Chapter 8: Procedure of Time-Domain
Harmonics Modeling and Simulation
Tutorial on Harmonics Modeling and Simulation
Presenter: Paulo F Ribeiro
Contributors: C. J. Hatziadoniu, W. Xu, and G. W. Chang
1
IEEE PES General Meeting, Tampa FL
June 24-28, 2007
Conferência Brasileira de Qualidade de Energia
Santos, São Paulo, Agosto 5-8, 2007
OUTLINE
1.
Introduction: Relevance of the Time Solution Procedures
2.
The Modeling Approach
•
•
•
•
Harmonic Sources in the Time Domain
Apparatus Modeling
Formulation of the Network State Equation
Harmonic Solution Procedure
3.
Software Demonstration of Harmonic Simulation
4.
Summary and Conclusion
2
IEEE PES General Meeting, Tampa FL
June 24-28, 2007
Conferência Brasileira de Qualidade de Energia
Santos, São Paulo, Agosto 5-8, 2007
INTRODUCTION
•
Why Time Domain Solution?
•
When is Time Domain Solution Appropriate?
•
How Accurate is Time Domain Solution
Compared to Direct Methods?
•
What are the General Characteristics of a Time
Domain Solution Procedure?
3
IEEE PES General Meeting, Tampa FL
June 24-28, 2007
Conferência Brasileira de Qualidade de Energia
Santos, São Paulo, Agosto 5-8, 2007
Why Time Domain Solution?
•
“Time Domain Simulation is preferable to direct
methods in certain line varying conditions
involving power converters and non-linear
devices.”
– It allows detail modeling, especially of non-linear
network elements;
– It allows the assessment of non-linear feedback loops
onto the harmonic output (e.g. study of harmonic
instability in line commutated converters).
•
Example of Direct Methods
– PCFLOH;
– SuperHarm.
4
IEEE PES General Meeting, Tampa FL
June 24-28, 2007
Conferência Brasileira de Qualidade de Energia
Santos, São Paulo, Agosto 5-8, 2007
When is Time Domain Solution
Appropriate?
•
Calculations of non-characteristic harmonics from power
converters.
•
Calculation of harmonic instability and harmonic interactions
between power converters and the converter control.
•
Harmonic filter design and harmonic mitigation studies.
•
The effect of harmonics on equipment and protection
devices.
•
Real time digital simulations-RTDS of harmonics such as
hardware-in-loop simulations.
5
IEEE PES General Meeting, Tampa FL
June 24-28, 2007
Conferência Brasileira de Qualidade de Energia
Santos, São Paulo, Agosto 5-8, 2007
Accuracy of Time Domain Simulation v.
Direct Methods
•
The time response of the system must arrive at a periodic
steady state.
– Quasi periodic or aperiodic response possible under
non-linear feedback control.
•
Sampling and integration errors. The sampling step is
dictated by the highest harmonic order of interest.
•
Modeling errors approximating the non-linear characteristic
of certain apparatuses (e.g. transformer magnetization and
arrester v-i characteristics)
6
IEEE PES General Meeting, Tampa FL
June 24-28, 2007
Conferência Brasileira de Qualidade de Energia
Santos, São Paulo, Agosto 5-8, 2007
What are the General Characteristics of a
Time Domain Solution Procedure?
•
Slow Transient Modeling. May use programs
such as EMTP, PSCAD, and SIMULINK. May
incorporate local controls of power converters.
•
Describe a limited part of the system around the
harmonic source.
•
Run simulation until steady state  Use FFT
within the last simulation cycle to compute
harmonics.
7
IEEE PES General Meeting, Tampa FL
June 24-28, 2007
Conferência Brasileira de Qualidade de Energia
Santos, São Paulo, Agosto 5-8, 2007
Modeling Approach
•
Harmonic Sources
– Power Converters

Detail representation including grid control and, possibly,
higher level control loops.

Equivalency: Represent as rigid source.
– Non-Linear Devices

Transformer magnetizing and inrush current.

