UNIVERSIDADE ESTADUAL DE FEIRA DE SANTANA PROGRAMA DE PÓS-GRADUAÇÃO EM BIOTECNOLOGIA CATIANE DO SACRAMENTO SOUZA SINTASE DA QUITINA DE MONILIOPHTHORA PERNICIOSA (STAHEL) AIME & PHILLIPS-MORA: CARACTERIZAÇÃO GÊNICA E MODELAGEM DO PROVÁVEL SÍTIO CATALÍTICO. Feira de Santana, BA Julho. 2007 CATIANE DO SACRAMENTO SOUZA SINTASE DA QUITINA DE MONILIOPHTHORA PERNICIOSA (STAHEL) AIME & PHILLIPS-MORA: CARACTERIZAÇÃO GÊNICA E MODELAGEM DO PROVÁVEL SÍTIO CATALÍTICO. Dissertação apresentada ao Programa de Pós-graduação em Biotecnologia, da Universidade Estadual de Feira de Santana como requisito parcial para obtenção do título de Mestre em Biotecnologia. Orientador: Prof. Dr. Julio Cezar de Mattos Cascardo Co-Orientador: Prof. Dr. Aristóteles Góes-Neto Feira de Santana, BA Julho. 2007 BANCA EXAMINADORA Feira de Santana – BA 2007 Aos meus pais, que em todos os momentos foram os melhores pais de mundo. Um exemplo inesgotável de amor, companheirismo, paciência, caráter e todas as coisas boas que eu posso imaginar. Vocês são meus “moldes” de seres humanos. AGRADECIMENTOS Por chegar aqui agradeço primeiramente a A. Góes-Neto e J. C. M. Cascardo, pela confiança, orientação, presença e apoio em minhas dúvidas e desesperos. Ao B. T. HoraJunior, B. M. Oliveira e M.C. Santos-Junior, por me revelar os primeiros segredos da Biologia Molecular e Química Computacional. C. V. Dias, M. Lopes e C. P. Pirovani, pelo pronto apoio sempre que solicitados. Ao pessoal do LAMOL, em especial ao R. Vilas-Boas e A. K. Santos. À R. Galante pelas leituras que me proporcionou e pelo presença, pelos puxões de orelha e por “tentar” polir umas arestas. Ao A. C. S. Rocha, I. K. C. Nobre, W. R. A. Soares, R. Q. Oliveira et al. pela troca de conhecimento e pelo apoio nas “Atividades Complementares” e afins. B. S. Andrade (uma ótima pessoa para trabalhar junto) foram fantásticas e valiosas suas dicas em bioinformática e os riso (todos eles!!!) G. J. Bulos e M. L. C. Pontes pelo modo novo de ver velhas fotografias e pelas intensivas experimentações do resultado da fermentação de Vitis spp; a C. E. L. Fiuza, O. F. Paixão, J. Rodrigues, A. Estrela, G. M. A. Aires e H. R. Carneiro-Junior pelos cafés, vinhos, ombros, ouvidos e afins. Não poderia esquecer de agradecer a Klb. Gomes e F. José pela simples objetividade, P. Drumond (também o poeta, mas aqui me refiro a “pessoinha”) pela delicadeza com todas as coisas e pela presença (ainda que via-Graham Bell). À S. V. Oliveira, Sr. Falcão e M. Camargos, por me devolver à pesquisa. A D. Sampaio por sua insubstituível e “imaginativa” contribuição. Aos Amigos do LAPEM, em especial àqueles da BioMol, pelos géis, pelos risos, por tudo... Aos meus pais por entenderem minha ausência. Ao CNPq/FINEP e à PPGBiotec, pela logística, e em especial ao Mississipi Center for Supercomputing Research pelo acesso ao Amber, e principalmente a Sra. Sônia, por ter facilitado muita coisa. E ao Deus, claro, por ter nos proporcionado um maravilhoso mundo codificado por genes (que ocupam nosso tempo e enchem de significado nossas vidas), mas principalmente, pela Cachoeira da Fumaça, pelas estrelas que reservou para o céu de lá e por ter posto em meu caminho incríveis pessoas como, L. C. Pereira e D. M. Novaes, com quem eu pude caminhar naquelas trilhas: Amiguinhos, amo vocês de “montanha”!!!!! Agradecimento Especial Pelo modo empolgante com que orienta, pela atenção, incentivo e, principalmente, por seu envolvimento em cada passo que dei à frente, agradeço a Aristóteles Góes Neto, que foi mais que um orientador, foi um exemplo, o melhor. “... um passo à frente e você não está mais no mesmo lugar”. Chico Science SUMÁRIO 1. 2. 2.1. 2.2. 2.3. 2.4. 2.5. 3. 3.1. 3.2. 4. 4.1. 4.2. 4.3. 4.4. 4.5. 4.6. 4.7. 4.8. 4.9.1. 4.9.2. 4.9.3. 5. 5.1. 5.2. 6. 7. RESUMO ABSTRACT LISTA DE FIGURAS LISTA DE TABELAS LISTA DE ABREVIATURAS E SIGLAS INTRODUÇÃO REVISÃO DA LITERATURA O fungo Moniliophthora perniciosa Parede Celular A sintase da quitina Determinação e caracterização de gene por primer walking A busca pelo controle da doença MÉTODOS EM BIOLOGIA COMPUTACIONAL Química computacional Emprego da química computacional na modelagem comparativa MATERIAL E MÉTODOS Busca e anotação das prováveis seqüências do gene da sintase da quitina do Banco de Dados do Projeto Genoma do M. perniciosa Desenho de oligonucleotídeos iniciadores Extração e purificação do DNA total de M. perniciosa Amplificação de fragmentos de DNA genômico Seqüenciamento Análise das seqüências Análise filogenética Determinação da estrutura 3D: Modelagem da região conservada contendo o sítio ativo Identificação e alinhamento seqüencial da proteína molde Construção e refinamento do modelo Validação RESULTADOS E DISCUSSÃO Seqüenciamento do gene da sintase da quitina Resultados em Química Computacional CONCLUSÃO REFERÊNCIAS 07 08 09 13 14 15 18 18 22 25 28 29 31 34 38 49 50 53 54 54 74 98 100 APÊNDICES 112 41 42 43 43 44 46 47 48 49 RESUMO A sintase da quitina (CHS) converte UDP-N-acetilglicosamina em quitina, o principal componente da parede celular de fungos. Esta glicosiltransferase tem cinco diferentes níveis de expressão, dependendo do estádio do ciclo da vida do fungo. A sintase da quitina classe III age diretamente na formação da parede celular, são responsáveis por muitas das quitinas na célula e é, por isso, um alvo molecular altamente especifico para fármacos que podem inibir o crescimento e desenvolvimento do fungo patogênico, pois a CHS é um precursor imediato da quitina e cataliza uma reação irreversível. Este trabalho objetivou a caracterização molecular experimental e in silico do gene da sintase da quitina de Moniliophthora perniciosa, (MopCHS), um provável homólogo do gene chs1 do Agaricus bisporus. Os contigs de M. perniciosa foram mapeados com, uma cobertura de aproximadamente 80% no produto gênico de A. bisporus com alta significância estatística, e pares de oligonucleotideos iniciadores foram produzidos para garantir a amplificação para o seqüenciamento de dois intervalos do provável gene MopCHS por primer walking. Após o sequenciamento completo do gene, que compreende 3443 pb (14 éxons e 13 íntrons), constituindo um cDNA com uma fase de leitura aberta com 2739 pb