de transformar os óxidos de nitrogênio em nitrogênio (N2), antes de serem
lançados na atmosfera.
Convém ressaltar que, mesmo em regiões não poluídas, as águas da chuva também podem conter
ácido nítrico, ainda que em quantidades bem menores, se essas chuvas forem acompanhadas
de raios e relâmpagos.
Nessas
condições, nitrogênio e
oxigênio do ar
combinam-se
(devido
à
grande
energia desenvolvida) originando NO2 que, dissolvido na água, produz HNO3.
PERÓXIDOS
Peróxido de hidrogênio - H2O 2
O peróxido de hidrogênio, ou água oxigenada, é um líquido incolor, com viscosidade semelhante à
do xarope, que explode violentamente quando aquecido.
As soluções aquosas diluídas de peróxido de hidrogênio são de uso comum (como antiséptico, alvejante, para clarear pêlos e cabelos, etc.).
Os frascos de água oxigenada normalmente são escuros ou opacos, pois a luz provo
a sua decomposição:
2 H2O2 ( aq )
?
2 H2O( l ) + O2 ( g )
Soluções cuja concentração é maior do que 30 % de peróxido de hidrogênio são
utilizadas,
industrialmente, como alvejante de madeiras, fibras, ossos, marfim, cera de abelhas, tecidos e,
- 27 -
Escola Estadual de Educação Profissional [EEEP]
Educação Profissional
Ensino Médio Integrado à
Sobre a chuva ácida
O que é chuva ácida?
A água de chuva já é naturalmente ácida?
O que causa a deposição ácida?
Mas, a chuva ácida pode ter uma causa natural?
E como são formados os ácidos sulfúrico e nítrico?
-
- 28 -
Escola Estadual de Educação Profissional [EEEP]
Educação Profissional
Ensino Médio Integrado à
O alcance da chuva ácida
Chuva ácida é um fenômeno recente?
Todas as regiões têm a mesma capacidade de neutralizar os ácidos? O
que acontece quando esta capacidade de neutralização é esgotada?
Quais os efeitos da chuva ácida sobre o solo e a vegetação?
- 29 -
Escola Estadual de Educação Profissional [EEEP]
Educação Profissional
Ensino Médio Integrado à
Quais os efeitos da chuva ácida sobre os ecossistemas aquáticos?
Quais os efeitos da chuva ácida sobre os materiais?
Quais os efeitos da chuva ácida sobre a saúde?
- 30 -
Escola Estadual de Educação Profissional [EEEP]
Educação Profissional
Ensino Médio Integrado à
Sobre o efeito estufa
ondas curtas
ondas lon gas
- 31 -
Escola Estadual de Educação Profissional [EEEP]
Profissional
Ensino Médio Integrado à Educação
gases de estufa
- 32 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
EXERCÍCIOS
1) Complete:
K2O
SnO
Cl2O
Cu2O
N2O3
MgO2
ZnO
NO2
Fe2O3
CO
CrO3
Li2O
CO2
NO
2) Associe:
( a ) caráter ácido
( b ) caráter básico
( ) Óxidos dos elementos com eletronegatividade baixa.
( ) Como regra, óxidos dos elementos com eletronegatividade alta.
( ) Como regra, óxidos dos elementos localizados à esquerda da tabela periódica .
( ) Como regra, óxidos dos elementos localizados à direita da tabela periódica (excluindo os gases nobres).
( ) Óxidos iônicos
( ) Óxidos moleculares
( ) Óxidos dos elementos ametálicos (como regra)
( ) Óxidos dos elementos metálicos (como regra)
( ) Óxidos dos elementos metálicos que apresentam baixo nox ( +1 ; +2 )
( ) Óxidos dos elementos metálicos que apresentam nox elevado ( +5)
3) Dê nome aos seguintes óxidos, segundo a regra geral (dos prefixos):
a) CO
b) NO
c) N2O
d) NO2
e) N2O3
f) N2O4
g) N2O5
h) SO2
i) SiO2
j) Pb3O4
l) P2O3
m) Na2O2
n) BaO2
o) MnO2
p) HgO
q) Fe2O3
r) PbO2
s) CrO3
t) Mn2O7
u) ClO2
v) Cr2O3
x) Hg2O
z) I2O5
- 33 -
Escola Estadual de Educação Profissional [EEEP]
Profissional
Ensino Médio Integrado à Educação
4) Identifique o tipo dos óxidos abaixo, nomeando-os.
a) K2O
b) MgO
c) N2O3
d) SO2
e) FeO
f) Cl2O
g) Cu2O
h) BaO2
i) CaO
j) HgO
k) Br2O3
l) CuO
m) Li2O
n) SO3
o) BaO
p) N2O5
q) Br2O7
r) Ag2O
s) Li2O2
t) CrO3
u) CO2
v) Na2O
x) Mn2O7
z) I2O5
5) Faça a reação dos óxidos do item anterior com água.
6) Dê a fórmula dos óxidos abaixo:
a) óxido de níquel II
b) óxido mercuroso
c) anidrido carbônico
d) anidrido bórico
e) óxido de cálcio
f) anidrido sulfúrico
g) óxido de prata
h) anidrido clórico
i) anidrido nitroso
j) óxido cúprico
k) anidrido perclórico
l) óxido auroso
m) óxido de estanho II
n) anidrido nítrico
o) óxido de manganês II
p) anidrido sulfuroso
q) óxido plumboso
r) anidrido fosfórico
s) anidrido silícico
t) anidrido hipobromoso
u) óxido de magnésio
v) óxido de cobre I
x) óxido ferroso
z) anidrido fosforoso
7) Dê dois nomes possíveis, excetuando a regra válida para qualquer tipo de óxido:
a) CuO
b) MnO
c) Hg2O
d) MnO3
e) Cl2O
f) Cu2O
g) HgO
h) Mn2O7
i) PbO
j) PbO2
l) Au2O
m) Cl2O7
n) N2O
o) NO
p) Cl2O6
q) CO2
r) FeO
s) Fe2O3
t) CrO3
u) P2O3
v) P2O5
x) N2O3
z) N2O5
8) Usando as regras específicas quanto ao caráter, dê nome a:
a) K2O
b) K2O2
c) ZnO
d) Al2O3
e) MgO
f) H2O2
g) SrO2
h) BaO
i) Li2O
j) Li2O2
l) BaO2
m) K2O2
n) CaO2
o) Cl2O3
p) SnO
q) SnO2
r) SO2
s) SO3
t) As2O3
u) As2O5
v) MnO
x) Mn2O3
z) Na2O2
9) Escreva as fórmulas dos seguintes óxidos:
a) pentóxido de dicloro
i) tetróxido de trimanganês
q) anidrido sulfuroso
b) anidrido nitroso
j) óxido estanoso
r) peróxido de potássio
c) óxido de níquel III
k) peróxido de cálcio
s) óxido de iodo I
d) óxido nitroso
l) óxido de estanho IV
t) óxido áurico
e) óxido de cromo VI
m) óxido de alumínio
u) óxido plumboso
f) peróxido de sódio
n) trióxido de enxofre
v) anidrido mangânico
g) óxido arsênico
o) óxido nítrico
x) óxido de bromo III
h) óxido de antimônio III
p) anidrido nítrico
z) óxido de magnésio
10) Equacione as reações:
a) N2O3
+
H2O
b) Cl2O +
H2O
c) K2O2 +
h) N2O3
- 34 -
d) CuO + H2O e) CrO3
+
+
Escola Estadual de Educação Profissional [EEEP]
Profissional
Ensino Médio Integrado à Educação
H2O
- 35 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
11) Dados os óxidos: CO, CO2, BaO, ZnO, Fe3O4, Cl2O5, CuO, N2O, Na2O2
a) Qual o nox de cada elemento ligado ao oxigênio?
b) Quais são capazes de reagir com água formando ácido? Equacione.
c) Quais são capazes de reagir com HCl ?
d) Quais são capazes de reagir com NaOH ?
e) Quais são neutros?
12) Cal viva é o óxido de cálcio.
a) Escreva a equação da reação da cal viva com a água.
adicionada ao solo?
b)
Por
que,
na
agricultura,
a
cal
13) Quando aplicada em ferimentos, a água oxigenada parece "ferver".
a) Por quê?
b) Escreva a equação que representa a reação química envolvida.
14) A queima de combustíveis fósseis conduz à formação de compostos derivados do enxofre. Estes compostos
são lançados na atmosfera, precipitando na forma de chuvas ácidas, fenômeno que causa sérios danos ao meio
ambiente. Escreva as equações de formação do ácido sulfúrico, a partir do enxofre.
15) Associe:
( a ) Fe3O4
( b ) SnO2
( c ) Al2O3
( d ) Fe2O3
( e ) MnO2
(
(
(
(
(
) bauxita
) hematita
) magnetita
) pirolusita
) cassiterita
16) Associe:
( a ) Pb3O4
( b ) CO2(s)
( c ) Fe3O4
( d ) CaO
( e ) SiO2
(
(
(
(
(
) cal virgem
) quartzo
) gelo seco
) zarcão
) pedra-ímã natural
17) Associe:
( a ) CaO
( b ) NO2
( c ) Pb3O4
( d ) SiO2
( e ) CO2
(
(
(
(
(
) extintor de incêndio
) usado pelos pedreiros
) óxido mais abundante na crosta terrestre
) usado para proteger o ferro contra ferrugem
) responsável pela poluição do ar com ozônio
18) Quais são os óxidos responsáveis pela formação da chuva ácida? Equacione o fenômeno.
19) A chuva ácida provocada pelo gás carbônico e pela formação de dióxido de nitrogênio nas
tempestades
20) O NO2 eliminado do escapamento dos automóveis é o principal responsável pela poluição do ar com ozônio.
Qual é a reação que ocorre nesse processo?
21) O gelo seco consiste em dióxido de carbono sólido, que nas condições ambientes, sofre sublimação.
Colocando um pedaço de gelo seco em água destilada, o meio ficará ácido ou básico? Justifique com o
auxílio de uma equação química.
- 36 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
RESPOSTAS
1)
K2O
SnO
X
Cl2O
X
Cu2O
N2O3
X
Óxido básico
Óxido de potássio
K2O + H2O ? 2 KOH
X
Óxido anfótero
Óxido de estanho II ou
estanoso
Não reage
Óxido ácido
Anidrido hipocloroso
Cl2O + H2O ? 2 HClO
Óxido básico
Óxido de cobre I ou
cuproso
Cu2O + H2O ? 2 CuOH
Óxido ácido
Anidrido nitroso
N2O3 + H2O ? 2 HNO2
X
Peróxido
Peróxido de magnésio
MgO2+ H2O? Mg(OH)2 +H2O + ½ O2
X
Óxido anfótero
Óxido de zinco
Não reage
Anidrido misto
Anidrido nitroso-nítrico
Óxido anfótero
Óxido de ferro III ou
férrico
Não reage
X
X
MgO2
ZnO
X
NO2
X
Fe2O3
X
CO
X
Óxido neutro
Monóxido de carbono
Não reage
CrO3
X
Óxido ácido
Anidrido crômico
CrO3 + H2O ? H2CrO4
Óxido básico
Óxido de lítio
Li2O + H2O ? 2 LiOH
Li2O
X
X
NO2
+ H2O ? HNO2 + HNO3
CO2
X
Óxido ácido
Anidrido carbônico
CO2 + H2O ? H2CO3
NO
X
Óxido neutro
Óxido nítrico
Não reage
2) ( b) (a ) ( b ) ( a ) ( b ) ( a ) ( a )( b )( b) ( a )
m) dióxido de disódio
n) dióxido de bário
o) dióxido de manganês
p) monóxido de mercúrio
q) trióxido de diferro
r) dióxido de chumbo
s) trióxido de cromo
t) heptóxido de dimanganês
u) dióxido de cloro
v) trióxido de dicromo
x) monóxido de dimercúrio
z) pentóxido de difosfóro
3)a) monóxido de carbono
b) monóxido de nitrogênio
c) monóxido de dinitrogênio
d) dióxido de nitrogênio
e) trióxido de dinitrogênio
f) tetróxido de dinitrogênio
g) pentóxido de dinitrogênio
h) dióxido de enxofre
i) dióxido de silício
j) tetróxido de trichumbo
l) trióxido de difósforo
- 37 -
Escola Estadual de Educação Profissional [EEEP]
Profissional
Ensino Médio Integrado à Educação
4) a) K2O – básico; óxido de potássio
b)
MgO – básico; óxido de magnésio
d)
SO2 – ácido ; anidrido sulfuroso
c)
N2O3 – ácido ; anidrido nitroso
e)
FeO – básico ; óxido de ferro II ou óxido ferroso f)
g)
Cu2O – básico ; óxido de cobre I ou óxido cuproso h)
i) CaO – básico ; óxido de cálcio
k)
m) Li2O – básico ; óxido de lítio
o) BaO –
nítrico
BaO2 – peróxido ; peróxido de bário
HgO – básico ; óxido de mercúrio II ou óxido mercúrico
j)
Br2O3 – ácido ; anidrido bromoso
Cl2O – ácido ; anidrido hipocloroso
l) CuO – básico; óxido de cobre II ou óxido cúprico
n)
básico; óxido de bário p)
SO3 – ácido ; anidrido sulfúrico
– ácido ; anidrido
N2O5
q)
Br2O7 – ácido ; anidrido perbrômico
r)
Ag2O –
s)
Li2O2 – peróxido; peróxido de lítio
t)
CrO3
u)
CO2
v)
Na2O – básico; óxido de sódio
x)
Mn2O7 – ácido ; anidrido permangânico z)
–
ácido ; anidrido carbônico
5) a) K2O
+ H2O ?
c)
N2O3
+ H2O ?
e)
FeO
g)
Cu2O + H2O ? 2 CuOH
i) CaO
k)
Br2O3
2 KOH
2 HNO2
+ H2O ? Fe(OH)2
+ H2O ? Ca(OH)2
I2O5
básico ; óxido de prata
– ácido ; anidrido crômico
– ácido ; anidrido iódico
b)
MgO
+ H2O ?
Mg(OH)2
d)
SO2
+ H2O ? H2SO3
f)
Cl2O
+ H2O ? 2 HClO
h)
2 BaO2
+ 4 H2O ?
j)
HgO
+ H2O ?
Hg(OH)2
2 Ba(OH)2 + 2 H2O + O2
+ H2O ?
2 HBrO2
l) CuO
+ H2O ?
Cu(OH)2
m) Li2O
+ H2O ?
2 LiOH
n)
SO3
+ H2O ?
H2SO4
o)
BaO
+ H2O ? Ba(OH)2
p)
N2O5
+ H2O ?
2 HNO3
q)
Br2O7
r)
Ag2O
+ H2O ?
2 AgOH
s)
2 Li2O2 + 4 H2O ? 4 LiOH + 2H2O + O2
u)
CO2
x)
Mn2O7 + H2O
6)a) NiO
+ H2O ?
+ H2O
2 HBrO4
?
H2CO3
? 2 HMnO4
t) CrO3 + H2O
?
H2CrO4
2 NaOH
v)
Na2O
+ H2O
?
z)
I2O5
+ H2O
?
2 HIO3
b) Hg2O
c) CO2
d) B2O3
e) CaO
f) SO3
g) Ag2O
h) Cl2O5
i) N2O3
j) CuO
k) Cl2O7
l) Au2O
m) SnO
n) N2O5
o) MnO
p) SO2
q) PbO
r) P2O5
s) SiO2
t) Br2O
u) MgO
v) Cu2O
x) FeO
z) P2O3
7) a) CuO – óxido de cobre II ou óxido cúprico
b) MnO – óxido de manganês II ou óxido manganoso
c) Hg2O – óxido de mercúrio I ou óxido mercuroso
d) MnO3 – óxido de manganês VI ou anidrido mangânico
e) Cl2O – óxido de cloro I ou anidrido hipocloroso
f) Cu2O – óxido de cobre I ou óxido cuproso
g) HgO –óxido de mercúrio II ou óxido mercúrico
h) Mn2O7 – óxido de manganês VII ou anidrido permangânico
i) PbO – óxido de chumbo II ou óxido plumboso
j) PbO2 – óxido de chumbo IV ou óxido plúmbico
- 38 -
Escola Estadual de Educação Profissional [EEEP]
Educação Profissional
Ensino Médio Integrado à
7) l) Au2O – óxido de ouro I ou óxido auroso
m) Cl2O7 – óxido de cloro VII ou anidrido perclórico
n) N2O – óxido de nitrogênio I ou óxido nitroso
o) NO – óxido de nitrogênio II ou óxido nítrico
p) Cl2O6 – óxido de cloro VI ou anidrido clóricoperclórico q) CO2 – óxido de carbono IV ou anidrido
carbônico
r) FeO – óxido de ferro II ou óxido ferroso
s) Fe2O3 – óxido de ferro III ou óxido férrico
t) CrO3 – óxido de cromo VI ou anidrido crômico
u) P2O3 – óxido de fósforo III ou anidrido fosforoso
v) P2O5 – óxido de fósforo V ou anidrido fosfórico
x) N2O3 – óxido de nitrogênio III ou anidrido nitroso
z) N2O5 – óxido de nitrogênio V ou anidrido nítrico
8) a)K2O – óxido de potássio
b) K2O2 – peróxido de potássio
c)ZnO – óxido de zinco
d) Al2O3 – óxido de alumínio
e)MgO – óxido de magnésio
f) H2O2 – peróxido de hidrogênio
g) SrO2 – peróxido de estrôncio
h) BaO – óxido de bário
i) Li2O – óxido de lítio
j) Li2O2 – peróxido de lítio
l) BaO2 – peróxido de bário
m) K2O2 – peróxido de potássio
n) CaO2 – peróxido de cálcio
o) Cl2O3 – anidrido cloroso
p) SnO – óxido estanoso
q) SnO2 – óxido estânico
r) SO2 – anidrido sulfuroso
s) SO3 – anidrido sulfúrico
t) As2O3 – óxido arsenioso
u) As2O5 – óxido arsênico
v) MnO – óxido manganoso
x) Mn2O3 – óxido mangânico
z) Na2O2 – peróxido de sódio
9) a) Cl2O5
b) N2O3
c) Ni2O3
d) N2O
e) CrO3
f) Na2O2
g) As2O5
h) Sb2O3
j) SnO
k) CaO2
l) SnO2
m) Al2O3
n) SO3
o) NO
p) N2O5
q) SO2
r) K2O2
s) I2O
t) Au2O3
u) PbO
v) MnO3
x) Br2O3
z) MgO
) Mn3O4
10) a) N2O3
+ H2O ? 2 HNO2
b) Cl2O + H2O ?
c) 2 K2O2
+ 4 H2O ?
d) CuO + H2O
e) CrO3
?
+ H2O ?
f) BaO + H2O
g) CO2
2 HClO
?
+ BaO ?
h) N2O3
+ Na2O ? 2 NaNO2
i) Mn2O7
+ H2O ?
4 KOH + 2 H2O + O2
Cu(OH)2
H2CrO4
Ba(OH)2
BaCO3
- 39 -
2 HMnO4
Escola Estadual de Educação Profissional [EEEP]
Educação Profissional
Ensino Médio Integrado à
11) a) C = +2, C = +4, Ba = +2, Zn = +2, Fe = +8/3, Cl = +5, Cu = +2, N = +1, Na = +1
b) CO2
Cl2O5
+ H2O ? H2CO3
c) BaO
+ H2O ? 2 HClO3
d) CO2
;
ZnO ;
Fe3O4 ; CuO
; ZnO ; Cl2O5
;
Na2O2
e) CO e N2O
12) Cal viva é o óxido de cálcio.
a) CaO + H2O ? Ca(OH)2
b) Para diminuir a acidez do solo.
13) a) Devido à formação de gás oxigênio.
b) 2 H2O2 ? 2
+ ½ O2 ? SO3
SO3
H2O + O2
14) S + O2 ? SO2
SO2
+ H2O ?
15) ( a ) Fe3O4
( b ) SnO2
( c ) Al2O3
( d ) Fe2O3
( e ) MnO2
( c ) bauxita
( d ) hematita
( a ) magnetita
( e ) pirolusita
( b ) cassiterita
16) ( a ) Pb3O4
( b ) CO2(s)
( c ) Fe3O4
( d ) CaO
( e ) SiO2
( d ) cal virgem
( e ) quartzo
( b ) gelo seco
( a ) zarcão
( c ) pedra-ímã natural
17) ( a ) CaO
( b ) NO2
( c ) Pb3O4
( d ) SiO2
( e ) CO2
( e ) extintor de incêndio
( a ) usado pelos pedreiros
( d ) óxido mais abundante na crosta terrestre
( c ) usado para proteger o ferro contra ferrugem
( b ) responsável pela poluição do ar com ozônio
H2SO4
18) SO2 , NO2
2 NO2
+ H2O ? HNO2
SO2 + ½ O2 ?
SO3
SO2 + H2O
?
H2SO3
SO3 + H2O
?
+ HNO3
H2SO4
19) Não, essa acidez natural da chuva é tão baixa que não faz nenhum mal aos seres vivos.
20) NO2
+ O2 ?
21) Ácido. CO2
NO + O3
+ H2O ?
H2CO3
- 40 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
CAPÍTULO 3
ÁCIDOS
São substâncias moleculares que, em solução aquosa ionizam-se, liberando como cátions somente íons H3O +.
Algumas classificações
De acordo com a presença ou não de oxigênio na molécula
Hidrácidos
não possuem oxigênio na molécula. Ex: HCl, HCN, H2S
Oxiácidos
possuem oxigênio na molécula. Ex: HNO3, H2SO4, H3PO4
De acordo com o número de hidrogênios ionizáveis
Hidrogênios ionizáveis são aqueles ligados a um
possuam eletronegatividades significativamente maiores que a sua.
átomo
ou
grupo
de
átomos
q
Essa diferença de eletronegatividade acarreta a formação de um pólo positivo no hidrogênio, sendo que
o restante da molécula passa a apresentar um pólo negativo. Ao dissolvermos o ácido em água,
é um solvente polar, seus pólos positivos (no caso o próprio hidrogênio) são fortemente
atraídos pela força
eletrostática dos pólos negativos da água.
Essa atração é tão intensa que a água consegue separar os hidrogênios das moléculas
Nos hidrácidos,
; nos
são ionizáveis.
Assim, em função do número de hidrogênios ionizáveis, podemos classificar os ácidos em:
Monoácidos ionizam um hidrogênio de sua molécula; são os ácidos monohidrogenados e o H3PO2.
Diácidos ionizam dois hidrogênios de sua molécula; são os ácidos dihidrogenados, H3PO3 e H4P2O5.
Triácidos ionizam três hidrogênios de sua molécula; são os ácidos trihidrogenados exceto H3PO3 e H3PO2
Tetrácidos ionizam quatro hidrogênios de sua molécula são os ácidos tetrahidrogenados exceto H4P2O5.
ATENÇÃO
H 3PO2:
monoácido
H 3PO3 e
diácidos
Obs.: Não esqueça que quando um ácido possui dois ou mais hidrogênios ionizáveis em sua
molécula,
ionização
ionizável.
ionização
a
ocorre em etapas, ocorrendo em cada uma a ionização de apenas um hidrogênio
Essas etapas são sucessivas e a ionização do primeiro hidrogênio é sempre mais fácil que a
dos demais, devido à formação de pontes de hidrogênio intramoleculares.
1.ª etapa : H3PO4
2.ª etapa : H2PO4
3.ª etapa : HPO4
–
+
H2O
2– +
H2O
H3O+ + H2PO4
–
H3O+
H3O+ + PO4
3–
- 41 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
De acordo com a presença ou não de carbono na molécula
Orgânicos: caracterizam-se pela presença de carbono na molécula, sob a forma de um radical denominado
carboxila (R- COOH ). Ex: HCOOH,CH3COOH
Inorgânicos: não possuem carbono em sua molécula ou, se possuírem, este não se apresenta na
forma de carboxila. Ex: HCl, HNO3, HCN, H2CO3, HSCN
De acordo com o grau de ionização
Para comparar os graus de ionização de diferentes ácidos, devem-se utilizar soluções com o
mesmo número de moléculas de cada um dos ácidos para um mesmo volume de solução, à mesma temperatura.
Quanto maior o grau de ionização, maior a condutividade elétrica, pois a condutibilidade é proporcional
à concentração de íons presentes na solução. Embora todos os ácidos sofram ionização em meio aquoso, não o
fazem na mesma escala. Assim, comparando os graus de ionização dos ácidos, podemos classificá-los em:
Á cidos fortes onde > 50 % . Ex: HCl, H2SO4
Ácidos médios e fracos, onde
50 %. Ex: HF, H2S, H3PO4
Por uma questão prática, trabalharemos apenas com o conceito forte/fraco. Os ácidos médios estão incluídos
nos fracos. Assim:
Fortes: HCl, HBr e HI
Hidrácidos
Fracos: os demais
Oxiácidos
A força é indicada pela diferença obtida entre o número de átomos de oxigênio e o
número de hidrogênios ionizáveis; quanto maior for essa diferença, maior será a força do ácido.
X = n.º de átomos de O
n.º de átomos de H ionizáveis
Fortes - diminuindo o nº de oxigênios do nº de hidrogênios ionizáveis =
Fracos - diminuindo o nº de oxigênios do nº de hidrogênios ionizáveis < 2
Veja os exemplos:
HClO4 : x = 4 – 1 =
3
H3PO4 : x = 4 – 3 =
H2SO4 : x = 4 – 2 =
2
H3BO3 : x = 3 – 3 =
ácido forte
ácido fraco
ácido forte
ácido fraco
De acordo com a volatilidade
A volatilidade é a propriedade que as substâncias têm de passar do estado líquido para o estado
gasoso. Sendo assim, as substâncias com baixo ponto de ebulição são consideradas mais voláteis, pois passam
do estado líquido para o gasoso com maior facilidade.
A grande maioria dos ácidos é volátil, mas existem dois ácidos de uso comum que s
pouco voláteis e denominados de ácidos fixos: o ácido sulfúrico (H2SO4) e o ácido fosfórico (H3PO4).
Assim, temos:
Ácidos voláteis:
.
o
Ex: HNO3 (P.E. = 86 C) ; HCl, H2S e HCN (gases) . O ácido acético, componente do vinagre, é o ácido volátil
mais comum no nosso cotidiano; ao abrirmos um frasco com vinagre logo percebemos seu cheiro característico.
Ácidos fixos:
.
Ex: H2SO4, H3PO4, H3BO3
- 42 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
Atenção
ácidos instáveis
?
?
?
Nomenclatura
Hidrácidos
Ácido ..................................... ídrico
nome do elemento
Exemplos:
Quando se ionizam em água geram ânions que possuem uma nomenclatura derivada deles.
ácido
Ex:
HCl
H3O
+
HCN
+ H2O
+
H3O
+
+ Cl
+ CN
Oxiácidos
Sendo dada a fórmula do ácido para nomeá-lo:
Utiliza-se um raciocínio semelhante ao visto para os anidridos.
•
HN+5O3
+4
H2S O3
•N:
•
+5 –
••
+2 –
•S:
+4 –
+6 –
•
••
+1
HCl O
+3 –
•
Cl :
••
+1 –
+3 –
+5 –
+7 –
?
?
?
Assim como
hidrácidos, quando se ionizam em água geram ânions que
nomenclatura derivada deles. O ácido que termina em oso gera um ânion terminado em ito e o ácido terminado
em ico gera um ânion terminado em ato. Os prefixos não se alteram.
- 43 -
Escola Estadual de Educação Profissional [EEEP]
HNO3
+ H2O
HClO
+ H2O
Ex:
Ensino Médio Integrado à Educação Profissional
H3O
+
H3O
+
+
NO3
+ ClO
Sendo fornecido o nome do ácido para que seja descoberta sua fórmula:
Como a nomenclatura é derivada do anidrido correspondente podemos descobrir sua fórmula através da
reação do anidrido com água.
Exemplos:
Como saber a fórmula do ácido nitroso?
Partimos do anidrido nitroso onde o nitrogênio apresenta nox +3 e consequentemente possui
como fórmula N2O3 já que o nox do oxigênio nos óxidos é sempre – 2.
N2O3
+ H2O
?
2
HNO2
Podemos usar o mesmo raciocínio para qualquer ácido desejado:
Ácido carbônico: C = +4
CO2
+ H2O
?
H2CO3
Ácido sulfúrico: ico ? S = +6
SO3
+ H2O
?
H2SO4
Ácido perclórico: per...ico ? Cl = +7
Cl2O7
+ H2O ?
2
HClO4
Alguns anidridos ( P2O3 e P2O5, por exemplo) dão origem a vários ácidos em que o nox
átomo central não se altera. A diferença está fundamentada no grau de hidratação do ácido. Ne
casos, para
diferenciá-los, usaremos diferentes prefixos:
P2O3 + H2O
?
2 HPO2
P2O3 + 2
H2O
P2O3
?
H 4P 2 O 5
?
2 H3PO3
Anidrido fosfórico
P2O5 + H2O
?
2 HPO3
P2O5 + 2
H2O
P2O5
?
H 4P 2 O 7
?
2 H3PO4
- 44 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
Além do fósforo, outros elementos apresentam este tipo de comportamento. Veja tabela a seguir:
Elemento –
As e Sb
Nox
(+3 e +5)
Grau de hidratação
1 H2O
– meta ;
– piro ;
2 H2O
3 H2O
B
(+3)
1 H2O
– meta
;
3 H2O
– orto
Si
(+4)
1 H2O
– meta
;
2 H2O
– orto
– orto
Observações
tio
ácido tiossulfúrico
-
-
-
ÁCIDOS MAIS COMUNS NO COTIDIANO
Ácido Fluorídrico ( HF )
Nas condições ambientes é um gás incolor que tem a característica de, quando em solução
aquosa,
. Por esse motivo deve ser acondicionado em frascos plásticos, sendo usado para gravações em
cristais e vidros. É usado também na obtenção de fluoretos, como por exemplo, o de sódio (NaF), usado como
Ácido Clorídrico ( HCl )
O ácido clorídrico consiste no gás cloreto de hidrogênio dissolvido em água. O estômago secreta esse
ácido, num volume aproximado de 100 mL, para auxiliar a digestão dos alimentos. Quando impuro, é vendido
- 45 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
no comércio com o nome de
, sendo usado principalmente na limpeza de pisos e de superfícies
metálicas, antes do processo de soldagem.
Na extração de petróleo, o ácido clorídrico é introduzido no bolsão rochoso, dissolvendo uma parte das
rochas e facilitando o fluxo do petróleo até a superfície. Algumas vezes esse procedimento pode ajudar a tornar
o poço de petróleo mais rentável.
Ácido Sulfídrico ( H2S )
É um gás venenoso, incolor, formado na putrefação de substâncias orgânicas naturais que contenham
enxofre, sendo responsável em grande parte
. Queima no ar, com chama
produzindo SO2 e H2O . É encontrado em pequenas quantidades em algumas águas minerais (sulfurosas) e
sua utilização é restrita a processos de análises químicas.
Ácido Cianídrico ( HCN )
É o nome com que se indica uma solução aquosa de gás cianídrico, que é incolor, com cheiro característico
de amêndoas amargas. Por ser muito venenoso (age sobre a hemoglobina do sangue), esse gás é utilizado nas
, nos países onde há pena de morte.
Ácido Carbônico ( H2CO3 )
É um ácido fraco, extremamente instável, que se forma somente em equilíbrio dinâmico entre a água e o
gás carbônico.
CO 2(g) + H2O(l
H2CO3(aq)
É um dos constituintes dos
e das
.
O gás carbônico, ao se combinar com a água da chuva, origina um determinado tipo de ―chuva ácida‖,
mesmo em ambientes não poluídos e na ausência de relâmpagos, o que leva a concluir que toda chuva é ácida.
Ácido fosfórico ( H3PO4 )
É um sólido incolor, que apresenta PF = 42.ºC. É encontrado no comércio na forma de solução aquosa
com cerca de 90% de ácido fosfórico, tendo a aparência de um líquido viscoso.
É usado na indústria de vidro, na tinturaria, nas
, na produção de Coca-Cola
(
) e na fabricação de fosfatos e superfosfatos usados como adubos (
).
Ácido Acético ( CH3COOH )
É um líquido incolor, de cheiro penetrante e característico, solúvel em água em todas as proporçõ
originando soluções ácidas fracas.
É usado no dia-a-dia como condimento culinário; o
é uma solução aquosa de ácido acético de 3
a 7 %.
Ácido Sulfúrico ( H2SO4 )
É um líquido relativamente denso, incolor e inodoro. Já era conhecido pelos alquimistas
árabes do século X, que o introduziram na Europa no século XV, recebendo o nome de vitríolo.
É o ácido mais importante economicamente, conhecido como ―burro de carga‖ da indústria química. O
nas indústrias petroquímicas,
maior consumo se dá na fabricação de fertilizantes. É utilizado
também
corantes, de papel (dentre outras) e nas baterias de automóvel.
e,
Uma das principais propriedades do ácido sulfúrico é
principalmente,
sua
C12H22O11
Sacarose
H2SO4 concentrado
- 46 -
12 C(s) + 11
Carvão
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
Devido a essa ação desidratante, o ácido sulfúrico concentrado tem ação corrosiva sobre os tecidos dos
organismos vivos, produzindo sérias queimaduras na pele, com a formação de manchas pretas ocasionadas pela
carbonização. Por isso, é necessário extremo cuidado ao manusear esse ácido.
O ácido sulfúrico faz parte da composição de um tipo de “
”, característica de
Ácido Nítrico ( HNO3 )
É um líquido incolor e fumegante no contato com o ar. Ataca com violência os tecidos animal e vegetal,
produzindo manchas amareladas na pele. Tem ação oxidante mesmo quando diluído e a frio Seu
manuseio, portanto, requer muito cuidado, pois seus vapores são muito tóxicos. Era empregado pelos
alquimistas, que o chamavam aqua fortis.
Depois do ácido sulfúrico, o ácido nítrico é o mais fabricado e o mais consumido na indústria. Uma das
mais importantes aplicações envolve
( nitroglicerina [dinamite]
;
a trinitrotolueno [TNT] e trinitrocelulose
).
É, ainda, utilizado na
[algodão- pólvora]
(NaNO3 e KNO3), que é usado como
e na
O
nítrico é encontrado em um tipo
”
,
e também aparece na composição d
”
suas
EXERCÍCIOS
1) Complete:
N2O5
HF
Cl2O3
HNO2
P2O5
CrO3
HCN
NO2
H2SO3
CO2
Mn2O7
SO3
NH3
H3BO3
H 2S
H3PO3
HAc
- 47 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
2) Faça a equação de ionização total dos ácidos a seguir, dizendo se o ácido em questão é forte ou fraco e dando
nome aos ânions formados:
a) ácido clorídrico
b) ácido sulfúrico
c) ácido iodoso
d) ácido iodídrico
e) ácido hipocloroso
f) ácido sulfídrico
g) ácido brômico
h) ácido carbônico
i) ácido (orto) fosfórico
j) ácido cianídrico
k) ácido nítrico
l) ácido perclórico
m) ácido bromídrico
n) ácido sulfuroso
o) ácido nitroso
p) ácido tiossulfúrico
q) ácido fluorídrico
r) ácido tiociânico
s) ácido acético
t) ácido metafosfórico
u) ácido fosforoso
v) ácido pirofosforoso
x) ácido metafosforoso
z) ácido pirofosfórico
3) Dê nome aos seguintes ácidos:
a) HBr
b) HCN
c) H3AsO3
H3AsO4
d) HBrO
HBrO2
HBrO3
HBrO4
e) HMnO4
H2MnO4
4) Escreva as fórmulas dos seguintes ácidos:
a) ácido clórico
b) ácido sulfúrico
c) ácido carbônico
d) ácido fluorídrico
e) ácido sulfídrico
f) ácido crômico
5) O ácido dicrômico é obtido reagindo-se 2 mol de anidrido crômico com 1 mol de água. Qual a fórmula do
ácido ?
6) O arsênio e o antimônio estão na mesma família do fósforo na Tabela Periódica. Sabendo que a fórmula do
ácido (orto)fosfórico é H3PO4, quais são as fórmulas dos ácidos (orto)arsênico e (orto)antimônico ?
7) Qual é a fórmula e o nome do ácido resultante da substituição de um átomo de oxigênio por um átomo de
enxofre no ácido ciânico (HOCN) ?
8) Sabendo que, nos ácidos oxigenados, os átomos de hidrogênio ionizáveis estão ligados a átomos de oxigênio,
escreva as fórmulas estruturais dos ácidos a seguir :
a)
b) HNO3
c)
d) H2SO4
e) H3PO2
f) H3PO3
g) H4P2O5
9) Classifique os ácidos, completando a tabela abaixo:
Ácido
HBr
HNO2
H2 S
HClO3
H3PO3
H4Fe(CN)6
N.º de H+ gerado
monoácido
Presença de oxigênio
hidrácido
Força
forte
10) Em qual das soluções, todas de mesma concentração e na mesma temperatura, a lâmpada de um aparelho
para medir condutividade elétrica apresenta maior brilho?
a) HF
b) H2S
c) H3PO4
d) H4SiO4
e) HNO3
11) Ordene os ácidos, do mais forte para o mais fraco:
a)
HF, H2S,
b) HNO2, H2CrO4 ,H3AsO3 ,HBrO
- 48 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
12) Por que a primeira ionização dos hidrogênios de um poliácido se dá com mais facilidade que as demais?
13) Por que o ácido carbônico, embora possua carbono em sua molécula, não é considerado um ácido orgânico?
14) Dê nome aos radicais obtidos através da ionização total dos ácidos:
a) clorídrico
b) permangânico
c) hipocloroso
d) mangânico
e) pirofosfórico
f) sulfídrico
g) bórico
h) sulfúrico
15) Dado o ânion e seu respectivo nome, construa a fórmula e dê nome ao ácido que o gerou:
a)
SiO32– – meta
b) Fe(CN)64– – ferrocianeto
c) BO33– – borato
d)
HPO32– – fosfito
e) C2O42– – oxalato
f) SiO4 4– – orto
16) Associe:
( a ) ânion cloreto
( b ) ânion hipoclorito
( c ) ânion clorito
( d ) ânion clorato
( e ) ânion perclorato
( f ) ânion nitrito
( g ) ânion nitrato
( h ) ânion sulfeto
( i ) ânion sulfito
( j ) ânion sulfato
( l ) ânion fosfato
( m ) ânion metafosfato
( n ) ânion pirofosfato
( o ) ânion carbonato
( p ) ânion acetato
( q ) ânion fosfito
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
) ClO2–
) SO42–
) P2O74–
) ClO3–
) SO32–
) CH3COO–
) Cl–
) HPO 32–
) NO 3–
) PO43–
) ClO4–
) NO 2–
) PO3–
) ClO–
) S2–
) CO32–
17) Água mineral com gás pode ser fabricada pela introdução de gás carbônico na água, sob pressão um pouco
superior a 4 atm.
a)
Essa água é ácida ou alcalina? Justifique escrevendo a reação.
b)
Se a garrafa for deixada aberta, o que acontece com o pH da água? Explique.
18) Estabeleça a relação correta entre os ácidos:
a)
HNO3
d) HCN
b)CH3COOH
c) HCl
e)H2SO4
f) H2S
h)
i) H2CO3
H3PO4
e os usos, as ocorrências e as características dadas a seguir :
( ) Chuva ácida em ambiente não poluído na ausência de raios e relâmpagos
( ) Chuva ácida em ambiente não poluído na presença de raios e relâmpagos
( ) Fertilizantes
( ) Corrosão do vidro
( ) Câmara de gás
( ) Queimaduras na pele
( ) Suco gástrico
( ) Vinagre
- 48 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
( ) Ácido muriático
( ) Cheiro de ovo podre
( ) Refrigerantes e águas minerais gaseificadas
( ) Desidratante enérgico
( ) Cheiro de amêndoas amargas
( ) Bateria de automóvel
( ) Fabricação de explosivos
( ) Aditivo (estabilizante) em refrigerantes
( ) Fabricação de salitre
19) A queima de combustíveis fósseis conduz à formação de compostos derivados do enxofre. Estes compostos
são lançados na atmosfera, precipitando na forma de chuvas ácidas, fenômeno que causa sérios danos ao meio
ambiente. Escreva as equações de formação do ácido sulfúrico, a partir do enxofre.
