Fabrication of low cost chemical and electrochemical sensors aiming to apply for food and forensic detection Thiago R.L.C da Paixão Institute of Chemistry – University of São Paulo, São Paulo SP - Brazil 05508-000 Electronic Tongue and Chemical Sensor Lab *[email protected] Summary - From development of electrochemical sensor to development of electronic tongues - What is an electronic tongue? - Electronic tongue for the basic taste model - Electronic tongues for the discrimination of forensic, clinical and food samples - Colorimetric approach and Electronic tongues - Final consideration A summary of milestones in sensor development A summary of milestones in sensor development - Historically development of potentiometric sensors always aims to improve selectivity of the analytical method or sensor - However, only a few potentiometric sensors can really be called selective - Samples with complex matrices versus simples matrices RT zi / z j E=E + ln[ai + ∑ K ij (a j ) ] zi F j 0 Nikolsky-Eisenman Equation Electronic Nose Electronic Tongue and Nose Set of electrochemical sensors to crudely mimic the mammalian nose and tongue. These sensors work as their human analogues, providing a global signal, a fingerprinting, to characterize and recognize certain sample Coffee Coffea Arabica Coffea Canephora Electronic Tongue and Nose Set of electrochemical sensors to crudely mimic the mammalian nose and tongue. These sensors work as their human analogues, providing a global signal, a fingerprinting, to characterize and recognize certain sample Coffee Coffea Arabica Coffea Canephora Electronic Tongue and Nose Set of electrochemical sensors to crudely mimic the mammalian nose and tongue. These sensors work as their human analogues, providing a global signal, a fingerprinting, to characterize and recognize certain sample Coffee Coffea Arabica Coffea Canephora Coffee Coffea Arabica Coffea Canephora Electronic Tongue “The electronic tongue is an analytical instrument comprising an array of nonspecific, low-selective, chemical sensors with high stability and cross-sensitivity to different species in solution, and an appropriate method of PARC and/or multivariate calibration for data processing” Principal Component Analysis (PCA) SIMCA (Soft independent modeling of class analogy) Partial Least-Square(PLS) Artificial Neural Networks (ANN) …. Y. Vlasov, A. Legin, A. Rudnitskaya, C. Natali, A. D. Amico, Pure Appl. Chem, 77 (2005) 1965. Non-supervised pattern recognition - PCA There are statistical tools that reduce a large number of independent variables to a smaller set of variables. The Principal Component Analysis is a statistical technique that linearly transforms an original set of variables into a smaller set of variables, which represents most of the information of the original data. Thus, a smaller set of data is easier to analyze than a large set of data. Other advantage is the possibility to analyze the data graphically. How it works??? – PCA (A simple example) Petal lenght Petal width Flower Types Petal Sepal How it works??? – PCA (A simple example) Petal Width / cm 1.6 1.2 versicolor 0.8 0.4 setosa 0.0 1 2 3 4 Petal Lenght / cm 5 How it works??? – PCA (A simple example) PC1 = 0.70711PL – 0.70711PW PC2 = 0.70711PL + 0.70711PW PC2 PC1 Petal Width / cm 1.6 1.2 y versicolor 0.8 x 0.4 setosa 0.0 1 2 3 4 Petal Lenght / cm 5 How it works??? – PCA (A simple example) -1.0 -0.5 0.0 0.5 Principal Component 2 0.4 1.0 Petal Width 0.5 0.2 0.0 0.0 -0.2 -0.5 Petal Length -0.4 Sample PC1 PC2 …. -2 Virginic . . x y 0 2 Principal Component 1 (1.03 %) (98.97 %) How it works??? – PCA (A simple example) Petal lenght Petal width Flower Types Petal Sepal How it works??? – PCA (A simple example) Virginic 0.6 PC2 (1.86 %) 0.4 Setosa