OS DIVERSOS DISCURSOS NO PROCESSO DE INTERAÇÃO NA SALA DE AULA DE MATEMÁTICA Flávia Trópia Barreto de Andrade Fadel (Mestranda) – UFMG [email protected] Márcia Maria Fusaro Pinto (Orientadora) – UFMG [email protected] INTRODUÇÃO A pesquisa em andamento que ora se apresenta tem por objetivo investigar as variações dos discursos existentes em diferentes salas de aula de matemática através da observação da interação professor-aluno-matemática; e sua interferência no processo de ensino-aprendizagem de matemática. A presente proposta de trabalho é fruto da minha experiência como professora de matemática do Ensino Médio. No início da minha carreira profissional passei por três ambientes escolares diferentes em Belo Horizonte: uma escola estadual na periferia da cidade, uma escola estadual na região central e uma escola federal. Ao passar por esses diferentes espaços situados em locais diferentes, atendendo estratos sociais diferentes1, uma questão me incomodou muito: como eu (sendo a mesma pessoa, com uma única formação, com as mesmas convicções, no mesmo papel, fazendo o mesmo trabalho) podia me fazer clara para um grupo de alunos, trabalhando a matemática com significado, e, ao mesmo tempo, ser uma incógnita para outro grupo de alunos em que a matemática era apenas um conjunto de símbolos e regras? Apesar de a matemática possuir uma linguagem específica, seu ensino se dá através da língua materna2. Existe uma impregnação mútua entre a matemática e a língua materna, em que a matemática recorre à língua materna para uma expressão conveniente (MACHADO, 1993). Já que a mediação da oralidade é fundamental durante o processo de ensino-aprendizagem em matemática, de que maneira nossa língua materna influencia as interações no processo de ensinoaprendizagem dentro da sala de aula de matemática quando professor e alunos pertencem ao mesmo estrato social ou são de estratos sociais diferentes? REFERENCIAL TEÓRICO ADOTADO Através do estudo da literatura de pesquisa na área, aponto os trabalhos de Zuffi (2000), Castro e Frant (2000), Costa (2000), Carrião (2003), Fonseca (2003), Tavares (2004), Giongo, Kronbauer e Feil (2005). Estes, como um todo, resgatam a importância do estudo da língua materna na construção do conhecimento matemático. Acredito que o trabalho que apresento pode contribuir com tais reflexões e, utilizando as indicações da dissertação de Tavares (2004), pretendo 1 2 Classificação social baseada em Pastore e Silva (2000). Entende-se língua materna pela nossa linguagem em uso, o discurso falado. 1 aprofundar o estudo dos aspectos culturais da sala de aula de matemática3 ao analisar as variações dos discursos em duas salas de aula de matemática inseridas em meios sociais diferentes. Para desenvolver essa investigação, estou referenciando-me nos trabalhos de Bourdieu, Bakhtin e Magda Soares, que me darão suporte na discussão no campo da sociologia, da sociolingüística e nas questões que envolvem linguagem e escola. METODOLOGIA De acordo com os argumentos apresentados e os objetivos a serem alcançados, a investigação a ser feita será de caráter qualitativo4. Escolho a pesquisa qualitativa pelo foco na interpretação e no entendimento de dados e discursos. Estes tipos de questões são mais bem respondidos por uma pesquisa com este caráter. A abordagem qualitativa não é feita com o objetivo de responder a questões prévias ou de testar hipóteses, mas com o de privilegiar a compreensão dos comportamentos a partir da perspectiva dos sujeitos da investigação. Os dados colhidos são ricos em descrição relativa a pessoas, locais e conversas, e de complexo tratamento estatístico. A seguir, apresento o desenho geral da pesquisa levantando alguns procedimentos que serão relevantes na coleta e na análise dos dados. Seleção do Professor Para realizar a pesquisa procuro um(a) professor(a) de matemática que trabalhe em dois ambientes diferentes: uma escola que atenda o estrato baixosuperior/médio-inferior (PASTORE E SILVA, 2000) e outra, o estrato médiomédio/médio-superior (PASTORE E SILVA, 2000). Busco preferencialmente professores que trabalhem no