20) O gelo seco consiste em dióxido de carbono sólido, que nas condições ambientes, sofre
sublimação.
Colocando um pedaço de gelo seco em água destilada, o meio ficará ácido ou básico? Justifique com o auxílio
RESPOSTAS
N2O5
Óxido ácido
Anidrido
nítrico
HF
Ácido
Ácido
fluorídrico
Cl2O3
Óxido ácido
Anidrido
cloroso
HNO2
Ácido
Ácido nitroso
N2O5 + H2O ? 2 HNO3
Anidrido
crômico
+
HNO2 + H2O
H3O + NO2
+ H 2O
H4P2O7+4H2O
CrO3
? 2 HPO3
+
H3O + PO3
4H3O++ P2O74
+ 3 H2O ?
- 49 -
2 H3PO4
3H3O++ PO43
+ H2O ?
H2CrO4+2H2O
Íons fluoreto e íons hidrônio
Ácido cloroso
Íons clorito e íons hidrônio
+
+ 2 H2O ? H4P2O7
H3PO4+3H2O
Óxido ácido
+F
H3O + ClO2
P2O5
CrO3
+
HClO2 + H2O
P2O5
Anidrido
fosfórico
H3O
Cl2O3 + H2O ? 2 HClO2
HPO3 + H2O
Óxido ácido
H3O + NO3
HF + H2O
P2O5
P2O5
+
HNO3 + H2O
Ácido nítrico
Íons nitrato e íons hidrônio
H2CrO4
2H3O++ CrO42
Íons nitrito e íons hidrônio
Ácido metafosfórico
Íons hidrônio e íons
metafosfato
Ácido pirofosfórico
Íons hidrônio e íons
pirofosfato
Ácido ortofosfórico
Íons hidrônio e íons
ortofosfato
Ácido crômico
Íons cromato e íons hidrônio
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
HCN
Ácido
Ácido
cianídrico
NO2
Óxido ácido
(anidrido
misto)
Anidrido
nitroso-nítrico
H2SO3
Ácido
Ácido
sulfuroso
CO2
Óxido ácido
Anidrido
carbônico
Mn2O7
SO3
Óxido ácido
Óxido ácido
NO2
Íons cianeto e íons hidrônio
H3O + +
HCN +
+ H2O ? HNO2 + HNO3
HNO2 + H2O
H3O++ NO2
Íons nitrito e íons hidrônio
HNO3 + H2O
H3O++ NO3
Íons nitrato e íons hidrônio
H2SO3+2H2O
CO2
+ H2O
H2CO3+2H2O
2 H3O+ +SO32
?
H2 CO3
2 H3O++CO32
Mn2O7 + H2O ? 2 HMnO4
Anidrido
permangânico
HMnO4 + H2O
SO3
Anidrido
sulfúrico
Ácido nitroso e ácido nítrico
+ H2O
H2SO4+2H2O
+
H3O + MnO4
? H2SO4
+
2 H3O +SO4
2
Íons sulfito e íons hidrônio
Ácido carbônico Íons
carbonato e íons
hidrônio
Ácido permangânico Íons
permanganato e íons
hidrônio
Ácido sulfúrico
Íons sulfato e íons hidrônio
NH3
Base
Amônia
H3BO3
Ácido
Ácido bórico
Ácido
Ácido
sufídrico
Ácido
Ácido
(orto)fosforoso
H3PO3+2H2O
2 H3O++HPO32
Íons fosfito e íons hidrônio
Ácido
Ácido acético
HAc + H2O
H3O ++ Ac 2
Íons acetato e íons hidrônio
H2S
H3PO3
HAc
NH3+H2O
+ H2O
H3O
b) H2SO4
+ 2
2 H3O
c) HIO2
+ H2O
H3O
d) HI
+ H2O
H3O
e)
+ H2O
H3O
k) HNO3
l)
+ H2O
+ H2O
H2S + 2 H2O
+
2) a)HCl
f) H2S
2 H2O
+
+ H2O
g)
HBrO3
+ 2
h)
H2CO3 H2O
i)
H3PO4
+ H2O
j)
H3BO3+3H2 O
+
+
+
+
H3O
H3O
+
ácido forte ;
íon cloreto
ácido forte ;
íon sulfato
I
ácido forte ;
+
ClO
ácido fraco ; íon hipoclorito
+
S2
BrO3
+
+
+
Íons sulfeto e íons hidrônio
+
+
+
2
ácido fraco ; íon iodito
+
3 H3O
2 H3O +
Íons borato e íons hidrônio
IO2
+
2 H3O
3 H 3O++BO 33
+
+
2 H 3O
H3O
SO4 2
+
+
H3O
Cl
Íons amônio e íons hidroxila
NH4++OH
+
+
+
+
CO3 2
PO4 3
CN
NO3
ClO4
- 50 -
ácido fraco
;
ácido forte ;
ácido fraco ;
ácido fraco ;
ácido fraco ;
ácido forte ;
íon iodeto
íon sulfeto
íon bromato
íon carbonato
íon (orto)fosfato
íon cianeto
íon nitrato
íon perclorato
Escola Estadual de Educação Profissional [EEEP]
Profissional
2) m) HBr
+ H2O
H3O
n) H2SO3 + 2 H2O
o) HNO2
Ensino Médio Integrado à Educação
+
+
2 H3O
+ H2O
H3O
2 H 3O
q) HF
H3O
r) HSCN
+ H2O
H3O
s) CH3COOH + H2O
H3O
+
+
+
+
+
+
t) HPO3
+ H2O
H3O
u) H3PO3
+ 2 H2O
2 H 3O
v) H4P2O5 + 2
H2O
x) HPO2
H3O
z) H4P2O7 + 4
4 H3O
2 H3O
3)a)HBr – ácido bromídrico
ácido fraco ; íon sulfito
ácido fraco ; íon nitrito
NO2
+
S2O3 2
ácido fraco ; íon tiossulfato
+
F
ácido fraco ; íon fluoreto
+
SCN
+
CH3COO
ácido fraco
;
PO3
+
+
+
HPO3 2
+
H2P2O5 2
+
+
PO2
+
P2O7 4
íon tiocianato
íon acetato
ácido fraco
;
íon metafosfato
ácido forte ;
íon fosfito
ácido fraco
;
íon pirofosfito
ácido forte ;
íon pirofosfato
íon metafosfito
b) HCN – ácido cianídrico
c) H3AsO3 – ácido (orto) arsenioso
H3AsO4 – ácido (orto) arsênico
d) HBrO – ácido hipobromoso
HBrO3 – ácido brômico
HBrO2 – ácido bromoso
HBrO4 – ácido perbrômico
e) HMnO4 – ácido permangânico
4) a) HClO3
SO3 2
+
+
ácido forte ; íon brometo
Br
+
+
p) H2S2O3 + 2 H2O
+ H2O
+
b) H2SO4
5) H2Cr2O7
H2MnO4 – ácido mangânico
c) H2CO3
d) HF
e) H2S
6) ácido (orto)arsênico - H3AsO4
e
f)H2CrO4
(orto)antimônico - H3SbO4
7) ácido tiociânico (HSCN)
8) a) H O
Cl
b) H
O N
O
O
c)
H
O
d)
O
¦
H O -
P
O
H O S O H
¦
H O
e)
O
H
f)
H
¦
H O
g)
P
¦
H
¦
O
É um monoácido
H
O P
¦
H O
H O
H
P
O
O H
O
P
H
É um diácido
O
- 51 -
O
É um diácido
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
9)
N.º de H+ gerado
Ácido
HBr
HNO2
H2 S
HClO3
H3PO3
H4Fe(CN)6
Presença de oxigênio
Força
10) e) HNO3
11) a) HI, HF, H2S
b) HBrO4, H2CrO4, HNO2, ,H3AsO3
12) Devido à formação de pontes de hidrogênio intramoleculares.
13) Porque não possui o radical carboxila, característico dos ácidos orgânicos.
14) a) cloreto
b) permanganato
c) hipoclorito
d) manganato
e) pirofosfato
f) sulfeto
g) borato
h) sulfato
15) a) H2SiO3 – ácido meta silícico
b) H4Fe(CN)6 – ácido ferrocianídrico
c)H3BO3 – ácido bórico
d) H3PO3 – ácido fosforoso
e)H2C2O4 – ácido oxálico
f) H4SiO4 – ácido orto silícico
16)
( c ) ClO2–
( j ) SO42–
( n ) P2O74–
( d ) ClO3 –
( i ) SO32–
( p ) CH3COO–
( a ) Cl–
( q ) HPO32–
( g ) NO3–
( l ) PO43–
( e ) ClO4–
( f ) NO2–
( m ) PO3–
( b ) ClO–
( h ) S2–
( o ) CO32–
17) a) ácida . CO2 + H2O
2H+
H2CO3
+ CO3
2–
b) Aumenta, devido à diminuição da acidez gerada pela saída do CO2
18) ( i ) Chuva ácida em ambiente não poluído na ausência de raios e relâmpagos
( a ) Chuva ácida em ambiente não poluído na presença de raios e relâmpagos
( h ) Fertilizantes
( g ) Corrosão do vidro
( d ) Câmara de gás
( c ) Suco gástrico
( b ) Vinagre
( c ) Ácido muriático
( f ) Cheiro de ovo podre
( i ) Refrigerantes e águas minerais gaseificadas
( e ) Desidratante enérgico
( d ) Cheiro de amêndoas amargas
( e ) Bateria de automóvel
( a ) Fabricação de explosivos
( h ) Aditivo (estabilizante) em refrigerantes
( a ) Fabricação de salitre
19) S + O2
? SO2
20) ÁCIDO. CO2
H CO + 2 H O
/ 2 SO2 + O2
+ H2O
? 2SO3 /
SO3 + H2O ? H2SO4
?
H2CO3 que ioniza-se :
2 H O+ + CO
2-
- 52 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
CAPÍTULO 4
HIDRÓXIDOS OU BASES
São substâncias iônicas que, em solução aquosa, dissociam-se, liberando como ânions somente íons OH–.
Algumas classificações
Monobases possuem apenas uma hidroxila. Ex: NaOH, NH4OH, AgOH
Dibases possuem duas hidroxilas. Ex: Ca(OH)2, Fe(OH)2, Sn(OH)2
Tribases
Tetrabases
possuem três hidroxilas. Ex: Fe(OH)3, Al(OH)3, Bi(OH)3
possuem quatro hidroxilas. Ex: Sn(OH)4, Pb(OH)4
Obs.: Quando uma base possui duas ou mais hidroxilas ela é denominada de polibase e, sua dissociação se dá
por etapas, liberando uma hidroxila de cada vez.
Fe(OH)3 (s)
+
Fe(OH)2
Fe(OH)2
?
(aq)
2+
?
+
+ OH– (aq)
2+
Fe(OH) (aq) + OH– (aq)
3+
Fe (aq)
+ OH– (aq)
As duas setas da primeira etapa da dissociação representam o equilíbrio entre o sólido (o hidróxido em
questão tem uma solubilidade muito pequena em água) e os íons formados.
Diferentemente dos ácidos, que são todos solúveis em água, muitos hidróxidos têm
pequena solubilidade em água, o que acarreta uma dissociação em pequena escala e uma baixa condutividade
Podemos então concluir que,
.
O quadro a seguir indica a quantidade, em gramas, de algumas bases dissolvidas em um litro de água, a 20 ºC.
Substância
Solubilidade (g/L de água a 20 ºC)
Sr(OH)2
3,9
Pelo quadro podemos observar que as bases dos metais alcalinos ( grupo IA) são as mais solúveis, e
que a ordem crescente de solubilidade dessas bases será:
LiOH < NaOH < KOH < RbOH < CsOH
Observe que a solubilidade aumenta com o aumento do raio atômico.
Comparando-se a solubilidade das bases dos metais alcalinos com as dos metais alcalinoterrosos
(grupo IIA), observa-se que a solubilidade destes é bem inferior, sendo, portanto, pouco solúveis.
Be(OH)2 < Mg(OH)2 < Ca(OH)2 < Sr(OH)2 <
- 53 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
Neste caso também, a solubilidade aumenta com o aumento do raio atômico. As bases
Be(OH)2 e
Mg(OH)2, por apresentarem solubilidade muito pequena, são consideradas praticamente insolúveis.
Finalmente, considerando a solubilidade das bases dos demais metais, pode-se concluir que todas elas
Solubilidade das bases em água
Ordem decrescente
Metais alcalino – terrosos
(exceto Be e Mg)
Metais alcalinos
(I A )
Solúveis
Pouco solúveis
Be , Mg e
Outros metais
“Insolúveis”
Sendo assim temos:
Fortes
Fracos ATENÇÃO
que
existe apenas em solução aquosa
l)
Fixos – todos os hidróxidos metálicos. Sendo iônicos, são sólidos à temperatura ambiente e, portanto,
são fixos.
Voláteis – a amônia (NH3)
Nomenclatura
Usam-se os mesmos critérios dos óxidos básicos.
Se o elemento ligado à hidroxila tem nox fixo
Hidróxido de
nome do elemento
Exemplos:
NaOH – hidróxido de sódio
Ca(OH)2 – hidróxido de cálcio
NH4OH – hidróxido de amônio
AgOH – hidróxido de prata
- 54 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
Se o elemento tem nox variável
O número de oxidação do elemento ligado ao oxigênio é indicado por algarismos romanos.
Hidróxido de
nome do elemento
nox do elemento em alg. romano
Exemplos:
Fe(OH)2 – hidróxido de ferro II
Fe(OH)3 – hidróxido de ferro III
Pb(OH)2 – hidróxido de chumbo
Pb(OH)4 – hidróxido de chumbo
II
IV
Ou utiliza-se o sufixo oso denota o elemento de menor nox e o sufixo ico, o de maior nox.
Hidróxido
-------------------------------------------------
nome do elemento
oso (menor nox) ou ico (maior nox)
Exemplos:
Fe(OH)2 – hidróxido ferroso
Fe(OH)3 – hidróxido férrico
Pb(OH)2 – hidróxido
plumboso
Pb(OH)4 – hidróxido plúmbico
BASES MAIS COMUNS NO COTIDIANO
Hidróxido de sódio (NaOH)
É conhecido por soda cáustica, cujo termo ―cáustica‖ significa que ela pode corroer ou, de qualquer
modo, destruir os tecidos vivos.
É um sólido branco, cristalino e higroscópio ( tem a propriedade de absorver água ). Por isso, quando
exposto ao meio ambiente, ele se transforma, após certo tempo, em um líquido incolor. As substâncias que têm
essa propriedade são denominadas
.
A
através da eletrólise :
2 NaCl
e sua preparação é feita a partir do cloreto de sódio (NaCl),
+
2
eletrólise
2 NaOH
+ H2
+
processo que também produz hidrogênio (H2) e cloro (Cl2), que têm grandes aplicações industriais, como, por
exemplo, a fabricação de HCl.
Soluções concentradas dessa base devem ser armazenadas em frascos plásticos, pois,
lentamente, reagem com o vidro.
Reagem com óleos e gorduras e, por isso,
da soda cáustica é
produção de sabão e de produtos utilizados para desentupir pias e ralos. A soda cáustica converte as graxas em
uma substância solúvel e fluida, que é removida pela lavagem.
Óleo ou gordura +
sabão +
As outras aplicações do hidróxido de sódio estão relacionadas à indústria petroquímica, de fabricação de
papel, de celulose, de corantes e a produção de salitre ( NaNO3).
- 55 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
Hidróxido de cálcio ( Ca(OH)2 )
O hidróxido de cálcio é conhecido por cal hidratada
ambientes é um sólido branco, pouco solúvel em água.
Sua
cal extinta ou cal apagada. Nas
é
e a
É consumida em grande quantidade nas pinturas a cal (caiação) e na preparação de argamassa (massa de
assentamento de tijolos e recobrimento de paredes, usada pelos pedreiros).
Hidróxido de magnésio ( Mg(OH)2 )
É um sólido branco, pouco solúvel em água e sua suspensão é conhecida como leite de magnésia
cuja principal aplicação consiste no uso como antiácido e laxante.
É utilizado também no refino do açúcar, na fabricação do papel e na indústria farmacêutica.
Hidróxido de amônio ( NH4OH )
O hidróxido de amônio não existe isolado, sendo obtido quando borbulhamos
originando uma solução comercializada como amoníaco.
(NH3) em água,
+
NH4 (aq) + OH – (aq)
NH3(g) + H2O(l )
A amônia é um gás incolor, de cheiro irritante, presente numa mistura chamada inalador de
amônia,
usada para restabelecer pessoas desmaiadas.
A amônia é fabricada em grandes quantidades, através da reação de síntese, cujas matérias primas são o ar e a
N2
+
extraído do ar
3 H2
?
2 NH3
extraído da água
A partir da amônia são fabricadas várias outras substâncias de grande importância, tais como:
Ácido nítrico;
Sais de amônio, muito empregados como fertilizantes na agricultura;
Produtos de limpeza doméstica (Ajax, Fúria,etc)
EXERCÍCIOS
1)
Usando uma tabela de cátions, faça a associação entre os metais e os respectivos cátions em seus composto
iônicos:
( a ) cátion monovalente
( ) sódio
( b ) cátion bivalente
( ) lítio
( c ) cátion trivalente
( ) magnésio
( ) ferro
( d ) cátion mono e bivalente
( ) bário
( ) prata
( e ) cátion bi e trivalente
( ) cromo
( ) mercúrio
2)
( )
cálcio
( )
alumínio
(
) cobre
(
) potássio
( ) amônio
Escreva as fórmulas dos
a) de lítio
d) de bário
g) de amônio
j) cúprico
b) áurico
e) de cobre I
h) ferroso
l) mercúrico
c) de mercúrio I
f) de alumínio
i) de cobalto II
m) plumboso
- 56 -
Escola Estadual de Educação Profissional [EEEP]
3)
Ensino Médio Integrado à Educação Profissional
Escreva os nomes dos compostos cujas fórmulas são
a) Mg(OH)2
d) Sn(OH)2
g) AgOH
j) NH4OH
b) Fe(OH)3
e) Zn(OH)2
h) Co(OH)3
l) KOH
c) CsOH
f) Hg(OH)2
i) RbOH
m) Pb(OH)4
4) Complete:
K2O
Mg(OH)2
CaO
Pb(OH)2
HgO
FeO
Fe(OH)3
Na2O2
Na2O
NaOH
Cu(OH)2
BaO2
NH3
Al(OH)3
5) Escreva as equações de dissociação iônica das bases abaixo, considerando que esta se dá por etapas:
a) hidróxido de potássio
b) hidróxido de cálcio
c) hidróxido de alumínio
d) hidróxido de cobre I
6) Escreva a equação da reação de ionização que ocorre quando a amônia dissolve-se em água. Qual o nome
comercial da solução obtida?
7) Quais das afirmações seguintes são corretas:
a) Os hidróxidos dos metais alcalinos e de amônio são muito solúveis em água.
b) Os hidróxidos dos metais não alcalinos e não alcalino-terrosos são pouco solúveis em água;
podem ser considerados insolúveis em água.
c) Os hidróxidos dos metais alcalino-terrosos têm solubilidade intermediária entre as citadas em a e b.
8) Coloque as bases em ordem crescente de solubilidade em água:
a)
NaOH, Ca(OH)2 e Fe(OH)2
b) KOH, Ba(OH)2 , Mg(OH)2 , Al(OH)3
- 57 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
c) Ca(OH)2 , Cu(OH)2
, NH4OH
9) Qual a relação existente entre a força das bases e sua solubilidade? Existe alguma exceção?
10) Dentre as bases a seguir, quais são fortes?
a) NaOH
b) CuOH
c) Cu(OH)2
d) KOH
e) LiOH
f) Zn(OH)2
g) Fe(OH)2
h) Fe(OH)3
i) Ba(OH)2
j) Mg(OH)2
l) Ca(OH)2
m) NH4OH
n) Pb(OH)2
o) Al(OH)3
p) CsOH
11) Nas condições ambientes, pastilhas de hidróxido de sódio, expostas ao ar durante várias horas, transformamse em um líquido claro. Este fenômeno ocorre porque o hidróxido de sódio:
a) absorve água da atmosfera
b) reage com o oxigênio do ar
c) combina-se com o hidrogênio do ar
d) reage com o nitrogênio do ar
e) produz água ao decompor-se
12) Associe:
( a ) NH3(aq) ou NH4OH
( ) cal viva ou cal virgem
( b ) NaOH
( ) cal extinta ou apagada
( c ) NH3(g)
( ) soda cáustica
( d ) Ca(OH)2
( ) amoníaco
( e ) CaO
( ) amônia
13) Associe :
( a ) NaOH
( ) água de cal
( b ) Mg(OH)2
( ) leite de cal
( c ) Ca(OH)2 - solução
( ) leite de magnésia
( d ) Ca(OH)2 - suspensão
( ) desentupimento de ralos e pias
14) Considere os seguintes materiais:
I – solução de soda cáustica
II – produtos de limpeza (Ajax, Fúria)
III – vinagre
IV – água de bateria de automóvel
V – leite de magnésia
Quais tornam azul o papel rosa de tornassol?
c) somente I, II e V
a)
todos
b) nenhum
d)
somente III e
e) somente I e II
- 58 -
Escola Estadual de Educação Profissional [EEEP]
Profissional
Ensino Médio Integrado à Educação
RESPOSTAS
1) ( a ) sódio
( b ) cálcio
( c ) alumínio
( a ) lítio
( b ) zinco
( d ) cobre
( b ) magnésio
( e ) ferro
b) hidróxido de ferro III ou férrico
( a ) potássio
( b ) bário
( a ) prata
( e ) cromo
( d ) mercúrio ( a ) amônio
2) a) LiOH
b) Au(OH)3
c) Hg2(OH)2
d) Ba(OH)2
c) hidróxido de césio
( b ) cádmio
e) CuOH
f) Al(OH)3
g) NH4OH
h) Fe(OH)2
i) Co(OH)2
j) Cu(OH)2
l) Hg(OH)2
3) a) hidróxido de magnésio
d) hidróxido de estanho II ou estanoso
e) hidróxido de zinco
f) hidróxido de mercúrio II ou mercúrico
g) hidróxido de prata
h) hidróxido de cobalto III ou cobáltico
i) hidróxido de rubídio
j) hidróxido de amônio
l) hidróxido de potássio
m) Pb(OH)2
m) hidróxido de chumbo IV ou plúmbico
4)
K2O
Óxido
básico
Óxido de
potássio
Mg(OH)2
Base
Hidróxido de
magnésio
CaO
Óxido
básico
Óxido de cálcio
Pb(OH)2
Base
Hidróxido de
chumbo II ou
plumboso
HgO
Óxido
básico
Óxido de
mercúrio II ou
mercúrico
FeO
Óxido
básico
Óxido de ferro II
ou ferroso
Fe(OH)3
Base
Hidróxido de
ferro III ou
férrico
Na2O2
Peróxido
Hidróxido de potássio
(íons potássio e íons
hidroxila)
K2O + H2O ? 2 KOH
( KOH ? K+ + OH – )
Mg(OH)2(s)
Mg2+ (aq)+2 OH–(aq)
CaO + H2O ? Ca(OH)2
(Ca(OH)2 ? Ca2+ + 2 OH –
Íons magnésio e íons
hidroxila
Hidróxido de cálcio
(íons cálcio e íons
hidroxila)
)
Peróxido de
sódio
Pb(OH)2(s)
Pb2+ (aq)+2 OH– (aq)
Hidróxido de mercúrio
II ou mercúrico
(íons
mercúrio II e íons
(Hg(OH) 2
Hg 2+ + 2 OH – )
hidroxila)
Hidróxido de ferro II ou
FeO + H2O ? Fe(OH)2
ferroso
(íons
ferro
II e íons
(Fe(OH)2
Fe 2+ + 2 OH – )
hidroxila)
HgO + H2O ? Hg(OH)2
Fe(OH) 3(s)
Fe 3+
(aq)
+ 3 OH
(aq)
2 Na2O2 + 4 H2O ? 4NaOH +
2H2O + O2
( NaOH ? Na+ + OH –
)
Na2O
Óxido
básico
Óxido de sódio
Íons chumbo II e íons
hidroxila
Na2O + H2O ? 2NaOH
( NaOH ? Na+ + OH – )
- 59 -
Íons ferro III e íons
hidroxila
Hidróxido de sódio,
água e gás oxigênio
(íons sódio e íons
hidroxila)
Hidróxido de sódio
(íons sódio e íons
hidroxila)
Escola Estadual de Educação Profissional [EEEP]
Profissional
NaOH
Base
Cu(OH)2
Base
BaO2
Peróxido
Ensino Médio Integrado à Educação
Hidróxido de
sódio
Hidróxido de
cobre II ou
cúprico
Na+ + OH –
NaOH ?
Cu(OH)2
(s)
Cu 2+
+ 2 OH–
(aq)
(aq)
2 BaO2 + 4 H2O ? 2 Ba(OH)2
+ 2H2O + O2
( Ba(OH)2 ? Ba2+ + 2OH –
Peróxido de
bário
)
NH3
Base
Amônia
Al(OH)3
Base
Hidróxido de
alumínio
5) a)
K+(aq) + OH –
KOH (s) ?
+
c) Al(OH)3(s)
[Al(OH)2]
[Al(OH)2]
[Al(OH)]
(aq)?
+
2+
[Al(OH)] (aq)
Al
(aq)
–
3+
(aq)
+ 3OH
(aq)
(aq)
–
+ OH
(aq
10) a – d – e – i
Íons alumínio e íons
hidroxila
-l–p
(aq)
+ OH– (aq)
(aq)
11) a
2+
?
+ OH– (aq)
Al3+(aq)
12)
( e ) cal viva ou cal virgem
OH –(aq)
Cu+ (aq) +
d) CuOH(s)
Al(OH)3
Íons amônio e íons
hidroxila
OH –(aq)
Ca2+ (aq) + OH–
(CaOH)+(aq) ?
NH4++OH
Íons cobre II e íons
hidroxila
Hidróxido de bário,
água e gás oxigênio
(íons bário e íons
hidroxila)
(aq)
(CaOH) +(aq) +
b) Ca(OH)2(s) ?
NH3+H2O
Íons sódio e íons
hidroxila
( d ) cal extinta ou apagada
( b ) soda cáustica
6) NH3 (g) + H2O(l )
NH4+ (aq) + OH–(aq).
( a ) amoníaco
A solução é chamada de amoníaco.
( c ) amônia
7) Todas
13) Associe :
( c ) água de cal
8) a) Fe(OH)2
NaOH
a) Al(OH)3
<KOH
b) Cu(OH)2
NH4OH
d) Mg(OH)2
Ba(OH)2
< Ca(OH)2
<
Mg(OH)2
<
( d ) leite de cal
<
( b ) leite de magnésia
Ba(OH)2
( a ) desentupimento de ralos e pias
<
Ca(OH)2
<
14) c
< Ca(OH)2
<
9) Regra geral, quanto mais solúvel for a base, mais
forte ela será, pois haverá mais íons em solução. A
exceção é o hidróxido de amônio (solução
aquosa de amônia) que, apesar de ser
solúvel, é fraca devido à pequena ionização.
- 60 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
EXERCÍCIOS COMPLEMENTARES
1) Cal viva é o óxido de cálcio.
a) Escreva a equação da reação da cal viva com a água.
b) Por que, na agricultura, a cal viva é adicionada ao solo?
2) Dê nome às substâncias abaixo:
a) Al(OH)3
b) HAc
c) Ba(OH)2
d) H2SO4
e) HCN
f) Fe(OH)3
g) HNO3
h) KOH
i) Pb(OH)2
j) H2S
k) Cu(OH)2
l) H2SO3
m) HBrO3
n) H3PO4
o) RbOH
p) HNO2
q) HClO2
r) NH4OH
s) Ca(OH)2
t) HClO
u) Mg(OH)2
v) HClO4
x) H2CO3
z) NaOH
3) Dê a fórmula das substâncias abaixo:
a) ácido bromídrico
b) hidróxido de magnésio
c) ácido sulfúrico
d) ácido nítrico
e) hidróxido férrico
f) ácido (orto)fosfórico
g) hidróxido de lítio
h) ácido cianídrico
i) hidróxido de cobre II
j) hidróxido de zinco
k) ácido hipocloroso
l) hidróxido de bário
m) hidróxido niqueloso
n) ácido sulfuroso
o) hidróxido de cálcio
p) hidróxido de ouro III
q) ácido nitroso
r) ácido sulfídrico
s) ácido perclórico
t) hidróxido de amônio
u) ácido permangânico
v) hidróxido de estrôncio
x) hidróxido de potássio
z) ácido acético
4) Faça a equação de dissociação total das bases seguir, dando nome aos cátions formados e dizendo se a base
em questão é forte ou fraca:
a) hidróxido de sódio
b) hidróxido de cálcio
c) hidróxido ferroso
d) hidróxido de alumínio
e) hidróxido de amônio
f) hidróxido cúprico
g) hidróxido de cobre I
h) hidróxido de bário
i) hidróxido de potássio
j) hidróxido de ferro III
k) hidróxido de magnésio
l) hidróxido de chumbo IV
RESPOSTAS
1)a) CaO
+ H2O ?
Ca(OH)2
b) para diminuir a acidez do solo
2)a) Al(OH)3 – hidróxido de alumínio
c) Ba(OH)2
e) HCN
b) HAc – ácido acético
– hidróxido de bário
– ácido sulfúrico
d) H2SO4
– ácido cianídrico
f) Fe(OH)3
– hidróxido de ferro III ou
férrico g) HNO3 – ácido nítrico
h) KOH – hidróxido de potássio
i) Pb(OH)2 – hidróxido de chumbo II ou plumboso
j) H2S
k) Cu(OH)2 – hidróxido de cobre II ou cúprico
l) H2SO3
– ácido
m) HBrO3 – ácido brômico
n) H3PO4
– ácido
(orto)fosfórico o) RbOH – hidróxido de rubídio
p) HNO2
– ácido nitroso
– ácido sulfídrico
sulfuroso
q) HClO2
s) Ca(OH)2
– ácido cloroso
– hidróxido de cálcio
u) Mg(OH)2 – hidróxido de magnésio
x) H2CO3
– ácido carbônico
r) NH4OH – hidróxido de amônio
t) HClO – ácido hipocloroso
v) HClO4 – ácido perclórico
- 61 - z) NaOH
– hidróxido de sódio
Escola Estadual de Educação Profissional [EEEP]
3) a) HBr
Ensino Médio Integrado à Educação Profissional
b) Mg(OH)2
c) H2SO4
d) HNO3
e) Fe(OH)3
f) H3PO4
g) LiOH
h) HCN
i) Cu(OH)2
j) Zn(OH)2
k) HClO
l) Ba(OH)2
m) Ni(OH)2
n) H2SO3
o) Ca(OH)2
p) Au(OH)3
q) HNO2
r) H2S
s) HClO4
t)NH4OH
u) HMnO4
v) Sr(OH)2
x) KOH
z) HAc ou CH3COOH
4) a) NaOH(s)
+
?
Na (aq) +
b) Ca(OH) 2(s)
Ca
c) Fe(OH) 2(s)
Fe
íon sódio
(aq) + 2 OH
base forte ;
íon cálcio
2+
(aq) + 2 OH
base fraca ;
íon ferro II ou ferroso
3+
d) Al(OH)3(s)
e) NH 3(g)
base forte ;
2+
Al
+
(aq)
NH4
+
g)
Cu (aq)
i) KOH(s)
?
(aq) base fraca ;
OH
(aq) + 2 OH
+
?
+
2+
Cu
h) Ba(OH)2(s)
(aq)
+ 3 OH
(aq)
f) Cu(OH) 2(s)
CuOH(s)
OH
+ OH
(aq) (ionização) base fraca ; íon
(aq) base fraca ;
(aq)
base fraca ;
2+
(aq)
base forte ;
Ba (aq) + 2
OH+
K
+ OH (aq) base forte ;
3+
j) Fe(OH) 3(s)
Fe
(aq)
k) Mg(OH)2(s)
Mg
l) Pb(OH)4(s)
Pb
+
íon cobre II ou cúprico
íon cobre I ou cuproso
íon bário
íon potássio
3
(aq)
base fraca ;
íon ferro III ou férrico
(aq) + 2
(aq)
base fraca ;
íon magnésio
(aq)
base fraca ; íon chumbo IV ou
2+
4+
íon alumínio
(aq) + 4
- 62 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
CAPÍTULO 5
SAIS
Algumas classificações
Sal binário: constituído por dois elementos. Ex: NaCl, CaBr2
Sal ternário: constituído por três elementos. Ex: CaCO3, AlPO4
S al quaternário: constituído por quatro elementos. Ex: NaHCO3
Sais oxigenados ou oxi-sais: Ex: Na2SO4
Sais não oxigenados: Ex: KCN, NH4Cl
Sal normal: é o sal cujo ânion não possui hidrogênio ionizável e também não apresenta o ânion OH .
Hidrogeno-sal: é o sal que apresenta hidrogênio ionizável em seu ânion.
Hidroxi-sal: é o sal que apresenta hidroxila em sua estrutura.
Sal duplo ou misto: é o sal que apresenta dois cátions diferentes ou dois ânions diferentes (excetuando-se o
+
H e o OH ). Ex: NaLiSO4, CaBrCl, AlSO4Cl
Sal hidratado: é o sal que apresenta moléculas de água em proporção definida no seu retículo cristalino. A
água combinada dessa maneira chama-se água de cristalização. Ex: CuSO4·5H2O, CaCl2·2H2O
Alúmen: é o sal que contém um único tipo de ânion, o sulfato (SO42 ), e dois cátions, sendo um monovalente
+
3+
(X ) e um trivalente (Y ), e água de cristalização. Sua fórmula geral pode ser representada por X+Y3+(SO4) 22
12 H2O. O alúmen mais conhecido é a pedra-ume, adquirida em farmácias e cuja principal
aplicação está relacionada à sua ação coagulante em pequenos cortes, sendo utilizada, normalmente, por barbeir
e manicuras.
Sendo compostos iônicos, teremos a seguinte relação:
Solúveis
Fortes
“Insolúveis “
Fracos
Solúveis:
.
Insolúveis:
- 63 -
Escola Estadual de Educação Profissional [EEEP]
Profissional
Ensino Médio Integrado à Educação
Nomenclatura
Dos sais normais
A nomenclatura é obtida a partir do nome do ânion (vimos que o nome do ânion se origina na nomenclatura
do ácido, substituindo-se os sufixos). Para determinar o nome dos sais utiliza-se o seguinte esquema:
Nome do sal : ...........................................
...................................
de
nome do ânion
nome do cátion
Exemplos:
NaCl – cloreto de sódio
KNO2 – nitrito de potássio
SnCl2 – cloreto de estanho II ou cloreto estanoso
Na2HPO3 – fosfito de sódio
Fe2(SO4)3 – sulfato de ferro III ou sulfato férrico
KH2PO2 – hipofosfito de potássio
Dos h idrogeno-sais
Indica-se o número de H+ pelas expressões (mono), di, tri hidrogeno.
..........................
hidrogeno ...........................................
mono, di ou tri
de ..............................
nome do ânion
nome do cátion
Exemplos:
NaH2PO4 – dihidrogeno fosfato de sódio
Na2HPO4 – (mono)hidrogeno fosfato de sódio
KHCO3 – hidrogeno carbonato de potássi
Ca(H3P2O7)2 – trihidrogeno pirofosfato de cálcio
Sn (HSO4)2 – hidrogeno sulfato de estanho II ou hidrogeno sulfato estanoso
Observação
bi
Dos hidroxi-sais
Indica-se o número de hidroxilas (OH ) pelas expressões (mono), di, tri hidroxi
..........................
hidroxi
mono, di ou tri
...........................................
nome do ânion
de
nome do cátion
Exemplos:
Al(OH)Cl2 – hidroxi cloreto de alumínio
Al(OH)2Cl – dihidroxi cloreto de alumínio
Sn(OH)2SO4 – dihidroxi sulfato de estanho IV ou dihidroxi sulfato estânico
Sn(OH)3I – trihidroxi iodeto de estanho IV ou trihidroxi iodeto estânico
- 64 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
Dos sais duplos
Nos sais duplos quanto ao cátion: usa-se o nome do ânion seguido dos nomes dos dois cátions.
Exemplos:
KNaSO4 – sulfato de sódio e potássio
K2NaPO4 – fosfato de dipotássio e sódio ou fosfato dipotássico monosódico.
Nos sais duplos quanto ao ânion : usa-se o nome dos dois ânions seguido do nome do cátion.
Exemplos:
CaBrCl – cloreto brometo de cálcio
Al(SO4)Cl – cloreto sulfato de alumínio
Dos sais hidratados
Usa-se o nome dos sais seguido da quantidade de água de cristalização.
Exemplos:
CaCl2 ·2 H2O – cloreto de cálcio dihidratado
CuSO4 · 5 H2O – sulfato cúprico pentahidratado
Na2SO4 · 10 H2O – sulfato de sódio decahidratado
OCORRÊNCIA DOS SAIS NA NATUREZA E SUAS APLICAÇÕES
Ao contrário dos sais, os ácidos e as bases não são encontrados em fontes naturais. Assim
não há
jazidas naturais de ácido sulfúrico, ácido nítrico, soda cáustica, cal extinta, amoníaco, etc.; todos esses produtos
fabricados pela indústria química.
Os sais são encontrados na natureza constituindo jazidas minerais. Dentre eles,
destacam-se os seguintes:
Fluoreto de cálcio (CaF2)
Sulfetos metálicos
Os mais importantes são a pirita (FeS2), a galena (PbS), a blenda (ZnS ) e o cinábrio (HgS).
Silicatos
A crosta terrestre é constituída basicamente de sílica (SiO2) e silicato de sódio, de potássio, de cálcio,
de magnésio e de alumínio. Entre esses silicatos naturais, podem-se mencionar o feldspato, a mica o talco, o
amianto ou asbesto, a argila e o caulim.
Carbonato de cálcio (CaCO3)
É um dos sais mais espalhados na crosta terrestre. Existem muitos terrenos calcários, isto é, ricos em
CaCO3. Assim como o calcário o mármore é uma variedade natural desse mineral.
Sob a forma de mármore, é utilizado para a fabricação de pias, estátuas, pisos e escadarias.
- 65 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
A decomposição térmica do calcário irá produzir a cal viva e o gás carbônico:
CaCO3
CaO + CO2
Além disso, o calcário é utilizado na fabricação do vidro comum e, também, na produção do cimento,
quando misturado com argila e areia e submetendo-se essa mistura a aquecimento.
O carbonato de cálcio é praticamente insolúvel em água pura, mas dissolve-se de modo apreciável em
água com dióxido de carbono (CO2 ) existente na atmosfera.
CaCO3 (s)
+ H2O (l)
Ca2+ (aq)
+ CO2 (g)
+ 2 HCO3
(aq)
Essa é a principal reação responsável pela formação de cavernas de calcário, nas quais são encontradas
as formações de carbonato de cálcio conhecidas por estalactites (superiores) e estalagmites (inferiores). Essas
formações ocorrem no interior das cavernas quando o gás carbônico se desprende e provoca a precipitação do
carbonato de cálcio:
Ca2+ (aq)
+ 2 HCO3
(aq)
CaCO3 (s)
+ H2O (l)
+ CO2 (g)
Uma aplicação do carbonato de cálcio no nosso dia-a-dia ocorre quando pintamos paredes usando cal
extinta (Ca(OH)2 ). Após a caiação, a cal extinta reage com o gás carbônico do ar, originando uma película
de carbonato de cálcio que, por ser insolúvel na água, protege a parede.
O carbonato de cálcio também é usado na vinicultura para diminuir a acidez do vinho, e na agricultura,
para reduzir a acidez de solos (calagem). Quando adicionado a cremes dentais, age como abrasivo.
Uma variedade mais pura de carbonato de cálcio, chamada terra alba, é utilizada na indústria cerâmica.
Cloreto de sódio (NaCl )
Pode ser encontrado dissolvido na água do mar, de onde é extraído por evaporação nas salinas, ou em
jazidas na crosta terrestre sal gema).
Faz parte do sal de cozinha, usado na nossa alimentação. Além do cloreto de sódio, há,
no sal de cozinha, certa quantidade de iodetos ou iodatos de sódio (NaI , NaIO3 ) e potássio ( KI , KIO3
), cuja adição é obrigatória por lei, pois a falta de iodo no organismo pode provocar uma doença chamada bócio.