Versicolor 0.2 0.0 -0.2 -0.4 -0.6 -2 -1 0 PC1 (98.14 %) 1 Sepal width Petal lenght Petal width How it works??? – PCA (A simple example) Sepal lenght How it works??? – PCA (A simple example) Versicolor 3 Setosa 2 PC2 (22.85 %) Virginic 1 0 -1 -2 -3 -4 -3 -2 -1 0 PC1 (72.96 %) 1 2 3 Electronic Tongue / PCA Samples Signal for different sensors or different current values for a cyclic voltammetric Electronic Tongues 1) Array of sensors made of lipid membranes dispersed in PVC matrix using potentiometric measurements; 2) Array of sensors modified with plasticizers and PVC doped with metalloporphyrins using potentiometric measurements; 3) Array of sensors made of metallic sensors and/or modified surfaces using voltammetric/amperometric measurements; 4) Array of sensors using conducted polymers using conductance measurements at AC currents. F. Winquist, Microchim. Acta, 163 (2008) 3. P. Ciosek, W. Wroblewski, Analyst, 132 (2007) 963. Overview of the development of electronic tongues 120 Articles 80 60 Keyword: “electronic tongue” 40 20 0 1980 1985 1990 1995 2000 2005 2010 2015 200 Year Patents Published Patents Published Articles 100 150 100 50 Food 0 1980 1985 1990 1995 Year 2000 2005 2010 2015 Devices developed in the laboratory a) Integrated Au sensor b) Integrated Cu sensor L. Angnes, E.M. Richter, M.A. Augelli, G.H. Kume, Anal. Chem., 72 (2000) 5503. D. Daniel, I.G.R. Gutz, Electrochem. Commun., 5 (2003) 782. Adhesive label paper Devices developed in the laboratory c) Integrated Au sensor (with 2 working electrodes) Devices developed in the laboratory (Paper devices) Particularly advantageous for resource limited settings, school laboratories and developing countries. W. R. de Araujo and T. R. L. C. Paixão, Analyst, 2014, 139, 2742-2747 Devices developed in the laboratory (Paper devices) http://www.rsc.org/chemistryworld/2 014/03/office-paper-electrochemicalanalytical-device-sensor http://blogs.rsc.org/an/2014/04/ 28/hot-articles-in-analyst-38/ W. R. de Araujo and T. R. L. C. Paixão, Analyst, 2014, 139, 2742-2747 Data treatment (Principal Component Analysis) Obtenção do conjunto de dados Eletrodo de ouro Gold Electrode Current Corrente Valores de corrente Current values of the do eletrodo de ouro Gold Electrode Chemometrical Analysis Análise quimiométrica l1 Current Corrente Potencial Potential . . . . . . Sample Amostra 21 PC2 ln Potencial Potential Eletrodo de ouro modified Gold Electrode modificado com Withda Prussian Azul PrússiaBlue Current values of the Valores de corrente Gold Electrode modified do eletrodo de ouro modificado With Prussian Bluecom Amostra 1 Sample 2 Azul da Prússia l = I representa umacurrent linha, Line represents the cada linha representa uma values amostrafor each sample Principal component analysis (PCA) was performed in Statistica 12.0 (StatSoft Inc., USA). The analysis was carried out using voltammetric current values without any previously preprocessing and scaling from one or two working electrodes as input. PC1 Characterization of the disposable devices Supporting Electrolite 0.5 mol L-1 KCl (a, b) 0.1 mol L-1 KCl (c) 0.5 mol L-1 NaNO3 (d) c 2 Ag/AgCl(sat) (a) Ag ink (b, c, d) d 0 I / µA v = 50 mV s-1 1 mmol L-1 K3Fe(CN)6 b -2 -4 -0.2 a Au Electrode 0.0 0.2 E / V vs Ag/AgCl or Ag 0.4 0.6 Characterization of the disposable devices Supporting Electrolite + Analyte 1 mol L-1 NaOH + 2 % Ethanol (v/v) Cu electrode 400 I / µA 200 Auxiliar and reference electrodes, respectively: Pt and Ag/AgCl (sat) (−) Cu and Ag/AgCl (sat) (−) Cu and Ag ink (−) 0 -200 -0.8 -0.4 0.0 0.4 E / V vs Ag/AgCl or Ag 0.8 v = 50 mV s-1 Characterization of the disposable devices (Paper devices) Characterization of the disposable devices (Paper devices) Detection of Explosives Characterization