Arrester current in over-voltage operation.
– Background harmonics: Rigid source representation.
8
IEEE PES General Meeting, Tampa FL
June 24-28, 2007
Conferência Brasileira de Qualidade de Energia
Santos, São Paulo, Agosto 5-8, 2007
Power Converters: Detail Representation
•
Detail Valve model
•
Surge arrester
representation in studies
of harmonic overvoltages
Ls
Surge
Arrester
•
Snubber
Representation of the grid
control
9
IEEE PES General Meeting, Tampa FL
June 24-28, 2007
Conferência Brasileira de Qualidade de Energia
Santos, São Paulo, Agosto 5-8, 2007
Power Converters: Switching Function
id
va
vb
vc
ia
ib
+
vd
ic
-
•
Voltage-Sourced inverters are more suitable for this
representation.
•
Switching function approach:
– Voltage: v a  s a (t )  v d , vb  sb (t )  v d , v c  s c (t )  v d
– Current:
i d  s a (t )  i a  sb (t )  ib  s c (t )  ic
10
IEEE PES General Meeting, Tampa FL
June 24-28, 2007
Conferência Brasileira de Qualidade de Energia
Santos, São Paulo, Agosto 5-8, 2007
Non-Linear Devices: Transformer
i
L2
lA
L1
Saturation Characteristic
v
Lo
SA
SB
LA
LB
Lo
iA
•
•
Aircore Inductance
lB
Unsaturated Segment
Saturated
Segment
l(i)
iB
i
Piece-wise Linear representation of the core inductance.
Switching inductance model (flux controlled switches).
11
IEEE PES General Meeting, Tampa FL
June 24-28, 2007
Conferência Brasileira de Qualidade de Energia
Santos, São Paulo, Agosto 5-8, 2007
Formulation of the Network Equations
•
•
Pre-integrated Components: Algebraic Equations
State Equations: Numerical Integration
– Piece-wise Linear Equations
– Time Varying Equations
 x L   ALL
 x    A
NL
 N 
 xC   ACL ( x, t )
ALN
ANN
ACN ( x, t )
ALC ( x, t )   x L   0   BL 
ANC ( x, t )   x N    f ( x)   BN   u (t )
ACC ( x, t )   xC   0   BC ( x, t )
12
IEEE PES General Meeting, Tampa FL
June 24-28, 2007
Conferência Brasileira de Qualidade de Energia
Santos, São Paulo, Agosto 5-8, 2007
Summary of The Time Domain Procedure
Sart
Network
and
converter
data
Slow
Transient
Modeling
Run Slow
Transient
Program
Run FFT
Fine-Tune
Model
No
Yes
Steady
State?
Met
Criteria?
No
Yes
End
13
IEEE PES General Meeting, Tampa FL
June 24-28, 2007
Conferência Brasileira de Qualidade de Energia
Santos, São Paulo, Agosto 5-8, 2007
SIMULINK Demonstrations
•
Converter Simulation Using the Switching
Function
•
Non-Linear Resistor
•
Rigid Harmonic Source
•
Impedance Measurement
•
Network Equivalency
14
IEEE PES General Meeting, Tampa FL
June 24-28, 2007
Conferência Brasileira de Qualidade de Energia
Santos, São Paulo, Agosto 5-8, 2007
Converter Simulation Through the
Switching Function
(a)
A
A
B
B
•
Linear Network.
•
Insert the converter as:
C
C
– Voltage source on ac
side.
– Current source on dc
side.
(b)
Inverter DC Side
P1
powergui
P2
Discrete 3-phase
PWM Generator
[Sa]
[Sb]
+
+
Vd
-
Cd
V
Id
s
Continuous
-
Switching Function Generation
•
[Sc]
[Ia]
[Sa]
[Sb]
[Sc]
[Ib]
[Ic]
Inverter AC Side
Incorporate high level
converter controls.
Va
[Sa]
s
[Vd]
+
-
Vb
[Ia]
[Sb]
s
+
4
Multimeter
-
A
A
B
C
B
C
A
B
C
[Ib]
Vc
[Sc]
s
+
[Ic]
Measurements from network
-
[Vd]
15
IEEE PES General Meeting, Tampa FL
June 24-28, 2007
Conferência Brasileira de Qualidade de Energia
Santos, São Paulo, Agosto 5-8, 2007
Example of Non-Linear Resistor Using
User-Defined Functions
Continuous
Network Thévenin Equivalent
pow ergui
node 1
From
RT
[i]
i(v)
Series RLC Branch
-
s
C'
v
+
i(v)
+
+
v
-
Voltage Controlled Resistor
+
v
-
v
Non-linear voltage
controlled resistor
i(v )
[i]
v   RT  i(v)  V ( x)
Goto
node 0
•
•
+
-
-
Scope
node 1
V(x)
Lookup Table
Describing i(v)
Voltage Controlled Element: Parasitic capacitance C’
User-defined function describing the i(v) function
16
IEEE PES General Meeting, Tampa FL
June 24-28, 2007
Conferência Brasileira de Qualidade de Energia
Santos, São Paulo, Agosto 5-8, 2007
Rigid Harmonic Source Using the sFunction
A
s
+
1
-
Phase A
sfHarm_3ph
s
Rigid Source
-
B
+
2
Phase B
C
s
+
3
-
Phase C
•
S-Function: Calculation of the harmonic current:
i a (t )  I1 cos(t  1 ) 
•
 I n cos(nt   n  n1 )
n 3,5,..,N
Simulation time slows down with increasing order N
17
IEEE PES General Meeting, Tampa FL
June 24-28, 2007
Conferência Brasileira de Qualidade de Energia
Santos, São Paulo, Agosto 5-8, 2007
Impedance Scans Using Rigid Harmonic
Sources
•