É usado na conservação de carnes, de pescados e de peles.
Na medicina é utilizado na fabricação do soro fisiológico, que consiste numa solução com 0,92 % de
NaCl. No combate à desidratação, é usado como componente do soro caseiro.
O cloreto de sódio é a principal matéria-prima usada na fabricação da soda cáustica (NaOH). A partir do
NaCl obtém-se também : sódio metálico (Na°), cloro (Cl2 ), hidrogênio (H2 ), ácido clorídrico (HCl), carbonato e
bicarbonato de sódio (Na2CO3 e NaHCO3 ), etc.
Adicionado ao gelo, obtém-se uma mistura refrigerante que atinge até
- 66 -
22
C.
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
Nitrato de sódio (NaNO3)
É encontrado no Chile, em extensas jazidas (sendo por isso conhecido como s alitre do
Chile), no Egito e nos EUA. Sendo muito utilizado na fabricação de fertilizantes (adubos), a
exploração comercial das jazidas chilenas começou em 1830, mas hoje diminuiu consideravelmente, pois há
outras fontes de nitrogênio para as plantas.
A transformação do nitrato de sódio em nitrato de potássio (KNO3) permite a fabricação da
pólvora negra, que é um dos explosivos mais comuns, e cuja composição, nas proporções adequadas é: KNO3
+ carvão
Fosfato de cálcio (Ca3(PO4)2 )
Encontra-se na crosta terrestre sob a forma dos minerais fosforita e apatita, constituindo
matéria- prima utilizada na produção do elemento fósforo. Quando tratado com ácido sulfúrico,
produz fertilizante fosfatado.
É um componente importante dos ossos e dentes. A ―farinha de osso‖ (usada no solo) contém fosfato
de cálcio que é obtido pela calcinação de ossos de animais.
Sulfato de cálcio ( CaSO4 )
Na forma hidratada (CaSO4. 2 H2O ), encontra-se amplamente distribuído na natureza e é chamado gipsita
A gipsita se desidrata parcialmente ao ser aquecida brandamente,, dando origem ao sulfato de
cálcio hemi-hidratado (CaSO4. ½ H2O ) , conhecido por nós como gesso ( na Europa e nos EUA é
conhecido como plástico de Paris) . Na natureza não existe gesso e sim gipsita. Neste estado de
hidratação é utilizado em Medicina (ortopedia), na produção de moldes em Odontologia e na construção
civil.
Pela desidratação completa da gipsita obtém-se o sulfato de cálcio anidro (CaSO4), que é utilizado na
Fluoreto de sódio (NaF )
É utilizado na fluoretação da água potável e na fabricação de
pois inibe a desmineralização dos dentes, tornando-os menos suscetíveis à cárie.
pastas de
dente,
Sulfato de magnésio (MgSO4)
Esse sal é encontrado dissolvido na água do mar, mas em quantidades menores que o cloreto de sódio e
o cloreto de magnésio.
Comercializado pelo nome de sal amargo e conhecido também por sal de Epson, sua
principal aplicação medicinal ocorre devido a sua ação laxativa.
Carbonato de sódio (Na2CO3)
O carbonato de sódio é conhecido como barrilha ou soda e comumente é utilizado no tratamento de
água de piscina, na fabricação de sabões, remédios, corantes, papel, etc. Sua principal aplicação, no entanto, é a
fabricação do vidro comum:
Barrilha
+
calcário
+
areia
Na2CO3
+
CaCO3
+
SiO2
fusão
vidro
silicatos de sódio e cálcio
Alguns vidros são coloridos e isso ocorre devido à adição de alguns compostos, como os de selênio
(usado para produzir vidro vermelho), os de cromo (vidro verde) e os de chumbo (vidro azul).
- 67 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
Bicarbonato de sódio (NaHCO3)
É um sólido de cor branca, sendo aplicado medicinalmente como antiácido estomacal, por ser capaz de
neutralizar o excesso de ácido clorídrico presente no suco gástrico.
.
NaHCO3
+ HCl
NaCl
+
H2O + CO2
O CO2 liberado é o responsável pela eructação (―arroto‖).
Nos principais antiácidos comerciais efervescentes, existem compostos, como o ácido tartárico, o ácido
cítrico e outros que na presença do bicarbonato de sódio produzem efervescência.
Uma outra aplicação importante do bicarbonato de sódio é a utilização como fermento de pães e bolos.
O crescimento da massa deve-se à liberação de CO2 obtido pela decomposição do bicarbonato de sódio,
que pode ser representada por:
2 NaHCO3
Na2CO3 + H2O + CO2
Esse sal é utilizado, também, na fabricação de extintores de espuma. No extintor há NaHCO3 sólido e
uma solução de ácido sulfúrico, em compartimentos separados. Quando o extintor é acionado, estes se misturam
e reagem produzindo a espuma com liberação de CO2. Esses extintores não podem ser usados para apagar fogo
de instalações elétricas, porque a espuma conduz corrente elétrica.
Além disso, o bicarbonato de sódio é utilizado como um dos componentes dos talcos desodorantes, pois
reage com os ácidos liberados na transpiração, neutralizando-os.
Nitrato de amônio (NH4 NO3)
O nitrato de amônio pode ser utilizado como fertilizante e explosivo. Atualmente são usadas medidas
preventivas a fim de evitar que o nitrato de amônio – substância fundamental para a produção de fertilizantes –
seja usado como explosivo. Uma dessas medidas obriga a adição de carbonato de cálcio ao nitrato de amônio
comercializado, o que diminui o poder explosivo desse sal.
Hipoclorito de sódio (NaClO )
Um dos usos industriais mais importantes desse sal é como alvejante (branqueador). A sua
solução aquosa tem a capacidade de remover a cor amarelada de tecidos e papéis, tornando-os brancos. No
nosso dia-a- dia, é empregado na lavagem doméstica de roupas, com a mesma finalidade. Seu uso em
quantidades excessivas altera as cores dos tecidos, tornando-os desbotados.
Por ser um poderoso agente anti-séptico, é usado para a limpeza de residências, hospitais,
etc. Essa propriedade é também responsável pelo seu uso no tratamento de água para
consumo e de piscinas. Normalmente comercializado com o nome de cloro, o hipoclorito de
sódio é um sólido branco. Durante as epidemias da cólera, recomendava-se sua adição em pequenas
quantidades à água usada para beber ou lavar alimentos.
Sua solução aquosa tem cheiro desagradável e provoca irritações na pele e nos olhos; por esse motivo
deve ser manuseada com cuidado.
- 68 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
EXERCÍCIOS
1) De todos os nomes possíveis aos seguintes sais:
a) Sr(CN)2
b) Ca(ClO)2
c) Al2(CO3)3
d) ZnCl2
e) Zn3(PO4)2
f) NH4IO3
g) Fe(NO2)2
h) AgNO3
i) Li2SO3
j) MgOHCl
l) CuCO3
m) PbS
n) Al(HSO3)3
o) Fe(NO3)2
p) Au2(SO4)3
q) CdS
r) Na2HPO3
s) Ca(HS)2
t) Ca(H2PO4)2
u) Cu2S
v) NH4ClO4
x) Al(OH)2Cl
z) NaF
2) Dentre os sais mencionados no item anterior, quais são normais, hidrogeno-sais e hidroxi-sais?
3) Escreva as fórmulas dos seguintes sais:
a) cromato de prata
b) hipoclorito de magnésio
c) ferrocianeto ferroso
d) cloreto cúprico
e) cloreto de mercúrio II
f) sulfato férrico
g) fosfato de alumínio
h) hidroxi sulfato de ferro II
i) hidroxi cloreto de cálcio
j) sulfato de prata
k) nitrato de mercúrio I
l) bissulfeto de sódio
m) cloreto plumboso
n) bissulfato de alumínio
o) sulfeto de mercúrio II
p) dihidroxi cloreto de chumbo IV
q) carbonato de ferro III
r) fosfato de cobre II
s) sulfito de amônio
t) bicarbonato de chumbo II
u) sulfato de manganês II
v) perclorato de prata
x) carbonato de sódio
z) nitrato de amônio
4) Sabendo-se que o H2Cr2O7 é o ácido dicrômico, H4Fe(CN)6 é o ácido ferrocianídrico e H2SiO3 é o ácido
met silícico, dê nome a :
a) Hg2Fe(CN)6
b) FeSiO3
c) Na2Cr2O7
5) Considere os íons:
Positivos: Ca2+, Fe3+, Cu2+, NH4+ ;
Negativos: PO43 , NO3 , SO4 2 ,
Escreva todas as fórmulas de sais normais possíveis a partir da combinação desses íons (considere s
com
6) Se dissolvermos os sais sulfato de sódio e sulfato de potássio em água, que espécies químic
estarão
presentes na solução?
a) K2SO4 e Na2SO4
b) KOH , NaOH e H2SO4
c) Na2K2(SO4)2
d) KNaSO4
- 69 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
7) O cobre pode ser encontrado na natureza no mineral denominado atacamita: CuCl2 . 3 Cu(OH)2 . Na
fórmula da atacamita identifica-se cobre com valências, respectivamente:
a) 1 e 1
b) 1 e 2
c) 1 e 3
d) 2 e 1
a) MgSO4.7H2O
b) CuSO4.5H2O
c) CaCl2. 6H2O
d) Fe(SCN)3
e) Na2S2O3
f) CoCl2. 2 H2O
e) 2 e 2
8) Dê nome aos sais abaixo:
9) O aquecimento de CuSO4. 5H2O faz com que sua cor mude de azul para branco acinzentado. Por quê?
10) O dicromato de amônio tem a fórmula (NH4)2Cr2O7. Qual a fórmula do dicromato de magnésio?
11) Molibdato de amônio é usado como fonte de molibdênio para o crescimento das plantas. Sabendo que esse
elemento de símbolo Mo pertence à mesma família do cromo (Cr) e que a fórmula do íon cromato é CrO42 , a
fórmula do molibdato de amônio é:
a) NH2MoO2
b) NH3MoO2
c) (NH3) MoO4
d) NH4MoO4
e) (NH4)2 MoO4
12) Associe:
( a ) NaNO3
( ) fabricação de soda cáustica
( b ) NaHCO3
( ) fertilizante
( c ) NaF
( ) laxante
( d ) Na2CO3
( ) fermento
( e ) NaCl
( ) anticárie
( f ) CaSO4
( ) gesso
( g ) CaCO3
( ) giz escolar
( h ) NH4NO3
( ) barrilha
( i ) Ca3(PO4)2
( ) estalagmite
( j ) MgSO4
( ) alvejante e anti-séptico
( l ) NaClO
( ) calcário
( m ) KI ou NaI
( ) fabricação de vidro
( ) aditivo de sal de cozinha (prevenção contra o bócio)
( ) componente de antiácidos
( ) ossos de animais
( ) fabricação de pólvora
( ) soro fisiológico
( ) salitre do Chile
- 70 -
Escola Estadual de Educação Profissional [EEEP]
Profissional
Ensino Médio Integrado à Educação
RESPOSTAS
1) a) cianeto de estrôncio
b) hipoclorito de cálcio
c) carbonato de alumínio
d) cloreto de zinco
e) fosfato de zinco
f) iodato de amônio
g) nitrito de ferro II ou nitrito ferroso
h) nitrato de prata
i) sulfito de lítio
j) hidroxi cloreto de magnésio
l) carbonato de cobre II ou carbonato cúprico
m) sulfeto de chumbo II ou sulfeto plumboso
n) hidrogeno sulfito de alumínio ou bissulfito de alumínio
o) nitrato de ferro II ou nitrato ferroso
p) sulfato de ouro III ou sulfato áurico
q) sulfeto de cádmio
r) fosfito de sódio
s) hidrogeno sulfeto de cálcio ou bissulfeto de cálcio
t) dihidrogeno fosfato de cálcio
u) sulfeto de cobre I ou sulfeto cuproso
v) perclorato de amônio
x) dihidroxi cloreto de alumínio
2) hidogeno-sais : n, s, t
hidroxi-sais : j , x
z) fluoreto de sódio
sais normais : os demais
3)
a) Ag2CrO4
b) Mg(ClO)2
c) Fe2[Fe(CN)6]
d) CuCl2
e) HgCl2
f) Fe2(SO4)3
g) AlPO4
h) [Fe(OH)]2SO4
i) CaOHCl
j) Ag2SO4
k) Hg2(NO3)2
l) NaHS
m) PbCl2
n) Al(HSO4)3
o) HgS
p) Pb(OH)2Cl2
s) (NH4)2SO3
t) Pb(HCO3)2
u) MnSO4
v) AgClO4
q) Fe2(CO3)3
r) Cu3(PO4)2
x) Na2CO3
z) NH4NO3
4) a) Hg2Fe(CN)6 - ferrocianeto de mercúrio II ou ferrocianeto mercúrico
b)
FeSiO3 - meta silicato de ferro II ou meta silicato ferroso
c) Na2Cr2O7 - dicromato de sódio
5) (Ca2+)3 (PO43 )2
)2
Ca 3 (PO4)2
Ca (NO3)2
– nitrato de cálcio Ca2+ SO42
Ca2+ (Cl )2
Fe3+ (NO3 )3 Fe (NO3)3
2
férrico (Fe )2(SO4 )3
ou férrico Fe
3+
Ca SO4
Ca Cl2
Ca2+ (NO3
– sulfato de cálcio
– cloreto de cálcio (Fe3+)(PO43 )
– fosfato de ferro III ou férrico
FePO4
3+
– fosfato de cálcio
(Cl )3
–
nitrato de ferro III ou
Fe2(SO4)3 – sulfato de ferro III
Fe Cl3
–
cloreto de ferro III
ou férrico
Cu 3(PO4)2–fosfato de cobre II ou
(Cu2+)3 (PO4 3 )2
cúprico Cu
2+
(NO3 )2
ou cúprico Cu
2+
Cu (NO3)2 – nitrato de cobre II
SO4 Cu SO4 – sulfato de cobre II
2
ou cúprico
Cu2+ Cl
2
Cu Cl2 – cloreto de cobre II ou cúprico
(NH4+)3 (PO43 )
+
(NH4) 3 PO4– fosfato de amônio (NH4+) (NO3 )
2
+
- 71 -
NH4 NO3
–
nitrato de amônio
Escola Estadual de Educação Profissional [EEEP]
Profissional
Ensino Médio Integrado à Educação
8) a) MgSO4.7H2O – sulfato de magnésio heptahidratado
b)CuSO4.5H2O – sulfato cúprico pentahidratado ou sulfato de cobre II pentahidratado
c)
CaCl2. 6H2O – cloreto de cálcio hexahidratado
d) Fe(SCN)3 – tiocianato férrico ou de ferro III
e) Na2S2O3 – tiossulfato de sódio
f) CoCl2. 2 H2O – cloreto de cobalto II dihidratado ou cloreto cobaltoso dihidratado
9) Devido à perda de água de cristalização, responsável pela coloração azul. O sulfato cúprico anidro é branco
acinzentado.
10) MgCr2O7
11) letra e
12)
( a ) NaNO3
( e ) fabricação de soda cáustica
( b ) NaHCO3
( h ) fertilizante
( c ) NaF
( j ) laxante
( d ) Na2CO3
( b ) fermento
( e ) NaCl
( c ) anticárie
( f ) CaSO4
( f ) gesso
( g ) CaCO3
( f ) giz escolar
( h ) NH4NO3
( d ) barrilha
( i ) Ca3(PO4)2
( g ) estalagmite
( j ) MgSO4
( l ) alvejante e anti-séptico
( l ) NaClO
( g ) calcário
( m ) KI ou NaI
( d ) fabricação de vidro
( m ) aditivo de sal de cozinha (prevenção contra o bócio)
( b ) componente de
antiácidos
( i ) ossos de animais
( a ) fabricação de
pólvora
( e ) soro
fisiológico
- 72 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
REAÇÃO DE SALIFICAÇÃO OU DE NEUTRALIZAÇÃO
Juntando-se um
e uma
ocorre formação de sal e de água; por isso, este tipo de reação recebe o
nome de salificação. Como ácidos e bases perdem suas propriedades iniciais, a reação também é conhecida
por reação de neutralização. A formação de água, que é um composto pouquíssimo ionizado, faz com que o
equilíbrio fique deslocado no sentido de formá-la, evitando assim um retorno apreciável da reação.
Como já foi visto anteriormente, a equação química corresponde à representação gráfica da reação. Até
agora, temos trabalhado com equações que são denominadas moleculares, porém
, torna-se útil usar outro tipo de equação, chamada iônica, que nos permite analisar o
comportamento das diversas espécies envolvidas na reação.
Como procuram retratar o comportamento predominante das substâncias em solução
aquosa, nas equações iônicas, as espécies são escritas levando-se em consideração sua força, sua
solubilidade, etc. Por exemplo, ao escrevermos a reação entre o hidróxido de potássio e o ácido nítrico,
Equação molecular:
Equação iônica: K
KOH
+
+
+ OH –
?
H
+
KNO3
+
+ NO3 – ? K
+
+ NO3 – + H2 O
Na equação iônica acima, escrevemos o hidróxido de potássio na forma iônica, pois se trata de uma base
forte (totalmente dissociada); o ácido nítrico, por também se tratar de um eletrólito forte, vem escrito na forma
iônica (a maior parte das moléculas, em suas soluções, encontra-se ionizada); o nitrato de potássio é
um sal
solúvel e, portanto, totalmente dissociado e, finalmente, a água está escrita na forma molecular por se tratar de
uma substância muito pouco ionizada.
são chamadas de
. Se, na equação iônica anterior, retirarmos os espectadores, a equação restante
retratará o fenômeno que efetivamente está ocorrendo.
Esta equação (sem os espectadores) é denominada
.
+
Os espectadores da equação vista são os íons potássio (K ) e os íons nitrato (NO 3 –) que permanecem
sem qualquer modificação ao longo do processo. Considerando isto, temos:
Equação iônica abreviada: OH –
+H
+
?
H2
Na reação entre o hidróxido de chumbo II e o ácido clorídrico, temos:
Equação molecular: Pb(OH)2
Equação iônica: Pb(OH)2
+
2 HCl ? PbCl2
+
+ 2 H + 2 Cl –
Equação iônica abreviada: Pb(OH)2
?
+
2 H2O
PbCl2 + 2 H2
+
+ 2 H + 2 Cl –
? PbCl2 + 2 H2O
Pb(OH)2)
.
- 73 -
(não há espectadore
Escola Estadual de Educação Profissional [EEEP]
Profissional
Ensino Médio Integrado à Educação
Tipos de reação de salificação
Salificação total
Ocorre quando
do ácido e
da base
.
Tem-se a formação de um sal normal
Exemplos:
Equação molecular: NaOH
HCl ?
+
+
Na + OH + H + Cl–
Equação iônica:
Equação iônica abreviada: OH –
Equação molecular: 3 NaOH
Equação iônica:
NaCl
+H
+
+
?
+ H3PO ?
Equação molecular: 3 Ca(OH)2
2 H3PO4
+
3 Ca 2
+ 6 OH –
+ Cl –
+
+ 3 H PO
3 Na
4
+
+
2
+
3
PO43 – + 3 H2O
PO43 – + 3 H2O
Ca3(PO4)2
+
6
+ 32 H4 PO ?3 Ca4 (PO
)
2
+
+ 6 OH –
Equação iônica abreviada: 3 Ca 2
+
H2
Equação iônica abreviada: 3 OH –
Equação iônica:
Na
Na3PO4
?
–
3 Na + 3 OH
?
+2
+ 23H PO
?
4
3 Ca 4(PO
)
2
+
Salificação parcial do ácido
(mais de um hidrogênio ionizável) reage com uma
.
Ocorre quando um
e
O sal formado é um hidrogeno-sal.
Exemplos:
Equação molecular: NaOH
Equação iônica:
+
H2SO4
Na + OH –
H
Equação iônica:
Na
+
+ HSO4
OH – +
Equação iônica abreviada:
Equação molecular: NaOH
+
+
?
+ H3PO4
H
?
+
Na
+
+ HSO
4
? H 2O
NaH2PO4
+ H3PO4 ? Na
H2O
+
+ H2PO4– +
+
+
Equação iônica abreviada: OH –
+ H3PO4
Equação molecular: 2 NaOH
H3PO4
Equação iônica:
+
2 Na + 2 OH –
Equação iônica abreviada: 2 OH –
H2PO4 – +
Na2HPO4
?
+ 3H PO
4
2 Na
+ H3PO4 ?
- 74 -
+
+
+ HPO
4
2 H2O
2–
2–
HP4O
+2
+ 2 2H
–
H2 O
Escola Estadual de Educação Profissional [EEEP]
Profissional
Ensino Médio Integrado à Educação
Salificação parcial da base
(possui mais de uma hidroxila) reage com um
Ocorre quando uma
e
.
O sal formado é um hidroxi-sal.
Exemplos:
Equação molecular: Ca(OH)2
Equação iônica:
+ HCl
Ca(OH) + OH
?
+ H
OH –
Equação molecular: Al(OH)3
+ H2SO4
Al(OH)3
Equação molecular: Bi(OH)3
Bi(OH)3
+ Cl– ?
Ca(OH)
HCl
+
+
+ Cl–
+2
+ H ? H
2
? Al(OH)SO4 + 2
+ 2 H + SO42– ? Al(OH) 2+
Equação iônica abreviada: Al(OH)3
Equação iônica:
+
+ H2O
+
Equação iônica abreviada:
Equação iônica:
CaOHCl
+
Al(OH) 2+
+2H ?
? Bi(OH)2Cl
+ Cl– ?
SO42– +
Bi(OH)2
2
+ 2
+ H2O
+
+ Cl–
+
+
Equação iônica abreviada: Bi(OH)3
2
+
+ H ?
Bi(OH)
+
+
Salificação de um poliácido por bases diferentes ou de uma polibase por
ácidos diferentes
Destas reações surgem os denominados sais duplos.
Exemplos:
KOH
+
2 KOH
NaOH
+
+
NaOH
H2SO4
+
?
KNaSO4
?
K2NaPO4
+
+
2 H2O
3
Os sais formados acima são exemplos de sais duplos quanto ao cátion.
Ca(OH)2
+ HCl
+
Al(OH)3
+ HCl
+
HBr ?
CaBrCl
?
+ 2 H2O
Al(SO4)Cl
+ 3 H2O
Os sais formados acima são exemplos de sais duplos quanto ao ânion.
- 75 -
Escola Estadual de Educação Profissional [EEEP]
Educação Profissional
Ensino Médio Integrado à
OUTRAS REAÇÕES COM FORMAÇÃO DE SAIS
Reações de ácidos com óxidos
Reações de ácidos com óxidos básicos
Na2O + 2 HCl
?
2 NaCl
MgO + H2SO4
+
MgSO4
+
FeO
+ 2 HNO3
? Fe(NO3)2
+ H2
Reações de ácidos fortes com óxidos anfóteros
ZnO + H2SO4
?
Al2O3
HCl
?
ZnSO4
+ H2O
2 AlCl3
+ 6
+ 3 H2O
2 As Br3 + 3
Reações de ácidos com óxidos duplos
FeO
+
?
+ H2SO4
Fe2O3
Fe3O4
FeSO4
+ 3 H2SO4 ?
+ 4 H2SO4
+
Fe2(SO4)3 + 3
H2O
?
+ 4
Reações de ácidos com peróxidos
Na2O2
+ H2SO4 ?
Na2SO4
+ H2O2
H2O + ½ O2
CaO2
+ 2 HCl ?
CaCl2
+ H2O2
H2O + ½ O2
Reações de bases com óxidos
Reações de bases com óxidos ácidos (anidridos)
CO2
+ 2
KOH SO3
Ca(OH)2
+
?
K2CO3
+ H 2O
?
CaSO4
+ H 2O
?
Na2CrO4
+
Com anidridos mistos
- 76 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
Reações de bases fortes com óxidos anfóteros
ZnO + Ca(OH)2
?
Al2O3
?
CaZnO2
2 NaAlO2
H2O
+ 2 NaOH
+ H2O
+ 3
Reações de óxidos básicos com óxidos ácidos
Na2O
+
CO2 ?
Na2CO3
SO3
MgSO4
FeO + N2O5
?
?
CaO + Cl2O7 ?
Fe(NO3)2
Ca(ClO4)2
EXERCÍCIOS
1) Complete:
COMPOSTO
FUNÇÃO
NOME
EQUAÇÃO DA INTERAÇÃO
COM ÁGUA
BaO
Sn(OH)2
HBrO3
H2SO4
P2O3
CaO2
Al2O3
NO2
H3PO2
Mg(OH)2
MnO3
B2O3
HCN
NO
Fe(OH)3
H3PO3
H 2S
Na2O
NO
- 77 -
EQUAÇÃO DA INTERAÇÃO COM HCl
ou NaOH (o que for possível)
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
2) Escreva as equações moleculares das reações de salificaçãototal entre:
a) Hidróxido de sódio e ácido nitroso
b) Hidróxido de potássio e ácido fosfórico
c) Hidróxido de alumínio e ácido clorídrico
d) Hidróxido férrico e ácido bromídrico
e) Hidróxido de bário e ácido perclórico
f) Hidróxido de cálcio e ácido ferricianídrico (sabendo-se que o radical ferricianeto é Fe(CN)63 )
3) Dê as equações moleculares das reações de salificação total abaixo, dando nome aos sais formados:
a) ácido clorídrico e hidróxido ferroso
b) ácido sulfúrico e hidróxido de ferro III
c) ácido hipocloroso e hidróxido de sódio
d) ácido permangânico e hidróxido de potássio
e) ácido sulfídrico e hidróxido de amônio
f) ácido fosfórico e hidróxido de bário
g) ácido nítrico e hidróxido de cobre II
h) ácido sulfuroso e hidróxido de prata
i) ácido nitroso e hidróxido niqueloso
j) ácido bromídrico e hidróxido de potássio
4) Dê as equações moleculares e iônicas (inclusive a abreviada) das reações de salificação total abaixo, dando
nome aos sais formados:
a) ácido clorídrico e hidróxido de prata
b) ácido sulfúrico e hidróxido de amônio
c) ácido cianídrico e hidróxido de sódio
d) ácido hipocloroso e hidróxido de magnésio
e) ácido perclórico e hidróxido férrico
f) ácido fosfórico e hidróxido de cálcio
g) ácido nítrico e hidróxido de potássio
h) ácido iódico e hidróxido de mercúrio II
5) Soluções aquosas de mesma concentração mol/L de ácido acético e hidróxido de amônio
têm baixa
condutividade elétrica quando separadas. Todavia, ao misturá-las em volumes iguais, obtém-se uma solução de
maior condutividade. Dê uma explicação para esse fato, equacionando a reação envolvida.
Obs.: Dizer que as soluções têm mesma concentração mol/L significa, em última análise, dizer que têm igual
6) a) Dê os nomes dos compostos representados pelas fórmulas H2SO4
NH3.
e
b) Escreva a equação molecular da reação entre esses compostos e dê o nome do sal formado.
7) Dê as equações moleculares das reações de salificação que permitem a formação dos sais abaixo:
a) nitrato de amônio
b) fosfato de cálcio
- 78 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
c) sulfato cúprico
d) cloreto férrico
e) sulfeto de alumínio
f) nitrito de magnésio
g) sulfito de manganês II
h) nitrato de prata
i) perclorato de bário
j) carbonato ferroso
k) fluoreto de sódio
l) sulfato de amônio
m) cloreto de cálcio
n) iodeto de cádmio
o) brometo de zinco
p) sulfato de níquel II
q) sulfeto mercúrico
r) metafosfato de lítio
8) Escreva as equações moleculares das reações de salificaçãoparcial, dando nome aos sais formados:
a) ácido sulfúrico e hidróxido de amônio
b) b) ácido fosfórico e hidróxido de lítio
c) ácido permangânico e hidróxido férrico
d) ácido cloroso e hidróxido de bário
e ) ácido bórico e hidróxido de cobre I (sabendo-se que o íon borato é BO33
9) Escreva as equações moleculares das reações de salificaçãototal eparcial, dando nome aos sais formados:
a) ácido nítrico e hidróxido de magnésio
b) ácido clorídrico e hidróxido de cálcio
c) ácido sulfúrico e hidróxido de sódio
d) ácido bromídrico e hidróxido cobáltico
10) Escreva as equações moleculares das reações de salificação que produzem os sais abaixo:
a) sulfato férrico
b) dihidrogeno fosfato de sódio
c) bicarbonato de magnésio
d) hidrogeno sulfato de sódio
e) fosfato de ferro III
f) hidroxi nitrato de cálcio
g) nitrato de alumínio
h) cianeto de potássio
i) acetato de zinco
j) sulfato de amônio
l) sulfeto de potássio
m) bissulfato de bário
n) sulfato cúprico
o) fosfato de bário
p) bissulfito de potássio
q) cloreto ferroso
r) iodeto de amônio
s) fosfito de lítio
t) hipofosfito de estanho II
u) nitrato de prata
v) iodeto fosfato de chumbo IV
x) sulfato duplo de alumínio e potássio
z) ortosilicato de magnésio e ferro II
11) Só existem dois minerais de césio conhecidos: a polucita (silicato de alumínio e césio) e a rodizita. Escreva
a fórmula da substância contida na polucita.
12) O magnésio é abundante na Natureza principalmente na água do mar como íon dipositivo, e
crosta
terrestre na forma de magnesita (MgCO3), dolomita (CaMg(CO3)2) e vários silicatos. Ocorre
também como brucita (Mg(OH)2); carnalita (KMgCl3.6H2O); e kieserita (MgSO4.H2O). Dê os nomes
- 79 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
13) Uma aplicação do carbonato de cálcio no nosso dia-a-dia ocorre quando pintamos paredes usando cal extinta
(Ca(OH)2 ). Após a caiação, a cal extinta reage com o gás carbônico do ar, originando uma
película de carbonato de cálcio que, por ser insolúvel na água, protege a parede.
Escreva a equação da reação que ocorre no contato da cal da parede e o ar.
14) O sulfato de magnésio é comercializado pelo nome de sal amargo e conhecido também por sal de Epson;
sua principal aplicação medicinal ocorre devido a sua ação laxativa.
Escreva quatro reações que permitam a obtenção desse sal.
15) A água de cal (Ca(OH)2) e a água de barita (Ba(OH)2) quando ficam expostas ao ar, passam a apresentar
uma turvação, que vai tornando-se cada vez mais intensa quanto maior for o tempo de exposição. Explique o
acontece. Faça as equações químicas que justificam sua explicação.
16) Se quiséssemos obter através de uma mesma reação, nitrato de potássio e gás oxigênio, que
reagentes
17) O zinco é indicado para a proteção da pele, na forma de ZnO. Na formulação do óxido de zinco, ele não
poderá estar associado a ácidos ou bases fortes. Justifique, através de equações químicas, por que o óxido de
zinco não deve ser misturado a esses compostos.
18) O zarcão (tetróxido de trichumbo) é usado para proteger o ferro contra a ação da ferrugem.
Escreva a
19) O dióxido de nitrogênio (anidrido nitroso-nítrico) é um gás de cor castanho - avermelhada, de cheiro forte e
irritante, muito tóxico, e constitui um poluente atmosférico. Se borbulharmos este gás em uma solução aquosa
de hidróxido de sódio, quais serão os produtos formados. Equacione a reação ocorrida.
20) Quando exposto ao ar, o óxido de cálcio sofre um processo denominado de carbonatação, que consiste na
sua reação com o gás carbônico. Equacione este processo.
21) O óxido de magnésio, conhecido como magnésia, é utilizado para neutralizar o excesso de ácido clorídrico
(HCl), causador da acidez estomacal. Escreva a equação da reação que ocorre entre eles.
- 80 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
RESPOSTAS
1)
SUBST.
FUNÇÃO
NOME
EQUAÇÃO DA INTERAÇÃO COM ÁGUA
BaO
Óxido
Óxido de
bário
BaO + H2O ? Ba(OH)2
Sn(OH)2
Base
Hidróxido de
estanho II ou
estanoso
Sn2+ (aq)+2 OH– (aq)
Sn(OH)2(s)
HBrO3
Ácido
Ácido
brômico
HBrO3 + H2O
H2SO4
Ácido
Ácido
sulfúrico
H2SO4+2H2O
P 2O 5
Óxido
Anidrido
fosfórico
CaO2
Peróxido
Peróxido de
cálcio
Al2O3
Óxido
Óxido de
alumínio
NO2
Óxido
Anidrido
nitroso-nítrico
H3PO2
Ácido
Ácido
hipofosforoso
H3PO2 + H2O
Mg(OH)
Base
Hidróxido de
magnésio
Mg(OH)2
2
MnO3
Óxido
Anidrido
mangânico
B 2O 3
Óxido
Anidrido
bórico
HCN
Ácido
Ácido
cianídrico
NO
Óxido
Óxido nítrico
Hidróxido de
ferro III ou
férrico
H3O++ BrO3
2H3O++ SO42
P2O5 + H2O ? 2 HPO3
P2O5 + 2 H2O ? H4P2O7
P2O5 + 3 H2O ? 2 H3PO4
EQUAÇÃO DA INTERAÇÃO COM HCl ou
NaOH (o que for possível)
BaO + 2 HCl ?
Sn(OH)2 + 2 HCl ?
BaCl2 + H2O
SnCl2 + 2 H2O
HBrO3 + NaOH? NaBrO3
+H
2 O
H2SO4 + 2 NaOH? Na2 SO4 + 2H
2
O
P2O5 + 2NaOH ? 2 NaPO3 + H2O
P2O5 + 4NaOH Na4P2 O7 + 2 H2O
P2O5 + 6 NaOH ? 2 Na3PO4 + 3 H2O
CaO2+ H2O? Ca(OH)2 +H2O + ½ O2
CaO2+ 2HCl? CaCl2 +H2O + ½ O2
Não reage com água
(é um óxido anfótero)
Al2O3+ 6 HCl? 2AlCl3 + 3 H2O
NO2
+ H2O ? HNO2 + HNO3
H3O++ H2PO2
Mg 2+(aq)+2 OH–
MnO3 + H2O ?
H2MnO4
B2O3 + H2O ? 2 HBO2
B2O3 + 3 H2O ? 2 H3BO3
H3O++ CN
HCN + H2O
Não reage com água
(é um óxido neutro)
Fe(OH)3
Fe3+
Fe(OH)3
Base
H3PO3
Ácido
Ácido
fosforoso
H3PO3 + 2H2O
H 2S
Ácido
Ácido
sulfídrico
H2S+2H2O
Na2O
Óxido
Óxido de
sódio
N 2O 5
Óxido
Anidrido
nítrico
)+ 3
(aq) (aq
2H3O++HPO32
2H3O++ S2
Na2O + H2O ?
N2O5
OH–
+ H 2O
- 81 -
2 NaOH
? 2 HNO3
2NO2+2NaOH ?NaNO2+NaNO3+ H2O
H3PO2 + NaOH? NaH2 PO2
Mg(OH)2 + 2 HCl ?
+H
2 O
MgCl2 + 2 H2O
MnO3 +2 NaOH ? Na2MnO4 + H2O
B2O3 + 2NaOH ? 2 NaBO2 + H2O
B2O3
6NaOH ? 2 Na3BO3 + 3
HCN + NaOH? NaCN + H 2O
Não reage com ácido ou base
(é um óxido neutro)
Fe(OH)3 + 3 HCl ?
FeCl3 + 3 H2O
H3PO3 + 2 NaOH? Na2 HPO3
O
+ 2H
2
H2S + 2 NaOH? Na2S + 2H2O
Na2O + 2 HCl ?
N2O5
H2O
+ 2NaOH
2 NaCl + H2O
? 2 NaNO3 +
Escola Estadual de Educação Profissional [EEEP]
2) a) NaOH
+
Ensino Médio Integrado à Educação Profissional
HNO2 ? NaNO 2
b) 3 KOH
+
H3PO4 ? K3PO4
c) Al(OH)3
+
3 HCl ?
+
+
H2O
d) Mg(OH)2
+
Mg(OH)2
3 H 2O
2 HClO ? Mg(ClO)2 + 2 H2O
+ 2 HClO ? Mg(ClO)2
+ 2 H2O
hipoclorito de magnésio
AlCl3
+
3 H2O
e) Fe(OH)3
d) Fe(OH)3
+ 3 HBr ? FeBr3
+
3 H2O
+
3 HClO4
? Fe(ClO4)3
+ 3 H2O
Fe(OH)3 +3 H+ +3ClO4 ?Fe3+ +3 ClO4–
–
e) Ba(OH)2 + 2 HClO4
? Ba(ClO4)2
+
+3H2O Fe(OH)3 +3 H+ ? Fe3+ + 3 H2O
perclorato de ferro III ou férrico
2 H2O
f) 3 Ca(OH)2+2 H3 Fe(CN)6?Ca3[Fe(CN)6]2+ 6 H2O
f) 2 H3PO4 +3 Ca(OH)2
3) a ) Fe(OH)2 + 2 HCl ? FeCl2
cloreto de ferro II ou ferroso
b) 3 H2SO4
+
+
2 H2O
2 Fe(OH)3 ?
+
HClO ?
NaClO
hipoclorito de sódio
+
g) KOH + HNO3 ? KNO3
+
+ H2S ? (NH )4 S
2
sulfeto de amônio
H2O
+
6
+ 2 H2O
i) Ni(OH)2 + 2 HNO2 ? Ni(NO2)2
nitrito de níquel II ou niqueloso
+
O OH – + H+ ?
nitrato de potássio
? K+
2 H2O
brometo de potássio
?
Hg(3IO )
b) H2SO4
H2O
2–
H 2O
+2NH4OH?2NH4++SO42– +2H 2O
2 H + 2 NH4OH ?
sulfato de amônio
c) NaOH
+
+ 2 NH4 OH ? ( NH 4 ) SO
2 4 + 2
2H+ +SO4
+
? AgCl
2 NH4
+
+ HCN ? NaCN
+ 22 H O
b) H SO + 2NH ? ( NH
b) 2 H3PO4
H2O
2
2
4
) SO sulfato de amônio
NH4 NO3
4
+ H2O
4
c)
Cu(OH) +
d)
Fe(OH)3
g) H2SO3
H SO
+3 HCl
+
?
?
i) Ba(OH)2
- 82 -
+
?
6
CuSO
+ 2HO
FeCl3
+
3 H2O
Al2S3
+ 6
3 H2S ?
+ Mn(OH)2
h) HNO3 + AgOH
Na+ + OH + HCN ? Na+ + CN +
+2
+ 3 Ca(OH)2 ? Ca 3(PO4)2
f) 2 HNO2 + Mg(OH)2 ? Mg(NO2)2
+ H 2O
+ 2
consdeuqtiüveindtaedme.ente, haverá grande quantidade de íons
em solução o que justifica o aumento de
e) 2 Al(OH)3
H2O
+ 2 H2O
+ 2H
5)
Tanto
o
ácido
acético
quanto
o
hidróxido de amônio são eletrólitos fracos e,
portanto, possuem baixa condutividade elétrica.
Qaulan(daocetatojuntdaemosamônoios) dboais,tanetem sporloúpvoelrçõe,s
adequadas, há formação de um
7) a) HNO3 + NH4OH ?
+ H2O
AgOH + H+ + Cl
cloreto de prata
–
+
H 2O
4
4) a) AgOH + HCl ? AgCl
+ 6 H2O
+ H2O
–
6) a)2ácid4 o sulfúr3ico e amônia
j) KOH +HBr ? KBr +H2O
+ 6 H2O
2 H+ + 2 IO3 – + Hg(OH)2 ? Hg(IO3)2
H2O
iodato de mercúrio II ou mercúrico
g) Cu(OH)2 + 2 HNO3 ? Cu(NO3)2 + 2 H2O
nitrato de cobre II ou cúprico
h) 2 AgOH + H2SO3 ? Ag 2SO 3
sulfito de prata
+ H + NO3
NO3
h) 2 HIO3 + Hg(OH2)
+ 2 H2O
f) 3 Ba(OH) 2 + 2 H3PO4 ? Ba 3 (PO4 )2
H2O
fosfato de bário
+
K +
OH–
d) KOH + HMnO4 ? KMnO4
+ H2O
permanganato de potássio
e) 2 NH4OH
3(PO4)2
–
2 H3PO4 + 3 Ca + 6 OH ? Ca 3(PO4)2
fosfato de cálcio
Fe2(SO4)3 +
6 H 2O
sulfato de ferro III ou férrico
c) NaOH
? Ca
2+
? MnSO3
Ag NO3
+ 2 H2O
+ 2 H2O
+ H2O
2 HClO4 ? Ba (ClO4)2
+
2
Escola Estadual de Educação Profissional [EEEP]
7) l) H2SO4
Ensino Médio Integrado à Educação Profissional
+ 2 NH4OH ? ( NH4 )2SO4
+ 2 H2O
m) Ca(OH)2
+ 2 HCl ? CaCl2
+ 2 H2O
n) Cd(OH)2
+ 2 HI ?