of the disposable devices (Paper devices) Detection of chloride (Environmental and Clinical Analysis) Paper device (Airborne Explosive Detection) 0 A 0 B -600 -200 2500 I / µA -1200 400 2000 - Ip /µ A -400 -Ip / µA IP / µA 600 1500 -1800 200 1000 500 0 0.0 -0.8 0.5 1.0 1.5 -2400 2.0 0 0 -1 [PA] / mmol L -600 -0.7 -0.6 -0.5 50 100 150 200 250 300 Time / s -0.4 E / V vs. Ag -0.3 -0.2 -0.1 -3000 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 E / V vs. Ag Differential Pulse Voltammograms obtained with silver office paper-based electrochemical cell in a 0.5 mol L−1 sulphuric acid as electrolyte solution. Parameters: step, 0.1 V and amplitude, 0.01 V. A) Successive additions of a 10 µL of picric acid solution resulting in a final concentration of 0.1 – 2.0 mmol L−1. Inset: Analytical curve. Regression linear equation: Ip (µA) = 37× 10−6 + 0.28 (CPA/mmol L−1, R2 = 0.998. B) Different exposure times of flow air that passed through a chamber containing 0.25g of picric acid. Inset: Curve obtained of current signal by different exposure times of airborne explosive. Characterization of the disposable devices (Paper devices) Detection of Pb2+ (Environmental Analysis) Electronic tongue (taste substance model) 300 mmol L-1 Sucrose (A) + - 0.4 µΑ + 30 mmol L-1 HCl (B) - 40 µΑ (A) -1.2 -0.8 -0.4 0.0 (B) 0.4 0.8 -1.2 -0.8 E / V vs Ag/AgCl(sat) -0.4 0.0 0.4 0.03 mmol L-1 Quinine (C) 0.8 300 mmol L-1 KCl (D) E / V vs Ag/AgCl(sat) 0.4 µΑ + + - - v = 100 mV s-1 20 µΑ (C) -1.2 -0.8 -0.4 0.0 E / V vs Ag/AgCl(sat) (D) 0.4 0.8 -1.2 -0.8 -0.4 0.0 E / V vs Ag/AgCl(sat) 0.4 0.8 (Modified with Prussian blue) PC2 (30.31%) Electronic tongue (taste substance model) 20 Sucrose (Sweet) (30, 100 e 300 mmol L-1) 10 HCl (Sour) (1, 3 e 30 mmol L-1) 0 Quinine (Bitter) (0.03, 0,1 e 0,3 mmol L-1) -10 KCl (Salty) (30, 100 e 300 mmol L-1) -20 -30 -20 HCl KCl Quinine Sucrose -10 v = 100 mV s-1 0 10 20 PC1 (63.36%) K. Toko, T. Matsuno, K. Yamafuji, K. Hayashi, H. Ikezaki, K. Sato, R. Toukubo, S. Kawarai, Biosens. Bioelectron., 9 (1994) 359. 30 (Modified with Prussian blue) Electronic tongue (taste substance model) Sucrose (Sweet) (30, 100 e 300 mmol L-1) 20 HCl (Sour) (1, 3 e 30 mmol L-1) PC2 (25.62%) 10 Quinine (Bitter) (0.03, 0,1 e 0,3 mmol L-1) 0 KCl (Salty) (30, 100 e 300 mmol L-1) -10 -20 -20 HCl KCl Quinine Sucrose -10 v = 100 mV s-1 0 10 PC1 (67.88%) 20 30 Electronic tongue (taste substance model) (A) + 400 µA 300 mmol L-1 Sucrose (A) (B) - 30 mmol L-1 HCl (B) 200 µA + - 0.03 mmol L-1 Quinine (C) -0.8 -0.4 0.0 0.4 0.8 -0.8 E / V vs Ag/AgCl(sat) -0.4 0.4 0.8 E / V vs Ag/AgCl(sat) 300 mmol L-1 KCl (D) (D) (C) + + - - v = 100 mV s-1 400 µA 400 µA -0.8 0.0 -0.4 0.0 E / V vs Ag/AgCl(sat) 0.4 0.8 -0.8 -0.4 0.0 E / V vs Ag/AgCl(sat) 0.4 0.8 Electronic tongue (taste substance model) Sucrose (Sweet) (30, 100 e 300 mmol L-1) 20 HCl KCl Quinine Sucrose PC2 (19.96%) 10 HCl (Sour) (1, 3 e 30 mmol L-1) Quinine (Bitter) (0.03, 0,1 e 0,3 mmol L-1) 0 KCl (Salty) (30, 100 e 300 mmol L-1) -10 -20 -20 v = 100 mV s-1 -10 0 10 PC1 (63.67%) 20 30 40 Electronic tongue (taste substance model) Sucrose (Sweet) (30, 100 e 300 mmol L-1) 2 Quinine (Bitter) (0.03, 0,1 e 0,3 mmol L-1) 0 KCl (Salty) (30, 100 e 300 mmol L-1) v = 100 mV s-1 -2 -3 -2 Cu ) % .4 3 PC 2( 0 23 .55 % 3 ) 2 6 (6 5 HCl KCl Quinine Sucrose PC 1 (Prussian Blue) 0 PC3 (6. 8 88%) HCl (Sour) (1, 3 e 30 mmol L-1) Electronic Tongue (Wine discrimination) Wine Samples. Three different samples of wine (Canção - Flores da Cunha - RS, Góes São Roque - São Paulo e Piagentini - Caxias do Sul - RS) were studied. 