XXXV ENCONTRO NACIONAL DE ENGENHARIA DE PRODUCAO
Perspectivas Globais para a Engenharia de Produção
Fortaleza, CE, Brasil, 13 a 16 de outubro de 2015.
MINIMIZANDO CUSTOS DE
MANUTENÇÃO: UMA ALTERNATIVA
PARA O NIVELAMENTO DE RECURSOS
DE UM CRONOGRAMA DE
MANUTENÇÃO PREVENTIVA
UTILIZANDO PROGRAMAÇÃO LINEAR
E A ENGENHARIA DE
CONFIABILIDADE
Pedro Nascimento de Lima (UNISINOS)
[email protected]
Douglas Rhoden Calderaro (UNISINOS)
[email protected]
Dieter Brackmann Goldmeyer (UNISINOS)
[email protected]
Luis Henrique Rodrigues (UNISINOS)
[email protected]
Maria Isabel Wolf Motta Morandi (UNISINOS)
[email protected]
A correta definição do intervalo de manutenção preventiva de
equipamentos industriais é crucial para a efetividade de um plano de
manutenção. Se a manutenção preventiva for feita segundo um longo
intervalo de tempo, os custos dos reparos tendem a aumentar, bem
como as perdas de produção. No entanto, se a manutenção preventiva
for muito frequente, menores serão os custos relacionados às falhas,
porém maior será o custo da manutenção preventiva por unidade de
tempo, bem como o uso da mão-de-obra, podendo tornar o
cronograma inexequível. Considerando este problema, este trabalho
objetiva a proposição de um modelo para o nivelamento de recursos de
manutenção utilizando estudos de confiabilidade em conjunto com
programação linear. Deste modo, propõe-se um modelo de
programação matemática que é capaz de sugerir um cronograma de
manutenção preventiva que minimize os custos totais de manutenção e
que, ainda assim, respeite às restrições de mão-de-obra impostas. Para
condução deste estudo, o método de pesquisa da modelagem foi
aplicado. A avaliação do modelo proposto mostrou que é possível
utilizar a engenharia de confiabilidade em conjunto com a
programação linear, permitindo a redução de custos de manutenção.
Palavras-chave: Manutenção Preventiva, Nivelamento de Recursos,
Programação Linear, Confiabilidade, Intervalo de Manutenção
XXXV ENCONTRO NACIONAL DE ENGENHARIA DE PRODUCAO
Perspectivas Globais para a Engenharia de Produção
Fortaleza, CE, Brasil, 13 a 16 de outubro de 2015.
1. Introdução
O objetivo da manutenção é garantir a disponibilidade dos equipamentos ao menor custo
possível. Para que haja maior disponibilidade, a manutenção busca estratégias para reduzir o
número de ocorrências de falhas, bem como para reduzir o tempo de parada quando ocorre
uma falha.
Com o objetivo de atuar na melhoria da disponibilidade, são definidas diferentes estratégias
de manutenção, a saber a manutenção corretiva, preventiva, preditiva e detectiva, sendo cada
uma delas adequada para certas situações. A manutenção preventiva, em específico, é aquela
realizada em intervalos fixos de tempo, tem o objetivo de evitar que a falha ocorra, e baseia-se
no pressuposto de que as falhas acontecem por desgates no equipamento, relacionados ao seu
tempo de uso (KARDEC; NASCIF, 2009). Após a definição do intervalo de manutenção
preventiva, deve-se formular um cronograma de manutenção, verificando se a empresa
possuirá os recursos necessários para executar o cronograma proposto.
Kardec e Nascif (2009) sugerem o uso da técnica de nivelamento de recursos como forma de
suavizar a utilização da mão-de-obra, atendendo a tais restrições. Isto pode ser feito tanto com
a contratação de mão-de-obra adicional (o que é inviável em muitos casos), ou atrasando os
prazos de manutenção. Para auxiliar a solução deste problema, existem sistemas especialistas
em gestão da manutenção que incorporam em si a função de nivelamento de recursos, por fim
atrasando o calendário de manutenção caso as restrições de mão-de-obra sejam mantidas.