+ 2 H2O
o) Zn(OH)2
+
2 HBr ?
p) H2SO4 + Ni(OH)2
q) H2S + Hg(OH)2
r) HPO3
Cd I2
+ LiOH
?
?
?
Zn Br2
+
NiSO4
2 H 2O
+
HNO3 ?
? Al(NO3)3 +3 H2O
h) HCN + KOH ?
KCN +
H2O
+ 2 HAc ? Zn(Ac)2
j) 2 NH4OH
+
+
2 H2O
H2SO4 ? (NH4)2SO4 + 2 H2O
l) H2S + 2 KOH ?
+ H2O
Ca(OH)NO3 +
g) Al(OH)3 +3 HNO3
i) Zn(OH)2
+ 2 H2O
HgS + 2 H2O
LiPO3
10) f) Ca(OH)2
H2O
K2S +
2 H2O
m) Ba(OH)2+ 2 H2SO4 ? Ba(HSO 4)2
8) a) NH4OH + H2SO4? NH4HSO4
bissulfato de amônio
b) LiOH
+ H 3PO 4 ?
LiH 2PO 4
+ H2O
+
H2O n) Cu(OH)2
+
2 H2SO4 ? CuSO4
p) KOH
c) Fe(OH)3 + HMnO4 ?
q) Fe(OH)2
+ 2 HCl ?
r) NH4OH
+
s) 2 LiOH
+ H3PO3 ?
+ H2O
Fe(OH)3 +2 HMnO4 ? Fe(OH)(MnO4)2 +2 H2O
dihidroxi permanganato de ferro III ou férrico e hidroxi
permanganato de ferro III ou férrico
+ H3BO3
? CuH2BO3
+
+
H2SO3
?
u) AgOH
H2O
11)
+
KHSO3
+H2O
FeCl2
HI ?
+
Li2(HPO3) +
? Sn(H2PO2)2
HNO3 ? AgNO3
9)a) Mg(OH)2
Mg(OH)2 – hidróxido de magnésio
H2O
hidroxi nitrato de magnésio e nitrato de magnésio
13) Ca(OH)2
+ HCl ? Ca(OH)Cl + H2O
14) H2SO4
Ca(OH)2 + 2 HCl ? CaCl2
+ 2 H2O
hidroxi cloreto de cálcio e cloreto de cálcio
+ H2SO4 ? NaHSO4
2 NaOH
+ H2SO4 ? Na2SO4
+ HBr? Co(OH)2Br
Co(OH)3
+ 2 HBr?
H2O Co(OH)3
? CoBr3
+ Mg(OH)2
+
+
? MgSO4
MgO ? MgSO4
H2O
+ 2
+
H2O
2 H2O
hidrogeno sulfato de sódio ou bissulfato de sódio e
sulfato de sódio
d) Co(OH)3
+ CO2 ? CaCO3
H2O H2SO4
+ H2O
+
CaMg(CO3)2 – carbonato de cálcio e magnésio
KMgCl3.6H2O – cloreto de potássio e
magnésio hexahidratado
H2O Mg(OH)2 + 2 HNO3 ? Mg(NO3)2 + 2
c) NaOH
+ 2 H2O
AlCsSiO4
12) MgCO3 – carbonato de magnésio
b) Ca(OH)2
2 H2O
+ H2O
2 CuOH + H3BO3 ? Cu2HBO3
+ 2 H2O
dihidrogeno borato de cobre I ou cuproso e hidrogeno
borato de cobre I ou cuproso
+ HNO3 ? Mg(OH)NO3 +
2 H2O
NH4I + H2O
t) Sn(OH)2 + 2 H3PO2
d) Ba(OH)2 + HClO2 ? Ba(OH)ClO 2 + H2O
hidroxi clorito de bário
+
6 H2O
2 LiOH + H3PO4 ? Li2HPO4 + 2 H 2O
dihidrogeno fosfato de lítio e hidrogeno fosfato de lítio
e) CuOH
+
2 H2O o) 3 Ba(OH)2 +2 H3PO4 ? Ba3(PO4)2
H2O
Fe(OH)2MnO4
+ 2
SO3 + Mg(OH)2 ? MgSO4 +
formHan
do sais i+nsolúveM
isg(Oprecipi
turvam
? tad
M goSs)Oque
2 O SO3
4
15) Ao entrar em contato com o ar, o gás carbônico
nele presente reage com os hidróxidos
citados
+ H2O
Co(OH)Br2 +2
+
a solução.
3 HBr
Ca(OH)2
+ 3 H2O
dihidroxi brometo de cobalto III ou cobáltico ; hidroxi
brometo de cobalto III ou cobáltico ; brometo de
cobalto III ou cobáltico
+ CO2 ? CaCO3
+
H2O
Ba(OH)2
+ CO2 ? BaCO3
+
H2O
10) a) 3H2SO4+2 Fe(OH)3 ? Fe2(SO4) + 6 H2O
b) NaOH
+
H3PO4 ? NaH2PO4
16) K2O2
+ H2O
c) 2 H2CO3+Mg(OH)2 ? Mg(HCO3)2 + 2H2O
+ 2 HNO3 ? 2 KNO3 + H2O + ½ O2
17) ZnO + H2SO4 ?
- 83 -
ZnSO4
+
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
CAPÍTULO 6
ESTUDO DE REAÇÕES
Uma reação química é uma mistura?
Muitas reações químicas não são acompanhadas de sinais visíveis que indiquem formação de um novo
material. Assim, é possível confundir uma reação química com uma simples mistura. No entanto,
existem diferenças que não deixam dúvidas: os componentes de uma mistura podem ser separados por
meios físicos, como a destilação, a centrifugação ou a filtragem. Já numa reação química, os componentes
originais em grande parte se transformaram e, portanto, não podem ser separados. Os componentes de uma
mistura conservam suas propriedades específicas; numa reação, essas propriedades desaparecem e
surgem novas. Na mistura, os componentes podem estar em qualquer proporção, enquanto numa
reação as proporções entre reagentes e produtos são fixas, ou estequiométricas.
Uma equação química é uma representação abreviada de uma reação. Nela, cada fórmula
pode vir acompanhada por um subíndice que indique o estado de agregação que a substância apresenta na reaçã
Usaremos as indicações ( s ) para sólidos, ( l ) para líquidos, ( g ) para gases e ( aq ) para substâncias
dissolvidas em água. No caso da reação ocorrer com o auxílio de aquecimento será usado o símbolo sobre a
seta que separa reagente e produtos e se ocorrer por ação de energia luminosa será usado o símbolo
,
também sobre a seta.
Vários aspectos podem ser avaliados quando se estuda uma reação. Vejamos alguns destes aspectos:
Energia nas reações químicas
Nas reações químicas, além de haver uma transformação da matéria, ocorre também uma
troca de energia com o ambiente. Geralmente, essa troca é de energia calorífica, mas também
pode ser de energia elétrica, luminosa, acústica. As reações que ganham energia calorífica são chamadas
endotérmicas e as reações
que perdem são denominadas de exotérmicas.
Exemplos:
C(s) + O2(g) ?
CO2(g) + calor
Velocidade de reação
Para que ocorra uma reação, é necessário que as entidades elementares das substâncias
reagentes choquem-se com determinada energia cinética e na direção apropriada (teoria das colisões). Forma-se
então um produto intermediário, o chamado complexo ativado. Ele se decompõe instantaneamente
nos produtos de reação. A energia necessária para que se forme o complexo ativado chama-se energia de
ativação. Por exemplo, para que um palito de fósforo queime é preciso esfregá-lo na lixa da
caixa para lhe fornecer a energia necessária; depois, ele queima espontaneamente, sem nossa intervenção.
De um modo geral, para medir a velocidade de uma reação deve-se medir a quantidade de reagente que
desaparece ou a quantidade de produto que se forma, por unidade de tempo.
Exemplos:
: 4 Fe(s) + 3 O2(g)
: 2 C4H10(g) + 13
?
2 Fe2O3(s) (formação da ferrugem)
8 CO2(g) + 10 H2O(g)
(combustão do butano, um dos componentes do gás de cozinha)
Fatores que modificam a velocidade de reação
Segundo a teoria das colisões, a velocidade de reação pode ser modificada aumentando o número de
choques efetivos ou diminuindo a energia de ativação dos mesmos. Vejamos alguns fatores capazes de interferir
nessas condições:
- 84 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
Estado físico: como regra geral, os gases reagem mais facilmente e mais rapidamente do
que os
líquidos, e estes mais rapidamente que os sólidos. Líquidos miscíveis interagem melhor que
líquidos imiscíveis e sólidos pulverizados reagem mais facilmente que sólidos em pedaços
(no caso de um sólido, o choque é um fenômeno de superfície; se aumentarmos a superfície,
aumentará o número de choques e, a superfície específica de um sólido é maior quanto
mais finamente dividido ele está). Substâncias em solução aquosa, por possuírem suas entidades
elementares livres, reagem muito mais facilmente.
Temperatura: Um aumento da temperatura produz um duplo efeito: cresce a velocidade das moléculas
e, com isso, sua energia cinética, facilitando as colisões efetivas e consequentemente há um aumento na
velocidade da reação.
El e tri ci d ad e e l u z: Sua presença tende a aumentar a velocidade das reações devido à energia contid
nas mesmas que aumentará o número de choques eficazes.
Concentração dos reagentes: Um aumento na concentração das substâncias reagentes, ou da pressão,
no caso das substâncias gasosas, aumenta o número de choques. Se houver mais
choques, cresce também a probabilidade que um número maior deles seja eficaz, o que,
por sua vez, aumenta a velocidade de reação.
Catalisador: catalisador é uma substância que abaixa a energia de ativação de
uma reação, aumentando, assim, a sua velocidade, sem sofrer alteração qualitativa nem
Existem
produzidos por seres vivos, denominados
, que aceleram reaçõ
importantes para o metabolismo do próprio ser vivo. Podemos afirmar que sem a colaboração das enzimas
seria impossível a vida dos vegetais e animais tal como a conhecemos em nosso planeta.
Reversibilidade das reações
Quando a reação não se completa e os reagentes e produtos mantêm-se em equilíbrio, ela é denominada
de reversível e utiliza-se uma dupla seta para separar os membros da equação química. Quando a
reações ocorrem num só sentido são denominadas irreversíveis.
Exemplos:
N2(g) + 3
2 NH3(g)
H2(g)
?
(obtenção industrial da amônia)
CO2(g) + calor
(combustão do
Variação do nox durante a reação
Algumas reações ocorrem com transferência de elétrons entre as espécies reagentes. Diz-se
que a espécie que perde elétrons se oxida e a que ganha se reduz; estas reações são denominadas de
oxirredução,
oxi-redução ou redoxi.
Exemplos:
: S+6O3
2
+ H2+1O
2
H2+1S+6O4
(formação do ácido sulfúrico)
Principais tipos de reações químicas
As numerosas reações que se processam na natureza podem ser agrupadas em quatro tipos gerais.
Reações de síntese ou adição:
Quando de duas ou mais substâncias se obtém uma única substância. Se a substância é obtida a partir de
, ocorre síntese total se é obtida a partir de pelo menos uma
,
ocorre síntese parcial.
.
- 85 -
Escola Estadual de Educação Profissional [EEEP]
2 H2(g) +
?
Ensino Médio Integrado à Educação Profissional
O2(g)
2 CO(g) + O2(g)
?
2 H2O( l )
(síntese total)
2 CO2(g)
(síntese parcial)
(síntese parcial)
? H2CO3(aq)
Algumas reações de síntese:
Toda reação de queima ou combustão é uma reação com o oxigênio (O2) que, sendo
indispensável à
queima, é chamado de
. As reações de combustão das substâncias simples são reaçõ
de síntese.
2 Mg(s) + O2(g)
? 2 MgO(s)
As reações dos óxidos ácidos e básicos com água são exemplos de reações de síntese.
SO2(g) + H2O(l)
Na2O(s) + H2O(l) ?
?
H2SO3(aq)
2 NaOH(aq)
Através de reações de síntese são fabricados muitos produtos químicos de grande importância na indústria.
Entre eles podemos destacar:
Á cido sulfúrico:
S(s) + O2 (g) ?
SO2 (g) + 1/2 O2(g) ?
SO3 (g) + H2O(l) ?
Ácido clorídrico:
Amônia:
H2 (g) + Cl2(g) ?
N2(g) + 3 H2(g)
SO2 (g)
enxofre)
(queima do
SO3(g)
2 HCl(g)
/alta pressão /catalisadores
2 NH3(g)
Reações de análise ou decomposição:
Ocorrem quando uma substância é decomposta em outras (a partir de um reagente obtemos mais que um
produto).
a
Determinadas reações de decomposição recebem nomes particulares: chama-se pirólise ou calcinação
é denominada fotólise e eletrólise a
;a
.
A maioria das substâncias compostas se decompõe por aquecimento. A temperatura necessária para haver a
decomposição varia muito de uma substância para outra.
2 HgO(s)
NH4Cl(s)
2 Hg( l ) +
O2(g)
Na natureza não existe cal virgem (CaO), mas há muito calcário (CaCO3). A cal virgem é fabricada
por pirólise do calcário, em fornos especiais.
CaCO3(s)
CaO(s) +
- 86 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
Para obter nitrogênio em laboratório, faz-se a pirólise do nitrito de amônio (NH4NO2).
NH4NO2(s)
N2(g) + 2 H2O(g
Certas substâncias, como os sais de prata, a água oxigenada e outras, devem ser guardadas e
vidros
escuros, porque se decompõem na presença de luz (fotólise). O vidro escuro absorve a luz e protege essas
2 H2O 2(l
)
2 H2O(l ) +
O2(g)
2 AgBr(s)
2 Ag(s) +
Br (g)
A passagem de corrente elétrica no cloreto de sódio fundido provoca sua decomposição
(eletrólise).
Essa reação é utilizada industrialmente para a produção de sódio e cloro.
Reações de deslocamento, substituição ou simples troca:
São processos nos quais uma
reage com
originando uma
e
(uma substância ―desloca‖ a outra da solução em que se encontra).
.
Zn(s) + CuSO4(aq)
?
ZnSO4
CaCl2 (aq) + F2 (g) ?
+
CaF2(aq) + Cl2(g
Quando ocorre uma reação de deslocamento?
o Deslocamento entre metais
O deslocamento de um metal por outro está associado à facilidade com que cada um del
perde elétrons. O metal que perder elétrons mais facilmente (maior eletropositividade) doará estes elétrons ao
metal
que está em solução, na forma de íon (cátion), transformando-o em substância simples e, em
conseqüência, torna-se um íon (cátion). A essa facilidade em perder elétrons dos metais está relacionada a
reatividade química
dos mesmos.
Por exemplo, introduzindo-se uma lâmina de zinco numa solução de sulfato de cobre II, ocorre
uma reação com formação de sulfato de zinco, que fica na solução, e a liberação de cobre metálico, que se
deposita sobre a lâmina. A solução, inicialmente azul devido à presença dos íons Cu2+, fica incolor
Equação molecular: Zn(s) +
Equação iônica:
Zn° + Cu2+ +
?
ZnSO4(aq) +
?
Zn2+ + SO42 + Cu°
Esta reação mostra que o metal zinco perde elétrons mais facilmente que o metal cobre. Diz-se que o
zinco é mais reativo que o cobre e que o deslocou da solução.
Se introduzíssemos uma lâmina de cobre numa solução de sulfato de zinco nada ocorreria
pois a tendência maior em perder elétrons é do zinco.
- 87 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
Por meio de experiências semelhantes à mencionada, foi construída uma escala de reatividade química
para os metais.
Cs Li>Rb>K>Ba Sr>Ca Na Mg>Al Mn Zn Cr Fe Cd>Co>Ni Sn
Pb [H]>
Sb>As>Bi Cu Hg Ag Pd>Pt Au
Quanto menor a reatividade química, maior a nobreza do metal. Os metais menos reativos: prata (Ag) ,
platina ( Pt ), ouro (Au) ) são chamados metais nobres. O cobre e o mercúrio são considerad
metais
o Deslocamento entre ametais
O deslocamento de um ametal por outro está associado à facilidade com que cada um
deles ganha elétrons. O ametal que receber elétrons mais facilmente (maior eletronegatividade) receberá
estes elétrons do ametal que está em solução, na forma de íon (ânion), transformando-se em um
ânion e fazendo com que o doador dos elétrons torne-se uma substância simples. A essa facilidade
em receber elétrons dos ametais está relacionada a reatividade química dos mesmos.
Por exemplo, adicionando-se a substância simples cloro (Cl2) a uma solução aquosa de
brometo de sódio (NaBr), forma-se cloreto de sódio (NaCl), que fica na solução, e há liberação de
bromo na forma de substância simples (Br2).
Equação molecular: Cl2(g) + 2
NaBr(aq)
Equação iônica:
?
2 NaCl(aq) + Br2(g)
?
2 Na+
+ 2 Cl + Br2°
Se adicionarmos bromo (Br2) a uma solução de NaCl não ocorre reação alguma, o que demonstra ser o
cloro mais ávido por elétrons que o bromo. Diz-se que o cloro é mais reativo que o bromo e que o deslocou da
solução.
Assim como para os metais, há também uma escala de reatividade para os ametais.
F O Cl Br I S C
O ametal mais reativo é o que recebe elétrons mais facilmente.
o Deslocamento do hidrogênio de ácidos diluídos por metais
O hidrogênio é deslocado dos ácidos diluídos por metais mais reativos que ele, havendo formação de H2.
Equação molecular: Zn(s) + 2 HCl(aq) ?
Equação iônica:
Zn° + 2H +
Equação molecular : Na(s) +
Equação iônica :
Na°
H+ +
+ 2
ZnCl2(aq) +
?
Zn2+ + 2 Cl +
?
NaCl(aq) + 1/2
H2(g)
?
Observações
menor nox
Exceção importante
- 88 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
o Deslocamento do hidrogênio da água por metais muito reativos
Os metais alcalinos e os metais alcalino-terrosos, por serem muito reativos, reagem com água, a
frio, deslocando o hidrogênio. No caso dos metais alcalinos, a reação é muito violenta (grande desprendimento
de energia).
2 Na(s) + 2 H2O( l ) ?
Ca(s) + 2 H2O( l )
2 NaOH(aq) +
H2(g)
?
Observações
?
?
Reaçõesde dupla troca:
Como o próprio nome indica, numa reação de dupla troca o cátion de uma substância (ou o hidrogênio
no caso dos ácidos) une-se ao ânion da outra e vice-versa.
.
Equação molecular:
ou
Equação iônica:
CaCl2(aq) + Na2CO3(aq)
CaCl2
+ Na2CO3
Ca2+ + 2 Cl
?
?
CaCO3(s) + 2 NaCl(aq)
? CaCO3
+ 2Na + + CO3
2
+ 2 NaCl
CaCO3 + 2 Na+
+ 2
Quando ocorre uma reação de dupla troca?
As reações de dupla troca ocorrem no sentido de formar espécies que diminuam ou impeçam o retorno
da reação. Neste sentido, elas ocorrerão se houver formação de pelo menos um, dos itens abaixo:
Uma substância praticamente insolúvel (precipitado).
Uma substância pouco ionizada ou pouco dissociada (eletrólito fraco).
Uma substância volátil (gases ou líquidos de baixo P.E.).
Dentro destas características, para facilitar o estudo, podemos dividir as reações de dupla troca em cinco tipos:
o
o
o
o
o
- 89 -
Escola Estadual de Educação Profissional [EEEP]
Profissional
Ensino Médio Integrado à Educação
Para sabermos, portanto, se uma reação de dupla troca ocorrerá ou não, é necessário conhecer-se:
A solubilidade dos reagentes e dos possíveis produtos;
A força dos reagentes e dos possíveis produtos;
A volatilidade dos reagentes e dos possíveis produtos.
Solubilidade em água
Volatilidade
Ácidos
Ácidos
:
HF, HCl, HBr, HI, H2S, HCN,
HNO2, HNO3 e CH3COOH
(HAc)
Bases:
Hidróxidos
Sais:
Solúveis:
.
Força
Ácidos:
Hidrácidos
Fortes:
Fracos:
Oxiácidos
Fortes:
Fracos: y – x <
2
Insolúveis:
Bases:
Fortes: IA e IIA
Fracas:
Sais:
Forte =
Fraco =
+1
+2
+1 e +2
+3
+2 e +3
IA , Ag
IIA, Zn,
Cd
Hg , Cu
Al , Bi
Fe, Co, Ni,
Cr
Mn : +6 e +7
Cr : +6
- 90 -
+2, +3 e
+4
Mn
+2 e +4
+1 e +3
Pb, Sn, Pt,
Ti
Au
As e Sb : +3 e +5
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
o Reações de neutralização ácido-base:
Como já foi visto, neutralização (ou salificação) é a reação entre ácido e base, gerando água e sal. Como
a água é uma substância pouquíssimo ionizada, mesmo que o sal obtido seja solúvel, a reação
ocorrerá no sentido de formar as moléculas de água.
o Reações de precipitação:
Podemos considerar reações entre:
Sais entre si: neste caso, deverá existir no produto um sal de pouca solubilidade. A reação é no sentido
do solúvel para o não solúvel. Se todos os sais envolvidos forem solúveis, não haverá reação química e
sim uma mistura.
Exemplo:
2 KI + Pb(NO3)2 ?
2K
+
+ 2 Cl
–
2 KNO3
+ PbI2
–
Pb2+ + 2 NO3
? 2 K+
+ 2 NO3
–
+
Ácido com sal: considerando apenas a influência do sal na ocorrência da reação, esta
ocorrerá no
sentido de formação do sal pouco solúvel.
: HBr +
:
H+ + Br –
?
+
HNO3
–
+ NO3
+
H+ + NO3
–
+
Base com sal: neste caso poderá haver formação de uma base menos solúvel ou um sal menos solúvel
que os reagentes.
Exemplos:
2 NaOH + Cu(NO3)2
2 Na
+
+ 2 OH
Ca(OH)2
–
?
+
–
–
+ 2 NO3
+ Na2SO4 ?
Ca2+ + 2 OH
2 NaNO3
+ 2 Na
+
?
+
2 Na+ + 2 NO3
–
+
2 NaOH + CaSO
–
SO42
?
2 Na
+
+ 2 OH
–
+
o Reações que originam ácido ou base fracos:
Formação de ácido fraco: neste caso teremos a reação de um ácido com um sal onde a formação de
ácido mais fraco que aquele presente nos reagentes é o fator responsável pela ocorrência da reação.
Exemplo:
Na3BO3
3 Na+
+ 3
?
3 NaNO3
BO33– + 3 H+ + 3 NO3
–
+ H3BO3
? 3 Na+
+ 3 NO3
–
+
Formação de base fraca: neste caso teremos a reação de uma base com um sal onde a formação de
base mais fraca que aquela presente nos reagentes é o fator responsável pela ocorrência da
Exemplos:
2 NaOH + Cu(NO3)2 ?
2 Na+
+ 2 OH –
+
2 NaNO3
+ 2 NO3
–
?
- 91 -
+ Cu(OH)2
2 Na+
+ 2 NO3
–
+
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
NaOH + NH4NO3
Na+
+ OH–
+
?
+
NaNO3
NO3
–
+ NH4OH
? Na+
+ NO3
–
+
o Reações que produzem ácido ou base voláteis:
Formação de ácido volátil: neste caso teremos a reação de um ácido com um sal onde a formação de
ácido mais volátil que aquele presente nos reagentes é o fator responsável pela ocorrência da reação.
Exemplo:
NaCN +
Na
+
?
–
+ CN
NaNO3
+
H + NO3
–
? Na
+ HCN
+
+ NO3
–
+
Formação de base volátil: a única base volátil é a amônia, que existe em equilíbrio com os íons NH4+
e OH– presentes em solução.
Exemplo:
NaOH + NH4NO3
Na
+
–
+ OH
+
?
+
NaNO3
NO3
–
+ NH4OH
? Na+
+ NO3
–
+
o Reações em que intermediariamente se forma um composto instável:
Há ácidos que são instáveis, isto significa que, na verdade, eles existem por muito pouco tempo; logo
que são produzidos decompõem-se em outras substâncias. Relembrando:
Á cidos instáveis
Ácido carbônico:
?
Ácido sulfuroso:
?
Ácido tiossulfúrico:
?
Exemplo:
2 HClO4
2 H+
+ CaS2O3
+ 2 ClO4
–
?
Ca(ClO4)2
+ H2O + SO2 +
+ CaS2O3 ? Ca2+ + 2 ClO4
Observação
? CO
exotérmica, rápida, irreversível, de oxi-redução
- são reações de oxi-redução
todas
- são reações sem oxi-redução
todas
- 92 -
síntese
–
+ H2O SO2 +
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
EXERCÍCIOS
1)
Classifique as seguintes reações quanto à variação do nox e quanto ao tipo de substâncias envolvidas
a) 4 Al + 3 O2 ?
b) MgBr2 +
Cl2
d) BaCl2
2 Al2O3
?
MgCl2
+ Br2
?
+
e) Sn + 2 Cl2
?
BaCrO4
+ 2
SnCl4
2 HNO3
f) N2O5 +
2 KCl + 3 O2
H2O
?
2 NaCl + SO2
h) Na2SO3 + 2 HCl ?
2)
Quais das seguintes reações são de oxirredução
a) KCl + NaNO3
?
b) H2
HF
KNO3
+ F2 ? 2
c) Al2S3
H2O
?
3)
+
+
2 Al(OH)3
?
+ 6
+ 3 H2S
2 Na + 3 H2
+ 3 SiO2
+ 2 Na2CO3
? 3 CaSiO3
+ 5 CO +
Considerando as reações de dupla troca abaixo, determine em que sentido elas deverão ocorrer, justificando
sua resposta:
a) AgCl + NaNO3
------- NaCl + Ag NO3
b) H2SO4
------- Ba SO4
c) Cu(OH)2
-
+ BaCl2
+ 2 HCl
+ 2 NaNO3 --- 2 NaOH +
d) 2 HCl + Na2SO ------- 2 NaCl + H2SO4
e) NH4Cl + KOH ------f) CaCO3
NaC
+2
------
KCl + NH4OH
Na2CO3
+
4) Escreva a equação da reação que ocorre quando se adiciona uma solução de ácido sulfúrico a uma solução
de sulfeto de potássio. O que ocorreria se nós misturássemos ácido sulfídrico com sulfato de potássio?
5) Ao se adicionar gradativamente uma solução aquosa de Ba(OH)2 a uma solução aquosa de
H2SO4, a condutividade elétrica da solução resultante vai diminuindo, passa por um valor praticamente
nulo e, em
6) Verifique a possibilidade de reação entre uma solução de hidróxido de amônio e as soluções abaixo. Em
caso positivo, equacione o processo.
a) nitrato de alumínio
b) cloreto de potássio
c) nitrato de chumbo II
7) Utilizando adequadamente soluções aquosas de Na2CO3, H2SO4, KNO3, Ba(OH)2, NaOH, NaNO3 e
NaCl, escreva a equação de uma reação entre dois desses compostos, com formação de :
a) precipitado
b) ácido volátil binário
8) Escreva as equações molecular e iônica entre:
a) Cloreto de potássio e nitrato de chumbo II
- 93 -
c) óxido gasoso
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
b) Hidróxido de sódio e nitrato cúprico
c ) Ácido bromídrico e nitrato de prata
- 94 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
d) Sulfato de alumínio e cloreto de bário
e) Tiossulfato de cálcio e ácido perclórico
f)
Ácido fosfórico e sulfeto de sódio
g) Fosfato de amônio e cloreto de cálcio
h) Nitrato ferroso e cromato de lítio
i) Dicromato de potássio e nitrito de bário
9) Escreva as equações das reações entre solução aquosa de ácido sulfúrico e:
a) alumínio
b) óxido de zinco
c) cloreto plumboso
10) Escreva as equações moleculares das seguintes reações
a) magnésio e oxigênio
b) decomposição da água
c) ferro com uma solução de sulfato cúprico
d) óxido de potássio e água
e) decomposição térmica de carbonato de cálcio
f) cobre com uma solução de nitrato de prata
g) síntese do ácido sulfúrico
h) decomposição do peróxido de hidrogênio
i) síntese do ácido clorídrico
11) Dispondo-se de CaO(s), Ca°(s) , SO3(g) e de soluções aquosas de ácido sulfúrico, ácido
clorídrico, hidróxido de cálcio e cloreto de cálcio, equacione todas as reações possíveis para a obtenção de
sulfato de
cálcio.
+
12) A água dura caracteriza-se por apresentar alto teor de íons cálcio, Ca2 , sendo que grande pa
desses cátions provém do bicarbonato, Ca(HCO3)2, que é solúvel .O uso dessa água
apresenta certos
inconvenientes como :
+
a) No processo de lavagem, o sabão RCOO– Na (R = cadeia longa de hidrocarboneto) precipita como sa
de cálcio, dificultando a limpeza;
b) Em caldeiras industriais, no processo de aquecimento, o bicarbonato de cálcio decompõe liberando gás
13) Quando se junta um ácido forte e uma base forte, quaisquer que sejam, ocorre uma única reação comum.
Qual é essa reação? E por que ocorre?
14) Complete as reações de deslocamento possíveis, equilibrando-as
a) Zn + HCl
b)
Ag + HI
c) Pb + AgNO3
d)
Ca +
e) Mg + KBr
f) Sn +
h) Zn(NO3)2
g) Al +
i)
Cl2
+
j)
Na + H2O
15) Equacione:
a)
alumínio + hidrácido forte
c) metal alcalino + diácido
b) magnésio + triácido de
fósforo
- 95 -
Escola Estadual de Educação Profissional [EEEP]
Profissional
Ensino Médio Integrado à Educação
f) óxido básico +
e) cloro + iodeto de metal alcalino
terroso
16) Justifique a ocorrência das seguintes reações
a) Mg + CuSO4
?
MgSO4
b) Na2S + 2 HCl
?
2 NaCl + H2S
c) AgNO3
NaOH
+
?
AgOH + NaNO3
?
K3PO4
d) H3PO4
KOH
+ 3
?
2 NaCl + H2O +
CO2
e) Na CO
+ 2
?
+ Cu
+ 3 H2O
17) Escreva equações que permitam obter, por pelo menos dois processos, as seguintes substâncias:
a) sulfato de potássio
b) hidróxido de cálcio
c) cloreto de prata
d) magnésio
e) anidrido sulfuroso
f) cromato de sódio
g) ácido fosforoso
h) gás carbônico
i) amônia
j) oxigênio
18) Verifique se as seguintes reações ocorrem ou não. Justifique suas respostas
?
a) K +
b) ZnSO4
+ Cu ?
c) AlCl3
?
+ 3 LiOH
d) H2CO3
RbNO3
KCl + Na
CuSO4
+ Zn
Al(OH)3
?
+ 2
+ 3 LiCl
Rb2CO3
+ 2
2 NaF +
Br2
e) 2 NaBr + F
?
19) Considere as seguintes soluções aquosas:
Solução
CuSO4
KNO3
Na2SO4
K2CrO4
Cor
Azul
Incolor
Incolor
Amarela
A partir da tabela acima, é possível concluir que os íons responsáveis pelas cores azul e amarela são:
a)
Cu2+ e SO42
b) K+ e CrO42 –
c) K+ e SO42 –
d) Na+ e NO3 –
20) Escreva as seguintes reações
a) Síntese do óxido de cálcio a partir do cálcio metálico
b) Decomposição da água
c) Decomposição térmica do clorato de potássio
d) Síntese do gás clorídrico
e) Deslocamento do bromo, na forma de íon brometo em solução aquosa, pelo cloro
f) Decomposição térmica do carbonato de cálcio
- 96 -
e) Cu2+ e CrO 42 –
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
21) Complete as equações abaixo, equilibrando-as, e justificando sua ocorrência
a) Zn + HNO3
b) Na + FeCl3
c) Cl2
d) H3PO4
+ Ca(OH)2
+ KBr
e) HCl + Ba(OH)2
g) H2SO4
f) KOH + Cr(NO3)3
+
22) Complete apenas as reações que ocorrem, justificando o porquê da ocorrência ou não
a) Cl2
NaF
+
b) Ca + HCl
d) Na + AgNO3
c) H2S +
Na2SO4
f) HBr +
NaCN
e) KCl +
Hg(NO )
23) O sulfato de amônio (substância utilizada na agricultura como fertilizante) pode ser obtido pela reação do
gás amônia com qual substância? Equacione a reação.
24) Para combater o fogo em materiais elétricos ou líquidos inflamáveis, podemos fazer uso de um
tipo de
extintor de incêndio que funciona tendo por base a reação entre ácido sulfúrico e bicarbonato d
sódio. Escreva a equação da reação química que ocorre. Qual, dentre os produtos formados, é a
25) Na análise qualitativa de certa substância adicionou-se ácido clorídrico, obtendo-se um precipitado branco
que escurece na presença de luz. Podemos afirmar que essa substância possui:
a) Pb2+
b) Ag+
d) Cu2+
c)
e) K+
26) Um estudante realizou a seguinte seqüência de operações:
I) Dissolveu óxido de sódio em água, obtendo a solução A.
II) Sobre a solução A adicionou ácido sulfúrico (aq) suficiente para completar a reação, obtendo a solução B.
III) À solução B adicionou cloreto de bário (aq), obtendo um precipitado branco. Após a reação,
filtrou o sistema.
IV) A solução resultante da filtração foi evaporada até sobrar um resíduo branco.
Pede-se:
a) Quais as equações moleculares das reações obtidas nas operações I, II e III?
b) Qual o nome e a fórmula do resíduo sólido final, obtido na evaporação?
27) Obter :
a) Cianeto de ferro III, através de uma reação de dupla troca.
Hidrogênio, através de uma reação de simples troca.
c) Sulfito de cálcio, através de uma reação de síntese.
d) Oxigênio, através de uma reação de decomposição.
28) Objetos de cobre ficam revestidos, com o passar do tempo, por uma camada verde chamada de azinhavre ou
zinabre, que é uma mistura de: carbonato e hidróxido de cobre II. Essa camada é removida, por donas de casa,
com vinagre (solução de ácido acético, HAc). Justifique a situação quimicamente.
29) Água e tetracloreto de carbono, cuja fórmula é CCl4, são líquidos incolores imiscíveis, sendo o tetracloreto
de carbono mais denso. O brometo de potássio é um sal branco solúvel na água.
- 97 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
Quando borbulhamos cloro em uma solução aquosa de KBr, observamos que ela passa de
incolor a
amarelada.
Em seguida, adiciona-se tetracloreto de carbono líquido, um solvente orgânico. Formam-se
duas fases, sendo a aquosa a superior. Agita-se e observa-se que a cor amarelada vai
desaparecendo da fase aquosa ao mesmo tempo em que a camada inferior se torna alaranjada.
Baseado no texto acima, resolva as questões abaixo:
a) Equacione na forma molecular, a reação de cloro com brometo de potássio em solução aquosa.
b) Suponha que em vez de KBr usássemos NaBr. Haveria diferença visual? Por quê?
c) Equacione na forma iônica a reações correspondentes às questões a e b.
d) Que substância é responsável pela cor amarelada da fase aquosa?
e) Formule uma hipótese para explicar o que deve acontecer quando se adiciona tetracloreto de carbono. Tratase de reação química?
f) Esquematize o tubo de ensaio contendo a mistura final. Indique que substâncias devem estar presentes em
30) Mergulha-se uma placa limpa de zinco em uma solução azul de sulfato de cobre II. Observa-se que a placa
fica recoberta por um depósito escuro e que, passado algum tempo, a solução se torna mais clara. Removido o
depósito, constata-se que a placa se apresenta corroída. Explique o que ocorreu:
a) na placa de zinco
b) na solução
31) Quatro elementos hipotéticos, A, B, C e D, formam em solução aquosa A2+, B2+,
Considere as informações esquematizadas abaixo sobre reações que podem ou não ocorrer:
A + B2+
A2+ +
2+
não ocorre
D + B
2+
C + A
C2+ +
a) Coloque os quatro elementos em ordem crescente de reatividade. Justifique sua resposta.
b) Qual espécie tem mais tendência a ceder elétrons? E a receber elétrons?
e D2+.
RESPOSTAS
1)
a) Síntese - reação de oxirredução
b) Simples troca ou deslocamento - reação de oxirredução
c) Decomposição - reação sem oxirredução
d) Dupla troca - reação sem oxirredução
e) Síntese - reação de oxirredução
f) Síntese - reação sem oxirredução
g) Decomposição - reação de oxirredução
h) Dupla troca - reação sem oxirredução
2)
b–d–e
3) a) NaCl + Ag NO3 ?
b) H2SO4
– formação de produto insolúvel (precipitado branco)
? BaSO4 + 2 HCl – formação de precipitado branco (BaSO4) e ácido volátil (HCl)
+ BaCl2
c) 2 NaOH + Cu(NO3)2
d) 2 NaCl + H2SO4
AgCl + NaNO3
? Cu(OH)2
+ 2 NaNO3 – formação de produto insolúvel (precipitado azul)
? 2 HCl + Na2SO4
– formação de produto volátil (HCl)
e) NH4Cl + KOH ? KCl + NH4OH – formação de base fraca e volátil (NH4OH)
f) Na2CO3
+ CaCl2 ?
4) H2SO4 +
ionizado
K2S
?
CaCO3
K2SO4
+ 2 NaCl – formação de produto insolúvel (precipitado branco)
+ H2S . Não ocorreria reação, pois haveria formação de produto mais
- 98 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
5) Ba(OH)2 + H2SO4 ? BaSO4(s) + 2 H2O . Com a adição do hidróxido de bário à solução
de ácido sulfúrico, há formação gradativa de sulfato de bário, produto insolúvel, que conduz pouca
eletricidade. Quando todo o H2SO4 é neutralizado pela base, o que existe no meio reacional
é BaSO4
e
água, o que
torna a condutividade praticamente nula uma vez que o sal é
insolúvel e a água épouquíssimo ionizada.
Ao continuarmos com a adição do hidróxido de
bário, estamos colocando no meio uma base forte, bastante dissociada e, em conseqüência disto,
aumenta novamente a condutividade da solução.
6) a)3 NH4OH
Al(OH)3
+
Al(NO3)3
? 3 NH4NO3
+
b) NH4OH + KCl – não ocorre reação, haveria a formação de uma base forte
c)
2 NH4OH +
7) a) Ba(OH)2
b) H2SO4
Pb(NO3)2
+ H2SO4
8) a) 2 KCl
PbCl2
+ Na2CO3
+
Pb(NO3)2
+ 2 Cl –
d) 3 BaCl2
? 2 KNO3
2 H+
f)
HNO3
+ Ag+
3 Ba 2+ + 6 Cl –
2 H3PO4
–
6 NH4+ + 2 PO4
+ CaS2O3
i) Ba(NO2)2
–
–
? 2 Na+
–
+ PbCl2
–
+ 2 NO3
+ Cu(OH)2
–
+ AgBr
+ 2 AlCl3
2–
+ 6 Cl –
2 Al3+
+ 3 BaSO4
+ H2O + SO2 + S
Ca2+ + 2 ClO4
–
+ H2O + SO2 + S
+ 3 H2S
+ 2 PO4
6 NH4Cl +
2 LiNO3 +
+ 2 Li + + CrO4
2–
+
+ 2 K + + Cr2O7
3–
+ 3 H2S
Ca3(PO4)2
6 NH 4+ + 6 Cl– + Ca3(PO4)2
+ 3 Ca 2+ + 6 Cl–
+ K2Cr2O7 2 KNO2
Ba 2+ + 2 NO2
–
+ 3 S 2 – 6 Na+
3–
+ 2 NO3
+ Cu(OH)2
H+ + NO3
2 Na3PO4
+ Li2CrO4
Fe 2+ + 2 NO3
?