1) Canção dry red 2) Canção soft red 3) Canção dry white 4) Góes dry red 5) Góes soft white 6) Piagentini dry red 7) Piagentini soft red 8) Piagentini soft white 9) Piagentini dry white Electronic Tongue (Wine discrimination) Cu Cyclic voltammograms recorded in different types of Piagentini wine: dry white (A), dry red (B), soft red (C) and soft white (D) using gold commercial electrode. Scan rate: 50 mV s−1. Electronic Tongue (Wine discrimination) PC 2 (20.43 %) 16 Piagentini dry white Piagentini dry red Piagentini soft white Piagentini soft red Cu 8 Samples preparation, dilution (v/v) (1:1) in 2 mol L-1 NaOH 0 -8 -16 -12 -8 -4 0 4 PC 1 (62.85 %) 8 12 16 20 Electronic Tongue (Wine discrimination) Au Cyclic voltammograms recorded in different types of Piagentini wine: dry white (A), dry red (B), soft red (C) and soft white (D) using gold commercial electrode. Scan rate: 50 mV s−1. Measurements were obtained directly from the wine samples. Electronic Tongue (Wine discrimination) Au PC 2 (37.57 %) 8 0 Wine without dilution -8 Piagentini dry white Piagentini dry red Piagentini soft white Piagentini soft red -16 -25 -20 -15 -10 -5 PC 1 (50.00 %) 0 5 10 Electronic Tongue (Wine discrimination) 24 Au/Cu PC 2 (29.22 %) 16 Piagentini dry white Piagentini dry red Piagentini soft white Piagentini soft red 8 0 -8 -16 -20 -10 0 PC 1 (47.56 %) 10 20 Electronic Tongue (Wine discrimination) Measurements without dilution Samples preparation, dilution (v/v) (1:1) in 2 mol L-1 NaOH 1) Canção dry red 2) Canção soft red 3) Canção dry white 4) Góes dry red 5) Góes soft white 6) Piagentini dry red 7) Piagentini soft red 8) Piagentini soft white 9) Piagentini dry white (▲) ( ) (□) (○) ( ) (+) (♦) (▲) ( •) Milk adulteration In September 2007, brazilian consumers became surprised with the information that producers had adulterated the milk sold in supermarket. Hydrogen peroxide (H2O2) Electronic Tongue (Milk) Paixão TRLC, Bertotti M, Sensors and Actuators B-Chemical 137 (2009) 266-273 Patent - 04 may 2009; Internacional registry: Protocol Nº 018090022336. Electronic Tongue (Milk) Paixão TRLC, Bertotti M, Sensors and Actuators B-Chemical 137 (2009) 266-273 Patent - 04 may 2009; Internacional registry: Protocol Nº 018090022336. Electronic Tongue (Milk) Paixão TRLC, Bertotti M, Sensors and Actuators B-Chemical 137 (2009) 266-273 Patent - 04 may 2009; Internacional registry: Protocol Nº 018090022336. Electronic Tongue (Milk) Paixão TRLC, Bertotti M, Sensors and Actuators B-Chemical 137 (2009) 266-273 Patent - 04 may 2009; Internacional registry: Protocol Nº 018090022336. Whisky "Art. 94. Whiskey, "whiskey or whiskey" is a drink with alcoholic content of thirty-eight to fifty-four percent by volume at twenty degrees Celsius, obtained from the simple alcoholic distillate aged grain, fully or partially malted, may be added potable ethyl alcohol from agricultural origin or simple alcoholic distillate from cereals …. water for the correction alcohol concentration ..." Infractions and its Classification Art. 129. Constitute violations: I - misrepresent, falsify or defraud drink and raw materials; XII - use of additives not authorized by specific legislation; XIII - change purposely drink or raw materials Law nº 2.314, 09/04/1997 Commercial Electronic Tongue (Whisky) http://www.curiosite.com/html/regalos-originales/engarrafonix_como.html http://www.curiosite.com/html/regalos Electronic Tongue(Whisky) Whisky + 1 mol L-1 NaOH WS, Wall Street Novakowski W., Paixão T. R. L. C., Microchemical Journal, 99 (2011) 145-151 Electronic Tongue (Whisky) – Dilution Whisky + 1 mol L1 NaOH WS, Wall Street Novakowski W., Paixão T. R. L. C., Microchemical Journal, 99 (2011) 145-151 Electronic Tongue (Whisky) – dye addition Whisky + 1 mol L-1 NaOH WS, Wall Street Novakowski W., Paixão T. R. L. C., Microchemical Journal, 99 (2011) 145-151 Electronic Tongue (Whisky) – Mixture of different drink brands Whisky + 1 mol L-1 NaOH WS, Wall