Sendo assim, ao utilizar tais funções, cabe ao seu usuário avaliar o custo-benefício de tais
decisões (SOUZA, 2012).
Dekker (1996), em uma revisão da literatura existente até então sobre modelos aplicados à
otimização da manutenção, argumenta que, há escopo para a otimização na manutenção,
considerando dois motivos principais: os avanços tecnológicos e a necessidade econômica.
Dekker (1996) indica a expectativa que os sistemas de suporte à decisão iriam incorporar em
um futuro próximo tais modelos de otimização da manutenção. Apesar disto, o que se observa
com no relato de Sousa (2012) é que, ao menos no cenário brasileiro, esta expectativa não tem
se concretizado.
Desta maneira, caracteriza-se a lacuna existente entre a definição do intervalo ótimo de
manutenção, que é um insumo para o planejamento da manutenção preventiva, e a garantia de
sua execução, em meio às restrições presentes em todas as organizações.
2
XXXV ENCONTRO NACIONAL DE ENGENHARIA DE PRODUCAO
Perspectivas Globais para a Engenharia de Produção
Fortaleza, CE, Brasil, 13 a 16 de outubro de 2015.
Sendo assim, a questão de pesquisa deste trabalho consiste em: “Como deve ser um modelo
que permita definir um cronograma de manutenção preventiva de um conjunto de itens,
minimizando seus custos, ainda assim considerando as restrições relacionadas à
capacidade de mão-de-obra para execução da manutenção?”
Tecidas estas considerações, o propósito deste trabalho consiste na formulação de um
modelo que permita a definição de um cronograma de manutenção, considerando ambos
os aspectos citados anteriormente, a saber, a otimização dos custos de acordo com a definição
do intervalo de manutenção preventiva, bem como as restrições de capacidade de mão-deobra.
Considerando tal cenário, a realização deste trabalho se justifica pela necessidade observada
de redução de custos associados à manutenção, utilizando cronogramas de manutenção
factíveis e que ao mesmo tempo auxiliem as empresas a caminhar na direção do menor custo
possível.
O presente trabalho é apresentado conforme a seguinte estrutura. A seção “Referencial
Teórico” apresenta os principais conceitos necessários para a correta definição do problema.
A seção “Abordagem metodológica e procedimentos técnicos” apresenta os passos utilizados
para a condução da pesquisa. Em seguida o modelo proposto é apresentado na seção
“Construção do Modelo”, e tem seu funcionamento verificado na seção “Avaliação do
Modelo”. Por fim, a seção “Considerações Finais” trata das conclusões do trabalho, limitações
e sugestões de pesquisa futura.
2. Referencial Teórico
2.1 Manutenção Preventiva e Engenharia de Confiabilidade
Segundo Kardec e Nascif (2009, p. 42), manutenção preventiva consiste na “atuação realizada
de forma a reduzir ou evitar a falha ou queda no desempenho, obedecendo a um plano
previamente elaborado, baseado em intervalos definidos de tempo”. No presente trabalho tais
intervalos de tempo também são chamados de “periodicidade”, ou seja, definem a frequência
segundo a qual a manutenção preventiva será realizada em um determinado item.
Sendo a manutenção preventiva realizada com base na definição de um intervalo de tempo,
um trade-off relacionado à escolha de tal intervalo de tempo é criado, e pode ser observado
na Figura 1. Esta figura mostra que à medida que o intervalo de manutenção preventiva é
reduzido, aumenta a probabilidade de que não aconteçam falhas (confiabilidade), e em
3
XXXV ENCONTRO NACIONAL DE ENGENHARIA DE PRODUCAO
Perspectivas Globais para a Engenharia de Produção
Fortaleza, CE, Brasil, 13 a 16 de outubro de 2015.
consequência, diminuem-se os custos da manutenção corretiva (perdas de produção, peças de
reposição, etc). Por outro lado, isto acaba aumentando os custos relacionados à manutenção
preventiva, de tal forma que se a manutenção preventiva for realizada muito frequentemente,
tornar-se-á anti-econômica.
