Cônicas – a elipse
A elipse
A elipse é uma das curvas cônicas – uma curva que é obtida através da interseção de um cone
com um plano. Como indicado na Figura 1, quando uma superfície cônica é interceptada por um
plano cuja direção é tal que a sua normal faz um ângulo α com o eixo de simetria tal que α > 0 e
α < θ (o ângulo entre a geratriz da superfície cônica e o eixo), a linha correspondente à
interseção das duas superfícies é uma elipse. (Se o plano for colocado com outras inclinações,
podemos gerar as demais curvas cônicas: a parábola e a hipérbole; o círculo é um caso particular
em que a direção do plano é perpendicular ao eixo de simetria).
Figura 1 – a elipse como interseção da superfície de um cone com um plano
eixo de simetria
direção perpendicular
ao plano
PLANO
CONE
θ
A elipse também é a curva num plano definida como o lugar geométrico dos pontos cuja
soma das distâncias a dois pontos fixos – os focos – é constante.
Vamos agora trabalhar com as propriedades da elipse.
Separe duas tachinhas (de prender papel em quadros de cortiça) ou dois alfinetes, um
pedaço de barbante, um lápis, uma régua e uma folha de papel.
Trace no papel, com a régua, um segmento de reta de cerca de 20 cm. Marque o extremo
desses segmentos com as letras F e F’ – os focos da elipse.
Prenda no papel as duas tachinhas (ou alfinetes) nos dois extremos do segmento traçado,
os pontos F e F’.
Pegue um pedaço de barbante com cerca de 40 cm. Faça dois nós em suas extremidades e
prenda esses dois nós às tachinhas, como mostra a Figura 2a.
Figura 2
(a)
F
(b)
F'
F
F'
1
M.F. BARROSO
Cônicas – a elipse
Com um lápis, estique o fio, como mostra a Figura 2b. Agora trace com o lápis uma
volta completa, mantendo o barbante esticado.
A figura que você traçou é uma elipse. Como o barbante tem comprimento fixo, a soma
dos comprimentos de qualquer ponto da linha que você traçou aos pontos F e F’ é constante.
Na Figura 3 representamos a elipse desenhada por você. Chamamos o tamanho do semieixo maior de a, o tamanho do semi-eixo menor de b e a distância entre o centro geométrico da
elipse e cada um dos focos de c, também chamada distância focal.
Figura 3
2c
F
∗
∗
F'
a = semi-eixo maior
b = semi-eixo menor
c = distância focal
2b
2a
Observe a Figura 4. A distância OA vale a, a distância OB vale b e a distância OF vale c.
Agora lembre-se do fio de barbante. Coloque o lápis no ponto A. O tamanho do fio vale
l = FA + F' A = (a − c) + ( a + c) = 2a
Figura 4
B
•
A•
F∗
•
O
F∗'
Então o tamanho do eixo maior da elipse é o comprimento do fio: l = 2a.
Se considerarmos agora o lápis no ponto B, podemos escrever para o comprimento do fio
(que já sabemos que vale 2a)
l = 2a = FB + F' B = 2 FB
pois os triângulos FBO e F'BO são congruentes.
2
M.F. BARROSO
Cônicas – a elipse
O triângulo FOB é retângulo, como mostra a Figura 5, e seus lados valem a, b e c, e
portanto
a2 = b2 + c2
Figura 5
B
•
a
∗F
c
•
b
O
∗F'
A excentricidade de uma elipse é definida como sendo
ε = c/a
Esta excentricidade assume um valor entre 0 e 1. Se ε=0, isto é, c=0, temos que b=a e a elipse
reduz-se a um círculo. Se ε=1, b=0 e a elipse reduz-se a um segmento de reta. Os valores
intermediários correspondem a elipses: quanto mais próximo de 1 o valor da excentricidade,
mais achatada é a elipse.
Exercícios 1
a) Trace uma elipse de excentricidade 1.
b) Trace uma elipse de excentricidade 0,5.
c) Trace uma elipse de excentricidade 0,1.
d) Com os valores da excentricidade da órbita da Terra em torno do Sol (0,02) e o tamanho do
semi-eixo maior dessa órbita (1 UA = 1,5 x 108 km). Trace, em papel milimetrado e em escala,
uma órbita elíptica com essa excentricidade.
Trace agora um círculo, em outra cor, com raio igual ao semi-eixo maior da órbita. Olhe para os
dois traçados e verifique se você consegue distingui- los. A partir daí, você acha razoável
considerar que a órbita da Terra é uma órbita circular?
Exercícios 2
Considere um sistema de coordenadas fixo ao centro O da elipse (veja a figura). Obtenha, a
partir da definição da elipse (lugar geométrico) a equação que descreve os pontos que pertencem
x2 y2
a ela: 2 + 2 = 1
a
b
y
( x, y )
x
F'
3
O
F
M.F. BARROSO
Download

A elipse