Nº 536 ISSN 0104-8910 The set of equilibria of first-price auctions Paulo Klinger Monteiro Março de 2004 The set of equilibria of first-price auctions Paulo Klinger Monteiro FGV-EPGE Praia de Botafogo 190 sala 1103 Rio de Janeiro RJ Brazil March, 2004 Abstract In this note I specify the class of functions that are equilibria of symmetric first-price auctions. 1 Introduction Suppose we somehow obtained a bidding function b (·). It could, for example, be originated from some laboratory auction or be a linear interpolation of some auction data. Is this bidding function theoretically possible? If so, does it come from a model adequate to the situation at hand? In this paper I study this problem in a sealed bid first-price auction set up. To be more concrete we are in the independent private values model and suppose we have 3 bidders with signals in the interval [0, 1] and that our estimated bidding function is b (x) = x2 . If the distribution of signals is uniform with three bidders the equilibrium is b∗ (x) = 2x . With two bidders the equilibrium is 3 x ∗ exactly b (x) = 2 . Do we have a dummy bidder? Collusion? Here I focus on the distribution of signals. The uniform distribution that we supposed in this example is usually used more for convenience than for theoretical reasons. In √ this example if we change the distribution to F (x) = x we have that the equilibrium bidding function is exactly b (x) . I show in this paper that for any number of bidders and practically any strictly increasing function b (·) it is possible to find a strictly increasing continuous distribution function such that the equilibrium bidding function is exactly b (·) . This result is similar in spirit to the Sonneschein-Mantel-Debreu theorem on excess demand. I also analyze a second aspect of this problem. If we insist that the distribution of signals is given and vary the bidder valuation from Vi = xi to Vi = u (xi ) . The conditions to find an appropriate u (·) are however harder to be met. 2 The model We consider first-price sealed bid auctions. There are n bidders with independent private values and each bidders’ signal are in the interval [0, v̄]. We consider distribution of bidders signals in the set F = {F : [0, v̄] → [0, 1] ; F is continuous strictly increasing and onto} . Thus F is the set of strictly increasing distributions with support [0, v̄] . Let F ∈ F be the distribution of bidder i ≤ n signal xi . If bidder i has signal xi he valuates the object as Vi = xi . Define bF (0) = 0 and if x ∈ (0, v̄], R x n−1 F (v) dv bF (x) = x − 0 n−1 . (1) F (x) We first prove the Lemma 1 bF is continuous and strictly increasing. 