Basic assumptions:
Procedure:
– Linear Network Model.
– Single driving point (e.g.
location of harmonic
source).
– The harmonic source is
represented by a rigid
current source at predefined harmonic orders.
•
•
1. Inject positive, negative, or
zero sequence current
separately at unit amplitude;
2. Arrive at steady state
3. Obtain bus voltage
4. Apply FFT
1.
Driving point impedance
Driving point impedance
Zkk  jn1  
Transfer impedance
2.
Transfer Impedance
Z mk ( jn1 ) 
18
Vk ( jn1 )
 Vk ( jn1 )
I k ( jn1 )
Vm ( jn1 )
 Vm ( jn1 )
I k ( jn1 )
IEEE PES General Meeting, Tampa FL
June 24-28, 2007
Conferência Brasileira de Qualidade de Energia
Santos, São Paulo, Agosto 5-8, 2007
Impedance Scan: Transfer Function
Method
•
•
Basic Assumptions
– The impedance is
defined as a current-tovoltage network (transfer)
function:
Procedure
1. Define network as a
subsystem;
2. Define the controlling
signals of the current
sources as the inputs;
Vm ( s)
Z mk ( s) 
I k ( s)
3. Define the voltages at
the buses of interest as
the outputs;
– Network is driven by a
signal-controlled current
source. More than one
inputs can be used.
4. Use the LTI tool box to
obtain the driving and
transfer impedances.
19
IEEE PES General Meeting, Tampa FL
June 24-28, 2007
Conferência Brasileira de Qualidade de Energia
Santos, São Paulo, Agosto 5-8, 2007
Impedance Scan: Transfer Function
Method—Example
V_bus1
V_bus2
V_bus3
Injection Source
1
Bus 1
+
Vb1
-
Input
1
s
+
I1
Vb2
aA
I1a
bB
-
I1b
cC
aA
A
B
A
B
bB
C
C
Feeder 1-2: 2 mi
A
B
C
bB
A
B
C
cC
700kVAR
750kVAR
A
B
C
A
B
C
A
B
C
A
B
C
Vb3
Line Impedance data
r'=0.278 Ohm/mi
x'=0.733 Ohm/mi
+
Load 1
2MW
0.7MVAR
A
B
C
Feeder 2-3: 2mi
cC
-
Continuous
Bus 3
aA
A
B
C
s
I1c
3
2
Bus 2
A
B
C
s
Load 2
2MW
0.7MVAR
Load 3
4MW
1.4MVAR
•
Inputs: Signal node 1 (array input: number of input signals is three).
•
Outputs: Voltage at network nodes 1, 2, and 3 (each is an array of three).
Voltage is measured by the voltmeter or the multimeter block
20
IEEE PES General Meeting, Tampa FL
June 24-28, 2007
Conferência Brasileira de Qualidade de Energia
Santos, São Paulo, Agosto 5-8, 2007
Network Equivalency
•
It is often desirable to represent a part of the
network (referred to as the external network) by a
reduced bus/element equivalent preserving the
impedance characteristic at one or more buses
(interface or interconnection buses).
•
The part of the network that is of interest can be
represented in detail.
21
IEEE PES General Meeting, Tampa FL
June 24-28, 2007
Conferência Brasileira de Qualidade de Energia
Santos, São Paulo, Agosto 5-8, 2007
Network Equivalency Using SIMULINK
•
The procedure replaces the external network by
a TF block representing the driving point
impedance at the interface bus.
•
The TF block is embedded into the network of
interest:
1. Drive the block input by the interface bus voltage;
2. Connect the block output to the input of a signal driven
current source;
3. Connect the current source to the interface bus;
22
IEEE PES General Meeting, Tampa FL
June 24-28, 2007
Conferência Brasileira de Qualidade de Energia
Santos, São Paulo, Agosto 5-8, 2007
Network Equivalency: Example
Admittance Phase a
Injection Source
Bus 1
(s+0.1)(s+100)
(s+100)(s+40-800i)(s+40+800i)
s
+
aA
Admittance Phase b
-
I1a
Ih
(s+0.1)(s+100)
+
bB
V_bus1
(s+100)(s+40-800i)(s+40+800i)
s
A
B
C
Admittance Phase c
-
I1b
(s+0.1)(s+100)
(s+100)(s+40-800i)(s+40+800i)
s
cC
+
-
Load 1
2MW
0.7MVAR
A
B
C
A
B
C
I1c
Continuous
700kVAR
•
Method becomes cumbersome for multiple interface buses.
•
Mutual phase impedances are omitted.
23
IEEE PES General Meeting, Tampa FL
June 24-28, 2007
Conferência Brasileira de Qualidade de Energia
Santos, São Paulo, Agosto 5-8, 2007
Summary
1.
Time domain harmonic computation is useful in
cases where detail modeling of the harmonic
source is required;
2.
The modeling approach is the same as the slow
transient modeling approach;
3.
The size of the network simulated is limited to a
few buses around the harmonic source;
4.
Software like SIMULINK combine several useful
features that can provide insight into a problem,
especially for educational purposes.
24
IEEE PES General Meeting, Tampa FL
June 24-28, 2007
Conferência Brasileira de Qualidade de Energia
Santos, São Paulo, Agosto 5-8, 2007
Download

Chapter 8