e codificando uma proteína com 913 aa, um modelo do provável sitio ativo foi construído pelo método de modelagem por homologia. Um dos homólogos utilizado, o 1Z3X, apresentou 61% de identidade. O modelo foi construído pelo Swiss Model e refinado por cálculos de Mecânica e Dinâmica Molecular executados pelos campos de força presentes no BioMediCache 6.1 (MM3) e Amber 8.0 (ff99). A qualidade do modelo resultante foi testada pelo programa Procheck 3.0 e ANOLEA. O gráfico de Ramachandran produzido mostrou que o modelo proposto tem cerca de 94,5% de seus resíduos nas regiões favoráveis. O completo conhecimento da geometria do sítio ativo de MopCHS será útil para desenvolver inibidores contra a doença vassoura-de-bruxa. Palavras-chave: Moniliophthora perniciosa, sintase da quitina, seqüenciamento, estrutura 3D, homologia. ABSTRACT Chitin synthases (CHS) converts UDP-N-acetylglycosamine into chitin, the main component of the fungal cell wall. These glycosyltransferases have five different expression levels depending on the fungal life cycle stage. Class III chitin synthases act directly in the formation of the cellular wall, are responsible for most of the chitin synthesis in the cell, and are, therefore, a highly specific molecular target for drugs that could inhibit the growth and development of pathogenic fungi, since CHS is the immediate precursor of chitin and catalyzes an irreversible reaction. This work aims to an in silico and experimental molecular characterization of Moniliophthora perniciosa chitin synthase gene (MopCHS), a putative homologous of Agaricus bisporus chs1 gene. M. perniciosa contigs were successfully mapped onto A. bisporus CHS gene product, with a coverage of approximately 80% with high statistical significance, and pairs of primers were produced to generate amplicons for sequencing two gaps inside the putative M. perniciosa gene by primer walking. After the complete sequencing of the gene, which has 3443 pb (14 exons and 13 introns), a cDNA ORF with 2739 pb and codes for a protein with 913 aa, a model of active site was constructed using Homology Modeling approach. The homologous 1Z3X, with 61% identity, was used as one of the templates. The model was constructed using Swiss Model and refined by a set of Molecular Mechanics and Molecular Dynamics calculation, both using MM3 force field in BioMedCache 6.1. and ff99 from Amber 8.0. The quality of resultant model was evaluated by Procheck 3.0 and ANOLEA. Ramachandran plot indicated that the model has 94,5% of residues in the most favored regions. The complete knowledge about the geometry of active site of MopCHS will be useful to develop new inhibitors against witches’ broom disease. Keywords: Moniliophthora perniciosa, sequencing, chitin synthase, 3D structure, homology. LISTA DE FIGURAS Figura 01: Aspecto da doença vassoura-de–bruxa nos botões florais e nos frutos de cacau causados pelo M. perniciosa (Fonte: AIME, PHILLIPS-MORA, 2005). 19 Figura 02: Ciclo de vida do M. perniciosa. As partes em azul e laranja do ciclo correspondem às fases biotrófica e saprofítica, respectivamente. Em verde, está delimitada à parte do ciclo do fungo na sua interação com a planta do cacau, e em amarelo, está a parte do ciclo que ocorre fora do hospedeiro (Adaptado de LOPES, 2005). 21 Figura 03: Polimerização da UDP-GlcNAc pela sintase da quitina para formar a quitina (Fonte: YEAGER, FINNEY, 2004). 24 Figura 04: Representação da parede celular de A. fumigatus Fresen, com destaque para a biossíntese de α-1-3-glicano e quitina que são sintetizados por diferentes famílias de genes com diferentes funções, entre eles está a sintase da quitina (Fonte: BEAUVAIS, 2003). 24 Figura 05: Rota metabólica da sintase da quitina na síntese da parede celular. (1) Glutamina-frutose-6-fosfato amidotransferase (EC 2.6.1.16); (2) Glicosamina fosfato Nacetiltransferase (EC 2.3.1.4); (3) fosfo-N-acetilglicosamina mutase (EC 5.4.2.3); (4) UDPN-acetilglicosamina pirofosforilase (EC 2.7.7.23) e (5) Sintase da quitina (EC 2.4.1.16) (Fonte: LAGORCE et al., 2002; HOGENKAMP, 2006). 27 Figura 06: Movimentos atômicos de estiramento de ligação, de deformação angular, de torção e interação entre átomos não ligados. 35 Figura 07: Superfície de Energia Potencial. 38 Figura 08: Fluxograma da metodologia utilizada para a determinação da seqüência primária do gene da sintase da quitina do fungo M.perniciosa e posterior construção do modelo 3D do provável produto gênico. 41 Figura 09: Esquema representativo do gene da sintase da quitina, com destaque para os fragmentos amplificados e seqüenciados neste trabalho. O icontig5 está representado em amarelo, icontig3 em azul e o contig4 em vermelho. Em branco estão as regiões inicialmente desconhecidas que foram determinadas por primer walking. 44 Figura 10: Processo de alinhamento da seqüência problema com o molde. A: em verde, fragmento da estrutura primária da seqüência de sintase da quitina de M. Perniciosa, em vermelho está a região da seqüência que apresenta identidade com o molde, e em laranja, a região do molde que tem identidade com a seqüência; B: Estrutura e molde alinhados, com a estrutura molde sobreposta pela seqüencial problema (Fonte: Swiss PDB Viewer 3.7). 50 Figura 11: Fluxograma da metodologia para construção do modelo. 52 Figura 12: Chs1 de Agaricus bisporus (909aa). Destaque para a delimitação das regiões de similaridade, obtida por BLAST, com contigs de M. perniciosa. Amarelo: icontig 5 - Fase de leitura +1: Valor-E = 1e-88, Identidade = 55%, Positividade = 63%, Gaps = 12%, Fase de leitura +2: Valor-E = 1e-37, Identidade = 91%, Positividade = 98%, Gaps = 0% e Fase de leitura +3: Valor-E = 1e-37, Identidade = 83%, Positividade = 91%, Gaps = 0%; Azul: icontig 3 - Valor-E = 6e-37 Identidade = 78%, Positividade = 81%, Gaps = 0%; Verde: icontig 4 Valor-E = 1e-82, Identidade = 58%, Positividade = 66%, Gaps = 24%, 690 aminoácidos (aprox. 76% do total de 909 aa). Aminoácidos em negrito correspondem ao alvo do par de primers Pchsic13.3 e Pchsic34, respectivamente; Aminoácidos grifados 54 Figura 13: Alinhamento entre o icontig5 de M. perniciosa e a região inicial da seqüência codante do cDNA da CHS de M. perniciosa com A. Bisporus (emb|CAB96110.1), P. ostreatus (dbj|BAF37219.1) e P. graminis (gb|ABB70409.1) (Fonte: Resultados experimentais, http://tcoffee.vital-it.ch/). 