nível do Ensino Médio, pois entendo que a linguagem matemática neste período é mais formal do que no Ensino Fundamental. Os conteúdos matemáticos são mais específicos. A matemática, principalmente nesse nível, é tratada como ciência, então se trabalha com provas, demonstrações e muita abstração. Entendo que o discurso, principalmente nessa situação, exerce um papel importante no processo de interação dentro de sala de aula e conseqüentemente no processo de ensino-aprendizagem, pois quanto maior o nível de abstração, maior número de símbolos e códigos a serem esclarecidos através do discurso. Observação em Sala de Aula Minha intenção é observar os dois ambientes no qual o(a) professor(a) a ser pesquisado trabalha e acompanhar as aulas de matemática de duas turmas, uma em cada escola. 3 Ao tratar de aspectos culturais da sala de aula de matemática estou me referindo a atenção que darei à constituição da sala de aula, aos hábitos dos alunos, o papel tanto do professor quanto dos alunos naquela sala de aula, enfim, olharei para a sala de aula como uma cultura e ali se dará minha investigação. 4 Ver Bogdan e Biklen (1994), Alves-Mazzotti (1999), Gatti (2002), Araújo e Borba (2004). 2 A observação é a primeira forma de aproximação do indivíduo com o mundo em que vive (TURA, 2003). Também é uma das mais importantes fontes de informações em pesquisas qualitativas em educação e, praticamente, uma das únicas abordagens disponíveis para o estudo de comportamentos complexos (VIANA, 2003). Dessa maneira, entendo que a observação será importante para coletar informações sobre os ambientes a serem pesquisados nos quais estarei diante de professor, alunos, diversas culturas e discursos. Para tal será necessário reconhecer as interações ocorrentes e registrá-las. Assim, para coletar os dados observados utilizarei um caderno de campo para anotar esses acontecimentos. Além desse instrumento de coleta, pretendo utilizar a gravação em áudio. Esse tipo de instrumento é importante para não perder os diálogos que acontecem em sala de aula que podem ser deixados de registrar e até esquecidos. Para tal é importante ter o consentimento dos participantes da pesquisa. Assim, ao começar a pesquisa negociarei com os participantes da mesma. É importante o consentimento de todos. Entrevista A entrevista terá função de complementar informações e ampliar os ângulos de observação bem como a condição de produção dos dados (ZAGO, 2003). A entrevista se dará tanto com o professor quanto com alguns alunos (no máximo quatro, dois em cada escola) a fim de aprofundar meu entendimento sobre as interações ocorridas dentro da sala de aula, através do discurso utilizado nos ambientes. Pretendo utilizar a entrevista semi-estruturada para ter uma direção sobre o que perguntar, sem fechar as questões a fim de dar liberdade e espaço ao entrevistado. A definição das perguntas da entrevista e a maneira como será conduzida será definida ao longo do trabalho de campo. A gravação em áudio das entrevistas é de fundamental importância, pois, de acordo com Zago (2003), o pesquisador fica mais livre para conduzir as questões, avançar na problematização além de favorecer a relação de interlocução. Essa prática exige uma negociação com o pesquisado para obter sua aprovação. Esse registro tem uma função importante na organização e análise dos resultados pelo acesso a um material mais completo do que as anotações podem oferecer e ainda permiti escutar novamente as entrevistas, reexaminando seu conteúdo. Análise de Dados O trabalho de campo vai ser submetido a uma análise constante. Tendo realizado as primeiras observações e entrevistas é importante rever o que foi feito para refinar as próximas decisões e os dados a coletar. Ao longo da coleta de dados, irei estabelecer relações, tirar conclusões parciais e, para tanto, é importante submeter meu roteiro regularmente à crítica. Pretendo pesquisar e a analisar os dados simultaneamente. Minha intenção com relação à análise dessa investigação é utilizar os contrastes. Como estarei em dois ambientes diferentes, pesquisando dois estratos 3 sociais