Figura 1 – Definição do Intervalo Ótimo de Manutenção Preventiva
Fonte: Adaptado de Reliasoft (2010)
Mendes e Ribeiro (2011) realizam um estudo identificando o suporte quantitativo necessário á
operacionalização da manutenção centrada na confiabilidade. Segundo os autores, a
programação da manutenção é composta de duas etapas: a determinação dos intervalos de
manutenção e a programação da execução das atividades de manutenção.
Lafraia (2001, p. 231) propõe um método para o calculo do custo médio de manutenção,
sendo este dependente do intervalo de manutenção preventiva. Desta maneira, partindo-se do
pressuposto de que a manutenção preventiva é uma alternativa eficaz para a prevenção da
falha, e que é possível modelar estatisticamente o comportamento da probabilidade de falha
em função do intervalo de manutenção preventiva, tal modelo permite o cálculo do custo
médio em manutenção, utilizado como coeficiente no modelo proposto neste trabalho.
Para o calculo deste custo médio de manutenção, deve ser realizado inicialmente um estudo
de confiabilidade, procurando identificar uma distribuição de probabilidade que explique o
comportamento das falhas com o tempo. Fogliatto e Ribeiro (2009) apresentam as
4
XXXV ENCONTRO NACIONAL DE ENGENHARIA DE PRODUCAO
Perspectivas Globais para a Engenharia de Produção
Fortaleza, CE, Brasil, 13 a 16 de outubro de 2015.
distribuições Exponencial, Weibull, Gama e Lognormal como alternativas para esta atividade.
Em sendo definida a distribuição adotada, deve-se proceder com o calculo do custo médio de
manutenção conforme os intervalos de tempo de manutenção preventiva possíveis. Este
processo pode ser feito em uma planilha do excel, ou também em softwares específicos para
este fim, como o RCM++, conforme é proposto pela Reliasoft (2012).
2.2 Programação Linear
O objetivo desta seção é situar o leitor em relação à programação linear, visto que esta técnica
não faz parte do corpo de conhecimento usualmente utilizado em gestão da manutenção.
Arenales et al. (2007) definem modelo matemático como uma representação simplificada de
um problema real. Parte da Pesquisa Operacional, a Programação Linear trata-se de uma
técnica que pressupõe uma relação linear entre as variáveis do problema em questão.
Considerando estas relações lineares, a programação linear busca uma solução ótima para o
problema estudado. Para que seja possível alcançar esta solução ótima, as características do
problema são representadas por meio de um conjunto de equações lineares (RODRIGUES et
al., 2014).
Segundo Arenales et al. (2007), três aspectos fundamentais devem ser definidos em um
modelo de programação linear:
a) A definição das decisões a serem tomadas: também chamadas de “variáveis de
decisão”, são as variáveis cujo valor definem a decisão tomada;
b) Os objetivos do modelo: conhecido como “função objetivo”, esta define o o critério de
preferência das decisões;
c) As Restrições impostas: definem quais são as regras que o modelo deve obedecer.
3. Abordagem metodológica e procedimentos técnicos
Morabito e Pureza (2012, p. 170) indicam que, no contexto da Engenharia de Produção, onde
é necessária a tomada de um conjunto de decisões a respeito de atividades realizadas em
qualquer nível de planejamento, a utilização de modelos “permite compreender melhor o
ambiente em questão, identificar problemas, formular estratégias e oportunidades e apoiar e
sistematizar o processo de tomada de decisões”.
Desta maneira, considerando que a questão de pesquisa outrora definida requer a formulação
de uma estratégia para o tratamento do problema exposto, bem como a sistematização do
5
XXXV ENCONTRO NACIONAL DE ENGENHARIA DE PRODUCAO
Perspectivas Globais para a Engenharia de Produção
Fortaleza, CE, Brasil, 13 a 16 de outubro de 2015.
processo de tomada de decisão em relação à definição do cronograma de manutenção, o
presente trabalho utiliza como base a abordagem metodológica da modelagem, em especial, a
modelagem matemática no contexto da pesquisa operacional.