56 Figura 14: A - Tradução da região inicial do iContig5 na fase de leitura +1. A - Os aminoácidos em azul representam o início da similaridade, por BLASTX, com A. bisporus; destaque, em verde, para o provável códon de iniciação que está situado a sete aminoácidos antes do início do BLAST, com o sexto aminoácido da referida enzima. Em vermelho, provável região promotora (TATA BOX), B - Cromatograma do sequenciamento 56 da placa CP02-S1-000-015-C08-EM-F na região do provável TATA BOX, disponível no banco de dados do genoma do M. perniciosa (Fonte: Resultado experimental gerado pelo programa FinchTV). Figura 15: Alinhamento mostrando a região do domínio característico das sintases da quitina e provável sítio catalítico em Basidiomycota. 57 Figura 16: Análise eletroforética dos produtos de amplificação do DNA total do M. perniciosa via PCR. No gel de agarose a 1,0% foi aplicado 3 µL do produto da reação de amplificação em cada poço. A eletroforese ocorreu por 90 min., 60 v e 50 mA. M - Marcador de massa molecular 100 base pair Ladder da Fermentas®. Condições experimentais: 2,5 µL de tampão de amplificação a 10x; 0,5 µL do mix de dNTPs a 10 mM; 0,8 µL de MgCl2 a 50 mM; 1,0 µL de cada oligonucleotídeo específico a 10 pMol; 1,0 µL de gDNA de M. perniciosa (12,5 ng); 0,13 µL de Taq DNA Polymerase (5U/µL) da Phoneutria® e água ultrapura (q.s.p. 25 µL). 1 e 2 Fragmentos de cerca de 290 pb obtido com o par de oligonucleotideo Pchsic34F e Pchsic34R. A desnaturação procedeu-se a 94 ºC por 1 min, anelamento a 59,7 ºC por 1 min. e extensão a 72 ºC por 2 min., perfazendo 34 ciclos com extensão final de 72 ºC por 1 min. 3 e 4 - Fragmento de cerca de 480 pb obtido com o par de oligonucleotideo CHSiC13.3F e CHSiC13.3R. A desnaturação procedeu-se a 94 ºC por 1 min, anelamento a 61,6 ºC por 1 min. e extensão a 72 ºC por 2 min., perfazendo 34 ciclos com extensão final de 72 ºC por 2 min. 58 Figura 17: Análise eletroforética dos produtos de amplificação do DNA total do M. perniciosa por PCR. Condições experimentais: 2,5 µL de tampão de amplificação a 10x; 0,5 µL do mix de dNTPs a 10 mM; 0,8 µL de MgCl2 a 50 mM; 1,0 µL de cada oligonucleotídeo específico a 10 pMol; 1,0 µL de gDNA de M. perniciosa (12,5 ng); 0,13 µL de Taq Platinum DNA Polymerase (5U/µL) da Invitrogen® e água ultrapura (q.s.p. 25 µL). A desnaturação procedeu-se a 94 ºC por 3 min, anelamento a 65,0 ºC por 1 min. e extensão a 72 ºC por 2 min., perfazendo 34 ciclos com extensão final de 72 ºC por 10 min. Análise de 3 µL do produto da reação de amplificação em gel de agarose a 1,2%, por 120 min., 60 v e 50 mA. M - Marcador de massa molecular DNA Step Ladder Promega®; 1 e 2 - Pchs54-F/Pchsic13.3-R, com fragmento de 1700 pb; 3 e 4 Pchsic13.3F/PchsiC34R, com fragmento de 1400 pb; 5 e 6 - PchsiC34F/Pchs54F, com fragmento de 1100 pb e 7 e 8 – Pchs54F/Pchs54R, com fragmento de aproximadamente 4000 pb. 59 Figura 18: Esquema representativo demonstrando a organização do gDNA da sintase da quitina de M. perniciosa. As linhas representam os éxons e as barras verticais os íntrons. 60 Figura 19: Predição da topologia de hélices transmembranares na sintase da quitina (Fonte: TMHMM). 61 Figura 20: Localização dos domínios que são considerados consenso e que identificam a sintase da quitina e caracterizam a Classe III e a Divisão 1. 63 Figura 21: Domínios conservados da sintase da quitina de M. perniciosa nos bancos de e-62 e-25 dados: pfam01644, com Valor-E 2 , pfam08407 com valor-E 7 , COG1215 com Valor-E e-22 e-19 2 e pfam03142 com Valor-E 4 . 64 Figura 22: Método de inferência bayesiana. A identificação completa dos fungos utilizados está descrita na tabela 07. Números abaixo dos ramos correspondem ao suporte dado por valores percentuais de probabilidade posterior. 66 Figura 23: Método de distância. A identificação completa dos fungos utilizados está descrita na tabela 07. Números abaixo dos ramos correspondem ao suporte dado por valores percentuais de bootstrap. 67 Figura 24: Máxima Verossimilhança. A identificação completa dos fungos utilizados está descrita na tabela 07. Números abaixo dos ramos correspondem ao suporte dado por valores percentuais de bootstrap. 68 Figura 25: Método da Parcimônia. A identificação completa dos fungos utilizados está descrita na tabela 07. Números abaixo dos ramos correspondem ao suporte dado por valores percentuais de bootstrap. 69 Figura 26: Consenso de maioria dos quatro diferentes métodos. A identificação completa dos fungos utilizados está descrita na tabela 07. Números abaixo dos ramos correspondem aos valores percentuais de ocorrência dos grupos formados nos quatro diferentes métodos. 70 Figura 27: A - Esquema representativo do gene da sintase da quitina de M. perniciosa, a porção em vermelho corresponde à região conservada utilizada na construção da estrutura tridimensional; B: Alinhamento da seqüência da sintase da quitina de M. perniciosa com A. bisporus (CAB96110.1), C. cinerea (EAU84753.1), P. ostreatus (BAF37219.1), C. neoformans (AAW43575.2) e P. graminis (ABB70408.1), com destaque para a região conservada. Os aminoácidos em negrito correspondem àqueles utilizados no modelo proposto (Fonte: Notradame et al., 2000 <http://www.tcoffee.org>). 75 Figura 28: PSI-BLAST contra o banco de dados do PDB, mostrando o alinhamento dos fragmentos com os moldes das estruturas correspondentes. 76 Figura 29: Resultado da submissão dos projetos dos fragmentos com os moldes da estrutura correspondentes (Fonte: Swiss PDB Viewer 3.7). 77 Figura 30: Modelos construídos a partir das seqüências fragmentadas. Em A: Estrutura resultante da submissão do fragmento achs1 com o molde 2D4W; B: fragmento achs2 com o molde 2BYT; C: fragmento achs3 com o molde 1Z3X; D: fragmento achs4 com o molde 2HY5 e E: modelo 0CSM, resultante da junção dos modelos iniciais gerados no Swiss Model, sem refinamento, para a região conservada da sintase da quitina (Fonte: VMD 1.8.6). 79 Figura 31: Validação representada pelo gráfico de Ramachandran (Procheck 3.0) dos fragmentos que compõem o modelo 3D da região conservada da sintase da quitina. Em A fragmento achs1; B - fragmento achs2; C: fragmento achs3 e D: fragmento achs4. 