PROBABILIDADE 1) (ANEEL) Ana tem o estranho costume de somente usar blusas brancas ou pretas. Por ocasião de seu aniversário, Ana ganhou de sua mãe quatro blusas pretas e cinco brancas. Na mesma ocasião, o pai de Ana a presenteou com quatro blusas pretas e duas brancas. Vítor, namorado de Ana, a presenteou com duas blusas brancas e três pretas. Ana guardou todas essas blusas – e apenas essas – em uma mesma gaveta. Uma tarde, arrumando-se para ir ao parque com Vítor, Ana retirou, ao acaso, uma blusa dessa gaveta. A probabilidade de a blusa retirada por Ana ser uma das blusas pretas que ganhou de sua mãe ou uma das blusas brancas que ganhou de seu pai é igual a: a) 4/5; b) 7/10, c) 3/5; d) 3/10; e) 2/3 2) (ATRFB – 2009 – ESAF) Para acessar a sua conta nos caixas eletrônicos de determinado banco, um correntista deve utilizar sua senha constituída por três letras, não necessariamente distintas, em determinada sequência, sendo que as letras usadas são as letras do alfabeto, com exceção do W, totalizando 25 letras. Essas 25 letras são então distribuídas aleatoriamente, três vezes, na tela do terminal, por cinco teclas, em grupos de cinco letras por tecla, e, assim, para digitar sua senha, o correntista deve acionar, a cada vez, a tecla que contém a respectiva letra de sua senha. Deseja-se saber qual o valor mais próximo da probabilidade de ele apertar aleatoriamente em sequência três das cinco teclas à disposição e acertar ao acaso as teclas da senha? a) 0,001. b) 0,0001. c) 0,000125. d) 0,005. e) 0,008. 3) (PETROBRÁS) Jogando-se um dado duas vezes, a probabilidade de a soma dos pontos obtidos ser igual a 4 é igual a: a) ½ b) 1/6 c) 1/12 d) 1/18 e) 1/72 4) (PETROBRÁS) Jogando-se um dado duas vezes, a probabilidade de a soma dos pontos obtidos ser no mínimo igual a 9 é: a) 5/36 b) 5/18 c) 2/9 d) 1/18 e) 1/36 5) (SEFAZ – RS) Jogam-se dois dados equilibrados (entende-se por dado equilibrado aquele que, ao ser arremessado, todas suas 6 faces, com números de 1 a 6, possuem a mesma probabilidade de ocorrer). Qual a probabilidade de o produto dos números das faces superiores estar entre 12 (inclusive) e 15(inclusive)? a) ½ b) 1/3 c) 14 d) 1/5 e) 1/6 6) (EPE) Lançando um dado não tendencioso duas vezes, qual é a probabilidade de o resultado do segundo lançamento ser maior que o do primeiro? (A) 5/6 (B) 1/2 (C) 17/36 (D) 5/12 (E) 1/3 7) Joga-se uma moeda honesta até a obtenção da primeira “CARA”. probabilidade da moeda ter que ser lançada mais de três vezes é de: a) ½ b) 1/3 c) 1/4 d) 1/8 e) 1/16 A 8) (PETROBRÁS) Lançando-se uma moeda não tendenciosa até a obtenção da segunda “cara”. Qual é a probabilidade de a moeda ser lançada quatro vezes ? a) 1/16 b) 1/8 c) 3/16 d) ¼ e) 5/16 9) (PETROBRAS – 2011) Um jogo consiste em lançar uma moeda honesta até obter duas caras consecutivas ou duas coroas consecutivas. Na primeira situação, ao obter duas caras consecutivas, ganha-se o jogo. Na segunda, ao obter duas coroas consecutivas, perde-se o jogo. A probabilidade de que o jogo termine, com vitória, até o sexto lance, é (A) 7/16 (B) 31/64 (C) 1/2 (D) 1/32 (E) 1/64 10) (PETROBRÁS) Um dado é lançado N vezes até a obtenção do número 6. Qual é a probabilidade de que N < 4 ? a) 89/216 b) 90/216 c) 91/216 d) 92/216 e) 93/216 11) (PETROBRÁS) Lança-se um dado não-tendencioso até que sejam obtidos dois resultados consecutivos iguais. Qual a probabilidade de o dado ser lançado exatamente três vezes? (A) 1/2 (B) 1/6 (C) 1/9 (D) 5/36 (E) 1/36 12) (AFC – CGU - 2008) Uma empresa