diferentes através das aulas de um único professor, pretendo fazer relações entre esses dois meios e tentar inferir sobre as variações dos discursos utilizados em cada uma dessas salas de aula, verificando as interações professor-alunomatemática. Para tal análise utilizarei os registros feitos ao longo da pesquisa, anotações, entrevistas e gravações reexaminando seu conteúdo à luz do referencial teórico escolhido. Algumas Observações Essa identificação e descrição da metodologia a ser utilizada para a realização da pesquisa, feita até aqui, não consiste em uma determinação exata daquilo que se pretende fazer, mas sim uma indicação de um caminho, dentre os tantos possíveis, em busca de uma resposta à questão proposta na investigação. O trabalho de campo dificilmente vai se desenrolar conforme planejado e, desse modo, está sujeito a sofrer um processo de constante construção (ZAGO, 2003). No item a seguir descrevo como está se desenrolando a pesquisa e aponto alguns dados relevantes. A PESQUISA EM ANDAMENTO: ALGUNS RESULTADOS O Sujeito e o Local da Pesquisa A pesquisa de campo começou há aproximadamente um mês. No início do mês de abril deste ano fiz contato com alguns professores os quais tive a oportunidade de conhecer no ano de 2006 e com alguns outros indicados por minha orientadora e por nosso grupo de discussão5. Como dito anteriormente, procurava por um(a) professor(a) que trabalhasse no Ensino Médio e em duas realidades sociais diferentes. Nessa busca por um(a) professor(a) com essas características ocorreram diversos imprevistos: professores que não se encaixavam no perfil procurado, professores que se encaixavam, mas não responderam às minhas ligações telefônicas ou e-mails, ou não compareceram aos encontros marcados, ou, após encontros e explicações sobre a pesquisa, não se dispuseram a participar. Ao final de quase dois meses procurando um sujeito de pesquisa, não havia encontrado nenhum sequer. Até que resolvi procurar por escolas públicas onde há somente Ensino Médio. Fui às escolas, sem marcar uma hora com a coordenação ou direção, me apresentei como pesquisadora, expliquei rapidamente sobre a pesquisa e perguntei se não havia professores de matemática que trabalhassem ali, na rede pública, e em outra escola, na rede particular. Na segunda tentativa consegui conversar com um professor que atende essas características. Restava saber se o professor participaria da pesquisa. 5 Esse grupo de discussão reúne alunos e professores da sub-linha “Educação Matemática” do Programa de Pós-graduação desta Faculdade de Educação. Essas discussões fazem parte dos encontros da disciplina Seminário de Pesquisa: Educação Matemática. 4 Ao chegar à Escola Alfa6, uma escola municipal na região central da cidade de Belo Horizonte, fui muito bem recebida pela senhora que fica na portaria da escola, a denominarei por Agnes. Agnes me encaminhou à coordenação que me encaminhou ao vice-diretor. Na conversa com o vice-diretor, ele me informou que havia um professor de matemática que trabalhava na escola pela manhã e, à tarde, em outra, porém na rede particular. Sem perder tempo ele foi chamar o professor Rodrigo, que estava na sala dos professores em horário vago. A conversa com o professor Rodrigo foi muito tranqüila, ele se mostrou interessado e solícito. Confirmou que trabalhava com Ensino Médio em duas escolas as quais atendem estratos sociais diferentes e se mostrou disposto a participar da pesquisa. Para começar a pesquisar precisava, além da disponibilidade e do consentimento do professor, a anuência das duas escolas. Depois de conversar com o professor Rodrigo, voltei a falar com o vice-diretor, que me disse que a escola estava aberta para a minha pesquisa. Faltava apenas formalizar minha entrada com uma carta da faculdade. À tarde, fui até a outra escola que Rodrigo trabalha, a Escola Beta. Esta é uma instituição particular ligada a uma congregação religiosa. A escola se localiza em um bairro tradicional da cidade de Belo Horizonte. Ao chegar à instituição, procurei a coordenação para conversar sobre a pesquisa que pretendia fazer com o