Arenales et al. (2007) define um processo para a modelagem no contexto da pesquisa
operacional, indicando cinco fases para a solução de um problema, a saber: A Definição do
Problema, Construção do Modelo, Solução do Modelo, Validação do Modelo e
Implementação da Solução.
Utilizando como base as fases anteriormente definidas e considerando os objetivos deste
trabalho específico, o presente trabalho compreendeu a execução dos procedimentos
metodológicos ilustrados na Figura 2.
Figura 2 – Procedimentos Metodológicos adotados
Fonte: Os Autores
A fase de Definição do Problema consistiu no entendimento formal do problema, por meio
da literatura que trata sobre o problema em si, tendo como objetivo auxiliar na definição dos
parâmetros que devem ser considerados na etapa seguinte.
6
XXXV ENCONTRO NACIONAL DE ENGENHARIA DE PRODUCAO
Perspectivas Globais para a Engenharia de Produção
Fortaleza, CE, Brasil, 13 a 16 de outubro de 2015.
A etapa de Construção do Modelo abarcou as atividades de formulação do modelo
matemático bem como a sua implementação no software LINDO 6.1. Por fim, a etapa de
Avaliação do Modelo compreendeu todas as atividades desde a definição dos Cenários de
Avaliação, passando pela tradução destes cenários para parâmetros aceitos pelo modelo,
resolução do modelo via solver, tradução da resposta do solver para um formato
compreensível, e por fim a avaliação final do modelo em uma situação hipotética.
4. Modelo Proposto
Para que o modelo proposto por este trabalho seja posteriormente utilizado em um correto
contexto, este trabalho define as seguintes condições pré-existentes:
a) A Manutenção Preventiva é a estratégia a ser adotada para um conjunto de
equipamentos;
b) É possível calcular o intervalo ótimo de manutenção para cada um do conjunto de
equipamentos considerando os custos de manutenção, bem como os custos decorrentes
de uma quebra;
c) Restrições relativas à disponibilidade de mão-de-obra da manutenção não permitem
que a manutenção preventiva seja realizada segundo o intervalo ótimo de manutenção
para todos os equipamentos em questão.
Dada a ocorrência simultânea destas três condições, a aplicação do modelo proposto neste
trabalho pode ser incorporada ao planejamento e controle da manutenção preventiva,
conforme definido a seguir.
4.1 Interface entre o Modelo de Programação Linear e a Programação da Manutenção
Preventiva
A partir de uma lista de itens a manter, bem como o número de homem-horas necessários para
a realização da manutenção preventiva de cada item, bem como reconhecendo a capacidade
de mão-de-obra disponível é possível a formulação de um cronograma de manutenção
preventiva. Além destas informações, este trabalho propõe que se realizem estudos de
confiabilidade para determinar qual é o custo médio de manutenção para cada intervalo de
manutenção preventiva possível, sendo este o critério que o modelo levará em consideração
para a proposição do cronograma de manutenção preventiva.
7
XXXV ENCONTRO NACIONAL DE ENGENHARIA DE PRODUCAO
Perspectivas Globais para a Engenharia de Produção
Fortaleza, CE, Brasil, 13 a 16 de outubro de 2015.
A Figura 2 mostra a relação que o modelo proposto tem com suas entradas e saídas. A linha
tracejada representa a própria delimitação deste trabalho, visto que o mesmo tem o objetivo de
propor um modelo de programação linear que sugira um cronograma de manutenção e
posterior avaliação dos resultados gerados por este modelo.
Figura 2 – Relação do Modelo proposto com a definição do Cronograma de Manutenção
Preventiva
Fonte: Os Autores
Tal propósito é atingido por meio do método de modelagem, incluindo tanto a fase de criação
do modelo, como a avaliação dos resultados por ele produzidos. A avaliação deste modelo
levou à conclusão de que o mesmo se mostra útil e coerente para a solução do problema
anteriormente definido, sendo capaz de otimizar os custos, ainda assim respeitando às
restrições.
4.2 Modelo de Programação Linear
O objetivo do modelo é definir, para um conjunto de itens, o cronograma de manutenção que
resulte no menor custo médio em manutenção por unidade de tempo total, considerando
restrições de capacidade de mão-de-obra. Considerando que a adoção de diferentes
periodicidades de manutenção preventiva resultará em diferentes custos, é necessário que seja
tomada a decisão sobre qual periodicidade de manutenção preventiva adotar para cada item.