80 Figura 32: Destaque para as α-hélices (A) e folhas-β (B) que compõem o modelo proposto. 81 Figura 33: Gráfico de Ramachandran (Procheck 3.0) do modelo 0CSM da região conservada da sintase da quitina. Em A: Ramachandran da estrutura; B: Ramachandran da Glicina e C: Ramachandran da Prolina, onde se pode notar, em destaque o resíduo Pro211 em região desfavorável (Fonte: Procheck 3.0). 83 Figura 34: De A até N- Gráficos Chi-1 e Chi-2 dos resíduos. Os números de resíduos são mostrados entre parênteses, e a coloração vermelha representa o resíduo que está com o ângulos desfavoráveis; as regiões sombreadas representam a áreas favoráveis (Fonte: Procheck 3.0). 84 Figura 35: Qualidade da cadeia principal do modelo 0CSM: A - avaliação do gráfico de Ramachandran; B - planaridade da ligação peptídica; C - interações ruins; D - distorção dos carbonos alfa; E - energia das ligações de hidrogênio.O eixo das abscissas está descrito em graus, e o das coordenadas está descrito em Å (Fonte: Procheck 3.0). 85 Figura 36: Desvio padrão para os ângulos diedros Chi1 para o modelo 0CSM região conservada da sintase da quitina: A: Conformação gauche menos; B: Conformação trans; C: Conformação gauche mais; D: Somatório de todos os desvios padrões para Chi1; E: Conformação trans para o ângulo torcional Chi2. O eixo das abscissas está descrito em graus, e o das coordenadas está descrito em Å (Fonte: Procheck 3.0) 86 Figura 37: Gráfico do ANOLEA (energia potencial de cada átomo na cadeia de proteína). As projeções em vermelho referem-se a um valor positivo de energia potencial para cada resíduo, e as projeções em verde identificam os valores de energia que são satisfatórios, ou seja, os valores negativos (Fonte: Swiss Model). 87 Figura 38: Mapas gerados pela dinâmica realizada pelo BioMedCache 6.1. Os pontos em cinza indicam a posição das moléculas de menor energia. Em A: Dinâmica Molecular realizada para a Hélice h3; B: Dinâmica Molecular realizada para a Hélice h4, C: Dinâmica Molecular realizada para a Hélice h5 e D: Dinâmica Molecular realizada A Hélice h6. 89 Figura 39: Mapa gerado pela dinâmica molecular de 200 ps realizada pelo Amber 8.0. 90 Figura 40: Representação gráfica da validação dos modelos do gene da sintase da quitina após a realização da dinâmica molecular. A e B – Modelos CHS-a1 e CHS-a2, submetidos ao campo de força MM3 (BioMedCache), C, D, E, F e G – Modelos 1csm, 2csm, 3csm, 4csm e 5csm, respectivamente, resultantes do campo de força ff99 (Amber). Destaque, em vermelho, para o grafico que a presentou o melhor valor de energia (Fonte: ANOLEA). 91 Figura 41: Gráfico de Ramachandran para o modelo 4csm proposto para a região 93 conservada da sintase da quitina do M. perniciosa. Figura 42: Analise da cadeia principal do modelo 4csm: A - avaliação do gráfico de Ramachandran; B - planaridade da ligação peptídica; C - interações ruins entre os átomos não-ligados; D - distorção dos angulos tetraedricos dos carbonos alfa; E - energia das ligações de hidrogênio.O eixo das coordenadas está descrito em Å (Fonte: Procheck 3.0). 94 Figura 43: Análise da cadeia lateral do modelo 4CSM da região conservada da sintase da quitina: A - Conformação gauche menos; B - Conformação trans; C - Conformação gauche mais; D - Somatório de todos os desvios padrões para Chi1; E - Conformação trans para o ângulo torcional Chi2. O eixo das coordenadas está descrito em Å (Fonte: Procheck 3.0). 95 Figura 44: Modelo 4CSM final. A - Destaque para a região do provável domínio catalítico do gene da sintase da quitina do Moniliophthora perniciosa; B - Região do provável domínio catalítico em destaque e C – Representação tridimensional do modelo 4CSM (Amber) gerado pelo VMD 1.8.6. Os hidrogênios dos átomos de carbono foram suprimidos para uma melhor visualização. 97 LISTA DE TABELAS Tabela 01: Oligonucleotídeos iniciadores utilizados para determinar as regiões desconhecidas do gene da sintase da quitina do fungo causador da vassoura-de-bruxa. 45 Tabela 02: Seqüências do M. perniciosa relacionados aos genes da sintase da quitina em Agaricus bisporus (emb|CAB96110.1) identificados por BLASTx. 55 Tabela 03: Característica da organização dos éxons e íntrons do gene da sintase da quitina de M. perniciosa. 60 Tabela 04: Predição de Hélices transmembrana para o gene MopCHS. 61 Tabela 05: Predição das topologias transmembranares das sintase da quitina de Basidiomicota, obtida em análise realizada pelo TMHMM. 62 Tabela 06: Alinhamento com pontuação de alta significância do provável produto gênico (sintase da quitina) de M. perniciosa contra a base de dados do Pfam. 64 TABELA 07: Seqüências de sintase da quitina (CHS) de Basidiomycota e Ascomycota com valor esperado (E) = 0,0 e identidade = ou > que 50%. 71 Tabela 08: Identificação dos moldes utilizados para construção do modelo 3D da sintase da quitina de M. perniciosa. 77 Tabela 09: Sumário dos gráficos de Ramachandran para os fragmentos que compõem o modelo 3D da região conservada da sintase da quitina. 80 Tabela 10: Sumário dos modelos gerados para a região conservada do gene da sintase da quitina destacando o resultado da validação representada pelo gráfico de Ramachandran realizada pelo Procheck 3.0 88 Tabela 11: Sumário dos resíduos de aminoácidos que apresentaram valor de energia positiva na análise do ANOLEA. 