Street; Bf, Ballantine's Finest; Ch, Chanceler; Bl12: Balantine's 12 years old; O8: Old Eight; Amb: Ambassador 12 years old Novakowski W., Paixão T. R. L. C., Microchemical Journal, 99 (2011) 145-151 Fuel (Ethanol Fuel) - Adulteration process: - Water addition; - Methanol Addition. Electronic tongue (Fuel) Cu 3 Ethanol 20 % (v/v) 1 mol L-1 NaOH I / mA 2 1 Ethanol 10 % (v/v) 1 mol L-1 NaOH 0 -0.8 v = 50 mV s-1 1 mol L-1 NaOH -0.4 0.0 E / V vs Ag/AgCl 0.4 0.8 Electronic Tongue (Fuel) H2O Content 8 5,5% 8% 10% 15% 20% Adulterated 4 PC 2 (8.36%) Fuel with addition of NaOH Adulterated 0 -4 Permitted Adulterated -8 -12 Adulterated -30 -20 -10 0 10 20 PC 1 (77.26%) 30 40 50 Electronic Tongue (Fuel) Electronic Tongue (Fuel) Bueno L., Paixão T. R. L. C., Talanta, 87 (2011) 210 – 215. Electronic Tongue (Fuel) Bueno L., Paixão T. R. L. C., Talanta, 87 (2011) 210 – 215. Electronic Tongue (Fuel) 5.6% 4 PC2 (18.90%) 7.5% 2 0 15% -2 10% -4 -15 -10 -5 0 PC1 (75.29%) Bueno L., Paixão T. R. L. C., Talanta, 87 (2011) 210 – 215. 5 10 Electronic Tongue (Fuel) Sensor Binary Answer Instrumentation Adulterated FUEL Patent Register Number: BR1020120312026 Electronic Tongue (Fuel) PCA score biplots for different solvents. PCA scores were obtained from the capacitance data directly from pure standard solvents using a Cu interdigitated electrode. Number of replicates per sample: 3. Bueno L., Paixão T. R. L. C., Talanta, 87 (2011) 210 – 215. Electronic Tongue (Fuel) - Quantification Bueno L., Paixão T. R. L. C., Talanta, 87 (2011) 210 – 215. Electronic Tongue (Gun Shot Residues) Salles M.O., Bertotti M., Thiago R. L. C., Sensors and Actuators B-Chemical 166 (2012) 848-852 Electronic Tongue (Gun Shot Residues) 40 40 B 0 -40 -40 I / nA I / nA A 0 -80 -80 -120 -120 -160 -160 -0.8 -0.4 0.0 0.4 0.8 -0.8 1.2 0 -40 -40 I / nA I / nA C -80 -120 -160 -160 0.0 0.4 0.8 E / V vs. Ag/AgCl (sat. KCl) Salles M.O., Bertotti M., Thiago R. L. C., Sensors and Actuators B-Chemical 166 (2012) 848-852 0.8 1.2 1.2 D -80 -120 -0.4 0.4 40 0 -0.8 0.0 E / V vs. Ag/AgCl (sat. KCl) E / V vs. Ag/AgCl (sat. KCl) 40 -0.4 -0.8 -0.4 0.0 0.4 0.8 E / V vs. Ag/AgCl (sat. KCl) 1.2 Electronic Tongue (Gun Shot Residues) PC2 (23.90 %) 400000 0 -400000 -800000 -800000 -400000 0 PC1 (49.88 %) Salles M.O., Bertotti M., Thiago R. L. C., Sensors and Actuators B-Chemical 166 (2012) 848-852 400000 800000 Electronic Tongue (Gun Shot Residues) 360000 PC2 (2.440 %) 240000 120000 0 -120000 -240000 -180000 -120000 -60000 0 PC1 (92.55 %) Salles M.O., Bertotti M., Thiago R. L. C., Sensors and Actuators B-Chemical 166 (2012) 848-852 60000 120000 Electronic Tongue (Drugs of Abuse – Drug Origin) Cocaine Samples 60% 54% 50% 40% 35% 30% 20% 11% 10% 8% 4% 1% 1% 1% 1% 0% FenacetinaLevamisole Levamisol Cafeine Cafeína Lidocaine Lidocaína Benzocaine Benzocaína Hidroxizine Hidroxizina Diltiazen Diltiazem Paracetamol Paracetamol Nothing Nenhum Added Phenacatin Adulterant Data from Dr. Adriano Maldaner Electronic Tongue (Drugs of Abuse – Drug Origin) Cocaine and cocaine spiked with some adulterants Cocaine Benzocaine 1mM Cafeine 1mM Diclofenac 1mM Phenacetin 1mM Hydroxyne 1mM Levamisole 1mM Lidocaine 1mM Paracetamol 1mM Procaine 1mM PC2 (25.94%) 0.0002 0.0000 -0.0002 -0.0002 0.0000 PC1 (39.24%) 0.0002 Electronic Tongue (Drugs of Abuse – Drug Origin) Cocaine Sample 7 Benzocaine 1mM Cafeine 1mM Diclofenac 1mM Phenacetin 1mM Hydroxyne 1mM Levamisole 1mM Lidocaine 1mM Paracetamol 1mM Procaine 1mM 0.0004 0.0000 0.25 0.20 I / mA PC2 (24.43%) 0.0002 -0.0002 -0.0004 -0.0004 Paracetamol 1mM Sample 7 0.15 0.10 0.05 0.00 -0.0002 0.0000 0.0002 PC1 (51.27%) 0.0004 0.0 0.0006 0.4 0.8 1.2 1.6 E / V vs. Ag/AgCl(KCl sat.) Electronic Tongue (Drugs of Abuse – Drug Origin) Sample seized by the Police of São Paulo -0.00004 0.0004 -0.00006 -0.00008 PC2 (6.61%) 0.0002 -0.00010 0.00065 0.00070 0.00075 0.0000 -0.0002 -0.0004 -0.0008 -0.0004 0.0000 PC1 (86.39%) 0.0004 0.0008 0.00080 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 Electronic Tongue (Drugs of Abuse – Drug Origin) Adulterant concentration found in two cocaine samples. Sample Adulterant Concentration found / mmol L-1 3 Phenacetin (1.0 ± 0.2) 7 Paracetamol (1.70 ± 0.08) Anti-doping test Anti-doping test http://www.fifa.com/aboutfifa/footballdevelopment/ medical/antidoping/index.html Electronic Tongue (Anti-doping test) 20 Synthetic Urine 0 -20 20 PC 1 0 0 -20 (31. 79% ) -40 30 2 40 (2 9. 5% ) -30 PC ) PC 3 (18.62% Synthetic Urine with Cocaine Electronic Tongue (Milk again) – Melamine, Urea and Formaldehyde PCA 3D plots of commercial (Elegê®) milk samples, unadulterated (black squares), and adulterated with 10.0 mmol L-1 formaldehyde (red circles), 0.95 mmol L-1 melamine (blue up triangles), and 4.16 mmol L-1 urea (green down triangles). Whole milk (A), skimmed milk (B), and semi-skimmed milk (C). Number of replicates per sample: 3. L. Bueno, M. O. Salles, W. R. de Araujo and T. R. L. C. Paixão, Analytical Methods (submitted) Electronic Tongue (Milk again) – Melamine, Urea and Formaldehyde PCA 3D plots of commercial (Elegê®) milk samples, unadulterated (black squares), and adulterated with 10.0 mmol L-1 formaldehyde (red circles), 0.95 mmol L-1 melamine (blue up triangles), and 4.16 mmol L-1 urea (green down triangles). Whole milk (A), skimmed milk (B), and semi-skimmed milk (C). Number of replicates per sample: 3. L. Bueno, M. O. Salles, W. R. de Araujo and T. R. L. C. Paixão, Analytical Methods (submitted) Electronic Tongue for disease diagnostics Integration of Smart materials (Surrey) with Pattern Recognition Techniques (USP) and Nanofabrication techniques (NCSU) for The development of novel electrochemical disease diagnostics. Dr Subrayal M. Reddy Dr Roger J. Narayan Department of Chemistry, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, UK, GU2 7XH Joint Department of Biomedical Engineering, University of North Carolina, Raleigh, USA Electronic Tongue with Molecular Imprinted Polymers (MIPs) Polymerisation Loose network Molecular imprinted polymer Electrostatic and hydrogen bonding interactions between monomer and template molecule Template elution Rebinding Electronic Tongue with Molecular Imprinted Polymers (MIPs) BHb MIP on glassy carbon electrode (Modified Electrode) t = 0 min t = 10 min Transducer signal changes depending on the protein selectively binding 0.00 j / A mm-2 0.02 0.04 Transducer 0.06 Modifier Layer 0.08 0.10 -1.0 Electrolyte: PBS (pH 7.4), SDS 5% (w/v) + 15.4 µmol L1 BHb solution -0.8 -0.6 -0.4 -0.2 E/V vs Ag/AgCl (sat. KCl) 0.0 Electronic Tongue with Molecular Imprinted Polymers (MIPs) Proof of concept Electronic Tongue with Molecular Imprinted Polymers (MIPs) BHb MIP on glassy carbon electrode 10 min 0 min BHb BSA Cyt C EMb 40 BHb BSA Cyt C EMb 20 PC 2 (27.94%) PC 2 (36.27%) 20 0 -20 0 -20 -40 -40 -20 0 20 40 60 -40 -40 -20 PC 1 (58.74%) Lígia Bueno, Hazim F. El-Sharif, Maiara O. Salles, Ryan D. Boehm, Roger J. Narayan, Thiago R. L. C. Paixão and Subrayal M. Reddy, Sensors and Actuators B: Chemical, Submitted 0 20 PC 1 (64.66%) 40 Electronic Tongue with Molecular Imprinted Polymers (MIPs) Forward: Point-of-care test Screening for protein-based disease Markers: e.g. Cancer; diabetes; cardiovascular Data base comparison BHb BSA Cyt C EMb PC 2 (27.94%) 20 PSA Answer 0 -20 -40 -40 -20 0 20 PC 1 (64.66%) Prostate cancer marker 40 Molecular Imprinted Polymers (MIPs) for illicit drug detection Phenacetin Carbon Ink Paper Devices Cocaine MIP Bare Electrode + Pyrrole/phenacetin MIP Modified Electrode Aminopyrine