Ca(ClO4)2
+ 3 CaCl2
2 K+
?
+ 2 Al3+ + 3 SO4
2 H3PO4 + 6 Na+
h) Fe.(NO3)2
–
3 BaSO4
+ 3 Na2S
g) 2 (NH4)3PO4
–
+ AgBr
+ NO3
+ CaS2O3
+ 2 ClO4
+
? 2 NaNO3
+ Al2(SO4)3
e) 2 HClO4
+ 2 HCl
+ Cu2+ + 2 NO3
c) HBr + AgNO3 ?
+ Br –
+ 2 H2O
+ Pb2+ + 2 NO3
+ 2 OH –
2 Na+
+ Pb(OH)2
? Na2SO4 + H2O + CO2
b) 2 NaOH + Cu(NO3)2
H+
BaSO4
+ 2 NaCl ? Na2SO4
c) H2SO4
2 K+
?
? 2 NH4NO3
FeCrO4
+ 2 NO3– + FeCrO4
2 Li+
BaCr2O7
2–
2 K+
+ 2
- 99 -
–
NO2
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
+ BaCr2O7
- 100 -
Escola Estadual de Educação Profissional [EEEP]
Profissional
9) a) 2 Al + 3 H2SO4
b) ZnO + H2SO4
Ensino Médio Integrado à Educação
Al2(SO4)3
ZnSO4
c) PbCl2 + H2SO4
+ 3 H 2O
PbSO4
10) a) 2 Mg + O2
+ 3 H2
+ 2 HCl
2 MgO
c) Fe + CuSO4
b) 2 H2O
FeSO4
e) CaCO3
+ Cu
d) K2O + H2O
CaO + CO2
Ag g) SO3
2 H2
+ O2
2 KOH
f) Cu + 2 AgNO3 Cu(NO3)2
+ H2O
H2SO4
h) 2 H2O2
+2
2 H2O +
O2
i) H2
+ Cl2
2 HCl
11) CaO + H2SO4
?
C aSO4
H2O Ca + H2SO4
+ SO3
?
H2O CaCl2
+ OH – ?
/
Ca(OH)2
CaSO4
+ H2SO4
b) Ca(HCO3)2
13) H+
?
CaSO4
12) a) Ca(HCO3)2
+ H2O
+ H2SO4 ? CaSO4
+ H2
/
+ 2
Ca(OH)2
+
? CaSO4
+ 2 HCl
/
CaO + SO3
+ 2 RCOO– Na+ ? (RCOO–)2Ca2+
? CaCO3
? CaSO4
+ 2 NaHCO3
+ H2O + CO2
H2O
Ocorre porque há formação de um composto pouco ionizado (H2O)
14) a) Zn + 2 HCl ? ZnCl2
+ H2
b) Ag + HI - não ocorre ( a prata é menos reativa que o hidrogênio)
c) Pb + 2 AgNO3 ?
d) Ca + SnCl2
?
Pb(NO3)2
CaCl2
+ 2 Ag
+ Sn
e) Mg + KBr – não ocorre ( o magnésio é menos reativo que o potássio)
f) Sn + Zn(NO3)2 – não ocorre ( o estanho é menos reativo que o zinco)
g) 2 Al + 3 Cu(NO3)2 ?
2 Al(NO3)3
+ 3Cu
h) Na + H2O? NaOH + ½ H2
i) Cl2
j) I2
+ 2 KBr ? 2 KCl + Br2
+ NaCl – não ocorre ( o iodo é menos reativo que o cloro)
15) a) 2 Al + 6 HCl ? Al(Cl)3
c) 2 Na + H2SO4 ? Na2SO4
e) Cl2
g) SO3
16)
+ CaI2 ?
CaCl2
+ 3 H2
b) 3 Mg + 2 H3PO4
?
+ H2
d) Zn + 2 HAc ?
Zn(Ac)2
+ I2
Mg3(PO4)2
+ 3 H2
+ H2
f) CaO + H2O ? Ca(OH)2
+ H2O ? H2SO4
a) Magnésio é mais reativo que cobre – simples troca
b) Formação produto menos ionizado (H2S é ácido fraco) – dupla troca
c) Formação de produto insolúvel e pouco dissociado (AgOH é base fraca) – dupla troca
d) Formação de produto pouco ionizado (H2O) – dupla troca
e) Formação de produto pouco ionizado (H2O) e de produto volátil (CO2) – dupla troca
f) Cloro é mais reativo que bromo – simples -troca
101
-
Escola Estadual de Educação Profissional [EEEP]
Profissional
Ensino Médio Integrado à Educação
17)
a) H2SO4
+ H2
+ 2 KOH ? K2SO4 + 2 H2O / H2SO4
b) CaO + H2O ? Ca(OH)2
c) HCl + AgNO3 ?
d) 2 K + MgCl2
e) S + O2
? 2 KCl + Mg
? SO2
/
i) N2
? 2 NH3
Ca
/
? Ca(NO3)2
Na2O + CrO3
+ 2 HCl
/
NH4Cl + NaOH ? NaCl + NH3
H2
? Na2CrO4
2 NaCl + H3PO3
CaCO3
H2O ?
+ 2 HCl ?
?
/
2 H2O + O2 /
+ Mg
2 NaCl + H2O + SO2
+ 2 H2O /
Na2HPO3
+ H2
? A gCl + KNO3
+ Mg(NO3)2
+ 2 HCl ?
Na2CrO4
? CO2
+ 3 H2
j) 2 H2O2 ?
18)
?
? Ca(OH)2
KCl + AgNO3
/
Na2SO3
+ 3 H2O ? 2 H3PO3
h) C + O2
Ca + 2 H2O
AgCl + HNO3 /
f) 2 NaOH + H2CrO4
g) P2O3
/
+ K2O ? K2SO4 + H2O / H2SO4 + 2 K ? K2SO4
CaCl2
+ H2O + CO2
+ H2O
+ ½ O2
a) Ocorre, potássio é mais reativo que sódio.
b) Não ocorre, cobre é menos reativo que zinco.
c) Ocorre, há formação de produto insolúvel e pouco dissociado (Al(OH)3 é uma base fraca).
d) Não ocorre, H2CO3 é instável e mais fraco que HNO3.
e) Ocorre, flúor mais reativo que bromo.
f) Não ocorre, platina menos reativa que hidrogênio
19) e
20) a) 2 Ca
+ O2
2 CaO
c) 2 KClO3
e) Cl2
b) 2H2O
2 KCl + 3 O2
+ 2 B r–
2 Cl –
+ Br2
21) a) Zn + 2 HNO3 ? Zn(NO 3)2
b) 3 Na + FeCl3 ?
c) Cl2
f)
+ 2 Al(CN)3
h) 3 Na2S + 2 Fe(NO3)3
CaO + CO2
zinco mais reativo que hidrogênio
+ 6 H2O
– formação de produto insolúvel
– formação de produto pouco ionizado (H2O)
+ Cr(OH)3 – formação de produto insolúvel e pouco dissociado
? Al2(SO4)3
?
CaCO3
2 HCl
sódio mais reativo que ferro
BaCl2 + 2H2O
? 3 KNO3
+ Cl2
+ O2
– cloro mais reativo que bromo
+ 3 Ca(OH)2 ? Ca3(PO4)2
f) 3 KOH + Cr(NO3)3
g) 3 H2SO4
–
3 NaCl + Fe
e) 2 HCl + Ba(OH)2 ?
–
+ H2
+ 2 KBr ?2 KCl + Br2
d) 2 H3PO4
d) H2
2 H2
6 NaNO3
+ 6 HCN
+ Fe2S3
22) a) Não ocorre, cloro menos reativo que flúor .
- 102 -
– formação de ácido fraco e volátil (HCN)
– formação de produto insolúvel
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
c) Não ocorre, haveria formação de ácido mais forte e fixo.
d) Na + AgNO3
?
NaNO3
+ Ag , ocorre porque sódio é mais reativo que prata.
e) A reação não ocorre pois todos os sais são solúveis.
f) HBr + NaCN ?
g) BaCl2
NaBr + HCN, ocorre pois há formação de ácido fraco e volátil.
+ H2SO4 ?
BaSO4
h) NH4Cl + KOH ?
23) 2 NH3
+ 2 HCl, ocorre pois há formação de precipitado e de ácido volátil
KCl +
NH3 + H2O, ocorre pois há formação de base fraca e volátil
+ H2SO4 ? (NH4)2SO4
24) H2SO4
+ 2 NaHCO3
? Na2SO4
+ 2 H2O + 2 CO2 ;
O gás carbônico (CO2) é a substância responsável pela extinção do fogo.
25) b
26) a)
I) Na2O + H2O ?
II) 2 NaOH
+
H2O III) Na2SO4
2 NaOH
H2SO4 ? Na2SO4
+ BaCl2
+
2
?
BaSO4
+ 2 NaCl
b) Cloreto de sódio- NaCl
27) a) Fe(NO3)3
+ 3 NaCN ?
c) CaO + SO2
28)
CuCO3
a) Cl2
+ 3 NaNO3
CaSO3
+ 2 HAc
Cu(OH)2
29)
?
Fe(CN)3
+ 2 HAc
d) 2H2O
? Cu(Ac)2
Cu(Ac)2
+ 2 KBr ? 2 KCl
b) Zn + 2 HNO3
+
?
? Zn(NO3)2
2 H2
+ H2
+ O2
H2O + CO2
+
2 H2O
+ Br2
b) Não, pois o que se pode visualizar é a coloração amarela da substância bromo (Br2) que foi produzida
em ambos os casos.
c) Cl2
+ 2 Br – ?
2 Cl –
+ Br2
d) Bromo (Br2)
e) Ao adicionarmos tetracloreto e agitarmos, o Br2 por ser apolar e tendo maior afinidade por ele do
que pela
água,
transfere-se
em
grande parte
para
camada inferior (a
de
CCl4) onde
possui uma
coloração característica (laranja) e com isso a cor amarela
existente na fase aquosa vai desaparecendo. Trata-se de uma mistura heterogênea onde há por parte de um
dos componentes da mistura (Br2) maior afinidade por uma fase da mistura do que pela outra.
f)
?
H2O Fase aquosa: K+ , Cl – e algum Br2 ( que dá a ela a coloração amarelada)
? CCl
Fase de CCl : Br (que dá a ela a coloração laranja)
- 103 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
30) a) Sobre a placa de zinco forma-se um depósito de cobre metálico (Cu°) (que possui uma
coloração avermelhada) e a placa vai ficando corroída pois o zinco, antes na forma de substância
psiam
sspalnesdo(pZanr°a)a, svoaluição na forma de íon Zn2+.
b) Na solução inicialmente azul devido aos íons Cu2+, vai havendo um descoramento, já que estes íons estão
se lutrçaãnosfsoãromoasndíoonesm
doczoibnrceo m
(Zentá2l+i)cqou(eCsuã°o) iqnuceolvoareisa.derindo à placa de zinco e os íons que estão entrando na
Equação molecular: Zn° + CuSO4
Equação iônica:
Zn° + Cu
2+
ZnSO4
2–
+ SO4
+ Cu°
Zn2+
+ SO42– + Cu°
O íon sulfato (SO42–) é espectador da reação.
31)
A +
B2+
A2+ + B
A> B
2+
não ocorre
D < B
D + B
2+
C + A
Ceder elétrons: C
C
2+
+ A
C >A
Receber elétrons:D+
- 104 -
ordem crescente: D < B < A < C
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
CAPÍTULO 7
REAÇÕES DE OXI-REDUÇÃO
Muitas reações químicas são de oxi-redução, ou seja, ocorrem por transferência de elétrons de uma ou
mais espécies químicas para outra(s).
A oxidação é uma transformação química na qual um átomo ou grupo de átomos p e rd e
e l é trons
ocasionando um aumento do número de oxidação. A redução por sua vez, se dá quando um átomo ou grupo de
átomos ganha elétrons, ocasionando uma diminuição do número de oxidação.
Os processos de oxidação e redução são sempre simultâneos: o número total de mols de
elétrons
A
e se reduz provoca a perda de elétrons em outra espécie,
conseqüente oxidação, sendo por isso chamada de ag e n te o xi d an te ou, simplesmente,
Inversamente, a
se oxida e, perdendo elétrons, obriga outra espécie a reduzir-se
sendo, por isso, chamada de agente redutor ou redutor
BALANCEAMENTO DAS EQUAÇÕES DE OXI-REDUÇÃO
Já estudamos algumas reações de oxi-redução: as de deslocamento, algumas de síntese e algumas
de decomposição, de fácil balanceamento, não necessitando de nenhum método especial para que o equilíbrio
dos átomos fosse feito. Existem, porém, reações de oxi-redução que não se enquadram nos tipos
de reações já estudados e que, devido ao número maior de reagentes e produtos presentes em suas equações,
balanceá-las nem sempre é uma tarefa fácil. Neste caso é necessário utilizar-se um método que
facilite a determinação dos coeficientes da reação.
.
Em geral, nas reações de oxi-redução o método das ―tentativas‖ não é prático. Por isso, o processo
mais utilizado consiste em determinar a proporção entre oxidante e redutor e, depois, continuar o
balanceamento por tentativas.
Esta proporção entre oxidante e redutor pode ser determinada por dois métodos: método de oxi-redução
e método do íon-elétron.
O método de oxi-redução é mais utilizado em equações moleculares; já o método do íon-elétron é mais
adequado ao equilíbrio de equações iônicas ou de processos onde haja mais de uma oxidação ou redução.
- 105 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
MÉTODO D E OXI-REDUÇÃO
1.º Passo :
Procurar todos os elementos que sofrem oxi-redução e determinar seus números de oxidação
antes e depois da reação.
2.º Passo :
Calcular o total de elétrons perdidos e recebidos pelos elementos que sofrem oxidação e
redução, respectivamente ( variação total =
). Isso é feito multiplicando a variação do nox pela maior
atomicidade com
= [variação do nox do elemento] x [ (maior) n.º de átomos do elemento na equação]
3.º Passo :
O total de elétrons perdidos será invertido (―cruzado‖) com o total de elétrons recebidos ou seja, o do
oxidante será o coeficiente do redutor e vice-versa.
4.º Passo :
Escolha do membro da equação em que o total de elétrons perdidos ou recebidos
(coeficientes da equação) será colocado.
5.º Passo :
Após determinarmos os coeficientes iniciais, a seqüência será feita por tentativas.
Primeiro exemplo
Balancear a equação:
P + HNO3
NO
+ H2O
?
H3PO4
+
+5 Redução : cada N ganha 3 e
P + HNO3 + H2O ?
+2
H3PO4 + NO
0
+5
Oxidação : cada P perde 5 e
2º Passo:
=5 . 1 =
= 3 . 1=
P + HNO3 + H2O ? H3PO4
3º e
+
4º Passos
=5
= 3
3 P + 5 HNO3 + H2O ?
- 106 -
H3PO4 +
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
Poderíamos ter efetuado as etapas (2) e (3) no 2.º membro, com o H3PO4 e NO; no caso,
isso seria indiferente, já que atomicidade é a mesma nos dois membros e ambos não repetem seus nox.
5º Passo :
3 P + 5 HNO3 + H2O ?
3 H3PO4 + 5
Contamos 3 P
Contamos 5 N
Por fim falta acertar o coeficiente do H2O, o que pode ser feito pela contagem dos átomos de hidrogênio
ou de oxigênio:
3 P + 5 HNO3 + 2 H2O?
Segundo
3 H3PO4 + 5
exemplo : Balancear a equação :
K2Cr2O7
+ Na2C2O4 +
+3
K2SO4
?
+ Cr2(SO4)3 +
+4
Oxidação: cada C perde 1 e
K2Cr2O7 + Na2C2O4 + H2SO4 ?
K2SO4 + Cr2(SO4)3 +
+6
Na2SO4 + H2O +
Na2SO4 + H2O +
+3
Redução: cada Cr recebe 3 e
Oxidação: cada C perde 1 e
+3
+4
)
Total perdido (
2 K2Cr2O7 + 6 Na2C2O4 + H2SO ?
1.2 =
2e
K2SO4 +Cr2(SO4)3 + Na2SO4 + H2O + CO
Redução : cada Cr ganha 3 e –
+6
+3
Total ganho (
)
3.2=
6
O coeficiente 2 foi dado ao K2Cr2O7 porque o nox = +6 do Cr não se repete e também porque
Cr no
K2Cr2O7 apresenta maior atomicidade.
O coeficiente 6 foi dado ao Na2C2O4 porque o nox = +3 do C não se repete e também porq
o C no
Na2C2O4 apresenta maior atomicidade.
- 107 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
5º Passo :
Contamos 2 K e 2 Cr
1 K2Cr2O7 + 3 Na2C2O4 + H2SO4
1K2SO4 +1Cr2(SO4)3 + 3Na2SO4 + H2O +
?
Contamos 6 Na e 6 C
Estão faltando apenas os coeficientes H2SO4 no 1.º membro e H2O no 2.º membro. Contan
se os radicais SO42 no 2.º membro, encontramos 7; temos então :
1 K2Cr2O7 + 3 Na2C2O4 + 7H2SO4
?
1K2SO4 +1Cr2(SO4)3 + 3Na2SO4 + H2O+ 6CO2
Finalmente, acertamos o coeficiente do H2O no 2.º membro, contando os átomos de hidrogênio (ou oxigênio) no
1.º membro :
1K2Cr2O7 + 3Na2C2O4 +7H2SO4
?
1K2SO4 +1Cr2(SO4)3 + 3Na2SO4 +7H2O +6CO2
Balancear a equação :
MnO2 + HCl ?
MnCl2 + H2O +
1º Passo :
-1
MnO2 +
Oxidação: cada Cl perde 1 e –
0
MnCl2 + H2O +
?
+4
+2 -1
Redução: cada Mn recebe 2 e–
2º Passo :
=2.1= 2
MnO2 +
3º e
?
MnCl2 +
=1.2= 2
+ Cl2
4º Passos
= 2
MnO2 +
?
= 2
2 MnCl2 + H2O + 2
O coeficiente 2 poderia ter sido colocado tanto no 1.ºmembro (MnO2) como no 2.º membro
(MnCl2) da equação já que não há manutenção do nox e a atomicidade é a mesma nos dois casos.
O coeficiente 2 foi dado ao Cl2 porque o nox = - 1
Cl no Cl2
apresenta maior atomicidade.
- 108 -
do Cl não se repete e também porque o
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
5º Passo:
Contamos
1 MnO2 + 4
?
Contamos
2 + 2 = 4 Cl
1 MnCl2 + H2O + 1
1 Mn
Finalmente, acertamos o coeficiente do H2O no 2º membro, contando os átomos de H ou de O, no 1.º membro :
1 MnO2 + 4
?
1 MnCl2 + 2 H2O + 1
?
K2SO4
Quarto exemplo : Balancear a equação :
KMnO4 + H2O2
+ H2SO4
–1
+ MnSO4
+ H2O +
Oxidação: cada O perde 1 e–
0
KMnO4 + H2O2 + H2SO4 ? K2SO4 + MnSO4 + H2O
+7
+2
Redução: cada Mn ganha 5 e–
O H2O2 pode atuar tanto como oxidante como redutor; neste caso, porém,
pode
oxidação, uma vez que o KMnO4 está sofrendo redução.
=5.1= 5
KMnO4 +
3º e
estar sofrendo
=1.2= 2
+ H2SO4 ?
K2SO4 + MnSO4 + H2O +
4º
= 5
= 2
2 KMnO4 + 5 H2O2 + H2SO4 ?
K2SO4 + MnSO4 + H2O + O2
O coeficiente 2 foi dado ao KmnO4 porque o nox = +7 do manganês não se repete. Poderia ter sido colocado
no MnSO4 pela mesma razão, já que ambos possuem a mesma atomicidade.
O coeficiente 5 foi dado ao H2O2. Poderia ter sido colocado no O2, já que H2O2 e O2 possuem o
mesmo coeficiente.
- 109 -
Escola Estadual de Educação Profissional [EEEP]
Profissional
Ensino Médio Integrado à Educação
5º Passo :
2 KMnO4 + 5 H2O2 + H2SO4
1 K2SO4
2 MnSO4 + H2O +
1 K2SO4
2 MnSO4 + H2O +
Contamos 2 K e 2 Mn
a seguir :
2 KMnO4 + 5 H2O2 + 3 H2SO4
Contamos 1 + 2 = 3 SO42–
a seguir :
2 KMnO4 + 5 H2O2 + 3 H2SO4
1 K2SO4
2 MnSO4 + 8H2O +
Contamos 10 + 6 = 16 H
Finalmente:
2 KMnO4 + 5 H2O2 + 3 H2SO4
1 K2SO4 + 2 MnSO4 + 8 H2O +
Contamos 8 + 10 = 18 e descontamos 8, dando 10 átomos de oxigênio
2 KMnO4 + 5 H2O2 + 3 H2SO4
1 K2SO4 + 2MnSO4 + 8H2O +
?
Quinto exemplo : Balancear a equação :
Cl2 +
NaOH
?
NaCl + NaClO3
Oxidação : cada Cl perde 5 e–
0
Cl2 +
NaCl +
?
0
+
+5
NaClO3 +
-1
Redução: cada Cl ganha 1 e –
Nesse caso, ocorre um tipo de reação chamada de auto oxi-redução, onde um mesmo elemento químico
em parte se oxida e em parte se reduz.
2º Passo :
=1.1=
=5.1= 5
Cl2 +
? NaCl + NaClO3 +
Evidentemente, nesse caso, os cálculos de só podem ser feitos no 2.º membro da equação.
- 110 -
Escola Estadual de Educação Profissional [EEEP]
3º e
Ensino Médio Integrado à Educação Profissional
4º
= 1
Cl2 +
= 5
5 NaCl + 1 NaClO3 +
?
5º Passo:
Contamos 5 + 1 = 6 N a
3Cl2 + 6
5 NaCl + 1 NaClO3 +
?
Contamos 5 + 1 = 6 Cl
Por fim falta acertar o coeficiente do H2O, o que pode ser feito pela contagem dos átomos de hidrogênio ou de
oxigênio:
3 Cl2 + 6 NaOH
?
5 NaCl + 1 NaClO3 + 3
EXERCÍCIOS
Acertar os coeficientes das equações abaixo pelo método de oxiredução,
1) KMnO4
+ FeSO4
+
?
K2SO4
2) MnO2
+ NaI + H2SO4 Na2SO4
3) Bi2O3
+ NaClO +
4) KMnO4
+ HCl
?
KCl
+ MnSO4
NaBiO3
MnCl2
+ Fe2(SO4)3
+ H2O +
+ NaCl +
+ H2O +
5) Hg + HNO3
Hg(NO3)2 + H2O +
6) Hg + HNO3
Hg(NO3)2 + H2O +
7) CuS + HNO3 ?
+ MnSO4
Cu(NO3)2 + S + NO +
?
?
10) HIO3
11) KClO3
+ HI
I2
+ H2SO4
12) C + HNO3 ? CO2
13) KMnO4
+ H2C2O4
14) Cu + HNO3 ?
+
? HClO4 + ClO2
+ K2SO4
+H2O
+ NO2 H2O
+ H2SO4
Cu(NO3)2
K2SO4
+ MnSO4
+ NO +
- 111 -
+ +
+
indicando os agentes oxidante
Escola Estadual de Educação Profissional [EEEP]
Profissional
15) Cu + HNO3 ?
16) HgS +
17) MnO2
18) NaBiO3
19) Br2
Cu(NO3)2
?
+
+ H2SO4
+ NaOH
20) Hg2(NO3)2 +
+ NO2
+
Hg(NO3)2 + S + NO
+
MnBr2 + Br2 +
?
+
Ensino Médio Integrado à Educação
?
Na2SO4
NaBr + NaBrO3
?
HNO3
+ Bi2(SO4)3
+
+
+
+ HgS +
RESPOSTAS
1) 2 KMnO4
+ 10 FeSO4
+ 8 H2SO4
+ 8 H2O Agente oxidante: KMnO4
2) MnO2
3) Bi2O3
+ 2 MnSO4
+ 5 Fe2(SO4)3
+ MnSO4
+ 2 H2O + I2
Agente redutor: NaI
+ 2 NaClO + 2 NaOH ?
+ H2O Agente oxidante: NaClO
2 KMnO4
K2SO4
Agente redutor: FeSO4
+ 2 NaI + 2 H2SO4 ? Na2SO4
Agente oxidante: MnO2
4)
?
+ 2 NaCl
Agente redutor: Bi2O3
+ 16 HCl ?
Agente oxidante: KMnO4
2 NaBiO3
2 KCl + 2 MnCl2
+ 8 H2O + 5 Cl2
Agente redutor : HCl
5) 3 Hg + 8 HNO3? 3 Hg(NO3)2 + 4 H2O + 2 NO
Agente oxidante: HNO3
6) Hg + 4
HNO3
Agente redutor:
?
Hg(NO3)2 + 2 H2O + 2 NO2
Agente oxidante: HNO3
7) 3 CuS + 8 HNO3
Hg
Agente redutor: Hg
?
3 Cu(NO3)2
4 H2O Agente oxidante: HNO3
+ 3 S + 2 NO +
Agente redutor:
?
CuS
Agente oxidante: K2Cr2O7
Agente redutor:
?
H2O2
Agente oxidante: H2O2
Agente redutor:
CrCl3
10)
3 I2
HIO3
+ 5 HI ?
+ 3 H2O
Agente oxidante: HIO3
Agente redutor:
HI
11)
?
2 KClO4 + 4 ClO2
6 KClO3
K2SO4
12)
+ 2 H2SO4
+ 2 H2O Agente oxidante: KClO3
C + 4 HNO3
?
CO2
Agente redutor:
+ 4 NO2
2 H2O Agente oxidante: HNO3
+ 2
KClO3
+
Agente
redutor:
13) 2 KMnO4
+ 5 H2C2O4
+ 3 H2SO4
?
Agente oxidante: KMnO4
Agente redutor:
14) 3 Cu + 8 HNO3
3 Cu(NO3)2
?
H2O Agente oxidante: HNO3
15) Cu + 4 HNO3 ?
K2SO4 + 2 MnSO4
H2C2O4
+ 2 NO + 4
Agente redutor: Cu
Cu(NO3)2
+ 2 NO2
+ 2 H2O
- 110 -
+ 8 H2O + 10 CO2
Escola Estadual de Educação Profissional [EEEP]
16) 3 HgS + 8 HNO3?
Ensino Médio Integrado à Educação Profissional
3 Hg(NO3)2
H2O Agente oxidante: HNO3
17) MnO2
+ 4 HBr?
+ 3 S + 2 NO + 4
Agente redutor: HgS
MnBr2
+ Br2
+2
H2O Agente oxidante: MnO2
Agente redutor:
18)
2 NaBiO3
+ 2 H2O2
Agente oxidante: NaBiO3
19)
3 Br2
+ 6 NaOH ?
HBr
+ 4 H2SO4? Na2SO4
+ Bi2(SO4)3
+ 6 H2O + 2 O2
Agente redutor: H2O2
5 NaBr + NaBrO3
+3
H2O Agente oxidante e redutor: equação molecular – Br2
20) Hg2(NO3)2
+ H2S ? 2 HNO3
+ HgS + Hg
Agente oxidante e redutor: equação molecular – Hg2(NO3)2
Equações iônicas
Ao escrever equações de oxi-redução, deve-se tomar cuidado de escrever fórmulas
somente para compostos ou íons que possuem existência química verdadeira, como MnO2, H3AsO3,
HSO42 . Mesmo em solução, não existem espécies Mn4+, As3+ e As5+.
Quando se usa a convenção iônica para escrever fórmulas, observam-se as seguintes regras:
As substâncias iônicas são escritas na forma iônica somente se os íons estiverem separados uns dos outros
no meio em que ocorre a reação. Por exemplo, se o sal estiver sólido deve ser representado
pelo íon- fórmula.
Ácidos fortes devem ser escritos na forma iônica, mas os ácidos fracos são sempre escritos
forma molecular.
Bases fortes devem ser escritas na forma iônica e bases fracas, que são insolúveis, na forma
―molecular‖, assim como o hidróxido de amônio, que é fraca, apesar de ser solúvel.
Íons complexos devem ser escritos na sua forma complexa inteira. Ex: [Fe(CN)6]3-,
[Cu(NH3)4]2+ ,
[Ag(CN)2] Baseado nas regras citada, escreveremos equações iônicas sem os seus íons espectadores. Ao invés de
escrevermos:
3 H2S + 8 HCl + K2Cr2O7 ?
3 H2S + 8
+
+
?
3 S + 2 CrCl3
+ 7 H2O
3+
3 S + 2 Cr + 7 H2O
Neste caso o enxofre variou seu número de oxidação de – 2 para 0, oxidando-se e o cromo de +6 para
+3, reduzindo-se.
Outroexemplo:
Misturando-se solução de KMnO4 (permanganato de potássio) com solução de KI (iodeto de potássio)
em presença de H2SO4, obtém-se:
2 KMnO4
+
2 MnO4
10 KI + 8
?
+
+ 10 I + 16 H
1
?
6 K2SO4
H2O 2+
+ 2 MnSO4
+2
+ 5 I2
+ 8
zero
Verifica-se que o manganês do permanganato passou a Mn2+, tendo seu nox variado de +7 a
+2: o manganês reduziu-se. Por outro lado, o I – passou a I2 e, por isso, seu nox variou de –1 a zero: o iodo oxid
- 111 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
A reação de oxi-redução em questão pode ser desdobrada em duas etapas, chamadas de semi-reações,
assim
2 MnO4
+ 16 H+
+
?
10 I
?
2 Mn2+ + 8 H2O
5 I2
+ 10
(semi-reação de
(semi-reação de oxidação)
EXERCÍCIOS
1) Na reação: Ag2O + H2O2
? 2Ag + H2O + O2, a água oxigenada é oxidante ou redutora ? Expliqu
2) Caracterize o oxidante e o redutor em cada uma das reações que se seguem:
+
a) H2O2
+
Fe2+
+ 2H
2 Fe3
?
+ 2 H+ ?
c) 4 H2O2
+ 5 H2O2
+ 2 H2
I2 + H2O
+ PbS ? PbSO4
d) 2 MnO4
5 O2
+
+ 4 H2O
+ 6 H+ ? 2 Mn2+
+ 8 H2O
3) Escreva as equações das reações abaixo na forma iônica, excluindo os íons espectadores, apresentando
as
a) CrO3
+ 2 NaOH
Na2CrO4
b) Mg + ZnSO4 ?
+
Zn +
c) 2 Ag + 4 NaCN H2O + 1/2 O2 ?
d) Hg2(NO3)2
+
?
e) Cu + 8 HNO3
2 HNO3
2 Na[Ag(CN)2] + 2 NaOH
+ HgS +
? 2 NO + 3 Cu(NO3)2
+ 4
RESPOSTAS
1) É redutora pois oxida-se (passa de –1 a zero), perdendo elétrons que reduzem a prata de +1
a zero.
2)
a) H2O2 - oxidante ; Fe2+ - redutor
b) H2O2 – oxidante ; I
c) H2O2 – oxidante ; PbS - redutor
d) MnO4 - oxidante ; H2O2 - redutor
e) Ag - redutor
3) a) CrO3
+ 2OH –
b) Mg + Zn2+ ?
; NO3
- oxidante
? CrO42– + H2O
Zn + Mg2+
c) 2 Ag + 4 CN– + H2O + ½ O2
d) Hg22+ + H2S
? 2[Ag(CN)2] – + 2OH–
? 2H+ + HgS + Hg
e) Cu + 8 H+ + 2NO3–
?
2 NO + 3 Cu2+ + 4 H2O
- 112 -
- redutor
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
MÉTODO DO ÍON-ELÉTRON
Este método é o que melhor permite balancear equações iônicas abreviadas de reações de oxi-redução.
Por ele é possível balancear uma equação tendo apenas o conhecimento das espécies que se
oxidam e se reduzem e do meio no qual ocorre a reação (ácido ou básico). Não é necessário o conhecime
da equação
global da reação.
Abaixo são representadas as regras gerais deste método, que não devem ser encaradas de maneira rígida.
Existem variações destas regras. O mais importante é a compreensão da idéia geral do método a fim de que ele
possa ser utilizado corretamente.
Escreva um arcabouço da equação que especifique as espécies que contêm os elementos qu
sofrem
Escreva um arcabouço da equação parcial para a espécie que se reduz, fazendo o
Denominado equilíbrio de átomos
Acrescente os elétrons que correspondem à variação de nox do elemento, atentando para o fato
de que
Proceda ao equilíbrio das cargas na equação (referentes aos elétrons e íons) acrescentando H+ (se o meio for
ácido) ou OH- (se o meio for básico), no membro da equação (reagente ou produto) em que estes
forem necessários.
Denominado equilíbrio de cargas
Proceda ao balanceamento da massa na equação (átomos de hidrogênio e oxigênio que ainda n
estão
equilibrados) acrescentando H2O no membro em que ela for necessária (pode ser feito tanto no reagente
Repita esse procedimento todo para a espécie que se oxida.
Se houver mais de uma semi-equação de redução, proceda ao somatório de todas elas. Efetue o
mesmo
Multiplique cada equação parcial assim obtida por um número escolhido de tal modo que o número total de
elétrons perdidos seja igual ao número total de elétrons ganhos.
Some as duas equações parciais que resultam das multiplicações.
Na equação global obtida, cancele todos os termos comuns aos dois membros.
Confira o balanceamento de massa e de carga, se não estiver correto, refaça todo o balanceamento passo a
passo.
Exemplos:
1) Equação iônica : I2
?
H+ + I –1 +
+ H2S
Equação parcial da espécie quese reduz : I2 ?
Equilíbrio de átomos:
I2
Equilíbrio de elétrons: I2
?
I –1
2 I –1
+ 2 e– ?
2 I –1
Equilíbrio de carga (meio ácido): a carga já está equilibrada ( - 2 (relativo aos e–) = - 2 ( relativo a 2 íons I–
Equilíbrio de massa: a massa já está equilibrada (2 átomos de iodo antes e depois da reação)
- 113 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
Equação parcial da espécie quese oxida: H2S ?
- 114 -
S
Escola Estadual de Educação Profissional [EEEP]
Profissional
Ensino Médio Integrado à Educação
Equilíbrio de átomos: já está equilibrada (onde há variação de nox ! neste caso, o enxofre)
Equilíbrio de elétrons: H2S
S
?
+ 2
Equilíbrio de carga (meio ácido): H2S ?
+ 2 e–
S
+ 2 H+
Equilíbrio de massa: já está equilibrada (2 átomos de H antes = 2 átomos de H depois
Observação : O número de elétrons perdidos já é igual ao número de elétrons ganhos.
Somando as equações :
I2
+
+ 2 e– ?
H2S
2 I –1
?
+ 2 e–
S
+ 2 H+
?
(Equação já equilibrada)
2) Equação iônica : MnO4–
C2O42–
?
MnO2
+ CO32– (em meio
Equação parcial da espécie quese reduz: MnO4 –
?
MnO2
?
CO32–
Equilíbrio de átomos: já está equilibrada (onde há variação de nox ! Mn)
Equilíbrio de elétrons: MnO4–
3 e– ?
+
MnO2
Equilíbrio de carga (meio alcalino) : MnO4– +
Equilíbrio de massa: MnO4–
3 e–
+
3
? MnO2
OH–
+ 4
+ 2 H2O
Equação parcial da espécie quese oxida : C2O42–
C2O42–
?
2 CO32–
Equilíbrio de elétrons: C2O42–
?
–
2 CO32– + 2 e
Equilíbrio de átomos:
Equilíbrio de carga (meio alcalino): C2O42– + 4 OH– ?
+ 4 OH– ?
Equilíbrio de massa: C2O42–
2 CO32–
2 CO32–
+ 2 e–
2 e–
+ 2
Igualando o nº de elétrons perdidos e ganhos:
MnO4– + 3 e–
H2O
2–
C 2O 4
+2
?
MnO2 + 4
(x2)
OH–
2 CO32– + 2 e– + 2 H2O ( x
Somando as equações:
2 MnO4– +
+
6 e–
+ 4 H2O ?
–
3 C2O42– + 12 OH ?
2 MnO2
+ 8
6 CO32– + 6 e– + 6 H2O
?
(Equação já equilibrada)
2
- 12
- 12
- 114 -
Escola Estadual de Educação Profissional [EEEP]
Profissional
3) Equação iônica : I – + H2O2
Ensino Médio Integrado à Educação
? I2
+ H2O (em meio ácido
Equação parcial da espécie quese reduz: H2O2 ?
Equilíbrio de átomos:
H2O2 ?
2 H2O
2 e–
Equilíbrio de elétrons: H2O2 +
H2O
(onde há variação de nox ! O
?2 H2O
Equilíbrio de carga (meio ácido): 2 H+
+ H2O2 +
2 e–
?2 H2O
Equilíbrio de massa: já está equilibrada
Equação parcial da espécie quese oxida : I –
Equilíbrio de átomos:
2I
?
I2
?
I2
–
?
I2
+ 2
Equilíbrio de carga (meio ácido): já está equilibrada
Equilíbrio de massa: já está equilibrada
Observação: O número de elétrons perdidos já é igual ao número de elétrons ganhos.
Somando as equações :
2I–
I2 +
2 e–
?
2 H+ +
+
2 H2O
?
-
(Equação já equilibrada)
EXERCÍCIOS
Ajustar os coeficientes das equações pelo método do íon-elétron, indicando os agentes oxidante e redutor.
a) Cu +
NO3–
Cu2+ +
?
? Zn2+ + NH4+ (meio ácido)
H+ ?
c) Cr
–
g) MnO4
C3r+ + H2
+ Br –
d) MnO2
e) IO3
HSO3–
+
–
j) I
–
+ SO4 2–
(meio ácido)
I
?
NO3 – + Cl – ( meio
básico)
+
+
MnO4 2– + O2
?
ClO3
?
+ NO2
(meio ácido)
?
–
–
–
(meio ácido)
Mn 2+
Br2
?
h) ClO2
OH
(meio ácido)
Zn(OH)4
H básico)
–
+ ClO2
2–
+ NH3
+ H2O
–
+ H2O
(meio
+
- 115 -
Escola Estadual de Educação Profissional [EEEP]
Profissional
l) Cl2
+ H2O + SO2
SO4
2–
Ensino Médio Integrado à Educação
+ Cl –
H+
- 116 -
Escola Estadual de Educação Profissional [EEEP]
m) Cr2O7
2–
n) MnO4
+
2–
SO3
Cr 3+ + SO4
+ H+ ?
+ H+
Co3+ + Br2
+ H+
2–
+
Zn2+ +
AsH3 +
q) Cr3+ + MnO2 + OH ?
CrO42
Mn2+ +
r) Bi3+ +
SnO32
Bi
?
+
s) Cr2O72
+
t) Cr(OH)3
?
H2C2O4 H+
+ IO3
+
+
Mn2+ + SO4 2– +
?
o) Co2+ + BrO + H+
–
?
Ensino Médio Integrado à Educação Profissional
+
H2O +
CrO42- + I +
?
RESPOSTAS
a) 3 Cu + 2NO3– + 8H + ? 3Cu2+ + 2NO + 4H2O
oxidante : NO3–
redutor : Cu
b) 4 Zn + NO3– + 10H +
H2O
oxidante: NO3–
+
4 Zn2+ + NH4+ +3
?
n) 2MnO4 + 5SO 32– + 6H +?
redutor : Zn
2–
2C+r 3H2
redutor: Cr
–
e) IO3
–
+ 3HSO3–
3SO4
oxidante: IO3 –
red
orn: Br + 2 H2 O
?B
rutM
2 +
?I–
2–
+
+ 3H +
redutor: HSO3–
f) 14ClO – + 6N H +12OH– –? 12NO –
3
2 4 +14Cl
3
+18H2O
oxidante:ClO3– –
redutor: N2H–4
oxidante:MnO4
redutor: OH
–
–
g) 4MnO4
+ OH
? 4MnO4 2– + O2
2H2O
3
+
o) 2Cooxi+da2nBterO
+ –4H ?