1 Proof : The continuity of bF for x′ > 0 is immediate. At x′ = 0 it follows from bF (x) < x. Let us now prove that it is strictly Suppose that R y increasing. n−1 (v) dv < F n−1 (y) y 0 ≤ x < y ≤ v̄. If x = 0 it is immediate from 0 F that bF (y) > 0 = bF (x) . If x > 0 then: R y n−1 R x n−1 F (u) du F (u) du bF (y) − bF (x) = y − 0 n−1 − x + 0 n−1 = F (y) F (x) R y n−1 ¶Z x µ F (u) du 1 1 x F n−1 (u) du > 0. + − n−1 y−x− n−1 n−1 F (y) F (x) F (y) 0 R y n−1 (u) du ≤ F n−1 (y) (y − x) . QED Note that x F We now show that bF is an equilibrium bidding function. Proposition 1 Let F ∈ F. If there are n bidders with independent signals distributed accordingly to F then bF (·) is a symmetric equilibrium of the first-price auction. Proof : Define b = bF and x = xi . Suppose bidder j 6= i with signal xj bids b (xj ). We have to prove that for any y ∈ [0, v̄] , µ ¶ µ ¶ (x − b (x)) Pr b (x) ≥ max b (xj ) ≥ (x − b (y)) Pr b (y) ≥ max b (xj ) . j6=i j6=i Since b is strictly increasing and the signals are independent, µ ¶ Y Pr b (x) ≥ max b (xj ) = Pr (b (x) ≥ b (xj )) = j6=i Y j6=i j6=i Pr (x ≥ xj ) = F n−1 (x) . Therefore µ ¶ Z (x − b (x)) Pr b (x) ≥ max b (xj ) = j6=i x F n−1 (v) dv. 0 Thus we have to prove that for every y ∈ [0, v̄] , Z Z x n−1 n−1 F (v) dv ≥ (x − y) F (y) + y F n−1 (v) dv. 0 0 This is equivalent to Z y x F n−1 (u) du ≥ (x − y) F n−1 (y) . Considering separately the cases x > y and y ≥ x we see that this inequality is true. QED 2 Remark 1 Note that I do not suppose the differentiability of the distribution. This is of essence. If the bidding function is piecewise linear the distribution cannot be differentiable. See also the example below. Define B = {bF (·) ; F ∈ F} . We may now prove our main theorem. Theorem 1 Suppose b : [0, v̄] → R . Then b ∈ B if and only if: 1. b (·) is strictly increasing; 2. b (0) = 0; 3. b (x) < x if x > 0; 4. limx→0+ (x − b (x)) e R v̄ dy x y−b(y) = ∞. Proof : Suppose b ∈ B. It is clear that it satisfies (1), (2) and (3). To see that it also satisfy (4) let F ∈ F be such that b = bF . Then µ µZ y ¶¶′ 1 F n−1 (y) n−1 = log = R y n−1 F (v) dv . y − b (y) F (v) dv 0 0 Therefore ! à R v̄ ¶¶′ Z v̄ µ µZ y Z v̄ n−1 F (v) dv dy = log F n−1 (v) dv dy = log R0x n−1 F (v) dv x 0 x y − b (y) 0 and (x − b (x)) e R v̄ dy x y−b(y) = Rx 0 R v̄ n−1 R v̄ F (v) dv F n−1 (v) dv 0 F n−1 (v) dv 0 R = . x F n−1 (x) F n−1 (x) F n−1 (v) dv 0 Thus b satisfy (4). Now suppose b (·) satisfy (1), (2), (3) and (4). I show that b = bG where G (0) = 0 and if x ∈ (0, v̄], 1 ¶ n−1 µ R v̄ 1 1 v̄ − b (v̄) dy − n−1 x y−b(y) G (x) = e . x − b (x) First note that (4) imply that G is continuous at 0. And obviously G (v̄) = 1. It is also clear that G is continuous if x > 0. We now show that G is strictly increasing. It is equivalent to prove that Z v̄ 1 n−1 φ (x) := log G (x) = − dy − log (x − b (x)) x y − b (y) 3 is strictly increasing. If h > 0 then µ ¶ Z 1 x+h 1 1 x − b (x) φ (x + h) − φ (x) = dy + log . h h x y − b (y) h x + h − b (x + h) If x−b(x) x+h−b(x+h) ≥ 1 then φ (x + h) − φ (x) 1 ≥ h h Z x x+h 1 dy. y − b (y) x+h−b(x+h) x−b(x) > 1, then µ ¶ µ ¶ x + h − b (x + h) h − b (x + h) + b (x) h − b (x + h) + b (x) log = log 1 + < x − b (x) x − b (x) x − b (x) If and therefore Z 1 x+h 1 h − b (x + h) + b (x) 1 φ (x + h) − φ (x) > dy − ≥ h h x y − b (y) h x − b (x) Z 1 x+h 1 1 dy − . h x y − b (y) x − b (x) Thus φ (x + h) − φ (x) ≥0 h→0 h which implies that φ is increasing (see Saks, theorem 7.2 page 204). To show that it is strictly increasing suppose not. Then φ is constant