Física Laboratorial Ano lectivo 2003/04 Trabalho Prático ESTUDO EXPERIMENTAL DE LEIS DA DINÂMICA Objectivo – Com este trabalho pretende-se realizar a verificação experimental de diferentes leis da dinâmica e suas consequências. As experiências programadas baseiam-se na utilização de um computador e de uma interface PASCO Science Workshop (SW) 500 ou 700. 1ª PARTE Impulso da força e variação do momento linear numa colisão Introdução ρ De acordo com a 2ª lei de Newton, a resultante das forças F exercida sobre um objecto é ρ directamente proporcional à aceleração a que essa força imprime ao movimento do objecto, sendo a constante de proporcionalidade a própria massa m do objecto: ρ ρ F = m.a . ρ Uma outra forma da escrever a 2ª lei de Newton é exprimir a força total F pela variação temporal do seu momento linear: ρ dpρ F= , dt ρ onde o momento linear p corresponde, como se sabe, ao produto da massa do corpo pela ρ ρ velocidade de que está animado ( p = m.v ). Se a força é constante no tempo (aceleração constante) podemos escrever ρ ρ ρ ∆pρ mv f − mvi ρ ρ F= = ⇒ F .∆t = ∆p . ∆t t f − ti Contudo, em geral, quando dois corpos interagem (por exemplo, quando chocam) a força de interacção entre eles não é constante; ou seja, não passa instantaneamente para um dado valor, mantendo-se constante nesse valor durante certo tempo e depois desaparecendo, também instantaneamente, como representado no gráfico da figura 1-a). Pelo contrário, a força varia ao longo do tempo, por exemplo, como está ilustrado no gráfico da figura 1-b). Departamento de Física da FCTUC 1/19 Física Laboratorial Ano lectivo 2003/04 ρρ FF Ao ρ produto F. ∆t ρ ou ∫ F. dt , correspondente tt a) b) à área delimitada Figura 1 respectivament ρ e por cada uma das curvas da figura 1, dá-se o nome de impulso da força, I . Assim, o impulso da força é igual à variação do momento linear provocada pela acção dessa força: ρ ρ ρ I = p f − pi , ρ ρ onde pi e p f são os valores do momento linear imediatamente antes da força começar a actuar e imediatamente após a força deixar de actuar, respectivamente. Esta relação pode ser verificada experimentalmente: por um lado, medindo, durante o tempo de impacto, a força que age sobre um carro quando este choca contra um obstáculo no qual está montado um sensor de força e, por outro, registando a velocidade do carro antes e depois do choque com o obstáculo (por meio de um sensor de movimento). Material necessário Uma calha, um carro, um sensor de movimento, um sensor de força. Procedimento Montagem experimental 1. Verifique se a interface SW 500 ou SW 700 (fig. 2) está ligada ao computador. Ligue a interface e, em seguida, ligue o computador. 2. Ligue a ficha dupla do sensor de movimento (motion Figura 2 sensor) aos canais digitais 1 e 2 da interface: o terminal amarelo ao canal 1 e o outro ao canal 2 (fig. 2). 3. Ligue a ficha DIN do sensor de força (force sensor) à entrada analógica A da interface (fig. 2). Departamento de Física da FCTUC 2/19 Física Laboratorial Ano lectivo 2003/04 4. Abra o programa Science Workshop no computador. 5. Aparecerá no écran uma janela como a da figura 3. 6. Comece por indicar ao programa quais os terminais que ligámos às entradas da interface. Para tal, seleccione e arraste o ícone da ficha digital para a entrada 1 da interface. Aparecerá o écran da figura 4, onde deve escolher o aparelho ligado à entrada digital 1, neste caso o sensor de movimento. Essa selecção implicará a abertura do écran da figura 5, ao mesmo tempo que começará a ouvir o sensor de movimento emitir um sinal sonoro. Nesse menu, escolha o valor 50 Hz na opção “trigger rate” (frequência de emissão), a fim de que o sinal emitido pelo sensor tenha um alcance máximo de cerca de 2.5 metros, sensivelmente o comprimento da calha que vai ser utilizada. Figura 3 Figura 4 Figura 5 Em seguida, novamente no écran da figura 3, seleccione e arraste o ícone da ficha analógica . para a entrada A da interface. Aparecerá um écran equivalente ao da figura 4 onde deverá Departamento de Física da FCTUC 3/19 Física Laboratorial Ano lectivo 2003/04 escolher a opção sensor de força. No écran, agora representado na figura 6, poderá ver os ícones do sensor de movimento (por baixo da interface, à esquerda), e do sensor de força, (por baixo da interface, à direita). Sempre que seleccionar o ícone do sensor de movimento (por meio de dois