8
XXXV ENCONTRO NACIONAL DE ENGENHARIA DE PRODUCAO
Perspectivas Globais para a Engenharia de Produção
Fortaleza, CE, Brasil, 13 a 16 de outubro de 2015.
Uma implicação desta decisão é que deverá haver capacidade de mão-de-obra para executar
tais intervenções em cada semana. Sendo assim, deve ser decidido, para cada item, qual
periodicidade deve ser adotada, e em quais semanas a manutenção preventiva deverá ocorrer.
Tal caracterização do problema leva à definição da variável de decisão conforme (A).
(A)
Onde Yijk é a variável binária que caracteriza que será realizada manutenção preventiva no
item i, na semana j, conforme a periodicidade k. Desta forma, a variável Y112 é
correspondente à realização de manutenção preventiva do item 1, na semana 1, conforme a
periodicidade de 2 semanas.
Para subsidiar a definição dos valores das variáveis de decisão, é necessário que se saiba: qual
o custo envolvido em tomar a decisão para cada item, semana e periodicidade (CDijk); qual é a
capacidade de mão-de-obra disponível em cada semana (HCAPj); quantas horas de mão-deobra cada item requer para a realização da manutenção preventiva (HDEMi); bem como quais
serão os itens, semanas e periodicidades consideradas (M, S e P). Tais parâmetros são
definidos na Tabela 1.
Tabela 1 – Parâmetros do Modelo
Fonte: Os Autores
Definida a variável de decisão bem como os parâmetros de entrada do modelo, apresenta-se
em seguida a formulação da função objetivo bem como das restrições utilizadas.
9
XXXV ENCONTRO NACIONAL DE ENGENHARIA DE PRODUCAO
Perspectivas Globais para a Engenharia de Produção
Fortaleza, CE, Brasil, 13 a 16 de outubro de 2015.
(1)
Sujeito às Restrições:
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
A Função Objetivo (1) consiste em minimizar o custo total das decisões em realizar a
manutenção preventiva em um item i, na semana j, conforme periodicidade k. A restrição (2)
10
XXXV ENCONTRO NACIONAL DE ENGENHARIA DE PRODUCAO
Perspectivas Globais para a Engenharia de Produção
Fortaleza, CE, Brasil, 13 a 16 de outubro de 2015.
garante que para uma semana não serão demandadas mais horas de manutenção preventiva do
que foram definidas como capacidade. A restrição (3) define que não será escolhido mais de
um tipo de periodicidade para cada item.
A partir da restrição (4) até a restrição (9), o modelo conecta as possibilidades de
periodicidades previstas, de forma que, em tomando a decisão por realizar a manutenção em
dada periodicidade, obrigatoriamente deverá ser realizada manutenção preventiva em semanas
específicas, conforme a periodicidade escolhida. A restrição (4) torna obrigatória a realização
da manutenção preventiva em todas as semanas caso o tipo de periodicidade escolhido seja
igual a 1. As restrições (5) e (6) versam sobre a obrigatoriedade de realização da manutenção
preventiva para os tipos de periodicidade iguais a 2, de forma que a manutenção será realizada
em semanas pares ou ímpares. A restrição (7) e (8) garantem que a manutenção com
periodicidade igual a 3 será realizada com intervalos corretos, bem como a restrição (9)
garante que apenas será realizada uma intervenção de periodicidade igual a 4.
A restrição (10) força que seja realizada ao menos uma intervenção preventiva em cada item.
As restrições (11), (12), (13) e (14) definem os domínios aos quais as variáveis e parâmetros
pertencem.
Sendo formulado o modelo matemático, foi realizada a implementação do modelo no software
LINDO 6.1.
5. Avaliação do Modelo
Com o propósito de avaliar se o modelo proposto é capaz otimizar corretamente os custos de
manutenção, foram propostos dois cenários hipotéticos contendo parâmetros distintos.