:B rO
2H2 O
2+ –
2–
redutor: SO
4
2+
da2nBter: –M+n4O2H +
d) MnOoxi
2 +
–
+ 3H2Ooxidante :MnO
3+
c) 2Cr + 6H ?
oxidante: H+
2Mn2+ + 5S
4 O
+ 4H O
3
p) 4Zno+xida1nA
tes:OA4sO 3+–
3+
2rCeoduto+r1: B
Cro22++
11Hr+ed?utor4: ZZnn2+ +
1AsH3
22Cr +
q)
3MnO2
4OH
? 2CrO4
+
4
3+
3+
3Mn
+
2+
2
+ 2H2O
oxidante :MnO2
redutor: Cr
3+
h)
2ClO2
–
+ 2OH ?
oxidante:ClO2
ClO3
–
+ ClO2
l) Cl
+
–
+ H2O
redutor: ClO2
i) 4Zn + NO3 – +7OH- + 6H2O ? 4
Zn(OH)4
NH3
oxidante :NO3–
redutor: I –
j) 2I –
2NO2
2H2O
–
+ 4H + ?
2–
+
I2 + 2NO +
r)
redutor: SnO22–
oxidante :Bi
3+
22Bi + 3SnO 2 + 6OH ?
38SH
nO32? 2Cr +
s) 1Cr2O7 + 3H2C2O4
+
3H2O + 2Bi
oxidante :Cr2O72–
redutor: H2C2O4
t) 2Cr(OH2 )3 + 1IO3 + 4OH ?+ 2CrO4 3+ +
6CO2 + 7H2O
oxidante :IO3–
redutor: Cr(OH)3
2
oxidante :NO2–
+ 2H O + SO
redutor :I –
?
SO
2–
+ 2Cl
- 117 -
2
oxidante :Cr2O72–
2
2
redutor: SO32–
4
–
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
+ 4H +
1I +
- 118 -
5H O
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
CAPÍTULO 8
GRANDEZAS E UNIDADES
Chamamos de grandezas os conceitos utilizados para descrever os fenômenos que
pretendemos investigar, sempre com o objetivo de estabelecer as leis que os regem. A propriedade
fundamental de uma grandeza é sua capacidade de ser medida. O comprimento, o tempo e a força
são grandezas físicas, pois há aparelhos capazes de medi-las.
Medir uma grandeza consiste em compará-la com outra grandeza padrão que se toma como unidade. O
resultado dessa operação é uma quantidade; isto é, um número seguido da unidade utilizada, por exemplo: 50
quilos (50 kg).
Naturalmente, você já se pesou inúmeras vezes. Entretanto, você nunca soube e não sabe o seu
peso absoluto. Todas as vezes que você se pesou, simplesmente comparou seu peso com o peso de um outro
corpo tomado como padrão. Quando a balança marca 50 kg para o seu peso, está indicando que você pesa 50
vezes mais que 1 kg, ou seja, que 50 é o seu peso relativo. O valor de uma grandeza será sempre igual ao
produto de
m
=
50
grandeza
x
valor
numérico
kg
unidade
O quilograma é uma unidade prática, mas não é adequada para medir a massa dos átomos. Para se ter
idéia, apenas 1g de ferro contém em torno de
de átomos. Logo, a melhor unidade para avaliar a
massa dos átomos é outro átomo.
Massa Atômica
A massa atômica (cujo símbolo é m a
refere-se à massa do átomo de um dado elemento químico
quando comparado a um padrão, que é arbitrário, e convencionado como sendo
Este padrão é conhecido como unidade de massa atômica e seu símbolo é u
As
natureza. É feita uma
são calculadas a partir da abundância de seus isótopo
na
Por exemplo, o elemento oxigênio é constituído por três isótopos e cada átomo de oxigênio apresenta
uma determinada massa e contribui com certa porcentagem na formação do elemento, conforme a
tabela a seguir:
Átomos
Massa Atômica
Abundância
Oxigênio 16
15,995 u
99,759 %
Oxigênio 17
16,999 u
0,037 %
Oxigênio 18
17,999 u
0,204 %
Assim sendo, a massa do elemento oxigênio será:
m a (O) = (15,995 x 99,759) + (16,999 x 0,037) + (17,999 x 0,204) 16 u
100
As tabelas periódicas contêm os valores das massas atômicas relativas (A r) de todos os
elementos químicos (considerando-se a composição isotópica natural dos elementos).
- 119 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
A relação entre a massa atômica relativa (Ar, um nº adimensional) e a massa atômica (ma,
expressa
Assim, para cada
elemento
encontra nas tabelas periódicas.
Exemplos:
Na
químico, o número que deve multiplicar a unidade u é aquele
logo, ma (Na) = 23 u
A r = 23
logo, ma (Ca) = 40 u
Massa Molecular e Massa-Fórmula
Refere-se à massa da entidade da qual uma substância é feita. No caso de substâncias
moleculares (formadas por ligações covalentes), a massa é denominada massa molecular, no caso das
substâncias iônicas é denominada massa-fórmula e, em ambos os casos, corresponde à soma das massas
atômicas dos átomos que
as compõem.
Exemplos:
m(NH3)
=
ma(N) + 3 ma(H)
=
17 u
(massa molecular)
Quantidade de Matéria
Como visto anteriormente, mesmo massas pequenas das substâncias contém um número extremamente
grande de átomos, moléculas ou agregados. Daí existir uma grandeza relacionada com o número de entidades
elementares (átomos, íons, moléculas, etc.) presentes em uma determinada amostra de substância. Esta grandeza
é denominada quantidade de matéria, seu símbolo é n e sua unidade é o mol Quando se utiliza a unidade
mol, as entidades elementares devem ser especificadas, podendo ser átomos, moléculas, íons, etc.
Mol:
Constante de Avogadro
Existe uma relação de proporcionalidade entre o número de entidades em uma amostra e sua quantidade
de matéria. Daí pode-se afirmar que, para qualquer amostra de uma substância o seu número de entidades (N) é
diretamente proporcional à sua quantidade de matéria (n): N n (quanto maior o número de entidades, maio
o número de mols).
A constante de proporcionalidade que permite a passagem de quantidade de matéria para
número de entidades, conhecida como constante de Avogadro (N A ) , nada mais é que o
número de entidades por unidade de quantidade de matéria..
N
n
=
NA
x
A constante de Avogadro tem seu valor medido experimentalmente e o valor mais recentemente obtido
e recomendado é 6,02214 x 1023mol 1
Então, para uma quantidade de matéria de 1 mol corresponderão, aproximadamente, 6,02 x 1023 entidades:
1 mol = 6,02 x 10 23 entidades
- 120 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
Exemplo:
Qual o número de moléculas existentes em 4,50 mol de amônia (NH3 ) ?
N = NA
N = 6,02 x 10 23 mol1 x 4,50 mo
logo:
x
N = 2,71 x 10 24
ou
6,02 x 10 23 moléculas
1 mol
4,50 mol
N
N = 2,71 x 10 24
moléculas
Relação entre a unidade de massa atômica e a unidade de massa
Pela definição de mol, 1 mol de carbono 12 pesa 12g e pela definição de massa
atômica, 1
átomo de carbono pesa 12 u.
1 mol corresponde a 6,02 x 1023 entidades, logo, 1 mol de carbono 12 contém 6,0
x 1023
6,02 x 1023 átomos
12g
1 átomo
12 u
1g = 6,02 x 10 23 u
12 g = 12 u x 6,02 x
e
1 u = 1,66 x 10 -24 g
Exemplos:
ma(H) =
1,0079 u = 1,6737 x 10 -24
ma(O) =
g
15,999 u = 2,6567 x 10 -23
Para qualquer amostra de substância, a sua massa (m) é diretamente proporcional à sua quantidade de
matéria (n), isto é m n
(quanto maior o número de mols, maior a massa).
A constante de proporcionalidade que permite a passagem da quantidade de matéria para
massa, conhecida como massa molar, cujo símbolo é M, nada mais é do que a massa de uma substância por
unidade
de quantidade de matéria: m = M x n
Por exemplo, as massas molares do dióxido de carbono e do hidróxido de sódio são M (CO2) = 44,0
g/mol e M (NaOH) = 40,0 g/mol, valores esses obtidos a partir dos valores das massas
moleculares , substituindo-se a unidade
pela unidade
Assim, para se obter os valores das massas molares, basta substituir a unidade de massa atômica, u, pela
unidade g/mol nos valores de massas atômicas ou moleculares ou, simplesmente, acrescentar a unidade g/mol
aos respectivos valores de massas atômicas relativas ou de massas moleculares relativas.
Isto é possível porque o no de entidades em 1 mol é igual ao no de unidades de massa atômica em 1
g. Exemplo:
xg
x=
40 g · u
6,02 x 1023 u
40 u
como 6,02 · 10 23 = 1 mol , chega-se a: x = 40 g/mol
- 121 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
Convém ressaltar que, em cálculos, a massa molar é a grandeza que necessita ser usada e não massas
atômicas ou moleculares.
Qual a massa correspondente a 5,0 mol de ácido clorídrico (HCl) ?
HCl
massa molecular : ma (H) + ma (Cl) = 36,5
u massa molar (M): M
= 36,5
1 mol
36,5 g
5,0 mol
m
m=
183 g
ou
m =Mxn
logo:
m = 36,5 g/mol x 5,0 mol =
Volume Molar de um Gás
Segundo hipótese de Avogadro, volumes iguais de quaisquer gases, nas mesmas
condições
de
Partindo deste princípio, define-se volume molar como sendo o volume ocupado por
1mol de
qualquer gás
Em determinadas condições, denominadas condições normais de temperatura e pressão (CNTP), o
volume molar de qualquer gás é 22,4 L.
T = 273 K
P = 1 atm
P = 1 atm
P = 1 atm
nHe = 1 mol
( 4,0 g )
nO2 = 1 mol
( 32,0 g )
nN2 = 1 mol
( 28,0 g )
VHe = 22,4 L
V(O2)= 22,4 L
V(N2) = 22,4 L
Assim, se tivermos, por exemplo, 2 mol de gás hidrogênio (H2) a 0ºC e 1 atm., teremos um volume de
2 x 22,4 L, ou seja, 44,8 L.
Exemplo:
Qual a quantidade de matéria e o número de moléculas existentes em 55,0L de amônia (NH3),
nas CNTP?
1 mol
22,4 L
n
55,0 L
N = 2,46 mol
6,02 x 10 23 moléculas
1 mol
N
2,46 mol
N = 1,48 x 10 24
moléculas
- 120 -
Escola Estadual de Educação Profissional [EEEP]
Profissional
Ensino Médio Integrado à Educação
Resumo
Unidade de massa atômica (u) :
Massa atômica de um átomo (isótopo) :
u
Massa atô mica de u m elemen to quí mico:
Massa molecular de u ma s ubstância:
u
Massa molecular:
Massa–fórmula:
massa
Quantidade de
massa atô mica
molecular
matéria
mol.
Constante de Avogadro (NA ):
Massa molar (M):
Vol u me
g/mol
molar:
22,4L
EXERCÍCIOS
1) Determine a massa molecular (ou massa-fórmula) e a massa molar:
a) NaF
b) H2S
c) CO2
d) O2
e) FeCl2
f) NH4OH
2) Calcule a quantidade de matéria (no de mols) em:
a) 20 g de H3PO4
b) 1,02 x 10 24 moléculas de C2H4
c) 9,7 g de HCl
d) 6,02 x 10 4 moléculas de H2O
3) Calcular as massas (em gramas) de:
a) 5,0 mol de gás cloro (Cl2)
d) 2,5 mol de gás oxigênio (O2)
b) 3,0 mol de gás sulfídrico (H2S)
e) 2,5 mol de átomo de oxigênio (O)
c) 2,0 mol de gás carbônico (CO2)
f ) 0,60 mol de átomos de ferro (Fe)
4) Calcule o número de átomos (ou íons) em:
a)
10,0 g de hélio
b)
10,0 g de gás nitrogênio (N2)
c) 16,0 g de óxido cúprico (CuO)
- 121 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
5) Calcule a massa, em gramas, de:
a) 1 átomo de hélio
b) 1 molécula de N2
c) 1 agregado de NaCl
6) Nas CNTP, qual a quantidade de matéria (no de mols) e qual o no de moléculas de
a) 11,2 L de H2
c) 500 mL de CO2
e) 112 mL de NH3
b) 1,5 L de Cl2
d) 250 mL de F2
f ) 22,4 mL de HCN
7) Tem-se 44,8 L de CO2, nas CNTP. Pede-se:
a) quantidade de matéria do gás
d) no de átomos de oxigênio
b) no de moléculas do gás
e) no total de átomos
c) no de átomos de carbono
f ) massa (em gramas) do gás
8) Sabendo-se que a massa atômica do elemento flúor é 19 u, calcule:
a) a massa molar do gás flúor (F2);
b) o no de moléculas em 3,80 g de F2;
c) o no de átomos contidos na massa do item b;
d) a massa em gramas de 1,2 x 10 24 moléculas de flúor;
e) a quantidade de matéria (no de mols) de moléculas de F2 em 380 g;
f ) o volume correspondente a 120 g de F2, nas CNTP;
g) a massa em gramas correspondente a 80,0 L de F2 (nas CNTP);
h) o no de moléculas em 250 L de F2 (nas CNTP).
9) O carbono ocorre na natureza como uma mistura de átomos dos quais 98,90% são 12 C e 1,10% são 13 C
a) Explique o significado das representações 12C e
13
C.
b) Com esses dados, calcule a massa atômica do carbono natural.
Dado: massas atômicas: 12 C = 12,000 u e 13 C = 13,003 u
10) Considerando que a taxa de glicose no sangue de um indivíduo é 90 mg em 100mL de sangue, e
que o
volume sangüíneo deste indivíduo é de 4,0 L, determine:
a) o no de mols de glicose existentes nos 4,0 L de sangue;
b) o no de moléculas de glicose existente nos 4,0 L;
c) o no de total de átomos na glicose existente nos 4,0 L de sangue.
11) Na reação do óxido de enxofre com oxigênio para originar trióxido de enxofre, verifica-se qu
64g de
dióxido consomem 16g de oxigênio.
a) Quais as massas de dióxido de enxofre e de oxigênio necessárias para que se obtenha 1,6g de trióxido de
enxofre?
no
b) Determine o de mols correspondentes às massas encontradas no item a (dióxido de enxofre
SO2;
oxigênio – O2 )
c) Determine o no de moléculas de trióxido de enxofre (SO3) obtidas.
d) Considerando-se as CNTP, qual o volume de O necessário para se obter 320g de SO ?
- 122 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
12) 56 g de óxido de cálcio (CaO) reagem completamente com 44 g de gás carbônico (CO2),
formando carbonato de cálcio (CaCO3).
a) Qual a massa de óxido de cálcio necessária para se obter 25g de produto de reação?
b) Qual o volume CO2 usado para se obter 250 g de CaCO3 ? Considere as CNTP.
c) Se 89,6 L de CO2 forem usados, que massa de carbonato de cálcio será obtida, considerando as CNTP?
13) Considere um copo contendo 90 mL de água (d = 1 g/mL). Determine:
a) no de mols de moléculas de água
d) no de átomos de hidrogênio
b) no de moléculas de água
e) no de átomos total
c) no de átomos de oxigênio
14) Um composto Al2(XO4)3
apresenta
uma massa-fórmula igual a 342 u. Determine a massa
15) Uma pessoa normal elimina por dia cerca de 30,0 g de uréia, pela urina. Quantos átomos de nitrogênio são
eliminados diariamente através da urina?
Dado: M da uréia [CO(NH2)2] = 60,0 g/mol
16) A concentração de íons fluoreto em uma água de uso doméstico é de 5,0 x 10 –5mol/L. Se
uma pessoa ingerir 3,0 L dessa água por dia, ao fim de um dia, qual a massa, em miligramas, de fluoreto que
essa pessoa ingeriu?
17) De um cilindro contendo 640 mg de gás metano (CH4) foram retiradas 1,204 x 10
Quantos mols de CH4 restaram no cilindro?
21
moléculas.
18) A concentração normal do hormônio adrenalina (C9H13NO3) no plasma sangüíneo é de 6,0 x 1
8
g/L. Quantas moléculas de adrenalina estão contidas em 1L de plasma?
19) Um liga que contém 75% de ouro; 12,5% de prata e 12,5% de cobre (% em massa) pode ser chamada de
ouro 18 K. Pergunta-se:
a) Em 1,00 g dessa liga qual é a massa real de ouro?
b) Nessa liga, existem mais átomos de prata ou de cobre?
20) O corpo humano apresenta em torno de 18% da sua massa em átomos de carbono. Como base nesse dado,
qual o no de mols de átomos de carbono no corpo de um indivíduo que pesa 100 kg?
21) O Brasil produz, por ano, aproximadamente, 5,0 x 10 6 toneladas de ácido sulfúrico (H2SO4); 1,2 x 10
6
toneladas de amônia (NH3) e 1,0 x 10 6 toneladas de soda cáustica (NaOH). Transformando tonelada em
mols, a ordem decrescente de produção dessas substâncias será ...
22) A região metropolitana de São Paulo tem cerca de 8.000 km2. Um automóvel emite, diariamente, cerca de
20 mol de CO. Supondo que esse gás se distribua uniformemente por toda a área metropolitana até uma altura
de 10km, quantas moléculas de CO emitido por esse automóvel serão encontrados em 1m3 do ar metropolitano ?
23) Para evitar a propagação de doenças como a cólera, a água para beber é desinfetada pela adição de cloro
(Cl2) à razão mínima de 0,20 mg/kg de água. Para obter essa água clorada, quantas moléculas de
água são necessárias, aproximadamente, para cada molécula de cloro?
24) Uma das formas de medir o grau de intoxicação por mercúrio em seres humanos é a determinação de sua
presença nos cabelos. A OMS estabeleceu que o nível máximo permissível, sem risco para a saúde, é
5
de 50 ppm, ou seja, 5,0 x 10
g de mercúrio por grama de cabelo. Nesse sentido, a quantos
átomos de mercúrio corresponde essa quantidade?
- 123 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
25) Considere um balão de aniversário contendo 2,3 L de ar seco. Aproximadamente 20% deste
gás são
constituídos por oxigênio (O2). Supondo que 1 mol de gás ocupa aproximadamente um volume de 23 L, a 25
ºC e 1 atm, o número aproximado de moléculas de oxigênio presentes no balão será :
a)
1,2
moléculas b)
10
23
1022
x
6,0 x
moléculas
c)
0,46 moléculas
22
26) Nas condições normais de temperatura e pressão uma pessoa em aspiração forçada pode encher o pulmão
com 3 litros de ar. Nesta aspiração, que quantidade de matéria de nitrogênio e oxigênio entrou no pulmão?
Dado Composição volumétrica do ar : 71% N2 , 28 % O2 e 1% argônio
27) Não é apenas o clorofluorcarbono, um gás usado em aerossóis, aparelhos de refrigeração e plásticos, que
afeta na Antártida a camada de ozônio que protege a Terra dos raios ultravioleta do Sol. O
cientistas identificaram recentemente mais dois poderosos inimigos do ozônio. São eles o clorofórmio de metila
(CH3Cl3)
e o tetracloreto de carbono (CCl4), usados na fabricação de tintas e graxas para a indústria automobilística e
ainda como cola de tapete.
Com relação ao solvente tetracloreto de carbono citado no texto, e sabendo-se que as massas atômicas
do carbono = 12 u e do cloro = 35,5 u, determine:
a) Número de moléculas existentes em 300 g de solvente.
b) Massa, em gramas, correspondente a 5,0 x 10 24 moléculas de CCl4
28) Considere a constante de Avogadro igual a 6 x 10 23 entidades/mol .
a) Determine a quantidade de matéria de CO2 existente em 88 g de gelo seco (CO2(s)).
b) Determine o número de moléculas de CO2 nesta amostra.
c) Determine o número de átomos de oxigênio nesta amostra
29) A densidade da água a 25ºC é 1,0 g/mL. Qual o número de átomos de hidrogênio contidos em uma gota de
água, de volume 0,05 mL ? Considere a constante de Avogadro igual a 6 x 10 23 entidades/mol.
30) Um medicamento usado como antipirético e analgésico contém 90 mg de ácido acetilsalicílico (C9H8O4) por
comprimido. Quantas moléculas dessa substância há em cada comprimido?
31) Responda:
a) Qual a massa, em gramas, de 2,70 mol de mercúrio?
b) Qual a massa, em gramas, de 9 x 10 23 átomos de iodo ?
c) Qual a massa, em gramas de 1 átomo de polônio ?
32) Segundo dados da CETESB, deve ser decretado Estado de Emergência quando é atingida a concentração de
46 mg de monóxido de carbono (CO) por m3 de ar; nessa situação, são proibidas as atividades industriais e a
circulação de veículos a gasolina. Se forem detectados 2,0 x 10–2 mol de CO por metro cúbico de ar, deverá se
decretado Estado de Emergência?
33) O isocianato de metila, H3C N C O, é um líquido volátil e tóxico. Tolera-se, no máximo, 5 · 10 5 g do
seu vapor por metro cúbico de ar. Qual é o número aproximado de moléculas de isocianato de metila por metro
cúbico de ar na condição de tolerância máxima?
Dado: massa molar do isocianato de metila = 57 g/mol
34) Se um dentista usou em seu trabalho 30 mg de amálgama de prata, cujo teor de prata é 72 % (em massa),
qual o número de átomos de prata que seu cliente recebeu em sua arcada dentária ?
35) Ligas constituídas de platina e ródio, com diferentes composições são utilizadas como
sensores de
temperatura. Para 1,00 g de uma liga contendo apenas platina e ródio, na proporção de 10% em massa de ródio,
calcule a massa e o número de átomos de platina.
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
36) A análise de um amálgama usado na restauração de dentes revelou a presença de 40% (em
massa) de
mercúrio; prata e estanho completam os 100% restantes. Um dentista que usa 1,0 g desse
amálgama em cavidades dentárias de um cliente está, na realidade, usando quantos gramas de mercúrio?
37) O ferro é um elemento essencial na alimentação humana para formação de hemoglobina. Apenas 10 % do
ferro do feijão são absorvidos pelo organismo humano. Supondo que em 100 g de feijão encontremos 0,2 % de
ferro e que cada átomo de ferro formará uma molécula de hemoglobina, quantas moléculas de
hemoglobina
38) No sangue de um adulto há aproximadamente 2,9 g de ferro, que estão contidos em 2,6 x 1013
glóbulos vermelhos. Calcule o número de átomos de ferro em cada glóbulo vermelho.
39) O mercúrio, na forma iônica, é tóxico porque inibe certas enzimas. Uma amostra de 50,0 g de atum de uma
grande remessa foi analisada, e constatou-se que tinha 2,1 x7 10
mol
de
Hg2+.
4
Considerando-se que os alimentos com conteúdo de mercúrio acima de 5,0 x 10
g
por
quilograma de alimento não podem ser comercializados, demonstre se a remessa de atum deve ou não ser
40) O chumbo é um metal tóxico que pode ser absorvido pelos seres humanos via
gastrointestinal. Os
encanamentos antigos eram feitos com canos de chumbo, o que causava um envenenamento lento das pessoas
que os utilizavam. Supondo que a análise da água consumida por essas pessoas revelasse uma concentração de
8,5 x 10 – 4 g de chumbo / 100 mL de H2O :
a) Qual a massa de chumbo, em miligramas, ingerida por uma pessoa ao beber um copo contendo 200 m
dessa água ?
41) Se cada um dos 26 estados brasileiros produzisse, anualmente, 4,6 milhões de toneladas de soja, o tempo
necessário para produzir 1 mol de grãos de soja (admita o peso médio de um grão como sendo 1 g ) seria de :
a) 1 mês
b) 2,5 anos
c) 1 século
d) 2,5 séculos
e) a idade provável do sistema solar (5 x 10 9 anos)
42) Linus Pauling, prêmio Nobel de Química e da Paz, faleceu recentemente aos 93 anos. Era um
ferrenho defensor das propriedades terapêuticas da vitamina C. Ingeria diariamente 2,1 x 10 –2mol dessa vitamina
Dose diária recomendada de vitamina C (C6H6O6) ....62 mg
Quantas vezes, aproximadamente, a dose ingerida por Pauling é maior que a recomendada?
a) 10
b) 60
c) 1,0 x 102
d) 1,0 x 103
e) 6,0 x 104
43) Tem-se uma amostra de 560 g de ferro metálico e outra de lítio metálico de mesma massa. Em qual amostra
há maior número de átomos? Justifique.
44) Considere um cubo do metal alumínio e um cubo do metal ouro, ambos com um volume de 1,0 cm3. A 25
ºC, a densidade do alumínio é 2,7 g/cm3 e a do ouro é 18,9 g/cm3. De acordo com essas informações e
sabendo- se que a massa atômica do alumínio é 27 u e a do ouro é 197 u, pode-se afirmar que:
a) No cubo de ouro existem aproximadamente 7 vezes mais átomos do que no cubo de alumínio.
b) No cubo de alumínio existem aproximadamente 7 vezes mais átomos do que no cubo de ouro.
c) No cubo de ouro existem aproximadamente 1,9 x 1023 átomos.
23
d) No cubo de alumínio existem aproximadamente 2,7 x 10 átomos.
e) O número de átomos é aproximadamente o mesmo nos dois cubos.
45) Um descendente do rei Midas disputou uma prova nos Jogos Olímpicos, ficou em segundo lugar e recebeu
uma medalha de prata pura pesando 20 g. Porém assim que a tocou, cada um dos átomos de prata transformouse em um átomo de ouro.
a) Calcule a nova massa dessa medalha.
- 125 -
Escola Estadual de Educação Profissional [EEEP]
b)
Ensino Médio Integrado à Educação Profissional
Explique por que essa transformação praticamente não altera o volume da medalha
Densidade da prata: 10,6 g/cm3
Densidade do ouro: 19,3 g/cm3
massas molares: prata = 108 g/mol
ouro = 197 g/mol
46) A dose diária recomendada do elemento cálcio para um adulto é de 800 mg. Suponha certo
suplemento
nutricional a base de casca de ostras que seja 100% CaCO3. Se um adulto tomar diariamente dois tabletes desse
suplemento de 500 mg cada um, qual a porcentagem de cálcio da quantidade recomendada essa
a) 25%
b) 40%
c) 50%
d) 80%
e) 125%
47) O conteúdo de cálcio de um leite em pó é de 20,05 gramas por quilograma. Para a ingestão de 0,1 mol de
cálcio, a massa aproximada a ser ingerida desse leite, em gramas, é:
a) 200
b) 10
c) 50
d) 100
e) 1000
48) Peixes machos de certa espécie são capazes de detectar a massa de 3,6–68 x 10
g de
2-fenil-etanol, substância produzida pelas fêmeas, que está dissolvida em 1 milhão (1 x 106) de litros
de água. Supondo-se diluição uniforme na água, indique o número mínimo de moléculas de 2-fenil-etanol por
litro de água, detectado
pelo peixe macho.
Dados: massa molar do 2-fenil-etanol = 122 g/mol ; Constante de Avogadro = 6,0 x 1023 moléculas/mol
a) 3 x 10 – 16
b) 3,66 x 10 – 6
c) 1,8 x 10 8
d) 1,8 x 10 22
49) Um estudante do primeiro ano do curso de Química da Unicamp, após uma aula sobre tamanho relativo de
cátions e ânions e sobre fórmulas químicas, foi almoçar no restaurante universitário. Para mostrar aos colegas o
que havia aprendido, resolveu fazer uma analogia com a mistura de arroz e feijão contida no seu prato. Primeiro
estimou o número de grãos de arroz e de feijão, tendo encontrado uma proporção: dois de feijão para sete de
arroz. Depois, considerando o tamanho relativo dos grãos de arroz e de feijão e fazendo analogia com o tamanho
relativo dos cátions e ânions, escreveu a ―fórmula química‖ do ―composto feijão com arroz‖, representando
o feijão por F e o arroz por A.
a) Qual a ―fórmula química‖ escrita pelo estudante?
b) Se no total houvesse 100 feijões no prato, quantos mols de arroz havia no prato?
c) Quantos mols do ―composto feijão com arroz‖ havia no prato?
50) Ao corrigir as respostas da questão anterior (aquela do feijão com arroz) da primeira fase do
Vestibular
Unicamp/95, a banca de Química constatou que um certo número de candidatos não têm (ou não tinham) idéia
de grandeza representada pela unidade mol, de fundamental importância em Química.Respostas do tipo 210 mol
de arroz apareceram com certa freqüência.
a) Calcule a massa, em toneladas, correspondente a 210 mol de arroz, admitindo que a massa de um grão de
arroz seja 20 mg.
b) Considerando que o consumo mundial de arroz seja de 3 x 108 toneladas/ano, por quantos
anos seria possível alimentar a população mundial com 210 mol de arroz ?
51) A água oxigenada é empregada, freqüentemente, como agente microbicida de ação oxidante
local. A
liberação do oxigênio, que ocorre na sua decomposição, é acelerada por uma enzima, presente no sangue. Na
limpeza de um ferimento, esse microbicida, liberou, ao se decompor, 4,48 L de oxigênio por segundo. Nessas
a) 2,4
b) 12
c) 24
d) 48
Mostre seus cálculos
52) O ácido cítrico é utilizado em indústrias de alimentos como conservante dos produtos. Em
uma dada
- 126 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
número de mols de ácido cítrico existente em uma lata com 300 mL deste refrigerante ?
C6H8O7
dado: ácido cítrico =
53) O metanol (CH3OH) é uma substância infinitamente solúvel na água. A quantidade em gramas de metanol
que deve ser acrescentada a 2,00 mol de H2O, para preparar uma solução que contenha o mesmo número de
moléculas de H2O e CH3OH será:
a) 64 g
b) 32 g
c) 36 g
d) 3 g
e) 30 g
54) Em cada 100 g de suplemento alimentar ENSURE ( da ABBOTT Lab. Do Brasil Ltda) há 1,
mg do
a) 2,0 x 10 –3 mol de
b) 20,0 x 10 –3 mol de Mn
d) 0,02 x 10 –3 mol de Mn
Mn
55) Um fertilizante de larga utilização é o nitrato de amônio de fórmula NH4NO3.
Para uma determinada cultura, o fabricante recomenda a aplicação de 1 litro de solução 0,5 mol/L de NH4NO3
por m2 de plantação.
A figura abaixo indica as dimensões que o agricultor utilizará para o plantio.
70 m
50 m
100 m
A massa, em kg, de nitrato de amônio que o agricultor deverá empregar para fertilizar sua cultura, de acordo
com a recomendação do fabricante, é igual a:
a) 136
b)148
c) 164
d) 180
56) Um comprimido antiácido contém 210 mg de bicarbonato de sódio (NaHCO3). A quantidade de matéria
desta substância existente no comprimido é:
a) 2,1 x 10 –1
b) 2,5 x 10 –3
c) 1,5 x 10 –6
d) 1,5 x 10 21
e) 6,0 x 10 23
57) Para evitar a contaminação de legumes pelo bacilo da cólera, eles devem ser imersos em uma solução de
hipoclorito de sódio (NaClO). Esta solução pode ser obtida dissolvendo-se 1 colher de sopa (10 mL) de água
sanitária em água de modo a obter-se 1 litro de solução. Se a água sanitária contém 38 g de NaClO por litro de
produto, determine, na solução usada para imergir os legumes :
a) A massa de NaClO em 1 litro de solução.
b) O número de mols de NaClO em 1 litro de solução.
58) A massa, em gramas, da mistura formada por 2 mol de moléculas de água, 2 mol de átomos de sódio e
1023 moléculas de glicose (C6H12O6), é igual :
a) 119 g
b) 131 g
c) 238 g
d) 262 g
e) 524 g
6x
59) Suponha que sua assinatura, escrita com uma lapiseira de grafite, pese 1,2 mg. O número aproximado de
átomos de carbono gasto nesse autógrafo será:
a) 6,0 x 10 18
b) 6,0 x 10 19
átomos
átomos
c) 6,0 x 10 20
60) A impressão desta página consumiu cerca de 8 mg de tinta. Calcule a massa e o número de
átomos de
carbono utilizados para imprimir esta página, supondo que 90% da massa da tinta seja constituída pelo elemento
- 127 -
Escola Estadual de Educação Profissional [EEEP]
Profissional
Ensino Médio Integrado à Educação
RESPOSTAS
1)
a) m = 42u e M = 42
11) a) 1,28g SO2
e 0,32g O2
g/mol b) m = 34u e M = 34
b) 0,02 mol SO2
g/mol c) m = 44u e M = 44
c) 1,2 x 1022 moléculas deSO3
g/mol d) m = 32u e M = 32
d) 44,8 L
g/mol
e) 26,9 L SO2
e) m = 127u e M = 127 g/mol
12) a) 14 g
f ) m = 35u e M = 35 g/mol
2) a) 0,20 mol
d) 10
–19
b) 102 g
c) 88 g
d) 80 g
4) a) 1,50 x 10
e) 9,0 x 10 24 átomos
14) ma ( X ) = 32 u
b) 4,30 x 10 23
5) a) 6,6 x 10 –24 g
–23
c) 9,72 x 10
6) a) 5,00 x 10
d) 6,0 x 10 24 átomos de hidrogênio
15) 6,02 x 10 23 átomos
23
c) 2,42 x 10
–1
b) 4,65 x 10
–23
16) 2,9 mg
g
17) 3,80 x 10 –2 mol
g
mol = 3,01 x 10
18) 2,0 x 10 14 moléculas
23
moléculas b) 6,7 x 10 –2 mol = 4,0 x 10 22
moléculas
–2
c) 2,23 x 10
mol
moléculas d) 1,12 x 10
21
=
–2
c) 400 g
c) 3,0 x 10 24 átomos de oxigênio
f ) 34 g
24
b) 56,0 L
b) 3,0 x 10 24 moléculas
mol
3) a) 355 g
e) 40 g
e 13,4 L O2
13) a) 5,0 mol
b) 1,69 mol
c) 0,27 mol
e 0,01 mol O2
1,34 x 10
22
19) a) 0,75 g
b) cobre
3
20) 1,5 x 10 mol
21) NH3 (7,1 x 1010 mol) > H2SO4 (5,7
x
10
10o1l0) > NaOH (2,5 x 10 mol)
mol = 6,74 x 10
moléculas e) 5,00 x 10
–3
mol = 3,01 x
22)
1,5 x 10 11 moléculas
10 21 moléculas
23) 1,9 x 107 moléculas de água
f ) 1,00 x 10 –3 mol = 6,02 x 10 20 moléculas
24) 1,5 x 1017 átomos
7) a) 2,00 mol
25) Letra a
b) 1,20
moléculas
x
24
c)1,20 x 10
24
d) 2,40 x 10
e) 3,60 x 10
24
24
10
27) a) 1,17 x 10 24
átomos de carbono
moléculas b) 1279g ˜ 1,3
átomos de oxigênio
x 103 g
átomos
f ) 88,0 g
8) a) 38,0 g/mol
b)
6,02
x
2
22
10
moléculas c) 1,20 x 10
c) 1,30 x 10 –1 mol
28) a) 2,0 mol
b) 1,2 x 10 24
23
moléculas c) 2,4 x 10 24
átomos
moléculas d) 75,7 g
e) 10,0 mol
f) 70,7 L
g) 136 g
h) 6,72 x 10 24 moléculas
9) a) Representa o número de massa dos átomos.
2
26) 9,51 x 10–2 mol N e 3,75 x 10–2 mol O
29) 3 x 10 21
30) 3,01 x 10
átomos de H
20
moléculas
31) a) 543 g
b) 12,01 u
b) 191g
–2
- 128 -
–22
Escola Estadual de Educação Profissional [EEEP]
Profissional
10) a) 2,0 x 10
mol
Ensino Médio Integrado à Educação
havecr)á 35,650xm1g0 de gCO/m3.
- 129 -
Escola Estadual de Educação Profissional [EEEP]
Educação Profissional
Ensino Médio Integrado à
33) 5,3 x 10 17 moléculas
34) 1,2
átomos
x
35) 2,77
átomos
10
x
20
21
10
36) 0,40g de Hg ˜ 1,2 x 10 21 átomos
37) 2 x 10 20 moléculas de hemoglobina
38) 1,2
átomos
x
10
9
39) Deve ser confiscada. O teor de mercúrio na amostra é de 8,44 x 10 -4 g/kg,
ultrapassando o valor máximo permitido.
40) a) 1,7 x 10 -3g
b) 8,2 x 10 -6 mol
41) letra e
42) letra b
43) Na amostra de lítio. Como sua massa atômica é oito vezes menor que a do
ferro será necessário um número oito vezes maior de átomos para que
haja a mesma massa dos dois.
44) letra e
45) a) 36,5g
b) Porque há um aumento da massa acompanhado de um
aumento na densidade.
Ag : 10,6g -------- 1 cm3
20g
--------- x
x ˜ 1,9 cm3
Au : 19,3g -------- 1 cm3
36,5g --------- x
x ˜ 1,9 cm3
46) letra c
47) letra a
48) letra c
49) a) A7F2
b) 5,8 x 10 -22 mol de arroz
c) 8,3 x 10 -23 mol do composto arroz e feijão
50) a) 2,52 x 10 18 t
b) 8,4 x 10 9 anos
51) letra c
52) 3,75 x 10 -2 mol
53) letra a
54) letra d
55) letra a
56) letra b
57) a) 0,38g
b) 5,0 x 10 -3 mol
58) letra d
59) letra b
- 130 -
Escola Estadual de Educação Profissional [EEEP]
Educação Profissional
Ensino Médio Integrado à
60) 3,6 x 10 20 átomos
- 131 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
CAPÍTULO 9
ESTEQUIOMETRIA
Jeremias Benjamim
RICHTER foi o fundador da estequiometria, ou seja, a
determinação das quantidades de substâncias envolvidas numa reação química a partir da
equação correspondente. Estas quantidades podem estar expressas em massa, quantidade de
matéria, número de átomos ou volume de substâncias, já que há uma correspondência entre as diversas
grandezas utilizadas.
É de extrema importância no laboratório e na indústria, pois permite que se faça a
previsão, sem a necessidade do procedimento experimental, da quantidade de produtos que
Estequiometria envolvendo reações sem excesso de reagente
Para a resolução de problemas deste tipo, devemos relembrar algumas relações básicas.
Para elementos a massa atômica expressa em gramas corresponde à massa molar, que contém uma
quantidade de matéria equivalente a 1 mol de átomos, ou seja, 6,02 x 10 23 átomos, que, se forem de um
gás nas CNTP, ocuparão um volume de 22,4 L.
m a (g) = Massa molar = 1 mol de átomos = 6,02 x 10 23 átomos = 22,4 L (CNTP)
Para substâncias
moleculares ou iônicas , a massa atômica expressa em gramas
corresponde à
massa molar, que contém uma quantidade de matéria equivalente a 1 mol de moléculas, ou seja, 6,02 x
10 23 moléculas (ou agregados, se a substância for iônica), que, no caso de substâncias
m m (g) = Massa molar = 1 mol de moléculas = 6,02 x 10 23 moléculas = 22,4 L
(CNTP)
Os cálculos são sustentados pela Lei de Conservação das Massas (Lei de Lavoisier), pela
Lei das
Proporções Fixas (Lei de Proust) e pela Lei das Proporções Volumétricas Constantes (Lei de Gay
Lussac), desde que em condições iguais de temperatura e pressão.
Se tomarmos os coeficientes de uma reação devidamente balanceada, ou seja, cujo número de átomos
nos reagentes é igual ao número de átomos nos produtos, teremos a partir deles a proporção de cada substância
Exemplo:
Considere a reação de combustão completa do etanol:
C2H5OH
+
CO2
+
Dado: ma (C) = 12u; ma (H) = 1u; ma (O)
Podemos concluir que:
=
Reação balanceada:
Tipo de relação:
1 C2H 5OH
+
3 O2
Em massa
Em no de mols
Em no de moléculas
Em volume (CNTP)
- 130 -
2 CO2
+
3 H2 O
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
Estabelecidas as proporções acima, podemos fazer inúmeros cálculos envolvendo os reagente
e os
produtos dessa reação, combinando as relações de várias maneiras diferentes.
Exemplos:
1 x 46 g de etanol
3 x 18 g de água
207 g de etanol
x
x = 243 g de água
b) Qual a quantidade de matéria de oxigênio necessário para queimar completamente 230 g de etanol?
1 x 46 g de etanol
3 mol de água
230 g de etanol
x
x = 15 mol de água
c) Qual o número de moléculas de gás carbônico obtido pela queima de 336 L de oxigênio?