de consultoria no ramo de engenharia de transportes contratou 10 profissionais especializados, a saber: 4 engenheiras e 6 engenheiros. Sorteando- se, ao acaso, três desses profissionais para constituírem um grupo de trabalho, a probabilidade de os três profissionais sorteados serem do mesmo sexo é igual a: a) 0,10 b) 0,12 c) 0,15 d) 0,20 e) 0,24 13) (MPOG – 2009) Uma urna contém 5 bolas pretas, 3 brancas e 2 vermelhas. Retirando-se, aleatoriamente, três bolas sem reposição, a probabilidade de se obter todas da mesma cor é igual a: a) 1/10 b) 8/5 c) 11/120 d) 11/720 e) 41/360 14) (ANA – ESAF – 2009) Uma urna possui 5 bolas azuis, 4 vermelhas, 4 amarelas e 2 verdes. Tirando-se simultaneamente 3 bolas, qual o valor mais próximo da probabilidade de que as 3 bolas sejam da mesma cor? a) 11,53% b) 4,24% c) 4,50% d) 5,15% e) 3,96% 15) (Fiscal do Trabalho- –ESAF) Beatriz, que é muito rica, possui 5 sobrinhos: Pedro, Sérgio, Teodoro, Carlos e Quintino. Preocupada com a herança que deixará para seus familiares, Beatriz resolveu sortear, entre seus cinco sobrinhos, três casas. A probabilidade de que Pedro e Sérgio, ambos, estejam entre os sorteados, ou que Teodoro e Quintino, ambos, estejam entre os sorteados é igual a: a) 0,8 b) 0,375 c) 0,05 d) 0,6 e) 0,75 16) Sete homens e cinco mulheres encontram-se numa reunião de trabalho e decidem criar, ao acaso, uma comissão de 5 pessoas. A probabilidade desta comissão contar com apenas 1 homem é igual a: a) 20/792 470/792 b) 35/792 c) 40/792 d) 350/792 e) 17) Um grupo é constituído de 6 homens e 4 mulheres. Três pessoas são selecionadas ao acaso, sem reposição. Qual a probabilidade de que ao menos duas sejam homens? a) ½ b) 1/3 c) ¼ d) 2/3 e) 3/5 18) (SUSEP – ESAF – 2010) Considere um grupo de 15 pessoas dos quais 5 são estrangeiros. Ao se escolher ao acaso 3 pessoas do grupo, sem reposição, qual a probabilidade de exatamente uma das três pessoas escolhidas ser um estrangeiro? a) 45/91. b) 1/3. c) 4/9. d) 2/9. e) 42/81. 19) (MPOG – ESAF – 2010) Em uma pequena localidade, os amigos Arnor, Bruce, Carlão, Denílson e Eleonora são moradores de um bairro muito antigo que está comemorando 100 anos de existência. Dona Matilde, uma antiga moradora, ficou encarregada de formar uma comissão que será a responsável pela decoração da festa. Para tanto, Dona Matilde selecionou, ao acaso, três pessoas entre os amigos Arnor, Bruce, Carlão, Denílson e Eleonora. Sabendo-se que Denílson não pertence à comissão formada, então a probabilidade de Carlão pertencer à comissão é, em termos percentuais, igual a: a) 30 % b) 80 % c) 62 % d) 25 % e) 75 % 20) (MPOG – ESAF – 2010) As apostas na Mega-Sena consistem na escolha de 6 a 15 números distintos, de 1 a 60, marcados em volante próprio. No caso da escolha de 6 números tem-se a aposta mínima e no caso da escolha de 15 números tem-se a aposta máxima. Como ganha na Megasena quem acerta todos os seis números sorteados, o valor mais próximo da probabilidade de um apostador ganhar na Mega-sena ao fazer a aposta máxima é o inverso de: a) 20.000.000. b) 3.300.000. c) 330.000. d) 100.000. e) 10.000. 21) (MPOG – ESAF – 2010) Em uma urna existem 200 bolas misturadas, diferindo apenas na cor e na numeração. As bolas azuis estão numeradas de 1 a 50, as bolas amarelas estão numeradas de 51 a 150 e as bolas vermelhas estão numeradas de 151 a 200. Ao se retirar da urna três bolas escolhidas ao acaso, com reposição, qual a probabilidade de as três bolas serem da mesma cor e com os respectivos números pares? a) 10/512. b) 3/512. c) 4/128. d) 3/64. e) 1/64. 