in an interval (c, d) and therefore it is differentiable and hence b (·) is differentiable in (c, d) as well. Thus from d 1 1 − b′ (x) b′ (x) φ (x) = − = , x ∈ (c, d) dx x − b (x) x − b (x) x − b (x) lim inf+ we have that b′ (x) = 0 if x ∈ (c, d) and this contradicts that b (·) is strictly increasing. It remains only to check that R x n−1 G (v) dv bG (x) = x − 0 n−1 G (x) is equal to b (x) . Now note that ¶ µ Z x R Z x 1 v̄ − b (v̄) − uv̄ y−b(y) dy n−1 e G (u) du = du = u − b (u) 0 0 Z x ´ ³ R v̄ 1 ´¯x 1 d ³ − Ruv̄ y−b(y) ¯ dy du = (v̄ − b (v̄)) e− u y−b(y) dy ¯ = (v̄ − b (v̄)) e 0 0 du (v̄ − b (v̄)) e− 4 R v̄ 1 x y−b(y) dy . Since G n−1 (x) = e − R v̄ 1 x y−b(y) dy we conclude that bG (x) = x − Rx 0 µ v̄ − b (v̄) x − b (x) ¶ = Rx 0 Gn−1 (u) du x − b (x) Gn−1 (u) du = x − (x − b (x)) = b (x) . Gn−1 (x) QED Example 1 Let us consider b (x) = x/2, x ∈ [0, 1] . Then if there are n bidders, R1 2 1 1 1 G (x) = e− n−1 x y dy 1 = x n−1 . x n−1 √ If n = 3 then G (x) = x. 3 The model with a more general valuation Suppose now that the set of signals of bidder i is an abstract probability space (X, T , P ) and if bidder i has a signal xi ∈ X his valuation is Vi = u (xi ) where u : X → [0, v̄] . If the distribution Fu (l) = Pr (u (x) ≤ l) , l ∈ [0, v̄] belongs to F then we can easily see that bu (x) = bFu (u (x)) (2) is a symmetric equilibrium bidding function. Is it possible to fix a distribution F and vary the valuation u (·) to obtain a pre-specified bidding function b (·)? Suppose the set of signals is X = [0, v̄] with distribution F (x) with a continuous density f (x) > 0. Then we have the Theorem 2 Suppose b : [0, v̄] → R is continuously differentiable, strictly increasing such that b (0) = 0 and ′ u (x) = b (x) + b′ (x) F n−1 (x) (b (x) F n−1 (x)) = is increasing. (F n−1 )′ (x) (F n−1 )′ (x) Then b (·) is the symmetric equilibrium of the first-price auction if bidders have valuation Vi (x) = u (x) and the distribution of signals is F . 5 Proof: First note that Fu (u (x)) = F (x) and therefore using (2) that R u(x) Fun−1 (l) dl = Fun−1 (u (x)) Rx ′ n−1 ′ F (l) u (l) dl u (l) (F n−1 ) (l) dl 0 0 u (x) − = = F n−1 (x) F n−1 (x) Rx ′ (b (l) F n−1 (l)) dl 0 = b (x) . F n−1 (x) bu (x) = u (x) − Rx 0 References 1. Theory of the Integral, S. Saks, Dover Edition, 1964 6 ENSAIOS ECONÔMICOS DA EPGE 487. USING IRREGULARLY SPACED RETURNS TO ESTIMATE MULTI-FACTOR MODELS: APPLICATION TO BRAZILIAN EQUITY DATA - Álvaro Veiga; Leonardo Rocha Souza – Junho de 2003 – 26 págs. 488. BOUNDS FOR THE PROBABILITY DISTRIBUTION FUNCTION OF THE LINEAR ACD PROCESS – Marcelo Fernandes – Julho de 2003 – 10 págs. 489. CONVEX COMBINATIONS OF LONG MEMORY ESTIMATES FROM DIFFERENT SAMPLING RATES - Leonardo R. Souza; Jeremy Smith; Reinaldo C. Souza – Julho de 2003 – 20 págs. 490. IDADE, INCAPACIDADE E A INFLAÇÃO DO NÚMERO DE PESSOAS COM DEFICIÊNCIA Marcelo Neri ; Wagner Soares – Julho de 2003 – 54 págs. 491. FORECASTING ELECTRICITY LOAD DEMAND: ANALYSIS OF THE 2001 RATIONING PERIOD IN BRAZIL - Leonardo Rocha Souza; Lacir Jorge Soares – Julho de 2003 – 27 págs. 492. THE MISSING