professor. A recepção dada por essa escola foi muito boa, mas não tão aberta quanto a primeira. Por ser uma escola da rede particular, o processo de entrada é mais burocrático. Demorei duas semanas para conseguir falar com a coordenadora. Depois de apresentar-me e expor a pesquisa tive que preencher alguns documentos, enviar um resumo do meu projeto, esperar algumas reuniões de coordenação e esperar também o caso passar pelo setor jurídico da escola. Após quarenta dias recebi a resposta de que poderia assistir as aulas do professor Rodrigo. Como a Escola Beta demorou mais de um mês para liberar minha entrada na escola e assistir as aulas do Rodrigo, acabei começando a pesquisar na Escola Alfa. Até o presente momento coletei dados apenas na escola pública. Por esse motivo é impossível comparar o discurso nos dois ambientes de ensino. No entanto, há apenas um mês na Escola Alfa, já tenho alguns dados interessantes que estão redirecionando a minha pesquisa. Escola Alfa A Escola Alfa é uma escola pública municipal que se localiza na região central de Belo Horizonte. Funciona nos três turnos: Ensino Médio pela manhã, Ensino Fundamental à tarde e Educação de Jovens e Adultos à noite. Ao todo possui 1500 alunos que pertencem aos estratos baixo-superior/médio-inferior. A infra-estrutura da escola é muito boa: as salas de aula são amplas, espaçosas, arejadas, iluminadas, possui ventiladores, quadro branco de pincel, as carteiras são 6 Por questões éticas, utilizarei nomes fictícios tanto para as escolas quanto para o professor e os alunos que fazem parte da pesquisa. 5 limpas e bem grandes, a pintura das salas é bem conservada, o pátio é amplo e possui um ginásio poliesportivo. A escola está passando por uma reforma na estrutura física. A obra acontece durante os turnos da manhã e da tarde. Há muito barulho durante as aulas. O professor Rodrigo trabalha com cinco turmas de 1ª série do Ensino Médio. São três aulas semanais de matemática com módulos de uma hora cada. As aulas do Rodrigo são bem tranqüilas. Ele é um professor muito carinhoso e atencioso. Tem uma relação boa com os alunos, bem amigável. A linguagem que utiliza durante as aulas é bastante formal. Faz uso do discurso acadêmico7 e suas explicações são bem fundamentadas nos conceitos matemáticos. Em geral, as aulas se dão por explicação de matéria, exercícios e correção. Na primeira semana de pesquisa, acompanhei o professor em todas as aulas de matemática nas cinco turmas em que trabalha. Após o contato com todas as turmas escolhi apenas uma para pesquisar. Já no primeiro contato com o professor, ele havia indicado a turma A para pesquisa. Depois de assistir as aulas em todas as turmas, acabei acatando a escolha dele por perceber que se sentiria mais confortável e pela turma A ser uma turma onde acontece maior interação, pois quanto maior as interações, maior a possibilidade de observar como a língua materna influencia o processo ensino-aprendizagem de matemática na sala de aula. Os alunos em geral participam, perguntam, tiram dúvidas e, pensando na qualidade das gravações em áudio, a turma é mais calma em termos de conversa. Aulas na Turma A A turma A, como dito anteriormente, é uma turma participativa e a interação entre professor-alunos me chamou bastante atenção devido ao foco da pesquisa. Possui 43 alunos registrados na lista de chamada, mas, geralmente, 25 a 30 alunos assistem as aulas. A primeira aula que assisti nesta turma, uma aluna, que denominarei de Rosana, me chamou bastante atenção. Ela senta-se na primeira carteira no canto próxima à porta da sala de aula; a mesa do professor fica do outro lado, no outro canto da sala. Rosana é bem atenta às aulas e tenta interagir durante as explicações e atividades. Não é considerada uma boa aluna pelo professor, pois não tem uma boa média, falta algumas aulas, não consegue fazer as atividades propostas, tem muitas dificuldades. O que me fez voltar o olhar para Rosana foi a vontade de participar das aulas. Ela dá palpites durante as explicações, ao fazer exercícios chama o professor para verificar se o que fez está certo, é insegura, anota todas as aulas no caderno, etc. Apesar de toda essa participação, ela não faz parte do discurso que há em sala de aula. Transcrevo, a seguir, dois episódios seguidos em que registro as falas da referida aluna. 