cliques com o rato) abre-se novamente a janela mostrada na figura 5. Quando seleccionar o ícone do sensor de força abre-se uma outra janela (figura 7), a partir da qual é possível efectuar a necessária calibração do sensor. Figura 6 Figura 7 7. Antes de realizar a calibração, e voltando ao menu da figura 6, abra a opção Sampling options, à esquerda, em baixo, e, no quadro ilustrado na fig. 8, seleccione: Periodic Samples = Fast, 200 Hz; Digital Timing = 10000 Hz. Esta opção indica ao programa a frequência com que ele deve recolher os dados fornecidos pelos sensores ligados à interface. Calibração do sensor de força 8. Vamos agora proceder à calibração do sensor de força. Departamento de Física da FCTUC 4/19 Física Laboratorial Ano lectivo 2003/04 8.1 Para tal, na janela da figura 6, pressione duas vezes o ícone do sensor de força de modo a abrir a janela correspondente à figura 7. Figura 8 Figura 9 8.2 Nessa janela mostram-se os valores da calibração pré-definida do sensor, onde se pode ler que: 50 N produzem uma tensão de 8 Volts; –50 N produzem uma tensão de –8 Volts. O sensor de força está definido de modo a que um “puxão” seja interpretado como uma força negativa. Por exemplo, se montarmos o sensor verticalmente (fig. 9) e nele pendurarmos um objecto com 1 kg de massa, o sensor de força medirá –9.8N. 8.3 Monte o sensor de força num suporte semelhante ao da fig. 9, de modo a que o seu gancho fique na vertical1. 8.4 Não coloque nenhuma massa no gancho. Pressione o botão de tara do sensor de modo a inicializá-lo. Para calibrar o limite superior do valor da força (High value), escreva o valor 0 (zero) no campo correspondente ao High value, uma vez que não há nenhuma massa pendurada no gancho. Carregue no botão READ. 8.5 Para calibrar o limite inferior do valor da força, pendure no gancho um objecto de massa conhecida (cujo valor seja superior à massa do objecto que vai utilizar durante esta parte do trabalho). No campo do Low Value, escreva o valor do peso (em Newton) do objecto pendurado (não se esqueça que uma força que “puxa” o gancho é negativa). Carregue no botão Read correspondente ao Low Value. 8.6 Pressione OK para voltar à janela da experiência. [1]Há possibilidade de se montarem diferentes terminais no sensor de força. O gancho e uma pequena placa com dois magnetes são os dois terminais que usaremos ao longo deste trabalho prático. Departamento de Física da FCTUC 5/19 Física Laboratorial Ano lectivo 2003/04 Preparação dos gráficos 9. Em seguida, há que preparar os gráficos ou tabelas que vão ser necessários para o registo e tratamento adequado dos dados obtidos. Nesta experiência, estamos interessados em preparar um gráfico da força em função do tempo. Procedemos então do seguinte modo: no écran da figura 6, seleccione e arraste o ícone correspondente ao gráfico para o ícone do dispositivo com o qual mede a grandeza que pretende colocar no eixo dos yy. Como neste caso a ordenada do gráfico deve corresponder à força, o ícone deve ser arrastado para cima do ícone do sensor de força. Aparece no écran o gráfico da figura 10.2 Figura 10 Em seguida, pretendemos criar um gráfico de velocidade também em função do tempo. Assim, devemos pressionar o ícone do menu do gráfico na fig. 10 que tem essa função, , e escolher a opção de “velocidade” no pequeno menu que se abre quando se selecciona a entrada digital 1 (figura 11). O programa está agora preparado (figura 12). Passemos às condições experimentais. Colisão com um objecto de massa muito grande 10. Fixe o sensor de força no suporte próprio, no extremo da calha, como ilustrado na fig. 13. [2] Como se pode ver, reduziu-se a janela da figura 6 mantendo apenas a sua parte esquerda. Para tal fez-se um clique com o rato no ícone apropriado no canto superior direito da janela, como se indica na seguinte figura . Departamento de Física da FCTUC 6/19 Física Laboratorial Ano lectivo 2003/04 Figura 11 Figura 12 11. Levante o extremo oposto da calha cerca de 1.5 cm (pousando-o sobre um objecto volumoso), de modo a que o carro deslize sempre com a mesma velocidade inicial. Figura 13 Departamento de Física da FCTUC 7/19 Física Laboratorial Ano lectivo 2003/04 12. Coloque o sensor do movimento nesse extremo elevado da calha, a fim de que ele possa medir o movimento do carro. A distância mínima entre o sensor de movimento e o carro é de 40 cm. Coloque uma marca na calha, a 40 cm do sensor de movimento, para se lembrar que o carro não deve aproximar-se do sensor mais do que esta distância. 