22) (FISCAL DO TRABALHO – 2010 – ADAPTADA) Em uma amostra aleatória simples de 100 pessoas de uma população, 15 das 40 mulheres da amostra são fumantes e 15 dos 60 homens da amostra também são fumantes. Considere os dados da questão anterior. Ao se escolher ao acaso cinco pessoas da amostra, sem reposição, a probabilidade de exatamente quatro delas serem homens fumantes é dada por: 23) (SEFAZ – RJ – 2009 – FGV) Um torneio será disputado por 4 tenistas (entre os quais A e B) de mesma habilidade, isto é, em qualquer jogo entre dois dos quatro jogadores, ambos têm a mesma chance de ganhar. Na primeira rodada, eles se enfrentarão em dois jogos, com adversários definidos por sorteio. Os vencedores disputarão a final. A probabilidade de que o torneio termine com A derrotando B na final é: (A) 1/2. (B) 1/4. (C) 1/6. (D) 1/8. (E) 1/12. 24) (ELETROBRÁS ) A urna I contém 4 bolas brancas e 2 bolas azuis; a urna II contém 5 bolas brancas e quatro bolas azuis. Uma bola é sorteada ao acaso da urna I e posta na urna II. Em seguida, uma bola é escolhida ao acaso da urna II. A probabilidade de que essa bola sorteada da urna II seja branca é: a) 1/3 b) 12/25 c) 17/30 d) 2/5 e) 2/3 25) (FISCAL DO TRABALHO – 2010 – ADAPTADA) Em um grupo de pessoas, há 20 mulheres e 30 homens, sendo que 20 pessoas estão usando óculos e 36 pessoas estão usando calça jeans. Sabe-se que, nesse grupo, i) há 20% menos mulheres com calça jeans que homens com calça jeans, ii) há três vezes mais homens com óculos que mulheres com óculos, e iii) metade dos homens de calça jeans estão usando óculos. Escolhida uma pessoa ao acaso, qual a probabilidade de que a mesma seja um homem que está usando óculos mas não está usando calça jeans? a) 5%. b)10%. c)12%. d)20%. e)18%. 26) (ATRFB – 2009 – ESAF) Três amigas participam de um campeonato de arco e flecha. Em cada tiro, a primeira das amigas tem uma probabilidade de acertar o alvo de 3/5, a segunda tem uma probabilidade de acertar o alvo de 5/6, e a terceira tem uma probabilidade de acertar o alvo de 2/3. Se cada uma das amigas der um tiro de maneira independente dos tiros das outras duas, qual a probabilidade de pelo menos dois dos três tiros acertarem o alvo? a) 90/100 b) 50/100 c) 71/100 d) 71/90 e) 60/90 27) (ISS – RJ – ESAF – 2010) Em cada um de um certo número par de cofres são colocadas uma moeda de ouro, uma de prata e uma de bronze. Em uma segunda etapa, em cada um de metade dos cofres, escolhidos ao acaso, é colocada uma moeda de ouro, e em cada um dos cofres restantes, uma moeda de prata. Por fim, em cada um de metade dos cofres, escolhidos ao acaso, coloca-se uma moeda de ouro, e em cada um dos cofres restantes, uma moeda de bronze. Desse modo, cada cofre ficou com cinco moedas. Ao se escolher um cofre ao acaso, qual é a probabilidade de ele conter três moedas de ouro? a) 0,15 b) 0,20 c) 0,5 d) 0,25 e) 0,7 28) (MPU) Quando Lígia pára em um posto de gasolina, a probabilidade de ela pedir para verificar o nível de óleo é 0,28; a probabilidade de ela pedir para verificar a pressão dos pneus é 0,11 e a probabilidade de ela pedir para verificar ambos, óleo e pneus, é 0,04. Portanto, a probabilidade de Lígia parar em um posto de gasolina e não pedir nem para verificar o nível de óleo e nem para verificar a pressão dos pneus é igual a: a) 0,25 b) 0,35 c) 0,45 d) 0,15 e) 0,65 29) (TFC – CGU – 2008) Quando Paulo vai ao futebol, a probabilidade de ele encontrar Ricardo é 0,40; a probabilidade