Maiara O. Salles, William R. de Araujo, Thiago R. L. C. Paixão, Electrochimica Acta, submitted Molecular Imprinted Polymers (MIPs) for illicit drug detection Phenacetin Carbon Ink Paper Devices MIP 400 I / µA Cocaine A Bare Electrode 200 0 -1.0 + 0.0 0.5 1.0 1.5 2.0 E / (V vs Ag/AgCl(KCl sat.)) I / µA 120 Procaine -0.5 Pyrrole/phenacetin MIP Modified Electrode B 60 0 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 E / (V vs Ag/AgCl(KCl sat.)) Maiara O. Salles, William R. de Araujo, Thiago R. L. C. Paixão, Electrochimica Acta, submitted Trade-Offs in Chemical Analysis - Sensors must be robust - But robustness requires weak interactions only: implies low sensitivity and low chemical specificity Paper based device and Colorimetric detection: • Make the sensors disposable • Probe a wide range of chemical interaction and reaction Including strong sensor-analyte binding • Do it cheap: use visual reporters Convert chemical interaction responses to a visual output, i.e., an Electronic Tongue with visual imaging and Optoelectronic Nose Background from literature Chemo-responsive sensor using ORMOSIL (organically modified silica) to molecular recognition Solvatochromic Dyes Base sensitive pH indicators metalloporphyrins Acid sensitive pH indicators Pin Printing of Arrays Reprinted with permission from John Wiley and Sons: Molecular Recognition and Discrimination of Amines with a Colorimetric Array, Angewandte Chemie International Edition 2005, 44, 4528-4532. Copyright 2014. Suslick’s Colorimetric Array Detector Chemo-responsive sensor using ORMOSIL (organically modified silica) to molecular recognition - Printed array of chemical responsive dyes - Digitally image obtained using a scanner (Before and after images) - Difference Map (After image subtract of Before image) is a “molecular fingerprint”: a unique patterned of R, G and B subtracted values Before Exposure After Exposure R, G and B values |Rafter – Rbefore| |Gafter – Gbefore| |Bafter – Bbefore| Before Values Reprinted with permission from Suslick K.S. et al., Colorimetric Sensor Arrays for Volatile Organic Compounds, Anal. Chem., 2006, 78 (11), pp 3591–3600. Copyright 2014 American Chemical Society. Difference Map decylamine R, G and After B values Values Each compound has a unique pattern !!! Difference Maps are Molecular Fingerprints Reprinted with permission from Suslick K.S. et al., Colorimetric Sensor Arrays for Volatile Organic Compounds, Anal. Chem., 2006, 78 (11), pp 3591–3600. Copyright 2014 American Chemical Society. Comparison Suslick’s Approach Proposed Method SUBSTRATE ORMOSIL (organically modified silica) FABRICATION Pin Printing Wax Printing + Chemical Application MEASUREMENT Scanner + ChemSens® Smarthphone + Home-Made App. Coffee aromas, Sugars, Vapour phase TATP, Natural and Artificial Sweeteners, Soft drink, Beers, Pathogenic bacteria and Organic vapours. Applications Chromatography Paper Objective Fabrication of the Colorimetric Device 1) Wax Printing 2) Temp. Chromatographic Paper (Filter Paper) Application of Reagents 3 min. 120 oC 1. Creatine 2. KI/H+ 3. Aniline 1 2 3 Why choose these reagents? KI/H+ - TATP and HMTD can decompose to H2O2 or organic peroxides; R. A. A. Munoz, D. L. Lu, A. Cagan and J.Wang, Analyst, 2007, 132, 560. 