Considerando que o objetivo é avaliar o funcionamento do modelo em si, e não empreender
um estudo de confiabilidade e custos completo, os valores aqui utilizados foram definidos a
critério do pesquisador. Desta forma não é relevante a ordem de grandeza dos parâmetros
utilizados, mas sim o seu valor em relação aos demais parâmetros.
Em seguida, tais cenários foram transpostos em forma de parâmetros de entrada para o
modelo, viabilizando o sua avaliação no software LINDO 6.1.
5.1 Definição dos Cenários de Teste
Para cada um dos dois cenários, o modelo otimizará a programação de manutenção de um
conjunto de três itens i (M = [1;2;3]), em quatro semanas j (S = [1;2;3;4]), havendo quatro
possibilidades de periodicidade k (P = [1;2;3;4]).
11
XXXV ENCONTRO NACIONAL DE ENGENHARIA DE PRODUCAO
Perspectivas Globais para a Engenharia de Produção
Fortaleza, CE, Brasil, 13 a 16 de outubro de 2015.
Para o Cenário 1, as Horas de Capacidade de mão-de-obra (parâmetro HCAPj) é igual a 20
Homem-Hora para todas as semanas j, exceto para a semana 2, na qual seu valor é de 15
Homem-Hora. Esta alteração no parâmetro em tal cenário simula a variação da
disponibilidade de mão-de-obra para a manutenção preventiva ao longo do tempo, que pode
ser ocasionada por diversos motivos como férias de colaboradores, contratação de mão-deobra adicional, dentre outros fatores. Para o Cenário 2, este parâmetro tem o mesmo valor de
20 Homem-Hora em todas as semanas j. Para ambos os cenários, o item 1 demandará 8 horas
de mão-de-obra, o item 2, 10 e o item 3 8 (parâmetro HDEMi).
O Custo da decisão em realizar manutenção preventiva no item i, na semana j, na
periodicidade k (parâmetro CDijk) deve ser calculado, dividindo-se o custo médio em
manutenção por intervalo de tempo relacionado à periodicidade k no item i pelo número de
intervenções que aquela periodicidade requer. Ou seja, se o custo médio por intervalo de
tempo para a periodicidade 1 é de 24 R$/h, logo o custo de tomar a decisão de realizar a
manutenção preventiva na semana 1, segundo a periodicidade 1, será 6 R$/h. Tais parâmetros
de entrada são definidos na Tabela 2 para o Cenário 1, e na Tabela 3 para o Cenário 2,
conforme unidades definidas na Tabela 1.
Tabela 2 – Parâmetros do Modelo: Demandas e Custos Cenário 1
Fonte: Os Autores
Tabela 3 – Parâmetros do Modelo: Demandas e Custos Cenário 2
Fonte: Os Autores
12
XXXV ENCONTRO NACIONAL DE ENGENHARIA DE PRODUCAO
Perspectivas Globais para a Engenharia de Produção
Fortaleza, CE, Brasil, 13 a 16 de outubro de 2015.
O objetivo de diferenciar o valor de tais parâmetros em cada cenário é alterar a relação de
custo-benefício de se realizar a manutenção preventiva em cada periodicidade e item. Isto
significa que cada item pode gerar diferentes custos quando condicionado à manutenção
preventiva em uma determinada periodicidade. A mesma informação das colunas CDijk das
Tabelas 1 e 2 é exibida na Figura 4.
13
XXXV ENCONTRO NACIONAL DE ENGENHARIA DE PRODUCAO
Perspectivas Globais para a Engenharia de Produção
Fortaleza, CE, Brasil, 13 a 16 de outubro de 2015.
Figura 4 – Gráfico dos Custos dos Cenários
Fonte: Os Autores
Desta forma, pode-se observar que os dois grupos de itens tem características relacionadas à
sua confiabilidade diferentes, e portanto, terão custos associados às decisões de realizar a
manutenção preventiva com determinada periodicidade diferentes.