13. Encoste o extremo da calha onde está o sensor de força a um objecto suficientemente pesado para que a calha não se mova durante a colisão. 14. Retire o gancho do sensor e substitua-o por um protector magnético. 15. Meça e registe numa tabela de resultados a massa do carro. 16. Quando estiver pronto para iniciar a experiência, pressione o botão de Tara, na parte lateral do sensor de força para inicializar o valor da força aplicada ao sensor. 17. Coloque o carro a 40 cm do sensor de movimento. 18. Antes de iniciar o registo definitivo dos dados, experimente mover o carro em frente do sensor de movimento para ter a certeza que este está bem alinhado e “vê” (acende um LED ou apenas emite um som, conforme os modelos) o carro que se movimenta. 19. Inicie o registo de dados premindo o botão na parte esquerda do écran e solte o carro para ele começar a deslizar em direcção ao sensor de força. 20. Termine o registo dos dados, carregando no botão , depois do carro ter sido repelido da colisão com o sensor de força. Na janela da experiência (fig. 14) aparecerá Run #1. Análise dos resultados 21. Clique com o rato num dos gráficos e seleccione, sucessivamente, os botões Escala Automática (de modo a que o gráfico inclua todos os dados acumulados numa escala adequada 3) e Estatística , a fim de abrir a área de tratamento estatístico dos dados, no canto inferior lado direito do gráfico. Em seguida, seleccione a instrução Ampliar . Use o cursor para definir, no gráfico da força em função do tempo, um rectângulo que inclua a região que corresponde à colisão, como está ilustrado na figura 15. Figura 14 [3] Os limites da escala também podem ser alterados directamente, seleccionando a escala por meio de dois cliques com o rato. Departamento de Física da FCTUC 8/19 Física Laboratorial Ano lectivo 2003/04 22. Pressione o botão do Menu de Estatística no gráfico da força. Seleccione a opção Integração (fig. 16). Anote, na sua tabela de resultados, o valor obtido para a área seleccionada. A que corresponde essa área? Porquê? Figura 15 23. Pare encontrar os valores da velocidade imediatamente antes e depois da colisão, use o cursor para desenhar um rectângulo à volta da região que corresponde à colisão na curva da velocidade em função do tempo (fig. 15). 23.1. Seleccione o Menu de Estatística no gráfico da velocidade. Seleccione Mínimo. Anote este valor na tabela, o qual traduz a Figura 16 velocidade depois do choque. 23.2. Seleccione de novo o Menu de Estatística no gráfico da velocidade. Seleccione Máximo. Anote este valor na tabela, o qual traduz a velocidade antes do choque. 24. Calcule e registe na tabela o momento linear antes e depois da colisão. (Atenção à convenção de sinais.) 25. Calcule a correspondente variação de momento linear provocada pela colisão. Como relaciona este resultado com o valor registado no ponto 22? Compare os valores obtidos e comente. 26. Qual dos dois valores obtidos – impulso da força e variação do momento linear – lhe parece mais “fiável”? Justifique. Calcule a diferença percentual relativa entre os dois valores. 27. Se for possível, imprima o gráfico da experiência que acaba de realizar. Departamento de Física da FCTUC 9/19 Física Laboratorial Ano lectivo 2003/04 Relatório Elabore um relatório desta parte do trabalho efectuado, no qual deve incluir, para além da identificação do trabalho e da equipa (nome, licenciatura, turma e grupo) que o realizou: • • • • uma breve introdução teórica (não mais de 10 linhas); um resumo do procedimento experimental (não mais de 10 linhas); os resultados experimentais obtidos (organizados em tabelas e gráficos sempre que possível); o tratamento matemático adequado desses resultados e a discussão/comentário dos mesmos. Bibliografia [1] M.M.R.R. Costa e M.J.B.M. de Almeida, Fundamentos de Física, Coimbra, Livraria Almedina (1993). [2] Paul Tipler, Física, Editora Guanabara-Koogan, 4ª Edição (2000). [3] M. Alonso e E. Finn, Física, Addison-Wesley Iberoamericana (1999) [4] N. Ayres de Campos, Algumas noções elementares de análise de dados, Coimbra, Dep. Física da FCTUC (1995/96). [5] M.C. Abreu, L. Matias e L.F. Peralta, Física Experimental - Uma introdução, Lisboa, Editorial Presença (1994). Departamento de Física da FCTUC 10/19