LINK: USING THE NBER RECESSION INDICATOR TO CONSTRUCT COINCIDENT AND LEADING INDICES OF ECONOMIC ACTIVITY - JoãoVictor Issler; Farshid Vahid – Agosto de 2003 – 26 págs. 493. REAL EXCHANGE RATE MISALIGNMENTS - Maria Cristina T. Terra; Frederico Estrella Carneiro Valladares – Agosto de 2003 – 26 págs. 494. ELASTICITY OF SUBSTITUTION BETWEEN CAPITAL AND LABOR: A PANEL DATA APPROACH - Samuel de Abreu Pessoa ; Silvia Matos Pessoa; Rafael Rob – Agosto de 2003 – 30 págs. 495. A EXPERIÊNCIA DE CRESCIMENTO DAS ECONOMIAS DE MERCADO NOS ÚLTIMOS 40 ANOS – Samuel de Abreu Pessoa – Agosto de 2003 – 22 págs. 496. NORMALITY UNDER UNCERTAINTY – Carlos Eugênio E. da Costa – Setembro de 2003 – 08 págs. 497. RISK SHARING AND THE HOUSEHOLD COLLECTIVE MODEL - Carlos Eugênio E. da Costa – Setembro de 2003 – 15 págs. 498. REDISTRIBUTION WITH UNOBSERVED 'EX-ANTE' CHOICES - Carlos Eugênio E. da Costa – Setembro de 2003 – 30 págs. 499. OPTIMAL TAXATION WITH GRADUAL LEARNING OF TYPES - Carlos Eugênio E. da Costa – Setembro de 2003 – 26 págs. 500. AVALIANDO PESQUISADORES E DEPARTAMENTOS DE ECONOMIA NO BRASIL A PARTIR DE CITAÇÕES INTERNACIONAIS - João Victor Issler; Rachel Couto Ferreira – Setembro de 2003 – 29 págs. 501. A FAMILY OF AUTOREGRESSIVE CONDITIONAL DURATION MODELS - Marcelo Fernandes; Joachim Grammig – Setembro de 2003 – 37 págs. 502. NONPARAMETRIC SPECIFICATION TESTS FOR CONDITIONAL DURATION MODELS Marcelo Fernandes; Joachim Grammig – Setembro de 2003 – 42 págs. 503. A NOTE ON CHAMBERS’S “LONG MEMORY AND AGGREGATION IN MACROECONOMIC TIME SERIES” – Leonardo Rocha Souza – Setembro de 2003 – 11págs. 504. ON CHOICE OF TECHNIQUE IN THE ROBINSON-SOLOW-SRINIVASAN MODEL - M. Ali Khan – Setembro de 2003 – 34 págs. 505. ENDOGENOUS TIME-DEPENDENT RULES AND THE COSTS OF DISINFLATION WITH IMPERFECT CREDIBILITY - Marco Bonomo; Carlos Viana de Carvalho – Outubro de 2003 – 27 págs. 506. CAPITAIS INTERNACIONAIS: COMPLEMENTARES OU SUBSTITUTOS? - Carlos Hamilton V. Araújo; Renato G. Flôres Jr. – Outubro de 2003 – 24 págs. 507. TESTING PRODUCTION FUNCTIONS USED IN EMPIRICAL GROWTH STUDIES - Pedro Cavalcanti Ferreira; João Victor Issler; Samuel de Abreu Pessoa – Outubro de 2003 – 8 págs. 508. SHOULD EDUCATIONAL POLICIES BE REGRESSIVE ? Daniel Gottlieb; Humberto Moreira – Outubro de 2003 – 25 págs. 509. TRADE AND CO-OPERATION IN THE EU-MERCOSUL FREE TRADE AGREEMENT - Renato G. Flôres Jr. – Outubro de 2003 – 33 págs. 510. OUTPUT CONVERGENCE IN MERCOSUR: MULTIVARIATE TIME SERIES EVIDENCE - Mariam Camarero; Renato G. Flôres Jr; Cecílio Tamarit – Outubro de 2003 – 36 págs. 511. ENDOGENOUS COLLATERAL - Aloísio Araújo; José Fajardo Barbachan; Mario R. Páscoa – Novembro de 2003 – 37 págs. 512. NON-MONOTONE INSURANCE CONTRACTS AND THEIR EMPIRICAL CONSEQUENCES Aloísio Araujo; Humberto Moreira – Novembro de 2003 – 31 págs. 513. EQUILIBRIA IN SECURITY MARKETS WITH A CONTINUUM OF AGENTS - A. Araujo; V. F. Martins da Rocha; P. K. Monteiro – Novembro de 2003 – 17 pág’s. 514. SPECULATIVE ATTACKS ON DEBTS AND OPTIMUM CURRENCY AREA: A WELFARE ANALYSIS - Aloisio Araujo; Márcia Leon – Novembro de 2003 – 50 págs. 515. O MÉTODO GENERALIZADO DOS MOMENTOS(MGM): CONCEITOS BÁSICOS - Renato G. Flôres Jr – Novembro de 2003 – 27 págs. 516. VARIÁVEIS INTRUMENTAIS E O MGM: USO DE MOMENTOS CONDICIONAIS - Renato G. Flôres Jr – Novembro de 2003 – 27 págs. 517. O VALOR DA MOEDA E A TEORIA DOS PREÇOS DOS ATIVOS - Fernando de Holanda Barbosa – Dezembro de 2003 – 17 págs. 518. EMPRESÁRIOS NANICOS, GARANTIAS E ACESSO À CRÉDITO - Marcelo Côrtes Néri; Fabiano da Silva Giovanini - Dezembro de 2003 – 23 págs. 519. DESENHO DE UM SISTEMA DE METAS SOCIAIS - Marcelo Côrtes Néri; Marcelo Xerez Dezembro de 2003 – 24 págs. 520. A NEW INCIDENCE ANALYSIS OF BRAZILIAN SOCIAL POLICIES USING MULTIPLE DATA SOURCES - Marcelo Côrtes Néri - Dezembro de 2003 – 55 págs. 521. AN INTRA-HOUSEHOLD APPROACH TO THE WELFARE COSTS OF INFLATION - Rubens Penha Cysne – Janeiro de 2004 – 16 págs. 522. CENTRAL LIMIT THEOREM FOR ASYMMETRIC KERNEL FUNCTIONALS - Marcelo Fernandes; Paulo Klinger Monteiro – Fevereiro de 2004 – 23 págs. 523. THE TRADE-OFF BETWEEN INCENTIVES AND ENDOGENOUS RISK - Aloísio Araujo; Humberto Moreira; Marcos H. Tsuchida – Fevereiro de 2004 – 21 págs. 524. DO DIVIDENDS SIGNAL MORE EARNINGS ? - Aloísio Araujo; Humberto Moreira; Marcos H. Tsuchida – Fevereiro de 2004 – 26 págs. 525. Biased managers, organizational design, and incentive provision - Cristiano M. Costa; Daniel Ferreira; Humberto Moreira – Fevereiro de 2004 – 11 págs. 526. Land taxes in a Latin American context - Juliano J. Assunção; Humberto Moreira – Fevereiro de 2004 - 19 págs. 527. Indicadores coincidentes de atividade econômica e uma cronologia de recessões para o Brasil - Angelo J. Mont’alverne Duarte; João Victor Issler; Andrei Spacov - Fevereiro de 2004 – 41 págs. 528. TESTING UNIT ROOT BASED ON PARTIALLY ADAPTIVE ESTIMATION - Zhijie Xiao; Luiz Renato Lima – Março de 2004 – 27 págs. 529. DO SHOCKS PERMANENTLY CHANGE OUTPUT? LOCAL PERSISTENCY IN ECONOMIC TIME SERIES - Luiz Renato Lima; Zhijie Xiao – Março de 2004 – 21 págs. 530. A NEW PERSPECTIVE ON THE PPP HYPOTHESIS - Soyoung Kim; Luiz Renato Lima – Março de 2004 – 36 págs. 531. TRADE LIBERALIZATION AND INDUSTRIAL CONCENTRATION: EVIDENCE FROM BRAZIL Pedro Cavalcanti Ferreira; Giovanni Facchini – Março de 2004 - 25 págs. 532. REGIONAL OR EDUCATIONAL DISPARITIES? A COUNTERFACTUAL EXERCISE - Angelo José Mont’Alverne; Pedro Cavalcanti Ferreira; Márcio Antônio Salvato – Março de 2004 – 25 págs. 533. INFLAÇÃO: INÉRCIA E DÉFICIT PÚBLICO – Fernando de Holanda Barbosa – Março de 2004 – 16 págs. 534. A INÉRCIA DA TAXA DE JUROS NA POLÍTICA MONETÁRIA – Fernando de Holanda Barbosa – Março de 2004 – 13 págs. 535. DEBT COMPOSITION AND EXCHANGE RATE BALANCE SHEET EFFECTS IN BRAZIL: A FIRM LEVEL ANALYSIS - Marco Bonomo; Betina Martins ; Rodrigo Pinto – Março de 2004 – 39 págs. 536. THE SET OF EQUILIBRIA OF FIRST-PRICE AUCTIONS - Paulo Klinger Monteiro – Março de 2004 – 6 págs. 537. OPTIMAL AUCTIONS WITH MULTIDIMENSIONAL TYPES AND THE DESIRABILITY OF EXCLUSION - Paulo Klinger Monteiro ; Benar Fux Svaiter; Frank H. Page Jr – Março de 2004 – 8 págs.