7 Ao utilizar o termo discurso acadêmico, refiro-me ao uso do português com um grau máximo de informatividade e um grau mínimo de subjetividade, com bastante formalidade e com grande rigor matemático. 6 Aula 1 Após a correção e fechamento da matéria sobre função composta, o professor passa para matéria nova. Escreve no quadro “Função polinomial do 1º grau”. Passa sua definição e alguns exemplos. Dá um tempo para os alunos copiarem o que escreveu no quadro. Muitos alunos perguntam sobre a palavra polinomial e tentam falar a palavra em voz alta, perguntando entre eles: “O que tá escrito? Poli...”; e também ao Rodrigo: “Professor... O que tá escrito aí?! Polimo...”. Adriana (uma outra aluna, considerada pelo professor a melhor da turma), após copiar, chama Rodrigo e observa que f(x) = ax + b parece com uma questão do livro didático já resolvida. Após um tempinho, o professor inicia a explicação. Prof. pergunta: Por que a função chama função do 1º grau? Rosana: Por que é a primeira! Professor repete o que Rosana fala, faz uma pausa esperando algum outro palpite. A não ser a aluna, os outros não arriscam. Então Rodrigo ignora a fala de Rosana explicando por que a função chama-se do 1º grau. Explica também sobre a função e passa alguns exercícios que ficaram para serem corrigidos na próxima aula. Aula 2 Após corrigir os exercícios da aula anterior, Rodrigo passa a explicar sobre o coeficiente linear. Mostra, através de exemplos, que sempre que fizermos f(0) teremos como imagem o valor de b. Para concluir a explicação, ele fecha falando: Prof.: Então podemos dizer que a imagem b é sempre... Rosana (confiante): Zero! Risos Prof.: Vamos voltar e explicar de novo. Rodrigo volta nos cálculos do quadro, faz mais alguns e é interrompido. Rosana: Ah... o b é sempre zero! Turma (em resposta à exclamação de Rosana): Naaaão... Professor olha para a Rosana com uma cara de que não é isso. E quando vai falar alguma coisa a aluna fala antes. Rosana: Não..., já entendi, entendi! Não fala mais nada que eu vou ficar nervosa! A aluna passa a conversar com Adriana (que se senta, também na primeira carteira, ao seu lado esquerdo) e repete que o b é zero. Adriana faz algumas contas para mostrar que não é o que está falando. Uma outra aluna faz perguntas ao professor e assim a turma desvia a atenção de Rosana. Depois Rodrigo passa alguns exercícios para os alunos resolverem até o final da aula. Nessas duas situações, e nas outras aulas que se seguiram, percebo que Rosana tem intenção de participar das aulas. Ela tenta o tempo todo interagir com o professor e com a matemática. Esses palpites que expressa e suas respostas são espontâneos e sinceros. Ela não é uma aluna que atrapalha a turma fazendo 7 gracinhas e brincadeiras. Rosana apenas tenta se inserir no discurso que acontece na sala de aula, mas ela não faz parte dele, está à margem. CONSIDERAÇÕES FINAIS Esses primeiros registros da pesquisa estão me direcionando a uma análise da interação entre o professor e os alunos que não fazem parte do discurso de sala de aula. Nesse momento estou ampliando o referencial teórico para tentar compreender os dados e analisá-los. Como a pesquisa de campo está no início e ainda não observei as aulas na Escola Beta, fica difícil estabelecer critérios para analisar os poucos dados que tenho e não posso comparar o que acontece nas duas escolas. Também, pelos poucos dados, falta investigar como a língua materna influenciou essa interação. O trabalho de campo dificilmente se desenrola conforme planejado e, desse modo, está sujeito a sofrer um processo de constante construção (ZAGO, 2003), que é a fase em que me encontro. REFERÊNCIAS BIBLIOGRÁFICAS 1. ALVES-MAZZOTTI, Alda J. O Método nas Ciências Sociais. In: ALVESMAZZOTTI, Alda J.; GEWANDSZNAJDER, Fernando. O Método nas Ciências Naturais e Sociais: Pesquisa Quantitativa e Qualitativa. 2 ed. São Paulo: Pioneira, 1999, p. 107-188. 