3 x 22,4 L de O2
2 x 6,02 x 10 23 moléculas de CO2
336 L
x = 6,02 x 10 24 moléculas de CO2
x
d) Qual o volume de CO2 liberado, nas CNTP, na queima de 60 litros de etanol (capacidade média do
tanque de um carro)? Considere a densidade do etanol igual a 0,789 g/mL
0,789 g
x
46 g de
etanol
1 mL
6,0 x 10 4 mL
x = 4,7 x 10 4 g
2 x 22,4 L de CO2
y
y = 4,6 x 10 4 L de CO2
e) Qual a massa de água obtida pela reação de 20,16 L de gás oxigênio com o etanol ?
3 x 22,4 L de
O2
1 mL
x
x = 16,2 g de H2O
EXERCÍCIOS
1) Sabendo-se que a decomposição do clorato de potássio (KClO3) se dá segundo a equação balanceada:
2 KClO3
2 KCl + 3
Qual a massa de cloreto de potássio (KCl) obtida na decomposição de 40 g de clorato de potássio ?
2) Um astronauta elimina 470,4 L de gás carbônico por dia (nas CNTP). Suponha que se utilize hidróxido de
sódio para absorver o gás produzido, segundo a equação:
2 NaOH +
Na2CO3 +
Qual é a massa de hidróxido de sódio necessária por dia de viagem?
- 131 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
3)Um operário faz, diariamente, a limpeza do piso de mármore de um edifício com ácido
muriático (HCl
CaCO3
+
2
e, supondo que, em cada limpeza
carbônico
CaCl2
+ H2O +
ocorre reação de 50,0 g de mármore, qual o volume de gá
4) As superfícies de alumínio recém preparadas reagem com oxigênio para formar uma camada dura de óxido,
que protege o metal de posterior corrosão. A reação é:
4 Al + 3
2 Al2O3
Quantos gramas de O2 são necessários para reagir com 0,300 mol de alumínio?
5) O etileno, C2H4, queima no ar para formar CO2 e H2O, de acordo com a equação
C2H4
+ 3
2 CO2
+ 2
Quantos gramas de CO2 serão formados ao se inflamar 1,93 g de etileno?
6) A reação de síntese do sulfeto de mercúrio II é:
Hg +
HgS
Se usarmos 3,20 g de enxofre na reação, qual a massa (em gramas) e a quantidade de matéria de HgS obtido?
7) A hidrazina, N2H4, e o peróxido de hidrogênio, são usados como propelente de foguetes. Eles reagem de
acordo com a seguinte equação:
7 H2O2 +
2 HNO3 + 8
a) Qual a quantidade de matéria de HNO3 formada a partir de 0,025 mol de hidrazina?
b) Qual a quantidade de matéria de peróxido requerida, se 1,25 mol de água forem produzidos?
c) Qual a quantidade de matéria de água formada quando 1,87 mol de HNO3 forem produzidos?
d) Qual a quantidade de matéria de peróxido requerida para produzir 220 g de hidrazina?
e) Quantos gramas de peróxido serão necessários para produzir 45,8 g de HNO3?
8) É dada a equação:
C3H6O + 4
3 CO2 + 3
23
Na combustão de 12,0 x 10
moléculas de propanona (C3H6O), qual o volume, em litros, de gás
carbônico liberado nas CNTP?
9) Qual a quantidade de matéria de nitrogênio consumido em sua reação com 101 litros de
hidrogênio, nas
3 H2 +
2 NH3
10) Prata reage com ácido nítrico (HNO3) em quantidades estequiométricas segundo a equação
3 Ag + 4
Sabendo-se que na reação participam 4,80 x 10
3 AgNO3
21
+ NO + 2
átomos de prata, quais serão:
a) A massa de AgNO3 formada;
b) O volume de NO formado (CNTP);
c) O número de moléculas de água formada.
11) 5,0 g de pólvora (constituída de KNO3, enxofre e carbono) em proporções estequiométricas, reagem pela
equação abaixo, na detonação de um projétil de revólver. Qual será o volume de gases
produzidos nas
2 KNO3 (s) + S (s) + 2 C
K2SO4 (s) + N2 (g) + 2 CO
(s)
- 132 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
12) Rodando a 60 km/h, numa viagem de 5 horas de duração, um automóvel tem um consumo de 10 km/L de
combustível. Sabendo-se que o combustível usado é o etanol (C2H5OH) e admitindo-se a queima completa
do mesmo, calcular o volume de gás carbônico, em metros cúbicos, emitido pelo carro.
Dados:
Densidade do etanol = 0,8 kg/L; M (etanol) = 46 g/mol ;
Volume molar de CO2 nas condições da queima = 25 L/mol.
13) O éter etílico é o éter comum vendido em farmácia, cuja principal aplicação está relacionada à sua ação
anestésica. A combustão completa de 14,8 mg de éter etílico (C4H10O) irá produzir gás carbônico e água, de
acordo com a equação:
C4H10O + 6
4 CO2 + 5
Determine:
a) a massa em mg de oxigênio consumido;
b) o volume
produzido;
em
m3 de
CO2
c) o número de moléculas de água produzidas.
14) A obtenção de etanol, a partir de sacarose por fermentação, pode ser representada pela seguinte equação:
C12H22O11 (s) + H2O (
4 C2H5OH (
) + 4 CO2
Calcule a massa (em kg) de sacarose necessária para produzir um volume de 50 L de etanol, suficiente para
encher o tanque de um automóvel.
Dados: densidade do etanol = 0,8 g/cm3; M (etanol) = 46 g/mol; M (sacarose) = 342 g/mol
15) Quantos mols de O2 são obtidos a partir de 2,0 mol de N2O5, de acordo com a equação:
2 N2O5 + 2 K2O2 4 KNO3 + O2
16) Um tubo de ensaio contendo certa quantidade de clorato de potássio foi aquecido
completa
decomposição do sal, segundo a reação da questão nº 1. Sabendo-se que o tubo de ensaio contendo o clorato de
potássio pesou 22,46 g antes do aquecimento e que a diminuição de massa após o aquecimento foi de 0,96g.
17) O octano é um dos principais componentes da gasolina. A capacidade média de um tanque de automóvel é
de 60 L e a densidade do octano é 0,70 g/mL. Qual o volume de ar necessário, nas CNTP, p
queimar completamente o conteúdo de um tanque cheio de octano?
Admitir que a na composição do ar, 20% seja de gás oxigênio (% em volume).
2 C8H18
+
16CO2
+ 18
18) O vidro de garrafa é obtido fundindo areia (SiO2), calcário (CaCO3) e carbonato de sódio
(Na2CO3). A
Na2CO3 + CaCO3 + 6
Na2O.CaO.6SiO2 + 2
CO2
Use essa reação para prever a quantidade de areia necessária para fabricar 5.000 garrafas de cerveja, sabendo
que cada garrafa pesa 400g.
19) Calcule a massa de clorato de potássio necessária para a produção de 33,6 L de oxigênio (CNTP).
20) Considerando a combustão do etanol, qual o volume de gás carbônico obtido pela queima de
230 g de
21) Dissolveram-se 11,7 g de cloreto de sódio (NaCl) em água. À solução resultante adicionou-se nitrat
de
- 133 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
22) A obtenção do ácido sulfúrico (H2SO4), industrialmente, poder ser feita a partir da pirita (FeS2), de acordo
com a equação:
4 FeS2 + 15 O2 + 8
2 Fe2O3 + 8
Determine a massa, em toneladas, de ácido sulfúrico, obtida a partir de 48 toneladas de pirita.
23) Calcule o volume de H2 (g), em litros, liberado nas CNTP quando 80 mg de cálcio reagem completamente
com água.
Ca + 2
Ca(OH)2 +
24) Calcule a massa, em mg, de NaOH necessária para reagir completamente com 448 mL de CO2 nas CNTP.
25) Dada a equação:
C6H12O6 + 6
6 CO2 + 6
Se na combustão de açúcar foram obtidos 792 g de gás carbônico, calcule a massa e o número de moléculas
de açúcar utilizadas na reação.
26) Verifica-se, experimentalmente, que 0,5 mol de uma substância A2 reage com 1,5 mol de B2 produzindo
1,0 mol de um único produto. A substância obtida tem fórmula:
a) AB
b) AB2
c) AB3
d) A2B3
e) A5B15
27) A reação da soda cáustica com hidrogenocarbonato de sódio pode ser representada pela equação
NaOH
+
Na2CO3
+
Nessa transformação, quantos quilogramas de carbonato de sódio são obtidos a partir de 100 mol de
hidróxido de sódio?
a) 53,0
28)
b) 21,2
c) 10,6
d) 5,3
e) 1,6
O estômago de um paciente, que sofra de úlcera duodenal, pode receber, através de seu suco gástrico,0,24
mol de HCl por dia. Suponha que ele use um antiácido que contenha 26 g de Al(OH)3 por 1000 mL
de medicamento. O antiácido neutraliza o ácido clorídrico de acordo com a reação:
Al(OH)3 + 3
AlCl3 + 3
O volume apropriado de antiácido que o paciente deve consumir por dia, para que a neutralização do HCl
seja completa, é :
a) 960 mL
b) 720 mL
c) 240 mL
d) 80 mL
e) 40 mL
29) A nitroglicerina (C3H5N3O9), sob impacto, decompõe-se produzindo gases que, ao se expandirem, provocam
uma violenta explosão.
impacto
4 C3H5N3O9(
6 N2(g) + O2(g) + 12 CO2 (g) + 10 H2O (g)
Indique a opção que apresenta o cálculo do volume, em litros, de gás produzido pela explosão de 908 g
de nitroglicerina, "nas condições ambientes".
Dados:
Massa molar da nitroglicerina = 227 g/mol ; volume molar de gás "nas condições ambientes" = 25L/mol
a) 725 L
b) 22,4 L
c) 649,6 L
d) 362,5 L
e) 324,8L
30) As características dos alimentos, tais como a cor, o sabor, o valor nutritivo, etc., podem ser
melhoradas
adicionando-se a eles certas substâncias denominadas aditivos de alimentos. O acetato de etila (C4H8O2) , por
exemplo, é usado para dar sabor de maçã e menta, quando sozinho ou misturado. Com relação a esse aditivo,
sabendo-se que sua queima gera gás carbônicoe va po r d’ ág u a , pergunta-se :
- 134 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
b) Qual o volume gasoso final obtido, para a massa usada no item a, considerando-se que nas
condições da
31) Hidreto de lítio (LiH) era usado com a finalidade de, em contato com a água, gerar gás para inflar botes
salva-vidas. Calcule a massa de LiH necessária para inflar um bote salva-vidas com 244L de gás, a 25 oC e
atm de pressão. ( Dados : VM(25 oC, 1atm) = 24,4L ; M(LiH) = 7,9 g/mol )
LiH +
LiOH +
32) A reação entre a dimetilidrazina - (CH3)2N2H2 - e tetróxido de dinitrogênio é usada como propelente d
foguetes espaciais. Os produtos da reação são água, dióxido de carbono e nitrogênio molecular.
a) Escreva a equação química que representa esta reação.
b) Calcule a massa de N2O4, em quilogramas, necessária para reagir com 30 kg de dimetilidrazina.
33) O fosgênio (COCl2), um gás utilizado em guerras, é venenoso porque, quando inalado, reage com a água dos
pulmões, gerando ácido clorídrico, que pode levar à morte. A massa de HCl, expressa em gramas, que se forma
quando é produzida a massa de 11,0 g de CO2 pela reação do fosgênio, é igual a :
a) 11,0
b) 12,2
c) 16,0
d) 18,2
e) 27,8
34) A cebola, ao ser cortada, desprende SO2 que, em contato com o ar transforma-se em SO3. Est
gás, em contato com a água dos olhos, transforma-se em ácido sulfúrico, causando grande ardor e,
conseqüentemente, as
lágrimas. Supondo que a cebola possua 0,1 mol de SO2 e o sistema esteja nas CNTP, determine o volume
de a) 2,24 L
b) 5 L
c) 44,8 L
d) 4,48 L
e) 22,4 L
35) O óxido nitroso, N2O, é conhecido como "gás hilariante" e foi um dos primeiros anestésicos
serem descobertos. Esse gás pode ser obtido pelo aquecimento cuidadoso de nitrato de amônio sólido.
a) Escreva a equação da decomposição por aquecimento do nitrato de amônio em óxido nitroso e água.
b) Calcule a massa de nitrato de amônio necessária para se obter 880 g de óxido nitroso.
36) Desde que o homem descobriu o fogo ele vem poluindo a atmosfera com gases nocivos e fuligem. Um dos
cinco principais poluentes é o gás sulfuroso (dióxido de enxofre), lançado à atmosfera pela
combustão de combustíveis fósseis e de muitos minérios metálicos contendo enxofre ou compostos de enxofre.
A concentração média anual deste gás no ar atmosférico é de 0,03 ppm (0,03 partes por milhão), ou seja,
0,03 mol de gás sulfuroso em 106 mol de ar atmosférico. Concentrações maiores que esta, considerada
limite, trazem prejuízos à população e ao meio ambiente. Por exemplo, se a concentração deste gás no ar
atmosférico
chegar ao valor de 0,2 ppm, indivíduos que sofrem de doenças respiratórias crônicas, como bronquite ou asma,
começam a tossir e a experimentar severas dificuldades na respiração.
Parte do gás sulfuroso contido no ar atmosférico é convertido em gás sulfúrico (trióxido de enxofre), que,
reagindo com a água no ar atmosférico ou nos pulmões, transforma-se em ácido sulfúrico.
a) Baseando-se na concentração máxima permissível do gás sulfuroso no ar atmosférico, quantos gramas
deste gás há em 106 mol de ar atmosférico?
b) Para uma pessoa asmática começar a ter tosse e dificuldade na respiração, quantas moléculas de
gás sulfuroso deve haver, no mínimo, em 106 mol de ar atmosférico?
c) Qual a equação química da transformação de gás sulfuroso em gás sulfúrico?
d) Que valores completarão a tabela abaixo?
0,05
1,60 g
- 135 -
Escola Estadual de Educação Profissional [EEEP]
e)
Ensino Médio Integrado à Educação Profissional
Para se produzir 39,24 g de ácido sulfúrico, quantos mols de gás sulfúrico são necessários
37) Em um creme dental, encontra-se um teor de flúor de 1,9 mg desse elemento por grama de dentifrício. O
flúor adicionado está contido no composto ―monofluorfosfato de sódio‖, Na2PO3F cuja massa molar
144
g/mol.
a) 0,144 g
b) 0,190 g
c) 1,44 g
d) 1,90 g
38) A acidez estomacal é causada pelo excesso de ácido clorídrico. Os medicamentos à base de hidróxido de
alumínio vêm sendo cada vez mais utilizados com o objetivo de diminuir essa acidez. A posologia recomendada
para um adulto é de 10 a 14 colheres de 5,0 mL, ao dia, contendo cada uma delas 0,30 g de
hidróxido de
alumínio.
a) Escreva a equação química que represente a reação que irá ocorrer no estômago.
b) Quantos mols de ácido são neutralizados quando se tem um consumo diário de 13 colheres, de 5,0 mL, de
39) Ao tomarmos 15 mL de leite de magnésia ( 1 colher de sopa ) para combater a azia, estamos ingerindo cerca
de 1160 mg de hidróxido de magnésio.
a) Escreva a equação química que represente a reação que irá ocorrer no estômago.
b) Calcule a massa de ácido clorídrico que pode ser neutralizada ao tomarmos os 15 mL do medicamento.
40) Nas estações de tratamento de água, eliminam-se as impurezas sólidas em suspensão através do arraste por
flóculos de hidróxido de alumínio, produzidos na reação do sulfato de alumínio com hidróxido d
cálcio. Sabendo-se que, para tratar 1,0 x 106 m3 de água foram adicionadas 17 toneladas de sulfato de alumínio:
a)
Escreva a equação da reação.
b) Calcule a massa de hidróxido de cálcio , em t , necessária para reagir completamente com esse sal.
41) As antigas pias de mármore das cozinhas têm sido substituídas, porque, sendo o mármore
formado
principalmente por carbonato de cálcio, é atacado por ácidos, presentes no suco de limão, vinagre, refrigerantes
e outros.
A ―água de cloro‖, usada em limpeza, contém ácido clorídrico, com o qual o carbonato de cálcio da pia reage.
a)
Escreva a equação da reação do carbonato de cálcio com o ácido clorídrico.
b)
Determine o volume de gás que se desprende, nas CNTP, quando 150g de carbonato de cálcio reagem
42) Certos solos, por razões várias, costumam apresentar uma acidez relativamente elevada. A diminuição dessa
acidez pode ser feita pela adição ao solo de carbonato de cálcio, CaCO3, ou de hidróxido de cálcio, Ca(OH)2,
ocorrendo uma das reações abaixo representadas:
CaCO3
2
+
H+
+
H
Ca2+ + CO2
HO
Ca2+ 2
+
Um fazendeiro recebeu uma oferta de fornecimento de carbonato de cálcio ou de hidróxido de cálcio, ambos a
um mesmo preço por quilograma. Qual dos dois seria mais vantajoso, em termos de menor custo, para adicionar
à mesma extensão de terra? Justifique.
43) Coletou-se água do rio Tietê, na cidade de São Paulo. Para oxidar completamente toda matéria
orgânica
contida em 1,00 L dessa amostra, microorganismos consumiram 48,0 mg de oxigênio (O2). Admitindo que a
matéria orgânica possa ser representada por C6H10O5 e sabendo que sua oxidação completa produz CO2
e
a) 20,5 mg
b) 40,5 mg
c) 80,0 mg
- 136 -
d) 160 mg
e) 200 mg
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
44) Fosfogênio, COCl2 , é um gás venenoso. Quando inalado, reage com a água dos pulmões para
produzir ácido clorídrico, que causa graves danos pulmonares, levando, finalmente, à morte; por causa disso, j
foi até
COCl2 +
CO2 + 2
Se uma pessoa inalar 198 mg de fosfogênio, a massa de ácido clorídrico, em gramas, que se
forma nos
a) 1,09 x 10 1
b) 1,46 x 10 1
c) 2,92 x 10 1
d) 3,65 x 10 2
e) 7,30 x 10 2
45) Em julho de 1997, houve um acidente com um avião da TAM. Ocorreu uma explosão,
danificando a
aeronave e fazendo uma vítima fatal. Algum tempo depois, a perícia constatou que a explosão se deveu a uma
bomba que tinha como um dos componentes o nitrato de amônio.
A decomposição térmica do nitrato de amônio produz grande volume de gases e considerável quantidad
2 NH4NO3 (s)
2 N2(g) + O2 (g) + 4 H2O
Supondo que o fabricante dessa bomba tivesse utilizado 160 g de nitrato de amônio, o volume tot
de gás
a) 33,6
b) 44,8
c) 67,2
d) 156,8
e) 313,6
46) Suponha que a gasolina seja formada exclusivamente por C8H18. Sabendo que um tanque de
automóvel contém 57,00 kg de gasolina e 11,50 kg de etanol (C2H5OH), determine o volume, em m3, de
gás carbônico lançado na atmosfera pela combustão completa do combustível contido no tanque.
Dados: Massas molares : gasolina = 114 g/mol e etanol = 46 g/mol
Volume molar do gás nas condições da queima = 27L/mol
47) O bromo é obtido industrialmente a partir da água do mar. O brometo de sódio presente na água do mar é
submetido a uma reação de deslocamento utilizando-se gás cloro.
a) Equacione a reação do processo.
b) Qual a massa (em gramas) de brometo de sódio necessária para a obtenção de meio mol de bromo?
c) Qual o volume de gás cloro ( em L, nas CNTP) necessário para processar inteiramente 103 g de NaBr?
d) Quantos átomos de bromo são obtidos quando processamos 51,5g de brometo?
e) Teoricamente é possível obter iodo pelo mesmo processo? Por que?
48) Para obtermos 416g de sulfato férricoatravés de uma reação de salificação, quantos gramas de ácido ser
utilizados? Equacione e dê os nomes dos reagentes.
49) Neutralizamos completamente uma amostra de ácido fosforoso e obtivemos 572g de fosfito de magnésio.
Qual foi a base utilizada e quanto pesava (em gramas) a amostra do ácido?
50) Para obtermos 3,5 mol de hidróxido de estrôncio através da hidratação de seu óxido, qual a
massa (em
- 137 -
Escola Estadual de Educação Profissional [EEEP]
Profissional
Ensino Médio Integrado à Educação
RESPOSTAS
2)1680 g
1)
24 g
2)
11,2 L 4)7,20 g
26) c
27) c
28) c
30) C4 H8O2 + 5 O2
4 CO2 (g) + 4 H2O(g)
a ) 48 g
5) 6,06 g
29) a
b) 77,3 L
6) 23,3 g = 0,1 mol
31) 79 g
7) a)5,0.10 –2mol
32) a) (CH3) 2 N H
+2N
2
2 O
2 CO 2 + 3 N2 + 4 H
2 O
b) 1,09 mol
33) d
34) a
c)7,48mol
35) a) NH4NO3
d) 48,1 mol
36) a) 1,92 g
e) 86,5 g
N2O + 2 H2O
9) 1,50 mol
d) 0,8g de O2
10) a) 1,36 g
13) a) 38,4 mg
b) 2,0 . 10
–5
4g SO3
0,1 mol SO3 8 g SO3
1
mol
37) c
12) 26 m3
c) 6 .10
0,05 mol SO3
e) 0,4004 mol = 4,004 x 10
c) 3,20 . 10 21
11)1,3 L
SO3
0,1 mol SO2
b) 59,5 mL
b) 1600 g
b) 1,204 . 1023 moléculas
c) SO2 + ½ O2
8) 134 L
b) 92 Kg
38) a) Al(OH)3 + 3 HCl
39) a) Mg(OH) 2 + 2 HCl
AlCl3 + 3 H2O b) 0,15 mol = 1,5 x 10
MgCl 2 + 2 H2 O
b) 1,46 g
3
m
40) a) Al2(SO4)3 +3 Ca(OH)2
41) a) CaCO3 + 2 HCl
15) 1,0 mol
3CaSO4 +2Al(OH)3
b) 11t
CaCl2 + + H2O + CO2
b) 33,6 L de CO2
16) 20,01 g
42) Escolheria o hidróxido,pois uma massa menor (74g) é capaz de
neutralizar a mesma acidez que 100 g de carbonato.
17) 5,2 . 105 L de ar
43) b
18) 1,51 . 103 Kg
47) a) Cl2 + 2 NaBr
20) 224 L
22) 78
21) 28,7 g
2
23) 4,5 . 10
24) 1,6 .10
3
L
mg
b) 103 g
46) 121,5 m3
45) d
Br2 + 2 NaCl
c) 11,2 L
d) 3,01 x 1023 átomos
Fe2(SO4)3 + 6 H2O – 306 g de ácido sulfúrico
48) 3 H2SO4 +2 Fe(OH)3
49) H3PO3 + Mg(OH)2
50) SrO + H2O
1,8 x 10
44) b
e) Sim, pois o cloro é mais reativo que o iodo, podendo deslocar o
iodeto presente na água do mar.
25) 540 g e
24
mol
20
14) 74 kg
19) 123 g
1
MgHPO3 + 2 H2O –
Sr (OH)2 –
moléculas
- 138 -
364 g de SrO
451 g de ácido fosforoso
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
Estequiometria envolvendo reações com excesso de reagente
As reações químicas ocorrem sempre numa proporção constante, que corresponde ao número de mols,
indicados pelos coeficientes. Se uma das substâncias que participa da reação estiver em quantidade maior que a
proporção correta, ela não será consumida totalmente. Essa quantidade de substância que não reage é chamada
excesso Em geral, é usado o reagente mais barato em quantidade maior do que a exigida pela
proporção correta. Veja um exemplo:
Quando o antimônio (Sb) em pó é misturado ao gás cloro (Cl2), ocorre uma reação violenta. A equação
que representa essa reação é:
2 Sb (s) + 3 Cl2
2 SbCl3 (s)
Se, no entanto, num experimento misturarmos 2 mol de antimônio sólido a 5 mol de gás cloro, qual será
a quantidade de matéria máxima , possível, de cloreto de antimônio III (SbCl3) sólido obtida?
De acordo com a equação: 2 mol de Sb reagem com 3 mol de Cl2, produzindo 2 mol de SbCl3.
Como, no nosso sistema, temos somente 2 mol de antimônio, este irá reagir completamente com 3 mol
de gás cloro. Dessa forma, restarão 2 mol de gás cloro sem reagir e ocorrerá a formação de 2 mol de cloreto de
antimônio III. O reagente que foi consumido totalmente – neste caso, o antimônio – indicará a
quantidade
máxima de produto que será formada, sendo denominado reagente limitante. O outro reagente, neste caso,
Reagente (Cl2)
5 mol
Produto (SbCl3)
No experimento
Reagente (Sb)
2 mol
Reagem
2mol
3 mol
2 mol
Excesso
2 mol
EXERCÍCIOS
1) Para a obtenção da amônia (NH3) foram usados 100 mL de gás nitrogênio (N2) e 240 mL de gás hidrogênio
(H2), nas mesmas condições de pressão e temperatura. Determine:
a) o volume de amônia produzido
b) o volume final do excesso de reagente
2) O acetileno, C2H4, queima ao ar para formar CO2 e H2O. Qual a massa de gás carbônico
formada ao se inflamar uma mistura contendo 1,93 g de acetileno e 5,92g de oxigênio?
3) Reagindo-se 11,7g de cloreto de sódio com 15,0 g de nitrato de prata, pergunta-se :
a)
Qual a massa do precipitado obtido?
b) Qual a massa e a quantidade de matéria do excesso de reagente?
4) Quantos gramas de ZnS podem ser formados quando 12,0 g de Zn reagem com 4,50g de S? Quanto (em
gramas) e que elemento permanecerá sem reagir?
5)
Que quantidade de amônia (NH3) pode ser obtida a partir de 12 g de N2 e 12g de H2? A
que volume corresponde essa massa nas CNTP?
- 139 -
Escola Estadual de Educação Profissional [EEEP]
6)
Ensino Médio Integrado à Educação Profissional
Adicionou-se 0,24 mol de hidróxido de sódio a uma solução de 0,20 mol de cloreto férrico
a) Calcule a quantidade de matéria de hidróxido formada?
b) Calcule a quantidade de matéria e % do excesso de reagente?
7) 210 g de ácido sulfúrico reagem com 130 g de zinco, produzindo sulfato de zinco e gás hidrogênio
a) Qual a massa de sulfato de zinco obtida?
b) Qual o volume de gás hidrogênio obtido, nas CNTP?
8) Foram misturados 147 g de ácido sulfúrico e 100 g de hidróxido de sódio. Pede-se calcular
a) A massa de sulfato de sódio formada;
b) A massa do reagente que sobra após a reação.
9) O gás sulfídrico (H2S) reage com o anidrido sulfuroso (SO2) segundo a reação:
2 H2S +
3S + 2
Qual a quantidade de matéria máxima de S obtida quando se faz reagir 5,0 mol de H2S com 2,0 mol de SO2?
10) Cromo metálico pode ser produzido pela redução de Cr2O3 com Al segundo a equação
2 Al +
Al2O3
+ 2
Qual a massa ( em kg ) de cromo produzida pela reação de 5,4 kg de Al com 20,0 kg de Cr2O3 ?
11) 0,28 mol de átomos de ferro reage com 0,40 mol de moléculas de oxigênio para formar o óxido de ferro III.
Qual a substância em excesso e que massa ( em gramas) desta sobra após a reação ?
12) A reação para a produção do pesticida organoclorado DDT é:
CCl3CHO + 2
(ClC6H4)2CHCCl3
+
a) Calcular a massa de DDT que se forma quando 100 g de CCl3CHO reagem com 100g de C6H5Cl;
b) Indicar o reagente em excesso e a massa ( em gramas) do excesso.
13) Uma das reações para identificação do íon Fe+3 em solução é a sua precipitação como hidróxido férric
[ Fe(OH)3 ] frente a um hidróxido qualquer. Supondo a reação:
Fe+3 +
Fe(OH)3
+
Qual a quantidade de matéria de íons ferro III existentes em uma solução, sabendo-se que foram obtidas 2,14g
de Fe(OH)3, quando esta foi tratada com excesso de NaOH ?
14) Mistura-se uma solução contendo 14 g de nitrato de prata com igual massa de cloreto de sódio, calcule:
a)
Massa de cloreto de prata formado;
b)
Porcentagem do excesso de reagente.
15) 8,0 g de gás oxigênio e 2,0 g de gás hidrogênio são colocados em um recipiente e inflama-se a mistura.
Quantos gramas de água se formam e quanto de um deles permanece inalterado, caso isso ocorra?
16) O óxido de sódio reage com ácido clorídrico formando sal e água. Se 186 g de óxido reagirem com 120 g de
ácido, quantos gramas de sal serão formados?
17) A reação completa entre 5,0 g de gás carbônico e 8,0 g de hidróxido de sódio, produz .........g de Na2CO3,
restando ..........g do reagente colocado em excesso.
- 140 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
18) Faz-se reagir 25,0 g de anidrido fosfórico (P2O5) com 25,0 g de óxido de cálcio (CaO). Qual a massa de
produto formado?
P2O5 +
Ca (PO3)2
19) Qual a quantidade máxima de carbonato de cálcio que pode ser preparada a partir da mistura de 2,0 mol de
carbonato de sódio e 3,0 mol de cloreto de cálcio ?
20) Misturam-se 1,0 kg de CS2 e 2,0 kg de Cl2 num reator onde se processa a transformação
CS2
+ 3
CCl4
+
Quais são as massa de CCl4 formado e do reagente em excesso que resta após a reação?
21) Que quantidade de NH3, em gramas, pode ser obtida a partir de uma mistura de 140 g de N2 com 18 g de
H2? A que volume esta massa corresponde se o volume molar for de 18 L/mol ?
22) Seja a reação:
2 C7H6O3 (aq)
+
ácido salicílico
anidrido acético
C4H6O3
2 C9H8O4 (aq) +
H2O
Se misturarmos 5,60 g de ácido salicílico com 2,04 g de anidrido acético, quantos gramas de aspir
serão
obtidas?
Dados :
23) 5,6 gramas de óxido de cálcio são postos a reagir com 5,4 gramas de dióxido de carbono. Determinar:
a) A massa do composto formado;
b) o composto em excesso ;
c) a massa do excesso.
24) Considerando a reação de 100g de óxido de rubídio com 100g de ácido sulfúrico, qual a massa (em gramas)
e o nome do sal formado?
25) Um astronauta elimina cerca de 450 L de gás carbônico por dia (CNTP). Suponha que se utilize hidróxido
de lítio para absorver o gás produzido.
a)
b)
Qual a massa de hidróxido de lítio necessária por dia de viagem?
Que massa (em gramas) de água será formada quando 4,0 mol de hidróxido de lítio reagir com 3,0 mol de
gás carbônico?
26) Quando cobre metálico é aquecido com enxofre, por síntese, forma-se sulfeto de cobre I. Que massa de
produto pode ser obtida se aquecermos 100 g de cobre e 50,0 g de enxofre?
27) A quantidade máxima de hidróxido férrico que pode ser preparada a partir da mistura de 888 g de brometo
férrico e 612 g de hidróxido de potássio é:
a) 321 g
b) 1500 g
c) 1070 g
d) 276 g
e) 548 g
28) Hidrogeno carbonato de sódio, NaHCO3, também chamado bicarbonato de sódio, é o principal constituinte
do fermento em pó usado para substituir o levedo ou levedura na preparação de pão e outras massas.
Quando se utiliza o levedo, este fermenta o açúcar, liberando CO2 (g) que faz crescer a
massa antes do seu cozimento; quando se utiliza o fermento em pó, CO2 (g) é obtido pela decomposição
do bicarbonato através do calor dos fornos ou pela reação do mesmo com substâncias ácidas.
A equação química abaixo indica um processo para preparar o fermento em pó utilizado na fabricação
de pães e bolos:
- 141 -
Escola Estadual de Educação Profissional [EEEP]
NaCl (aq) + NH3(aq)
Ensino Médio Integrado à Educação Profissional
+ CO2 (g) +
H2O
NaHCO3 (aq) + NH4Cl
Misturando-se cloreto de sódio, amoníaco e gás carbônico, 25,0 g de cada, qual a massa de fermento obtida?
29) Os aromatizantes, na sua grande maioria, são ésteres. O butirato de metila, que ocorre na maçã, pode ser
obtido através da reação do ácido butírico com o metanol:
C3H7COOH + CH3OH
C3H7COOCH3 +
Ácido butírico
Metanol
H2O
O número de mols de butirato de metila que pode ser obtido a partir de 3,52 g de ácido butírico e 1,60 g de
metanol, supondo o consumo total do reagente limitante, é:
a) 0,04
b) 0,05
c) 0,07
d) 4,08
e) 5,10
30) A reação ocorrida quando se misturam 63 g de propeno com 150 g de hidreto de bromo, pode formar, no
máximo, quantos gramas de produto?
C3H7Br
C 3H 6 +
HBr
a) 82,5
b) 123
d) 184,5
e) 213
31) O ácido acético reage com o etanol, produzindo acetato de etila e água, conforme a equação:
CH3COOH
Ácido acético
+
C2H5OH
CH3COOC2H5
H2O
Etanol
+
Numa determinada experiência, misturou-se 6,00 g de ácido acético com 6,90 g de etanol. Após a reaçã
se
a) 0,23 g de
etanol
b) 3,00 g de ácido acético
c)
1,50 g de ácido
e) 2,30 g de etanol
32) O sulfato de cobre II é um sal com ampla aplicação na agricultura (fungicida, fertilizante, componente da
ração de animais, etc.). Ele é obtido industrialmente através de um processo que, de forma simplificada, pode
ser representado pela seguinte equação:
CuO(s) +
CuSO4(aq) + H2O(
Em relação ao sistema contendo 10,0 mol de CuO e 1,30 kg de H2SO4, pode-se afirmar que :
a) A adição de maior quantidade de H2SO4 ao sistema aumenta a massa de CuSO4
formada. b) A quantidade de CuSO4 formada será inferior a 13 mol.
c) A quantidade de CuSO4 (em mol), no final da reação, será igual à quantidade de H2SO4 (em mol) no
início da reação.
d) A solução resultante será neutra após a reação ter-se completado (não levar em conta o carát
do sal obtido).
33) Em um cilindro, com êmbolo móvel, foi realizada a combustão completa de 20,0 mL de propano com 130
mL de oxigênio puro, de acordo com a equação não equilibrada :
C3H8 (gás) + O2 (gás)
CO2(gás) + H2O (gás
Admitindo-se que os valores de pressão e temperatura sejam os mesmos no início e no fim da combustão, o
volume final da mistura gasosa no interior do cilindro será igual a :
a) 100 mL
b) 102 mL
c) 150 mL
d) 140 mL
e) 170 mL
*Não esquecer o excesso de O2 !
34) O ácido clorídrico reage com permanganato de potássio segundo a equação:
16 HCl + 2 KMnO4
2 KCl + 2 MnCl2 + 5 Cl2 +
Calcule a massa de água formada quando 4,8 . 10
agregados de
24
- 142 -
8 H2O
moléculas de HCl reagem com 2,4 x 1024
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
35) O gás de cozinha é formado principalmente pelos gases butano e propano. A reação que
ocorre no
queimador do fogão é a combustão destes gases. A equação não equilibrada abaixo representa a combustão do
C4H10 + O2
CO2 +
A massa de água que pode ser obtida a partir da mistura de 10,0 g de butano com 10,0 g de oxigênio é:
a) 20,0 g
b) 3,10 g
c) 4,33 g
d) 15,5 g
e) 10,0 g
RESPOSTAS
1) a) 160 mL
b)20mL
2) 5,43 g
3) a) 12,7 g
21) 102 g NH3 (excesso de N2 )
22)7,2 g de aspirina (excesso de ác. salicílico)
b) 6,5 g = 0,11 mol
23) a) 10 g
b) CO2
4) 13,6 g de ZnS e 2,86 g de Zn
24) 142,5 g de sulfato de rubídio
5) 15 g NH3 = 19 L
25) a) 964 g
b) 36 g ( CO2 em excesso)
6) a) 8,0 x 10 –2 mol
b) 0,12 mol = 60%
26) 125 g ( S em excesso)
7) a) 322 g
b) 44,8L
27) letra a
8) a) 178 g b) 24,5 g de H2SO4
28) 35,9 g de NaHCO3
9) 6,0 mol
29) letra a
10) 10,4 kg
30) letra d
11) oxigênio: 0,19 mol
31) letra e
12) a) 158 g
b) 35g CCl3CHO
32) a) não , pois o H2SO4 está em excesso
13) 2,00 x 10 –2 mol
14) a) 11,8 g
c) 1,0 g
b) sim, haverá formação de 10,0 mol de
CuSO4 ( CuO é o limitante )
b) 66%
c) não , idem a
15) 9,0 g de H2O e 1,0 g de H2 inalterado
d) não , idem a
16) 192 g
33) letra e
17) 11 g e 0,6 g
34) 72 g de H2O
18) 34,9 g
19) 200 g = 2,0 x 102 g
35) letra c
20) 1,4 Kg e 0,3 Kg de CS2
- 143 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
Estequiometria envolvendo reações sucessivas
Quando o cálculo envolve uma série de reações sucessivas, há uma série de procedimentos aos quais
devemos estar atentos.
Devemos tomar o cuidado de igualar os coeficientes das substâncias que saem de uma reação e entram na
reação seguinte, antes de estabelecermos qualquer relação que envolva estas substâncias.
4 FeS2
O2
2 SO2
+ 11
2 Fe2O3
SO2
+ O2
+
8
2 SO3
Se quisermos calcular as
de reagentes e produtos envolvidos nessa seqüência de
teremos primeiro que igualar os coeficientes das substâncias que saem de uma equação e entram na outra.
Como saem 8 mol de SO2 da 1ª equação, devemos multiplicar a 2ª por 4. Ficaremos então com 8 mol
de SO3 na 2ª equação e por isso multiplicamos a 3ª equação por 8.
4 FeS2
O2
+ 11
2 Fe2O3
SO2
8 SO2
+ 4 O2
+
8
8 SO3
Se os cálculos que interessam envolvem substâncias que aparecem uma única vez em todas as
reações,
poderemos trabalhar normalmente com essas substâncias, de modo semelhante ao que fazíamos
quando trabalhávamos com apenas uma reação.
Exemplo:
Se os cálculos envolvem a relação entre o FeS2
uma
gasto e o H2SO4 obtido, substâncias que aparecem
4 FeS2
8 H2SO4
ou, por simplificação,
1 FeS2
2 H2SO4
Se os cálculos que interessam envolvem alguma substância que aparece como reagente em mais de um
reação ou como produto em mais de uma reação, devemos trabalhar com a quantidade
total desta substância.
Exemplo:
Se os cálculos envolvem a relação entre O2 gasto e H2SO4 obtido, a proporção usada será
15 O2 [ 11 O2 (1.ª reação ) + 4 O2 (2.ª reação
8 H2SO4
Se os cálculos que interessam envolvem alguma substância que aparece (numa mesma
quantidade) no
produto de uma reação e no reagente da outra reação, devemos considerar apenas uma vez essa quantidade.
Exemplo:
8 SO2
8 H2SO4
ou, por simplificação
1 SO2
1 H2SO4
- 144 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
Exemplos de aplicações:
Dados: massas atômicas (u) : H = 1 ; O = 16 ; S = 32 ; Fe = 56
Qual a massa de ácido sulfúrico obtido a partir de 24 kg de FeS2?
1 FeS2
2 H2SO4
120 g
2 x 98 g
24000 g
x
x = 39200 g
39 kg
Qual o volume de oxigênio necessário para se obterem 98 kg de H2SO4?
15 O2
8 H2SO4
15 x 22,4 L
8 x 98g
x
98 x 103 g
x = 4,2 x 104 L O2
Quantos mols de H2SO4 podem ser obtidos a partir de 44,8 L de SO2, nas CNTP?
1 SO2
1 H2SO4
22,4 L
1 mol
44,8 L
x
x = 2 mol H2SO4
EXERCÍCIOS
1)
Considere as reações :
HCOOH( )
4 CO (g) + Ni
(s)
CO ( g ) + H2O (
Ni(CO)4 ( )
)
CO obtida pela decomposição total de 10 mol de
totalmente aproveitada na produção de Ni(CO)4, quantos mols desta última substância serão obtidos ?