5.2. Respostas do Modelo aos Cenários
Após a transposição dos parâmetros de entrada ao modelo, o mesmo foi resolvido pelo
LINDO 6.1. As conclusões do modelo são expressas por meio da definição das variáveis Yijk
anteriormente definidas, bem como do valor resultante da função objetivo. Para o Cenário 1, o
valor resultante da função objetivo foi 19, enquanto que para o Cenário 2, o valor resultante
foi 18. Para o objetivo desta análise, a informação mais relevante é a definição das variáveis
Yijk, pois esta revela a capacidade do modelo em respeitar as restrições, minimizando a função
objetivo. Para o Cenário 1 todas as variáveis de decisão foram igualadas a “0”, exceto: Y112,
Y132, Y212, Y232, Y322 e Y332, que foram igualadas a “1”. Para o Cenário 2, todas as
variáveis de decisão foram igualadas a “0”, exceto: Y112, Y132, Y222, Y242, Y311 , Y312,
Y313 e Y314 que foram igualadas a “1”.
Considerando o contexto para o qual o modelo é endereçado, que é o da definição de um
cronograma de manutenção preventiva, as implicações práticas da decisão do modelo foram
transpostas para a Tabela 4 (Cenário 1) e para a Tabela 5 (Cenário 2), de tal maneira que os
valores apresentados na tabela são resultados da multiplicação da variável Yijk pelo parâmetro
HDEMi. Desta forma, se o modelo definiu que deve ser realizada manutenção preventiva para
o item i, na semana j, conforme periodicidade k, (valor da variável igual a 1), logo veremos na
tabela o valor de HDEMi, ou seja, quantas horas de manutenção aquela decisão demandará em
cada semana.
14
XXXV ENCONTRO NACIONAL DE ENGENHARIA DE PRODUCAO
Perspectivas Globais para a Engenharia de Produção
Fortaleza, CE, Brasil, 13 a 16 de outubro de 2015.
Tabela 4 – Cenário 1: Significado prático dos resultados
Fonte: Os Autores
Tabela 5 – Cenário 2: Significado prático dos resultados
Fonte: Os Autores
As Tabelas 4 e 5 foram intencionalmente organizadas de maneira semelhante a um
cronograma de manutenção preventiva no qual são representadas nas linhas os itens, e nas
colunas as semanas.
No Cenário 1, observa-se que o modelo foi capaz de selecionar a periodicidade de
manutenção com menor custo para cada item, agrupando a sua realização de forma que atenda
às restrições de mão-de-obra. Além disso, ressalta-se que o modelo optou por agrupar duas
programações nas semanas ímpares, já que há menor capacidade de mão-de-obra na semana
2, o que impediria a realização de mais de uma intervenção com periodicidade igual a 2 nas
semanas pares.
15
XXXV ENCONTRO NACIONAL DE ENGENHARIA DE PRODUCAO
Perspectivas Globais para a Engenharia de Produção
Fortaleza, CE, Brasil, 13 a 16 de outubro de 2015.
No Cenário 2, observa-se que o modelo não pôde selecionar a periodicidade de manutenção
com menor custo para cada item, já que esta decisão incorreria no uso de 26 Homem-Hora por
semana, enquanto estão disponíveis somente 20 por semana. Desta maneira, restou selecionar
a periodicidade que traria o menor impacto sobre o aumento dos custos totais, realizando o
agrupamento nas semanas respeitando às restrições estabelecidas.
Considerando a coerência das respostas do modelo aos diferentes cenários definidos, pode-se
afirmar que, sendo definidos de forma correta os parâmetros de entrada necessários para a
decisão, o modelo atende ao seu objetivo proposto. Isto é observado já que a resolução do
modelo definiu corretamente o cronograma de manutenção que resulte no menor custo total
para um conjunto de itens, considerando as restrições impostas.
6. Considerações Finais
A proposição de um modelo que proporcione a minimização dos custos relacionados à
manutenção, por meio da otimização de um cronograma de manutenção preventiva permite
que decisões mais acertadas sejam tomadas na fase de planejamento de manutenção.
Tal modelo se tornará útil para as empresas que possuam ativos para os quais a estratégia de
manutenção preventiva seja a melhor alternativa, bem como é possível conhecer a
probabilidade de falha ao tempo por meio de estudos de confiabilidade.