2I- + H2O2 + 2H+ I2 + 2H2O iodide to form iodine, resulting in brown coloration of the spot. Franchimont test - The Franchimont test (N,N-diethylaniline dissolved in glacial acid acetic) can be used as a colorimetric test to detect various explosives, including dinitrobenzene, and yields a brown color. With a modification of this test, we observed that mixing nitrobenzene and aniline produced a yellow color. Why choose these reagents? Jaffe's reaction - Creatinine forms a red-orange compound with nitrocompounds A. R. Butler, Clin. Chim. Acta, 1975, 59, 227. Janovsky complex Creatinine Picric Acid Measurements using the proposed device 1. Creatine 2. KI/H+ 3. Aniline Imagine Acquisition 1 2 3 Application of sample For example, HMTD explosive application Imagine Acquisition Software for extraction of RGB values The application was built in Apple Xcode 4.3.2 using the Apple iOS 5 Software Development Kit (SDK; Apple Inc., Cupertino, CA, USA). The RGB values for each spot and the standard deviation for each component were measured using a specific Application Program Interface (API) that converted each pixel of the image into 24-bit (8 bits per component) data. RGB Extraction 1 2 3 After exposition to HMTD 1. Creatine 2. KI/H+ 3. Aniline Before exposition to HMTD Measurements using the proposed device |Rafter – Rbefore| Difference Map |Gafter – Gbefore| |Bafter – Bbefore| Sample Discrimination (chemometric approach) Smarthphone chamber or support Closed chamber providing a fixed focal distance and homogeneous lighting was built using black poly(methyl methacrylate) Smarthphone chamber or support Closed chamber providing a fixed focal distance and homogeneous lighting was built using black poly(methyl methacrylate) Performance of the smarthphone camera RGB values and relative standard deviations obtained with the developed colorimetric sensor from blue, red and green squares. Explosives: Real Test 0 minutes 5 minutes 10 minutes 15 minutes Colour representation of the RGB values for 0 (A), 5 (B), 10 (C) and 15 (D) minutes of reaction. Explosives: Real Test 0 minutes 5 minutes 10 minutes 15 minutes Colour representation of the RGB values for 0 (A), 5 (B), 10 (C) and 15 (D) minutes of reaction. Explosives: Real Test After 15 min of reaction time: (A) PCA scores plot, (B) dendogram of 15 samples, and (C) loadings plot of colorimetric signals for the five different explosive samples with three different reagents. Legend of the PCA graph: ■ – TATP; ● – HMTD; ▲ – Nitrobenzene (NB); ▼ – 4-amino-2-nitrophenol (4A2NP); ♦ - Picric acid (PA). Mixture of Explosives: Real Test PCA graph: ■ – TATP; ● – HMTD; ▲ – Nitrobenzene (NB); ▼ – 4-amino-2-nitrophenol (4A2NP); ♦ – Picric acid (PA), ○ – Nitro explosives (NB + 4A2NP + PA); □ – Peroxy explosives (TATP + HMTD); ◊ – All explosives (NB + 4A2NP + PA + TATP + HMTD). Quantitative Performance ■ – TATP; ● – HMTD; ▲ – Nitrobenzene (NB); ▼ – 4-amino-2-nitrophenol (4A2NP); ♦ – Picric acid (PA), Quantitative Performance Electronic Tongues – Final Considerations Despite the introduction of electronic noses begin the process of developing this niche research, electronic tongues have been developed more quickly than electronic noses. However, several issues remain to be resolved before these devices become more affordable. 1. experimental evaluation of the mechanisms of sensors and theoretical considerations of the electronic tongue operation; 2. development of new sensors and sensor arrays; 3. development of practical application for common tasks. Y. Vlasov, A. Legin, A. Rudnitskaya 373 (2002) 136 Electronic Tongues – Final Considerations Book: The Coming Robot Revolution Publisher: Springer New York DOI 10.1007/978-0-387-85349-9 Copyright 2009 ISBN 978-0-387-85348-2 (Print) DOI 10.1007/978-0-387-85349-9_3 Pages 1-18 Subject Collection Engineering SpringerLink Date Monday, April 20, 2009 Língua eletrônica – Considerações finais Acknowledgments Electronic Tongue and Chemical Sensors Group NAPMI: Núcleo de Apoio à Pesquisa em Materiais Inteligentes (Research Group in Smart Materials) Funding Agencies: 470919/2011-6 2009/07859-1 2012/12106-5 2013/50751-2 Royal Society Grant Ref: EI130745 Electronic Tongue (Fuel) Bueno L., Paixão T. R. L. C., Talanta, 87 (2011) 210 – 215.