2)
seja
Em um laboratório foram preparadas diferentes substâncias, de acordo com as seguintes reações
I) Na2S
H2O
+
CO2 +
II) CaO
+
H2O
Na2CO3
+
H2S
Ca(OH)2
CaCO3
+ 2 NaOH
Sabendo que a reação I consumiu 0,50 mol de CO2, que a reação II formou 2,0 mol de hidróxido de cálcio e
que os reagentes da reação III foram obtidos através das reações I e II, qual a quantidade máxima de hidróxido
de sódio que pode ser obtida?
- 145 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
3) Pela seqüência de reações:
C
+
CO2
O2
+
CO2
NaHCO3
Qual a massa de bicarbonato de sódio obtida a partir de 1,00g de carbono?
4) As equações abaixo mostram a obtenção do clorato de sódio, a partir do dióxido de manganês:
MnO2
HCl
+
MnCl2
+
2 H2O
+
Cl2
Calcule a massa de MnO2 necessária à obtenção de 21,3 g de clorato de sódio.
5) Deseja-se obter 10 toneladas de ferro metálico a partir do carvão, segundo as reações:
2C
3 CO
+
O2
+
2 CO
2 Fe +
3
Qual a massa, em toneladas, de carvão consumido na produção de ferro?
6) Certa massa de ferro é oxidada a óxido férrico; a seguir, este último reage com ácido sulfúrico produzindo
80,0 g de sulfato férrico. Qual a massa inicial de ferro?
7) Da reação entre o peróxido de bário e ácido sulfúrico resultam água oxigenada e um precipitado. A água
oxigenada assim obtida pode ser decomposta na presença de luz e com a adição de
catalisadores. Relativamente às transformações descritas, pedem-se:
a)
b)
As equações das reações de formação e decomposição do H2O2.
A massa de peróxido de bário necessária para que sejam produzidos 5,60 L de gás oxigênio, medidos
nas CNTP.
8) O gás resultante da combustão de 160 g de enxofre reage completamente com hidróxido de sódio. Calcule a
massa obtida de sulfito de sódio obtido.
9) O gás hidrogênio liberado na reação de alumínio com ácido clorídrico reage completamente com
óxido
cúprico produzindo 12,6 g de cobre metálico e água. Qual a massa de alumínio que reagiu com
10) Óxido de potássio reage com água e o produto obtido é colocado em contato com uma solução de ácido
fosfórico. A partir de 2,0 mol de óxido de potássio, quantos mols se obtêm de fosfato de potássio?
11) Certa porção de cálcio reagiu com água formando hidróxido e gás hidrogênio. O hidróxido
formado na
reação neutralizou completamente 49,0 g de ácido fosfórico. Calcule o volume de hidrogêni
12) Decompôs-se, através de aquecimento, 2,45 kg de clorato de potássio. O gás obtido foi
empregado na
combustão de alumínio. Qual o volume de oxigênio obtido na decomposição e qual a massa de ácido nítrico
13) Qual a massa de clorato de potássio, em quilos, necessária para a produção de oxigênio suficiente
para
- 146 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
14) Considerando as seguintes etapas:
a) ácido sulfúrico reagindo com zinco metálico;
b) gás produzido na reação (a) reagindo com gás cloro;
c) o produto da reação (b) reagindo com uma solução de nitrato de prata;
Quantos gramas de ácido sulfúrico são necessários para produzir 30,0 g de precipitado?
15) Em excesso de oxigênio queimamos 93,0 g de fósforo. O produto obtido da combustão é
recolhido em
16) Para
seguintes
I.
II.
III.
IV.
V.
a obtenção de 5,2 g de sulfito de magnésio foi realizado um processo que constou da
Combustão de x gramas de enxofre
dióxido de enxofre
Combustão de y gramas de magnésio óxido de magnésio
Dióxido de enxofre + água
ácido representado por A
Óxido de magnésio + água base representada por B
Ácido A + Base B sulfito de magnésio + água
a) Escreva as equações das reações citadas.
b) Calcule os valores de x e y para que seja obtida a massa citada de sulfito de magnésio
17) Uma das formas de poluição de nossos dias é a chuva ácida. Ela provoca a destruição de
monumentos
históricos através da corrosão provocada pelo ácido. A origem desta forma de poluição encontra-se na queima
a) queima (combustão) do enxofre produzindo anidrido sulfuroso ;
b) queima (combustão) do anidrido sulfuroso produzindo anidrido sulfúrico ;
c) reação do anidrido sulfúrico com água
Considerando-se que em 100 litros de gasolina encontram-se 3,2 mg de enxofre, qual a quantidade
(em gramas) de ácido sulfúrico formada pela queima deste volume de combustível? Escreva as equações
das reações.
18) Duas das reações que ocorrem na produção do ferro são representadas por:
I . carvão + oxigênio
monóxido de carbono
II. Óxido de ferro III + monóxido de carbono
ferro + dióxido de
O monóxido de carbono formado na primeira reação é consumido na segunda. Considerando
apenas
estas duas etapas do processo, calcule a massa aproximada, em kg, de carvão consumido na produção de uma
19) Uma amostra de prata reage com ácido nítrico diluído segundo a reação
3 Ag + 4 HNO3
3 AgNO3 + NO + 2 H2O
Após a reação, adiciona-se ácido clorídrico, obtendo-se um precipitado branco que pesou 0,0911 g. Que
massa de prata reagiu inicialmente?
20) O gás resultante da reação entre 9,8 g de ácido sulfúrico e 7,0 g de zinco metálico foi misturado com outro
gás, proveniente da reação entre 14,6g de ácido clorídrico e x g de dióxido de manganês expressa abaixo:
MnO2 + 4 HCl MnCl2 + Cl2 + 2 H2 O
Esta mistura gasosa foi exposta à luz, havendo reação de síntese total, com formação de 1,5 L de produto. A
partir destas informações, qual a massa de dióxido de manganês empregada na reação com HCl considerando
que o processo se deu nas CNTP?
- 147 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
RESPOSTAS
1)
2,5 mol
4) 52,2 g
7) a) BaO2
2 H2O2
2)1,0 mol NaOH
3) 7,00
11) 16,8 L H2, 30 g de Ca e 77,5 g de sal
5) 3,2 t
6) 22,4 g
12) a) 672 L O2
b) 7,56 kg HNO3
13) 2,92 kg
14) 10,2 g de ácido sulfúrico
+ H2SO4
BaSO4
+ H2O2
15) 3,0 mol
2 H2O + O2
17) 9,8 x 10
b) 84,5g
8) 630 g
16) b) x = 1,6g de S
–3
9) 3,6 g
g
e y = 1,2g de Mg
18) 320 kg
19) 0,0686 g = 6,86 x 10– 2 g 20) 2,9g deMnO2
10)1,3 mol
Estequiometria envolvendo substâncias impuras
Salvo na indústria farmacêutica e em outras que estejam diretamente ligadas à sua saúde
pública, é
normal o uso de reagentes impuros, que contêm, além da substância que irá efetivamente reagir, outras tantas
misturadas.
Por exemplo, numa amostra de calcário (carbonato de cálcio impuro), é comum encontrar areia, carvão
e outras substâncias. Faz-se então uma análise do material e determina-se seu grau de purez
Se for constatado, por exemplo, que em cada 100 g de calcário existem apenas 80 g de carbonato de cálcio e os
outros
20 g são impurezas diversas, dizemos que o calcário é 80% puro ou que o teor de carbonato no calcário é de 80
%.
Determinado o grau de pureza, pode-se trabalhar normalmente com o reagente.
Para calcularmos a quantidade de produto obtido a partir de determinada quantidade de reagente impuro,
basta considerar apenas a parte pura do mesmo, ou seja, a pureza disponível. A quantidade
de produto obtida será, então, proporcional a essa parte pura do material.
CaCO3 +
CaSO4
100g de CaCO3
—————
80 % de 250 g
—————
+ H2O +
22,4 L de CO2
x
x
= 44,8 L de O2
200 g
1 mol de CaCO3
————— 136 g de CaSO4
80% de 5,0 mol
—————
x
x = 544 g de CaSO4
4,0 mol
Para calcularmos a quantidade de substância impura que deverá ser usada na obtenção de
determinada
quantidade de produto, devemos proceder da seguinte maneira:
Calculamos a quantidade teórica, considerando o reagente 100% puro, necessária para se obter a quantidade
- 148 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
A quantidade real de reagente que deverá ser usada é uma quantidade superior à teórica
de tal
Exemplo:
CaCO3 +
CaSO4
+ H2O +
100g de CaCO3
—————
22,4 L de CO2
x
—————
11,2 L
x = 50,0 g de CaCO3 (quantidade teórica)
50,0 g de CaCO3
—————
80%
y
—————
100%
y = 62,5 g de CaCO3
(quantidade real)
Estequiometria envolvendo rendimento de reação
Até o momento, estamos encarando as reações químicas como processos onde as massas dos reagentes,
desde que misturadas na proporção correta, se transformam totalmente em produtos. Na prática, é muito pouco
provável que isto ocorra, pois, muitas vezes, uma parte de um ou de ambos os reagentes é
consumida em reações paralelas ou, então, uma parte de produto é perdida no momento em que ele é retirado
do sistema onde ocorreu a reação química. Quando a massa total dos reagentes, em quantidades
estequiométricas, é convertida
em produtos, dizemos que a reação teve
. Esse valor é o rendimento teórico, mas,
em geral, o rendimento real ou seja, aquele obtido na experiência, é menor. O rendimento
Rendimento teórico —————
Rendimento real
—————
100%
x
Para que possamos determinar a porcentagem do rendimento real, devemos antes determinar o rendimento
teórico, a partir das quantidades estequiométricas.
Exemplo:
N2
+ 3
2 NH3
28g N2 ————— 34 g NH3
70g N2 —————
x
85 g NH3
y
—————
—————
x = 85g (teórico
100%
40%
y = 34g (real)
Para calcularmos a quantidade de substância deverá ser usada na obtenção de determinada quantidade de
produto, considerando um rendimento inferior a 100 %, devemos proceder da seguinte maneira:
- 149 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
Calculamos a quantidade teórica, considerando o rendimento de 100% , necessária para se
obter a
quantidade de produto desejada.
A quantidade real de reagente que deverá ser usada é uma quantidade superior à
teórica, de tal forma que a quantidade teórica corresponda ao rendimento efetivo que a reação consegue
Exemplo:
N2
+ 3
2 NH3
28g N2 ———— 34 g NH3
500g
—
x N2 —————
x =
412 g
412 g NH3 —————
y
————— 100%
y = 1030 g (real)
EXERCÍCIOS
1) A combustão do álcool etílico gera, como produtos, gás carbônico e água. De posse dessa informação, na
queima de 100 g de álcool hidratado, com 92% de pureza, qual será a massa de água formada?
2) Uma amostra de 200 g de CaCO3 impuro, com 90% de pureza, reage com excesso de HCl. Quais
as massas de H2O e CO2 formadas?
3) 100 g de carbonato de cálcio impuro são tratados com ácido clorídrico. O gás, recolhido convenientemente,
pesou 39,6 g. Admitindo-se que as impurezas não reajam com HCl, qual a pureza do carbonato de cálcio ?
4) Uma amostra de 12,5 g de carbonato de magnésio impuro foi tratada com excesso de
solução de ácido sulfúrico, tendo-se obtido nessa reação, 600 cm3
de gás carbônico
medidos nas CNTP. Qual o teor de carbonato de magnésio amostra?
5)
Uma indústria queima diariamente 1,2 x 10 3 kg de carvão (C) com 90% de pureza. Supondo que a
queima tenha sido completa, qual o volume de oxigênio necessário (CNTP)?
6) O nitrogênio, juntamente com água, pode ser obtido pela decomposição térmica do nitrito de amônio.
Calcule o volume obtido de nitrogênio, nas CNTP, pela decomposição de 12,8 g de nitrito de
amônio, supondo que o rendimento da reação seja 80% em massa.
7) Qual a massa de água obtida pela reação completa entre 4,0 g de H2 e 40 g de O2, se o rendimento da reação
for de 75%?
- 150 -
Escola Estadual de Educação Profissional [EEEP]
8)
Ensino Médio Integrado à Educação Profissional
Fazendo-se reagir 158 g de Na2S2O3 com quantidade suficiente de I2, segundo a reaçã
2 Na2S2O3
+
2 NaI + Na2S4O
obteve-se 105 g de Na2S6O4. Qual o rendimento da reação?
9) 12,25 g de ácido fosfórico com 80 % de pureza são totalmente neutralizados por hidróxido de sódio numa
reação que apresenta rendimento de 90%. Qual a massa de sal obtida?
10) Ácido nítrico impuro reage com magnésio metálico (Mg), produzindo 2,24 L de H2, medidos nas CNTP.
Calcular:
a) a massa de magnésio consumida;
b) a massa de ácido nítrico impuro gasta, sabendo que sua pureza é 80%.
11) Na reação : 2 SO2
+
2 SO3, considerando as CNTP, calcule
a) o volume de gás oxigênio necessário para reagir completamente com 6,40g de SO2;
b) a massa de SO3 obtida se a reação tem rendimento de 80%.
12) Desejamos preparar 1,0 m3 de gás oxigênio, nas CNTP. Que massa de peróxido de sódio contendo 10%
de impurezas devemos usar?
13) Ao queimarmos 2,00 g de uma substância orgânica, obtivemos 2,70 x 103 mL de gás carbônico
(CNTP). Qual a porcentagem de carbono na amostra?
14) Uma amostra de sulfato férrico impuro tem 15% de umidade. 1,000g do mesmo foram dissolvidos em água,
reagindo com cloreto de bário e obtendo-se 1,167g de precipitado. Qual a percentagem de sulfato
férrico na amostra seca e na amostra úmida?
15) Misturando-se 2,0 mol de gás hidrogênio com 1,0 mol de gás oxigênio, quantos mols de água devem ser
obtidos, com rendimento de reação de 90% ?
16) 80 g de enxofre reagem com oxigênio, produzindo 128 g de SO2. Determine o rendimento da reação.
17) A combustão de 36,0 g de grafite (C) provocou a formação de 118,8 g de gás carbônico. Qual o rendimento
da reação?
18) Para a obtenção de gás nitrogênio em laboratório, utiliza-se a decomposição térmica do nitrito de amônio.
Sabendo-se que a partir de 3,20 g de nitrito de amônio obteve-se 0,896 L de gás nitrogênio (CNTP), calcule o
rendimento da reação.
19) É possível obter gás oxigênio pela decomposição térmica do clorato de potássio. Usando-se
clorato de
potássio 80% puro e considerando um rendimento de 70%, qual a massa de KClO3 necessária para se obter um
20) Foram obtidos 3,72 kg de Ca3(PO4)2 pela reação do H3PO4 com 80% de pureza e Ca(OH)2 com 90%
d pureza. Calcule as massas de ácido fosfórico impuro e hidróxido de cálcio impuro utilizadas na reação.
21) Calcule a massa de ferro que pode ser obtida a partir da hematita, cujo teor de óxido férrico é de 85% ,
quando consideramos a reação de 1000g de hematita com monóxido de carbono:
Fe2O3
+ 3
2 Fe + 3
- 151 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
22) A combustão de uma determinada massa de enxofre gerou 6,4 g de dióxido de enxofre. Sabendo-se que o
rendimento é 80%, pede-se:
a)
a massa de enxofre
b) o volume de O2 gasto ( CNTP)
23) 26,1 g de dióxido de manganês são tratados com ácido clorídrico concentrado. Qual o volume
de cloro
MnO2
+ 4
MnCl2
+ Cl2
+
2
24) Queimamos 1,000 g de fósforo impuro em excesso de gás oxigênio e recolhemos o produto em água, tendose completado o volume até 1000 mL. Desta solução foram retirados 10,00 mL que reagiram com bicarbonato
de sódio obtendo-se um gás que, nas CNTP, ocupou 20,16 mL. Calcular a porcentagem de fósforo na amostra.
25) 2,000 g de cloreto de sódio com 5% de umidade foram dissolvidos em água, até completar o volume de
200,0 mL. Destes, 20,00 mL foram tratados com solução de nitrato de prata, dando um precipitado que pesou
0,4305g. Qual a percentagem de cloreto de sódio na amostra seca?
26) Em excesso de oxigênio queimamos 93,0 g de fósforo. O produto obtido da combustão é recolhido em água,
quantos mols de ácido fosfórico são obtidos ?
27) Uma amostra de 500 kg de calcário (com teor de 80% em CaCO3) foi tratada com ácido
fosfórico para formar CaHPO4.
a) Escreva a equação da
b) Calcule a massa, em kg, do sal formado.
28) Uma amostra de 2,0 g de minério de carbonato de cálcio ao ser tratada com ácido clorídrico, produziu 1,5 x
10 –2 mol de CO2. Equacione o processo e calcule a % em massa de CaCO3 na amostra.
29) Uma cervejaria produz 10 milhões de latas de cerveja por mês. As latas são de alumínio e a metalúrgica que
as fabrica utiliza 70% de alumínio reciclado. Considerando-se que o alumínio é produzido segundo a reação 2
Al2O3
4 Al + 3 O2 , com 100% de rendimento, e que cada lata tem 18 g de Al, a quantidade de Al2
necessária para atender à produção mensal da cervejaria é :
a) 340 t
b) 304 t
c) 102 t
d) 54 t
e) 27 t
30) O gás hidrogênio pode ser obtido em laboratório a partir da reação de alumínio com ácido sulfúrico. Um
analista utilizou uma quantidade suficiente de H2SO4 para reagir com 5,4 g do metal e obteve 5,71 litros do gás
nas CNTP. Nesse processo, o analista obteve um rendimento aproximado de:
a) 75%
b) 80%
c) 85%
d) 90%
e) 95%
31) O óxido nitroso, N2O, é conhecido como "gás hilariante" e foi um dos primeiros anestésicos
serem descobertos. Esse gás e água podem ser obtidos pelo aquecimento cuidadoso de nitrato de amônio sólido
Se a decomposição de 400g de uma amostra impura de nitrato de amônio forneceu 84 L de gás hilariante nas
CNTP, pergunta-se :
a) Qual a pureza da amostra, considerando um rendimento de 100%?
b) Utilizando–se 200 g do nitrato de amônio cuja pureza foi determinada no item a,quantos gramas de água
serão obtidos se o rendimento da reação for de 60%?
32) A nitroglicerina (C3H5N3O9) , sob impacto, decompõe-se produzindo gases que, ao se
expandirem, provocam uma violenta explosão.
impacto
4 C3H5N3O9(l)
6 N2(g) + O2(g) + 12 CO2 (g) + 10 H2O (g)
Calcule o volume, em litros, dos gases produzidos pela explosão de 908 g de
nitroglicerina,
considerando um rendimento de reação de 85%.
- 152 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
33) Em uma reação de síntese do gás amoníaco (amônia), utilizou-se 3,36 litros de gás nitrogênio e 3,36 litros
de gás hidrogênio. O rendimento do processo foi de 50 % e os gases estavam todos nas CNTP. Qual o volume
de gás amoníaco obtido?
34) Hidreto de lítio pode ser preparado segundo a equação:
2 Li (s) + H2 (g)
2 LiH (s)
Admitindo que o hidrogênio é medido nas CNTP, calcule :
a)
A massa de hidreto de lítio que pode ser produzida na reação de 14,0 g de lítio, cujo teor é de 75 %, com
11,2 L de hidrogênio.
b)
O rendimento da reação se, com as quantidades de reagentes acima indicadas, ocorrer a formação de
de LiH
6,32
35) O químico francês Antoine Lavoisier ficaria surpreso se conhecesse o município de Resend
a 160
quilômetros do Rio. É lá, às margens da Via Dutra, que moradores, empresários e o poder público seguem à
risca a máxima do cientista que revolucionou o século XVIII ao provar que, na natureza, tudo se transforma.
Graças a uma campanha que já reúne boa parte da população, Resende é forte concorrente ao título de capital
nacional da reciclagem. Ao mesmo tempo em que diminui a quantidade de lixo jogado no aterro sanitário, a
comunidade faz sucata virar objeto de consumo. Nada se perde.
(Revista DOMINGO)
2 Al2O3 (s)
4 Al (s) + 3 O2
a) Considerando-se um rendimento de 80 % no processo, qual a massa de alumínio obtida na reciclagem de
255 kg de sucata contendo 70 % de Al2O3?
b)
Qual o teor de óxido de alumínio na sucata
processo cujo rendimento foi de 65%?
se, a partir de 6,0t dela, forem obtidas 1,5 t de alumínio , nu
36) Na reação de 3,00g de sódio metálico com água (produzindo gás hidrogênio e o hidróxido correspondente),
houve desprendimento de 1,42 L de gás, nas CNTP. Qual a pureza do sódio usado?
37) A pirolusita (mineral cujo principal constituinte é o óxido de manganês IV) reage com ácido
clorídrico
produzindo cloreto de manganês II, água e cloro gasoso.
a) Que volume de cloro (em litros) pode ser obtido, nas CNTP, a partir de 43,5 g de pirolusita com 83,8% de
pureza?
b) Que volume de cloro (em litros) pode ser obtido, fora das CNTP, a partir de 90,0 g de pirolusita (com a
mesma pureza do item a ) se o rendimento for de 95,0 % e o volume molar nas condições da experiência for
igual a 30,0 litros /mol ?
c) Se forem obtidos 50,0 g de cloreto de manganês II a partir de uma amostra de 50,0 g de pirolusita, qual o teor
38) Sabe-se que o clorato de potássio se decompõe pelo aquecimento em cloreto de potássio e gás oxigênio. Se
a decomposição de 2,45g de uma amostra de um minério contendo clorato de potássio forneceu 0,336 L de gás
oxigênio nas CNTP, pergunta-se :
a) a pureza da amostra.
b) considerando-se a pureza encontrada no item a, quantos kg de KCl serão obtidos se utilizarmos 500kg deste
minério ?
39) Uma amostra contendo 2,12g de carbonato de sódio ( Na2CO3) foi tratada por ácido clorídrico, obtendo-se
375 mL de gás carbônico medidos nas CNTP. Qual o rendimento da reação?
40) Misturou-se 79,0 g de tiossulfato de sódio e 60,0 g de ácido sulfúrico. Considerando-se que o rendimento do
processo foi de 75%, calcule:
a) A massa, em gramas, de enxofre produzido.
b) O volume, em litros, de dióxido de enxofre obtido a 30 ºC, onde o volume molar é de 24,9 L/mol.
- 153 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
41) Na reação de anidrido carbônico com hidróxido de sódio foram obtidos 14,9 g de sal. Quais foram as massas
usadas dos reagentes, considerando que para realizar a reação utilizou-se soda cáustica cujo teor de hidróxido de
sódio era de 40 % ?
42) Uma das riquezas minerais do Brasil é a hematita, cujo principal constituinte é o Fe2O3, que é empregada na
obtenção do ferro. Esse processo é feito em alto-forno, usando-se carvão como redutor. Em uma das reações
ocorridas nesse processo formam-se o metal e monóxido de carbono, segundo a equação:
Fe2O3 + 3
2 Fe +
a) Calcule a massa de hematita necessária, considerando um teor de Fe2O3 de 63 % , para a obtenção de 5,0
toneladas de ferro.
b) Calcule a massa de carvão,que apresenta 80 % de pureza, a ser empregada para que se obtenha 3,0 toneladas
de ferro
c) Calcule a massa de hematita necessária, em kg, considerando-se uma pureza de 70% , para a obtenção de
5,0 · 103 litros de CO, se a reação estiver ocorrendo nas CNTP.
43) A obtenção do ácido sulfúrico (H2SO4), industrialmente, poder ser feita a partir da pirita (FeS2), de acordo
com as equações:
4 FeS2 + 11
2 Fe2O3 + 8
O2
SO2
2 SO2 + O2
2 SO3
Determine a massa de ácido sulfúrico obtida, em toneladas, a partir de 48 toneladas de pirita, cujo teor de
FeS2 é de 78 %, considerando um rendimento de processo de 60 %.
44) 12,0 g de magnésio reagem com ácido clorídrico. O gás liberado reagiu com iodo gasoso, com rendimento
de 50,0 %. O produto formado nesta segunda etapa reagiu com nitrato de cálcio formando com
um dos produtos, um sal. Este, em reação com carbonato de sódio, produziu 20,0 g de precipitado. Qual a
percentagem
45) Reagindo 11,2 g de N2 com 1,8 g de H2 obtiveram-se 5,1 g de amônia.
a) Qual o rendimento desta reação?
b) Se a amônia produzida na reação for oxidada (reação com oxigênio) produzindo gás nitrogênio e água, que
massa de água (em gramas) poderá ser obtida?
46) Uma amostra de carbonato de cálcio foi aquecida até total decomposição do mesmo. O gás
liberado foi
borbulhado em uma solução de hidróxido de sódio. À solução obtida adicionou-se sulfato de alumínio, obtendose um precipitado que depois de filtrado e seco pesou 16,38 g. Qual a massa de carbonato de cálcio na amostra,
47) A produção industrial de metanol, CH3OH, a partir do metano, CH4, e a combustão do metanol em motores
de explosão interna podem ser representadas, respectivamente, pelas equações I e II.
I.
3 CH4 (g) + 2 H2O (g)
II.
CH3OH (g) + 3/2
+ CO2
4 CH3OH (g)
CO2 (g) + 2 H2O
Supondo que o CO2 da reação representada em (I) provenha da atmosfera, e considerando apenas essas
duas reações, (I) e (II), responda se a seguinte afirmação é verdadeira: ―A produção e o consumo de metanol não
alteraria a quantidade de CO2 na atmosfera―. Justifique a sua resposta.
48) A análise de uma amostra de cloreto de sódio – o sal usado na preparação de alimentos – revelou que 100 g
da mesma apresenta 55 g de cloro. A porcentagem de pureza dessa amostra é aproximadamente igual a
a) 22,5%
b) 45%
c) 54%
d) 90%
e) 100%
49) Um lote de sal grosso, com especificação de conter no mínimo 90% de sal, é suspeito de estar adulterado
com areia. A uma amostra de 250 g do produto seco foi adicionada quantidade suficiente de águ
e, após filtração, o resíduo, separado e seco, pesou 50 g. Justifique a conclusão possível.
- 154 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
50) O óxido de titânio (TiO2) é usado em grande quantidade como pigmento branco para tintas e indústrias de
plásticos, cerâmicas e papéis. Grande parte do titânio pode ser encontrada na natureza sob a form
de um
mineral denominado ilmenita, cuja fórmula aproximada é FeTiO3. Um processo muito usado na obtenção do
2 FeTiO3 + 2 Cl2 +
2 FeCl2 + 2 TiO2
+
a)
Se partirmos de 1,0 kg do mineral ilmenita, contendo 90% de FeTiO3, que massa, em gramas, de óxido de
titânio puro pode ser obtida teoricamente?
b)
Se obtivermos 7,0t de óxido de titânio a partir de 16,0t de ilmenita, qual o teor de FeTiO3 no mineral usado
c)
Se estivermos trabalhando a 25 ºC, qual o volume, em m3, de CO2 obtido a partir de 500 kg de ilmenita 7
% pura, num rendimento de 58 %, se o volume molar for de 24 ,4 L/mol ?
51) Um fermento químico utilizado para fazer bolos é o sal bicarbonato de amônio (NH4HCO3).
Quando aquecido esse sal se decompõe em dióxido de carbono, amônia e água, todos gasosos na temperatura e
que o
bolo é feito. Determine:
a)
O volume de gás carbônico obtido (volume molar = 38 L/mol ) a partir de 25,0 g de fermento que apresenta
80,0 % de pureza em bicarbonato de amônio..
52) Em 1990 foram consumidos em nosso país, cerca de 164 bilhões (164 x 109) de cigarros. A massa de um
cigarro que é queimada corresponde a aproximadamente 0,85 g. Considerando que 40 % da massa do cigarro
sejam do elemento carbono, quantas toneladas de dióxido de carbono os fumantes lançaram na atmosfera em
1990 no Brasil?
Dado: 1 tonelada (1t) = 106 g
53) O jornal Correio Popular, de Campinas, publicou (23/06/89) a seguinte notícia (trechos):
...―Ativistas do grupo ecológico ―Greenpeace‖ impediram, ontem, que um navio soviético recebesse uma
carga de lixo tóxico europeu, que seria transportado para o Brasil. O material constituído de mil toneladas de
metais pesados como [cobre], chumbo, cádmio e cromo, seria entregue a empresa brasileira (...) que faria a
reciclagem do que ele tinha em cobre.O ―Greenpeace‖ denunciou, porém, que apenas 5% da carga era
constituídas por esse elemento (...)
Pergunta-se:
a)
b)
Que massa de cobre haveria nessa carga?
Qual a massa de sulfato de cobre pentahidratado, CuSO4.5H2O, que poderia ser obtida caso todo cobre fosse
transformado neste sal ?
54) O sal nitrato de amônio é utilizado na agricultura como fertilizante nitrogenado, contendo aproximadamente
33% de N. Sua obtenção dá-se pela reação de síntese entre o ácido nítrico e a amônia.
a)
Calcule a massa, em toneladas, de NH3
amônio.
necessária para produzir 8,0 toneladas de fertilizante nitrato d
b)
Calcule a massa, em toneladas, de ácido nítrico 50% puro necessária para produzir a mesma
massa do fertilizante especificada no item a.
55) Alguns analistas pensam que, no futuro, o gás hidrogênio será largamente utilizado como combustível. Esse
gás será produzido pela eletrólise da água, no processo dado pela equação:
H2O (
H2(g) + ½ O2
Qual volume de gás hidrogênio, nas CNTP, seria obtido pela decomposição de 5,00 · 103 mol de água
admitindo-se um rendimento de 80% ?
a) 8,96 x 104L
b) 1,12 x 104L
c) 4,48 x 104L
d) 2,24 x 104L
e) 5,60 x 103L
56) O medicamento ― leite de magnésia ― é uma suspensão de hidróxido de magnésio. Esse
medicamento é
- 155 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
Sabe-se que, quando utilizamos 12,2 g desse medicamento neutraliza-se certa quantidade do ácido clorídrico,
produzindo 16,0 g de cloreto de magnésio.
O grau de pureza desse medicamento, em termos de hidróxido de magnésio é igual a:
a) 90%
b) 80%
c) 60%
d) 40%
e) 30%
57) O ácido sulfúrico é obtido industrialmente por um processo que se inicia com a queima do
enxofre. O
produto imediato desta queima é o dióxido de enxofre, que em presença de excesso de oxigênio
(queima completa) origina o trióxido. O ácido é então obtido pela reação deste último com água.
Dada: NA = 6,02 · 1023 entidades/mol
a) Qual o volume ( em L ) de anidrido sulfuroso (nas CNTP) gerado pela queima de 25,0 mol de enxofre 76 %
puro ?
b) Qual a massa ( em kg ) de anidrido sulfúrico obtido a partir da queima de 25,0 mol de enxofre co
um rendimento de reação de 94 % ?
c) Qual a massa ( em kg ) de ácido sulfúrico obtido a partir da queima de 25,0 mol de enxofre 57 % puro num
processo cujo rendimento em média é de 82 % ?
d) Quantos mols de oxigênio são necessários para queimar completamente 48,0 t de enxofre?
e) Quantas moléculas de trióxido de enxofre precisam reagir completamente com água para que sejam obtidos
58) A substância simples fósforo é obtida a partir do mineral fosforita, (fosfato de cálcio). Uma
mistura de
fosforita, areia (dióxido de silício) e carvão é aquecida em forno elétrico. O resultado é a redução do fósforo
(formando a variedade alotrópica fósforo–branco, cuja atomicidade é 4), formando ainda metassilicato de cálcio
e monóxido de carbono.
Considerando uma fosforita cujo teor de fosfato de cálcio seja de 80% e dada NA
= 6,02 · 1023
entidades/mol:
a) Quanto de fósforo branco ( em kg ) serão obtidos a partir de 1,5 t de fosforita?
b) Quantos kg de areia serão necessários para a reação do item a se a areia usada possui um teor de dióxido de
silício de 95 % ?
c) Qual a quantidade de matéria de carvão consumida no item a se o teor de carbono no carvão
59) Na metalurgia do manganês utiliza-se um processo conhecido como aluminotermia. O princípi
desse
processo é uma reação de deslocamento metálico, no qual a pirolusita (dióxido de manganês) é aquecido em
presença de alumínio. Considerando a pirolusita como tendo uma pureza de 90%:
a) Quantas toneladas de pirolusita são necessários para obter 1,1 t de manganês, num processo com 58 % de
rendimento?
b) Quanto de alumínio ( em g ) será necessário para processar 6 mols de dióxido, se o alumínio usado possui
60) Um dos processos industriais de obtenção de mercúrio é a ustulaçãodo cinábrio (sulfeto mercúrico). Nesse
processo o minério é aquecido com oxigênio obtendo-se o metal e tendo como subproduto o anidrido sulfuroso.
a) Qual a massa ( em t) de cinábrio, cujo teor de sulfeto mercúrico é de 52%, é necessária para a obtenção de
2,50 x 104 mol do metal
?
b) Qual o volume de gás sulfuroso ( em L, nas CNTP) obtido pela ustulação de 180g de cinábrio 65 % puro
onde foram empregados 50,0 L de ar ( A composição volumétrica do ar em termos de oxigênio é em torno de
20 % em volume )? Pensar em excesso!!!!!!
c) Quantos mols de mercúrio são obtidos quando processamos 812g de cinábrio, 80 % puro,
com um rendimento de 67% ?
d) Quantos litros de ar (nas CNTP) são necessários para obter 67,0 g de metal? Considere a composição citada
- 156 -
Escola Estadual de Educação Profissional [EEEP]
Ensino Médio Integrado à Educação Profissional
no item c.
- 157 -
Escola Estadual de Educação Profissional [EEEP]
Profissional
Ensino Médio Integrado à Educação
RESPOSTAS
1)108g
2) 32,4 g H2O e 79,2 g CO2
3) 90,0%
4) 18,0%
6) 3,58 L
7) 27g
9) 14,76 g
10) a) 2,40 g Mg
11) a) 1,12 L O2
b) 6,40 g
23) 6,05 L
24) 93 %
25) 92 %
5) 2,0 x 10 6 L
26) 3,0 mol
27) b) 544kg
28) 75%
8) 78,0%
29) letra a
30) letra c
31) a) 75% b) 40,5g
b) 15,75 g
32) 863L
33) 1,12L
34) a) 8,00g
12) 7,7 kg
35) a) 75,6kg b) 73%
36) 97%
b) 79,0%
13) 72,5 %
14) 79% (seca) e 67% (úmida)
37) a) 9,40L
b) 24,7L
c) 69,0%
15) 1,8 mol
16) 80 %
38) a) 50,0%
b) 152kg
39) 83,7%
40) a) 12,0g
b) 9,3L
18) 80 %
17) 90,0 %
19) 43,8 g
20) 2,9 Kg de H3PO4 e 2,9 Kg de Ca(OH)2
41) 6,18g de CO2 e 28,1g de NaOH
21) 595 g
42) a) 11t
22) b) 4,0 g de S
43) 36 t
44) 80,0 %
c) 2,8 L de O2
45) a) 50%
b) 8,1g
b) 1,2t
c) 17kg
46) 22,10g
47) alteraria, pois é consumido 1mol de gás carbônico e são gerados 4 mol após a combustão.
48) letra d
49) a amostra possui 80% de sal, estando abaixo da especificação.
50) a) 474g
b) 81%
51) a) 9,62L
b) 79,6%
52) 2,05· 105t 53) a) 50t
c) 15,0m3
b) 196t
54) a 1,7t
d) 2,25 · 106 mol
55) letra a
56) letra b
57) a) 426L
b) 1,88kg
c) 1,15kg
58) a) 240kg
b) 734 kg
c) 2,3 · 104 mol
59) a) 3,0t
b) 260g
60) a) 11t
b) 10,0L
c) 1,87 mol
d) 37,5L ar
- 158 -
b) 12,6t
e) 6,02 · 1026 moléculas
Escola Estadual de Educação Profissional [EEEP]
Profissional
Ensino Médio Integrado à Educação
Referências bibliográficas
Usberco
Salvador
Química
Usberco
Salvador
Química
Usberco
Salvador
Química
Carvalho
Química Moderna 1
Carvalho
Química Moderna 3
Gallo
. Química : da teoria à realidade
Peruzzo,
cotidian
o
Canto
Química: na abordagem
Canto
Química: na abordagem
Peruzzo,
cotidian
Química geral
o
Fonseca
Química Integral
Química
Fonseca
Barros
Química:
Feltre
Nabuco
inorgânic
a
Politi
Química: curso completo
Brady
Humiston
Silva,
Novais,
Química Geral,
Silva
Química ,
- 159 -
Curso de Química
e
Hino Nacional
Hino do Estado do Ceará
Ouviram do Ipiranga as margens plácidas
De um povo heróico o brado retumbante,
E o sol da liberdade, em raios fúlgidos,
Brilhou no céu da pátria nesse instante.
Poesia de Thomaz Lopes
Música de Alberto Nepomuceno
Terra do sol, do amor, terra da luz!
Soa o clarim que tua glória conta!
Terra, o teu nome a fama aos céus remonta
Em clarão que seduz!
Nome que brilha esplêndido luzeiro
Nos fulvos braços de ouro do cruzeiro!
Se o penhor dessa igualdade
Conseguimos conquistar com braço forte,
Em teu seio, ó liberdade,
Desafia o nosso peito a própria morte!
Ó Pátria amada,
Idolatrada,
Salve! Salve!
Brasil, um sonho intenso, um raio vívido
De amor e de esperança à terra desce,
Se em teu formoso céu, risonho e límpido,
A imagem do Cruzeiro resplandece.
Gigante pela própria natureza,
És belo, és forte, impávido colosso,
E o teu futuro espelha essa grandeza.
Terra adorada,
Entre outras mil,
És tu, Brasil,
Ó Pátria amada!
Dos filhos deste solo és mãe gentil,
Pátria amada,Brasil!
Deitado eternamente em berço esplêndido,
Ao som do mar e à luz do céu profundo,
Fulguras, ó Brasil, florão da América,
Iluminado ao sol do Novo Mundo!
Do que a terra, mais garrida,
Teus risonhos, lindos campos têm mais flores;
"Nossos bosques têm mais vida",
"Nossa vida" no teu seio "mais amores."
Ó Pátria amada,
Idolatrada,
Salve! Salve!
Brasil, de amor eterno seja símbolo
O lábaro que ostentas estrelado,
E diga o verde-louro dessa flâmula
- "Paz no futuro e glória no passado."
Mas, se ergues da justiça a clava forte,
Verás que um filho teu não foge à luta,
Nem teme, quem te adora, a própria morte.
Terra adorada,
Entre outras mil,
És tu, Brasil,
Ó Pátria amada!
Dos filhos deste solo és mãe gentil,
Pátria amada, Brasil!
Mudem-se em flor as pedras dos caminhos!
Chuvas de prata rolem das estrelas...
E despertando, deslumbrada, ao vê-las
Ressoa a voz dos ninhos...
Há de florar nas rosas e nos cravos
Rubros o sangue ardente dos escravos.
Seja teu verbo a voz do coração,
Verbo de paz e amor do Sul ao Norte!
Ruja teu peito em luta contra a morte,
Acordando a amplidão.
Peito que deu alívio a quem sofria
E foi o sol iluminando o dia!
Tua jangada afoita enfune o pano!
Vento feliz conduza a vela ousada!
Que importa que no seu barco seja um nada
Na vastidão do oceano,
Se à proa vão heróis e marinheiros
E vão no peito corações guerreiros?
Se, nós te amamos, em aventuras e mágoas!
Porque esse chão que embebe a água dos rios
Há de florar em meses, nos estios
E bosques, pelas águas!
Selvas e rios, serras e florestas
Brotem no solo em rumorosas festas!
Abra-se ao vento o teu pendão natal
Sobre as revoltas águas dos teus mares!
E desfraldado diga aos céus e aos mares
A vitória imortal!
Que foi de sangue, em guerras leais e francas,
E foi na paz da cor das hóstias brancas!
Download

Química Geral Aplicada - Escolas Estaduais de Educação