de ele encontrar Fernando é igual a 0,10; a probabilidade de ele encontrar ambos, Ricardo e Fernando, é igual a 0,05. Assim, a probabilidade de Paulo encontrar Ricardo ou Fernando é igual a: a) 0,04 b) 0,40 c) 0,50 d) 0,45 e) 0,95 30) (ATA – ESAF – 2009) Ao se jogar um determinado dado viciado, a probabilidade de sair o número 6 é de 20%, enquanto as probabilidades de sair qualquer outro número são iguais entre si. Ao se jogar este dado duas vezes, qual o valor mais próximo da probabilidade de um número par sair duas vezes? a) b) c) d) e) 20% 27% 25% 23% 50% 31) (FISCAL DO TRABALHO – 2010 – ADAPTADA) Em uma universidade, 56% dos alunos estudam em cursos da área de ciências humanas e os outros 44% estudam em cursos da área de ciências exatas, que incluem matemática e física. Dado que 5% dos alunos da universidade estudam matemática e 6% dos alunos da universidade estudam física e que não é possível estudar em mais de um curso na universidade, escolhendo-se um aluno de ciências exatas ao acaso qual a probabilidade desse aluno estudar matemática ou física? a) 20,00%. b) 21,67%. c) 25,00%. d) 11,00%. e) 33,33%. 32) (MPU) Maria ganhou de João nove pulseiras, quatro delas de prata e cinco delas de ouro. Maria ganhou de Pedro onze pulseiras, oito delas de prata e três delas de ouro. Maria guarda todas essas pulseiras – e apenas essas – em sua pequena caixa de jóias. Uma noite, arrumando-se apressadamente para ir ao cinema com João, Maria retira, ao acaso, uma pulseira de sua pequena caixa de jóias. Ela vê, então, que retirou uma pulseira de prata. Levando em conta tais informações, a probabilidade de que a pulseira de prata que Maria retirou seja uma das pulseiras que ganhou de João é igual a: a) 1/3 b) 1/5 c) 9/20 d) 4/5 e) 3/5 33) Em uma joalheria, cada um de três armários idênticos tem duas gavetas. Em cada gaveta do primeiro armário há um relógio de ouro. Em cada gaveta do segundo armário há um relógio de prata. Em uma gaveta do terceiro armário há um relógio de ouro, enquanto que em outra gaveta há um relógio de prata. Escolhido ao acaso um armário, e aberta uma das gavetas (também aleatoriamente), verifica-se conter um relógio de prata. Qual a probabilidade de a outra gaveta do armário escolhido conter um relógio de ouro ? a) ½ b) 1/3 c) ¼ d) 1/5 e) 1/6 34) (MPU) Luís é prisioneiro do temível imperador Ivan. Ivan coloca Luís à frente de três portas e lhe diz: “Atrás de uma destas portas encontra-se uma barra de ouro, atrás de cada uma das outras, um tigre feroz. Eu sei onde cada um deles está. Podes escolher uma porta qualquer. Feita tua escolha, abrirei uma das portas, entre as que não escolheste, atrás da qual sei que se encontra um dos tigres, para que tu mesmo vejas uma das feras. Aí, se quiseres, poderás mudar a tua escolha”. Luís, então, escolhe uma porta e o imperador abre uma das portas não-escolhidas por Luís e lhe mostra um tigre. Luís, após ver a fera, e aproveitando-se do que dissera o imperador, muda sua escolha e diz: “Temível imperador, não quero mais a porta que escolhi; quero, entre as duas portas que eu não havia escolhido, aquela que não abriste”. A probabilidade de que, agora, nessa nova escolha, Luís tenha escolhido a porta que conduz à barra de ouro é igual a a) 1/2. b) 1/3. c) 2/3. d) 2/5. e) 1. GABARITO PROBABILIDADE 01) D 11) D 21) A 31) C 02) E 12) D 22) B 32) A 03) C 13) C 23) E 33) B 04) B 14) E 24) C 34) C 05) E 15) D 25) B 06) D 16) B 26) D 07) D 17) D 27) D 08) C 18) A 28) E 09) B 19) E 29) D 10) C 20) E 30) B