92 LISTA DE ABREVIATURAS E SIGLAS % - Percentagem µL - Microlitros 10X - Dez vezes concentrado 1X - Concentração para uso normal CCMB – Coleção de cultura microbiológica da Bahia CEPLAC - Comissão Executiva do Plano da Lavoura Cacaueira CHS – Gene da sintase da quitina DFT - Teoria do funcional de densidade DM – Dinâmica Molecular DNA - Ácido desoxirribonucléico dNTP - Desoxirribonucleotídeo EDTA - Ácido etilenodiaminotetracético EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária K – Graus Kelvin Kb - Kilobases KDa – Kilodaltons M - Molar mA - Miliamper min - Minutos mL - Mililitros mM – Milimolar MpCHS – Gene da sintase da quitina de Moniliophthora perniciosa ng - Nanogramas nº - Número ºC - Graus centígrados pb - Pares de bases PCR - Reação em cadeia da polimerase pH - Potencial hidrogeniônico pI – Ponto isoelétrico pmol - Picomoles ps - picossegundos q.s.p. - Quantidade suficiente para QM/MM – Quantum-Mecanical/Molecular-Mecanical RMS - Rout mean square RNAse - Ribonuclease SDS - Sódio dodecil sulfato seg - Segundos SEP – Superfície de Energia Potencial TAE - Tampão Tris, Acetato e EDTA Tris - Tri(hidroximetil)aminometano U - Unidade de atividade enzimática UEFS - Universidade Estadual de Feira de Santana UESC - Universidade Estadual de Santa Cruz UFBA - Universidade Federal da Bahia UNICAMP - Universidade Estadual de Campinas UV - Ultravioleta v/v - Volume por volume 15 1. INTRODUÇÃO Nativa da Amazônia, a planta do cacau (Theobroma cacao L.) é uma espécie arbórea, que tem como principal produto comercial suas amêndoas, a matéria-prima do chocolate (SANTOS, 2005). No início do século 20 as maiores regiões produtoras de cacau do mundo eram o litoral do Equador e o Estado da Bahia no Brasil (LASS, 1985). Na década de 70, cerca de 90% da produção de cacau no Brasil era destinada a exportação (BASTOS, 1987). Deste total 80% era produzido na Bahia, que nos anos 80 chegou a produzir cerca de 400.000 toneladas. Os maiores problemas da cultura cacaueira são os fungos patogênicos, principalmente o Moniliophthora perniciosa (Stahel) Aime & Phillips-Mora, o causador da vassoura-de-bruxa, considerado como o mais devastador deles (ALMEIDA, ANDEBHAN, 1987). No sul da Bahia a cacauicultura sofreu prejuízos econômicos de grande escala devido à propagação deste patógeno, que foi detectada na Bahia em 1989. No ano 2000 a produção baiana foi reduzida em cerca de 50% (FAO, 2002) devido à presença da vassoura-de-bruxa, que retirou o Brasil do grupo dos paises exportadores de cacau, e trouxe complexos problemas de caráter social, econômico e ecológico para as regiões produtoras (ANDEBRHAN et al., 1999; BASTOS, 1990). O fungo infecta os lançamentos foliares novos, os frutos em desenvolvimento e as almofadas florais, podendo até provocar a morte da planta quando afetada por sucessivos ciclos do patógeno associados a fatores abióticos (QUEIROZ et al., 2003). Com base nessas implicações, foi estruturada a Rede de Genômica do Estado da Bahia e implantado o Projeto Genoma do M. perniciosa, o fungo causador da vassoura-de-bruxa, com o objetivo de fornecer dados para o desenvolvimento e controle da doença. A rede conta com seis laboratórios, dos quais cinco estão situados no estado da Bahia (UESC, UEFS, UFBA e CEPLAC). O Laboratório de Pesquisa em Microbiologia (LAPEM) da Universidade Estadual de Feira de Santana é um dos laboratórios desta rede. Mais de 155.900 seqüências já foram obtidas e inúmeros genes de interesse têm sido identificados (PEREIRA, 2004). 16 Os estudos do genoma da vassoura-de-bruxa buscam soluções para este problema, sendo que o seqüenciamento gênico, seguido dos estudos de proteômica, possibilita um avanço considerável na compreensão da biologia do fungo. Interações moleculares e transformações químicas têm sido a base da biologia, e todo fenômeno biológico que pode ser atualmente analisado pode ser traçado por processos químicos (GOLDSMITH-FISCHMAN, HONIG, 2003). Na busca por um controle efetivo da doença, a caracterização bioquímica e funcional de produtos gênicos (PIROVANI et al., 2005), a prospecção e o desenvolvimento de inibidores específicos são de importância fundamental. Os genes codificadores de enzimas associadas ao metabolismo dos principais carboidratos da parede celular, quitina e glicanos, quando bem caracterizados quanto à forma de regulação da expressão e quanto à ação dos produtos gênicos, podem ser alvo de interferência, e promover a instabilidade das paredes celulares do fungo, que podem levar à autodestruição das hifas e, conseqüentemente, a inibição do crescimento do patógeno (GEORGOPAPADAKOU, TKACZ, 1995). A inibição da enzima sintase da quitina, responsável pelo metabolismo de quitina, por exemplo, é uma estratégia de controle de vários fungos patogênicos (COLE, HUNG, 2001). O entendimento do funcionamento do metabolismo do fitopatógeno a partir dos dados moleculares poderá levar ao desenvolvimento de diversas estratégias de controle da doença. A sintase da quitina constitui-se essencialmente por folhas-β. É classificada como uma enzima da família glicosiltransferase, sendo oficialmente denominada de UDP-N-acetil-D-glicosamina: quitina 4-β-N-acetilglicosamina-transferase. Outras demoninações também encontradas na literatura científica são: quitina-UDP-Nacetilglicosaminatransferase, quitina-uridina difosfato acetilglicosaminatransferase ou trans-N-acetilglicosaminasilase (DBGET, 2005). Os antibióticos nucleosídios-peptídios, polioxina e nicomicina são inibidores competitivos da sintase da quitina (GEORGOPAPADAKOU, TKACZ, 1995) e, ao menos em sistemas animais, como mamíferos, não apresentam toxicidade, representando um modelo potencial para o tratamento de infecções causadas por fungos (ZHANG, MILLER, 1999). Quanto mais seletivo for o fármaco ou pesticida para seu alvo, menos chance terá de interagir com diferentes alvos ou de causar reações adversas indesejáveis (PATRICK, 2001), e, considerando que a quitina é essencial para a constituição da parede celular do fungo, e está ausente em 17 plantas, é um potencial alvo antifúngico (GEORGOPAPADAKOU, TKACZ, 1995). Por ser exclusiva do fungo no patossistema Moniliophthora perniciosa/Theobroma cacao, a sintase da quitina constitui-se, portanto, em um alvo potencial para compostos inibidores do desenvolvimento da parede celular deste fitopatógeno. A construção de um modelo refinado e validado para posterior uso no desenvolvimento de inibidores através da metodologia de docking, que consiste na aplicação de metodologias computacionais para estudar a interação entre o complexo proteína-ligante (TAUFER, 2004), é uma estratégia que pode ser usada para encontrar um agente químico eficaz contra a vassoura-de-bruxa do cacaueiro. Este trabalho teve como objetivos: (i) identificar e caracterizar, no M. perniciosa, a seqüência primária do gene da sintase da quitina em DNA genômico, e (ii) caracterizar a estrutura tridimensional da região filogeneticamente conservada desta enzima, contendo o sítio catalítico, por modelagem comparativa. 