Direcionado à uma estratégia de manutenção preventiva, a proposição de tal modelo contribui
com gestão da manutenção em geral, uma vez que promove a redução dos custos relacionados
à manutenção, dando um passo em direção à própria missão da manutenção, definida por
Kardec e Nascif (2009, p. 23) como “garantir a disponibilidade da função dos equipamentos
(...) com confiabilidade, segurança, preservação do meio ambiente e custos adequados”.
Futuros trabalhos podem ampliar a contribuição deste aplicando este modelo em conjunto
com um estudo completo de confiabilidade, que é um pré-requisito para a sua aplicação,
considerando como restrições um grupo real de máquinas. A observação dos custos efetivos
observados durante um período de tempo poderá validar definitivamente a proposição de que
a utilização prática de tais modelos gerará resultados para as empresas.
Por fim, considera-se que a sempre crescente pressão por redução de custos, bem como o
avanço e disseminação das técnicas de pesquisa operacional, e engenharia de manutenção,
propiciarão a criação de um ambiente competitivo no qual empresas que não minimizarem
seus custos estarão fadadas ao prejuízo. Neste sentido, este trabalho encontra sua contribuição
16
XXXV ENCONTRO NACIONAL DE ENGENHARIA DE PRODUCAO
Perspectivas Globais para a Engenharia de Produção
Fortaleza, CE, Brasil, 13 a 16 de outubro de 2015.
ampliando o arsenal de técnicas utilizados pela engenharia de manutenção, aliando a
engenharia de confiabilidade à pesquisa operacional.
17
XXXV ENCONTRO NACIONAL DE ENGENHARIA DE PRODUCAO
Perspectivas Globais para a Engenharia de Produção
Fortaleza, CE, Brasil, 13 a 16 de outubro de 2015.
REFERÊNCIAS
ABNT. NBR5462: Confiabilidade e Mantenabilidade. Associação Brasileira de Normas Técnicas, Rio de
Janeiro, 1994.
ARENALES, M. et al. Pesquisa Operacional. Rio de Janeiro: Campus/Elsevier, 2007.
DEKKER, R. Applications of maintenance optimization models : a review and analysis. Reliability
Engineering and System Safety, v. 51, p. 229–240, 1996.
FOGLIATTO, F. S.; RIBEIRO, J. L. D. Confiabilidade e Manutenção Industrial. Rio de Janeiro: Elsevier,
2009.
KARDEC, A.; NASCIF, J. Manutenção: Função Estratégica. 3. ed. rev ed. Rio de Janeiro: Qualitymark :
Petrobras, 2009. p. 384
LAFRAIA, J. R. B. Manual de Coniabilidade, Mantenabilidade e Disponibilidade. [s.l.] Qualitymark, 2001.
MENDES, A. A.; RIBEIRO, J. L. D. Um estudo do suporte quantitativo necessário para a
operacionalização da MCC. Produção, v. 21, n. 4, p. 583–593, 2011.
MIGUEL, P. A. C. Metodologia de pesquisa em engenharia de produção e gestão de operações. Rio de
Janeiro: Elsevier, 2012.
MORABITO, R.; PUREZA, V.; Modelagem e Simulação In: CAUCHICK et. al (Org.). Metodologia de
Pesquisa em Engenharia de Produção. Rio de Janeiro: Campus/Elsevier, 2012.
RELIASOFT. Optimum Maintenance Intervals in RCM++. Disponível em:
<http://www.weibull.com/hotwire/issue113/hottopics113.htm>. Acesso em: 1 maio. 2014.
RODRIGUES, L. H.; AHLERT, F. C.; LACERDA, D. P.; CAMARGO, L. F. R.; LIMA, P. N. Pesquisa
operacional : programação linear passo a passo : do entendimento do problema à interpretação da
solução. São Leopoldo: Editora UNISINOS, 2014.
SOUZA, M. Nivelamento de Recursos. Disponível em: <http://engeman.com.br/pt-br/artigostecnicos/nivelamento-de-recursos/print>. Acesso em: 2 fev. 2014.
18
Download

minimizando custos de manutenção: uma alternativa para