2. ARAÚJO, Jussara de L.; BORBA, Marcelo de C. “Construindo pesquisas coletivamente em Educação Matemática”. In: BORBA, Marcelo de C.; ARAÚJO, Jussara de L. (orgs.). Pesquisa Qualitativa em Educação Matemática. Belo Horizonte: Autêntica, 2004, p. 25-45. 3. BAKHTIN, Mikhail V. Marxismo e Filosofia da Linguagem. São Paulo: Hucitec, 1986. 4. _________________. Estética da criação verbal. 3 ed. São Paulo: Martins Fontes, 2000. 5. BOGDAN, Robert C.; BIKLEN, Sari K. Investigação Qualitativa em Educação. Porto: Porto Editora. 1994. 6. BOURDIEU, Pierre. A economia das trocas simbólicas. 3 ed. São Paulo: Perspectiva, 1992. 7. ________________. A economia das trocas lingüísticas: o que falar quer dizer. São Paulo: Edusp, 1996. 8. ________________. Compreender. In: Bourdieu, Pierre (org.). A miséria do mundo. Petrópolis: Vozes, 1997, p. 693-732. 9. ________________.; NOGUEIRA, Maria A.; CATANI, Afrânio. Escritos de educação. 5 ed. Petrópolis: Vozes, 2003. 10. ________________.; PASSERON, Jean-Claude. A reprodução: elementos para uma teoria do sistema de ensino. Rio de Janeiro, 1975. 11. CARRIÃO, Airton. A Constituição do Gênero Discursivo da Matemática Acadêmica. In: SIPEM – Seminário Internacional de Pesquisa em Educação Matemática, II, 2003, Santos – SP. Anais. 8 12. CASTRO, Mônica R.; FRANT, Janete B. Estratégia Argumentativa: Um Modelo. In: SIPEM – Seminário Internacional de Pesquisa em Educação Matemática, I, 2000, Serra Negra – SP. Anais. 13. COSTA, Tânia M. L. Apertando as Mãos: Uma Análise Baseada em Estratégia Argumentativa. In: SIPEM – Seminário Internacional de Pesquisa em Educação Matemática, I, 2000, Serra Negra – SP. Anais. 14. FONSECA, Maria da Conceição F. R. Negociação de Significados, Estratégias Retóricas e Gênero Discursivo: Análise de Interações na Educação Matemática de Alunos Adultos da Escola Básica. In: SIPEM – Seminário Internacional de Pesquisa em Educação Matemática, II, 2003, Santos – SP. Anais. 15. GATTI, Bernadete. A construção da pesquisa em educação no Brasil. Brasília: Editora Plano, 2002. 16. GIONGO, Ieda M.; KRONBAUER, Lizete; FEIL, Ana P. A Influência da Matemática Oral na Aprendizagem das Crianças das Séries Iniciais. In: Encontro Ibero-Americano de Coletivos Escolares e Redes de Professores que Fazem Investigação na sua Escola, IV, 2005, Lajeado – RS. Anais. 17. MACHADO, Nilson J. Matemática e Língua Materna. 3. ed. São Paulo: Cortez, 1993. 18. NOGUEIRA, Maria A. NOGUEIRA, Cláudio M. M. A realidade social segundo Bourdieu: o espaço social, os campos e os tipos de capital (econômico, cultural, simbólico e social). In: NOGUEIRA, Maria A.; NOGUEIRA, Cláudio M. M. Bourdieu & a Educação. Belo Horizonte: Autêntica, 2004. 19. PASTORE, José; VALLE SILVA, Nelson do. Mobilidade social no Brasil. São Paulo: Macron Books, 2000. 20. SOARES, Magda. Linguagem e escola: uma perspectiva social. São Paulo: Ática, 1996. 21. ______________. Diversidade lingüística e pensamento. In: MORTIMER, Eduardo F. e SMOLKA, Ana L. B. Linguagem, Cultura e Cognição: reflexos para o ensino e a sala de aula. Belo Horizonte: Autêntica, 2001, p.51-62. 22. TAVARES, Cristina F. S; Pinto, Márcia M. F.; UNIVERSIDADE FEDERAL DE MINAS GERAIS. Linguagem e Significação: uma análise da interação discursiva na sala de aula de Matemática. 2004. Dissertação (mestrado) - Universidade Federal de Minas Gerais. 23. TURA, Maria. L. R. A observação do cotidiano escolar. In: ZAGO, Nadir. ET AL. Itinerários de pesquisa: abordagens qualitativas em sociologia da educação. Rio de Janeiro: DP&A, 2003. p. 183-206. 24. VIANA, Heraldo. Pesquisa em educação – a observação. Brasília: Editora Plano, 2003. 25. ZAGO, Nadir. A entrevista e seu processo de construção: reflexões com base na experiência prática de pesquisa. In: ZAGO, Nadir. ET AL. Itinerários de pesquisa: abordagens qualitativas em sociologia da educação. Rio de Janeiro: DP&A, 2003. p. 287-309. 9 26. ZUFFI, Edna M. Linguagem Matemática, o Conceito de Função e Professores do Ensino Médio. In: SIPEM – Seminário Internacional de Pesquisa em Educação Matemática, I, 2000, Serra Negra – SP. Anais. 10