18 2. REVISÃO DE LITERATURA 2.1. O fungo Moniliophthora perniciosa O fungo considerado o agente etiológico da doença do cacaueiro (Theobroma cacao L.), popularmente conhecida, a vassoura-de-bruxa, foi inicialmente descrito como Marasmius perniciosa Stahel. Após a revisão do gênero Marasmius por Singer, a espécie foi transferida para o gênero Crinipellis sobre o binômio C. perniciosa (Stahel) Singer (GRIFFITH, et al., 2003; PURDY, SCHMIDT, 1996), e, atualmente, como resultado de estudos de filogenia molecular de representantes de Marasmiaceae, realizados por AIME, PHILLIPS–MORA (2005) é validamente reconhecido como Moniliophthora perniciosa (Stahel) Aime & PhillipsMora. A primeira descrição da doença vassoura-de-bruxa foi feita pelo naturalista brasileiro Alexandre Rodrigues Ferreira, por volta de 1785, mas esta patologia somente se tornou conhecida quando os sintomas de um surto ocorrido no Suriname em 1895 foram descritos em 1904 por Went (GRIFFTH et al., 1994). Trata-se de um Basidiomycota, Agaricales, com característicos filamentos pseudoamilóides no píleo (SINGER, 1986). O M. perniciosa não é um parasita exclusivo do cacaueiro, podendo ocorrer em outras Malvaceae, como T. grandiflorum Schum. (cupuaçu) e T. speciousum Willd. (cacauí) (BASTOS, EVANS, 1985). Ocorre ainda, em representantes de outras famílias, como Bignoniaceae, Bixaceae e Malpighiaceae que não são filogeneticamente próximos ao cacaueiro (GRIFFITH, et al., 2003). Segundo a classificação de BASTOS (1988) apresenta-se em quatro diferentes biótipos que se distinguem por seus grupos de hospedeiros, e nos quais sintomas similares aos do cacaueiro infectado podem ser encontrados. O biótipo C afeta T. cacao e espécies filogeneticamente próximas, como espécies do gênero Theobroma (BASTOS, EVANS, 1985). Os biótipos S e B afetam, respectivamente, plantas das famílias Solanaceae e a espécie Bixa orellana L., enquanto o biótipo L afeta plantas da família Bignoniaceae (principalmente Arrabidaea verrucosa (Standl.) A. H. Gentry), mas não causa os sintomas da doença no hospedeiro. O biótipo L é heterotálico (auto-estéril) e apresenta uma distribuição geográfica restrita (GRIFFITH, HEDGER, 1994). Evidências culturais e 19 moleculares sugerem uma maior identidade entre os biótipos B e C enquanto que perfis isoenzimáticos e o DNA mitocondrial diferenciam os biótipos S e C (GRIFFTH et al., 1994). O biótipo C é tipicamente homotálico (auto-fértil) e apresenta um ciclo de vida hemibiotrófico, no qual o fungo invade os tecidos meristemáticos da planta hospedeira como um parasita biotrófico, mas posteriormente cresce saprofiticamente sobre os tecidos mortos. O M. perniciosa provavelmente se originou na bacia amazônica e é o único patógeno do cacau que se desenvolve concomitantemente à planta (FIGURA 01). Seu surgimento na Bahia em 1989 foi responsável por 95% de perda na produção do cacau (PEREIRA et al., 1990; ISAAC et al. 1993), porém são conhecidas algumas variedades resistentes à doença em seu habitat natural (PURDY, SCHMIDT, 1996). Figura 01: Aspecto da doença vassoura-de–bruxa nos botões florais (a) e nos frutos de cacau (b) causados pelo M. perniciosa (Fonte: AIME, PHILLIPS-MORA, 2005). As estruturas capazes de infectar o cacaueiro em condições naturais são os basidiósporos uninucleados, produzidos em lamelas na parte inferior do píleo do basidioma onde os dois núcleos dos compartimentos hifais da hifa dicariótica da camada do himênio migram para dentro do basídio onde ocorre a fusão nuclear (LOPES, 2006). A penetração dos basidiósporos no hospedeiro se dá por meio de estômatos e ferimentos nas bases de tricomas lesados (SREENIVASAN, 20 DABYDEEN, 1989). A infecção se inicia com o crescimento dos tubos germinativos dos basidiósporos em tecidos meristemáticos da planta, como os brotos apicais, as flores e os frutos (MUSE et al., 1996; ORCHARD et al., 1994). O patógeno causa uma desordem fisiológica na planta, provavelmente alterando o seu balanço hormonal, o que resulta na hipertrofia e hiperplasia das células dos tecidos infectados. O brotamento de gemas laterais dos ramos é aumentado, dando o aspecto de uma vassoura, na qual os ramos são visivelmente mais espessos que o ramo original (LOPES, 2005 citando BAKER, CROWDY, 1943). A liberação dos basidiósporos ocorre quando as condições ambientais são de umidade próxima da saturação (>99% de umidade relativa) e a temperatura entre 20 a 30 °C (ROCHA, WHELLER, 1985). São libera dos à noite e sua dispersão se dá pela chuva e pelo vento. A altura em que os basidiósporos são produzidos é importante no desenvolvimento da doença (COSTA, 1993). Na superfície do solo as vassouras produzem poucos basidiomas e há uma menor chance dos basidiósporos atingirem os órgãos suscetíveis. Já nas áreas mais altas, a disseminação atinge maiores distâncias (ANDERBRHAN et al., 1993) de modo que as principais fontes de inóculo são as vassouras localizadas na copa (ANDEBRHAN et al., 1985; COSTA, 1993). É improvável que os basidiósporos se dispersem por distâncias superiores a 60 km, pois são sensíveis as radiações UVB e podem perder sua capacidade de germinação devido à dessecação (FRIAS et al., 1991; ANDEBRHAN et al., 1993). Estes basidiósporos penetram no hospedeiro ao atingirem os tecidos meristemáticos dos órgãos de plantas sadias e ocorre o desenvolvimento de hifas espessas, não-fibuladas localizadas intercelularmente nos tecidos infectados que caracterizam o micélio primário ou biotrófico. A dicariotização do micélio ocorre após um período que varia de três a nove semanas, ocorrendo a formação de um micélio secundário, com hifas mais delgadas (1-3 µm de diâmetro) e apresentando fíbulas (ansas ou grampos de conexão), que invade as células do tecido hospedeiro, levando à morte dos ramos. Esta é a fase saprofítica da doença denominada “vassoura seca”. Duas hipóteses explicam a morte da vassoura: a primeira, segundo Orchard et al. (1994), afirma que as células morreriam devido à infecção primária, induzindo a dicariotização do fungo enquanto que na hipótese formulada por Evans (1980), primeiro ocorreria a dicariotização, responsável pela fase saprofítica e, posteriormente, a morte da vassoura. Da quarta a oitava 21 semanas após o início das chuvas, os basidiomas se desenvolvem do micélio dicariótico dos tecidos necróticos, e produzem basidiósporos. As vassouras, agora necróticas e de coloração amarronzada, podem permanecer presas à planta ou se destacar e cair ao solo (ISAAC et al., 1993; PURDY, SCHMIDT, 1996). BAKER, CROWDY (1943) citados por Lopes (2005) descrevem que em locais onde a estação seca é bem definida, o fungo sobrevive de forma latente nas vassouras secas e frutos mumificados até o início da estação chuvosa, quando ocorre, então, novamente, a formação dos basidiomas (Figura 02). Figura 02: Ciclo de vida do M. perniciosa. As partes em azul e laranja do ciclo correspondem às fases biotrófica e saprofítica, respectivamente. Em verde, está delimitada à parte do ciclo do fungo na sua interação com a planta do cacau, e em amarelo, está a parte do ciclo que ocorre fora do hospedeiro (Adaptado de LOPES, 2005). 22 2.2. Parede Celular A parede celular é uma estrutura externa a membrana plasmática da qual depende a vida da hifa ou célula fúngica. É um arcabouço que sustenta a célula do fungo e ao mesmo tempo interage com o ambiente. Sua integridade é essencial à sobrevivência de suas hifas em ambientes hostis, e está presente nas hifas (fungos filamentosos) ou células (leveduras) dos diferentes grupos fúngicos (RONCERO, 2002). É ela que protege a célula fúngica contra variações osmóticas, químicas e biológicas, e está envolvida em várias outras funções incluindo morfogênese, expressão antigênica, adesão e interação célula-célula, e ainda desempenha papel fundamental no crescimento, desenvolvimento e interações dos fungos com o ambiente e com outras células (WESSELS, 1993). É uma estrutura onde a arquitetura e composição é regulada de forma coordenada com o crescimento da célula (CABIB, SBURLATI, 1989), tendo polissacarídeos e glicoproteínas como seus principais componentes (KOLLÁR et al., 1997). É altamente dinâmica e está sujeita às constantes mudanças, como, por exemplo, durante a expansão e divisão celular nas leveduras, e durante a germinação de esporos e formação de septos e crescimento apical de hifas em fungos filamentosos (ADAMS, 2004). Pesquisas de genômica e proteômica têm demonstrado que em ascomicetos há incorporação altamente controlada de um grande número de diferentes proteínas em suas paredes. A composição destas proteínas de parede celular pode variar dependendo da fase do ciclo celular em que se encontram, condições ambientais e o estádio de desenvolvimento (DE GROOT, et al., 2005). Na levedura Saccharomyces cerevisiae Meyen ex E.C. Hansen, a parede contém áreas representativas onde os quatro maiores componentes, quitina, β-(1,3)-D-glicano (Figura 03), β-(1,6)-D-glicano e manoproteínas, encontram-se ligados. A descoberta da existência dessas ligações covalentes entre estes diferentes constituintes confirma que os polissacarídeos têm uma função estrutural, conferindo a forma e a alta resistência da parede celular dos fungos (KOLLÁR et al., 1997) (Figura 04). Segundo Cabib et al. (2001), em leveduras, o β-(1,3)-D-glicano é o maior componente estrutural da parede celular, β-(1,6)-D-glicano está relativamente em menor quantidade, mas é muito importante para a formação de ligações cruzadas. 23 As manoproteínas formam uma camada localizada na superfície externa, e agem como um filtro para moléculas de grande peso. O polissacarídeo quitina é o que está presente em menor quantidade (1-3%), estando concentrado na região do septo, embora possa estar disperso através da parede. Ainda que esteja em menor quantidade, a quitina é essencial para a sobrevivência das leveduras, provavelmente devido ao seu papel central na formação do septo. Alguns autores consideram que a quitina é derivada da celulose, pois ambos os polímeros compartilham grande similaridade em estruturas moleculares e na função (MERZENDORFER, 2006). A quitina é um polímero linear de N-acetilglicosamina cristalino, cuja resistência se deve às ligações hidrogênio ao longo da cadeia enquanto está sendo formada (RONCERO, 2002). Análises de difração de raio-X mostram que a quitina é polimórfica, ocorrendo em três formas cristalinas, quitina-α, quitina-β e quitina-γ, que diferem principalmente no grau de hidratação, tamanho e números de cadeias de quitina na unidade celular. Na forma-α todas as cadeias têm orientação antiparalela. A quitina-β exibe um arranjo paralelo, enquanto que a forma-γ alterna duas cadeias antiparalelas com uma paralela (MERZENDORFER, 2006). A importância da quitina para a arquitetura da parede celular é bem documentada, tendo sido descrito várias décadas atrás que a inibição da sintase da quitina produz a morte celular. Em nível celular, a quitina é o resultado da atividade da enzima sintase da quitina (CS), descrita nos anos 50 por GLASER e BROWN (1957), enquanto que o gene correspondente só foi determinado em 1986 (CABIB, 1986). Recentemente a presença do gene codificador de CS foi reportada para outros grupos como insetos, bactéria, protozoários e vertebrados. O gene que codifica a sintase da quitina é chamado de chs (RONCERO, 2002). Segundo Wessels (1993), em Schizophyllum commune Fr., durante o crescimento da parede celular, novos polímeros de quitina e β-1,3-glicano são adicionados à parede em formação, interagindo para formar microfibrilas de quitina e hélices triplas de β-glicano. Em seguida, ligações covalentes entre esses polímeros são formadas e ocorrem ramificações. Novos polímeros são então lançados na região apical, mantendo a espessura da parede e determinando a morfogênese. A parede formada vai se consolidando à medida que ocorre o crescimento da hifa. 24 UDP-GlcNAc Sintase da Quitina UDP Quitina Figura 03: Polimerização da UDP-GlcNAc pela sintase da quitina para formar a quitina (Fonte: YEAGER, FINNEY, 2004). GPI Proteína Ancora β-1,3glicano Polissacarídeos anamorfos Quitina Proteínas (antígenos) Enzimas Transmembrana (Sintase da quitina) Figura 04: Representação da parede celular de A. fumigatus Fresen, com destaque para a biossíntese de α-1-3-glicano e quitina que são sintetizados por diferentes famílias de genes com diferentes funções, entre eles está a sintase da quitina (Fonte: BEAUVAIS, 2003). 25 A parede celular do fungo foi utilizada como o primeiro alvo para o desenvolvimento de agentes antifúngicos, assim como para a classificação taxonômica (RONCERO, 2002). Atualmente, embora esta classificação não seja muito utilizada, ainda reflete a maior diferença entre os grupos fúngicos. Células fúngicas destituídas de parede celular só podem sobreviver em condições de laboratório, onde o suporte osmótico previne a sua lise (RONCERO, 2002). A seleção da parede celular como alvo na busca de uma defesa efetiva justifica-se por ela ser essencial aos fungos, uma vez que não está presente em vertebrados e plantas, de modo que as rotas biossintéticas das moléculas que compõem a parede são importantes alvos para o desenvolvimento de agentes inibidores do crescimento destes patógenos (GEORGOPAPADAKOUS, TKACZ, 1995; RONCERO, 2002). 2.3. A sintase da quitina A sintase da quitina (E.C. 2.4.1.16) é uma enzima que desempenha importantes funções na diferenciação e morfogênese de fungos filamentosos, como o M. perniciosa, que possuem a quitina como principal componente estrutural de sua parede celular (RUIZ-HERRERA et al., 2002). Para a sua atividade, essa enzima utiliza um cátion bivalente (Mn+2 ou Mg+2) (MERZENDORFER, 2006) e o nucleotídeo UDP-GlcNAc, como doador de açúcar. A sintase da quitina pertence à família multigênica das glicosiltransferases (MÜLLER, et al., 2002). Com base na similaridade da seqüência, a sintase da quitina pertence à família 2 (GTF2), que contém seqüências de fungos, bactérias, plantas e animais. Análises filogenéticas indicam que as (MERZENDORFER, enzimas da GTF2 derivam de 2006). As glicosiltransferases um ancestral comum desta família, segundo Campbell et al., (1997), têm seu mecanismo catalítico nos resíduos de Asp e Glu das cadeias laterais, pois estes apresentam reatividade apropriada para agir como aceptor da ativação. A enzima sintase da quitina diferencia-se em cinco classes distintas, as quais apresentam variados níveis de expressão, a depender do estádio de seu ciclo de vida e sua localização. A classe III é muito importante no desenvolvimento dos fungos, pois atua na formação da parede celular, sendo responsável pela 26 síntese de 90% de toda a quitina da célula. Este metabólito é sintetizado em eucariotos por uma seqüência de cinco reações sucessivas: (i) conversão de Fru-6P em GlcN-6-P por glutamina-Fru-6-P amidotransferase (E.C. 2.6.1.16), (ii) acetilação de GlcN-6-P gerando GlcNAc-6-P por GlcN-fosfato acetiltransferase (E.C. 2.3.1.4), (iii) interconversão de GlcNAc-6-P em GlcNAc-1-P por Nacetilglicosamina fosfato mutase (E.C. 5.4.2.3), (iv) uridinação de GlcNAc-1-P por UDP- GlcNAc pirofosforilase (E.C. 2.7.7.23) e (v) conversão de UDP-GlcNAc no polímero quitina pela sintase da quitina (E.C. 2.1.4.16) (MIO et al., 1998, LAGORCE et al., 2002) (Figura 05). O consenso QRRRW é considerado uma assinatura da sintase da quitina, por estar presente em todas elas. Os aminoácidos deste motif têm sido apontados como o local direcionado à metagênese em leveduras, sendo essenciais para a atividade da enzima. Outras regiões conservadas podem ter importante papel na catálise (S/TWGTKG) ou no processo de transporte do polímero através da membrana (S/TWGT(K/R)) (MERZENDORFER, 2006). Atualmente, mais de 1500 genes Chs estão total ou parcialmente seqüenciados (NCBI, Acesso: 05.Jul.2007), embora poucos tenham sido caracterizados funcionalmente (RONCERO, 2002). Muitos desses genes, codificadores de sintase da quitina de diferentes eucariotos, incluindo fungos, vêm sendo clonados e caracterizados (SREENIVASAPRASAD et al., 2000), tornando esta enzima um alvo bastante atraente para o desenvolvimento de pesticidas e inibidores de sua atuação. Estudos da complexidade genética da sintase da quitina realizados por Roncero (2002), revelaram que os genes chs de insetos e nematódeos se agrupam com os das classes IV e V, o que sugere uma origem evolutiva comum para todos os chs. Além disso, o gene nodC de Sinorhizobium meliloti (Dangeard) De Lajudie também apresenta significativa similaridade com o gene chs. Com isso é possível propor que a origem do gene chs é muito antiga, e que ele divergiu de um gene já presente nos ancestrais das bactérias atuais. Em S. cerevisiae, o gene chs1 provavelmente codifica a maioria da CS in vitro, mas in vivo isto não foi comprovado. Foi demonstrado que a CS-I está envolvida na citocinese, ou seja, na divisão celular, sendo responsável pelo reparo da quitina após a divisão celular. Esta atividade se opõe ao papel da quitinase neste processo. O chs2 codifica a sintase da quitina que está envolvida na formação do disco de quitina que separa fisicamente a célula-mãe da célula-filha e constitui o 27 septo primário. Essa atividade é essencial para o crescimento em certas condições e o homólogo chs1, de Candida albicans (C.P. Robin) Berkhout, demonstrou ser essencial para a sobrevivência deste organismo. Scchs3 codifica a CS responsável por mais de 90% da quitina celular. A maior parte está localizada no anel que forma o broto embora uma parte menor esteja distribuída uniformemente pela parede celular. Os fungos filamentosos têm a família CS1 diretamente envolvida na manutenção da integridade da parede celular, enquanto que a família II está envolvida na formação da quitina (RONCERO, 2002). Glicose Glicolise Carboidrato de reserva Glicogênio/Trealose Glicose-6-P Frutose-6-P + Glutamina (1) Glicosamina-6-P + Glutamato Acetil-ASH CoASH (2) N-acetil-glicosamina-6-P (3) N-acetil-glicosamina-1-P PPi (4) UTP UDP-N-acetil-glicosamina-6-P (5) Quitina + UDP Parede Celular Quitina (β-1,4-poli-n-acetil-D-glicosamina) Figura 05: Rota metabólica da sintase da quitina na síntese da parede celular. (1) Glutaminafrutose-6-fosfato amidotransferase (EC 2.6.1.16); (2) Glicosamina fosfato N-acetiltransferase (EC 2.3.1.4); (3) fosfo-N-acetilglicosamina mutase (EC 5.4.2.3); (4) UDP-N-acetilglicosamina pirofosforilase (EC 2.7.7.23) e (5) Sintase da quitina (EC 2.4.1.16) (Fonte: LAGORCE et al., 2002; HOGENKAMP, 2006). 28 Células de leveduras com vários defeitos, incluindo mutações em alguns genes mostram significativo aumento na sintase da quitina, acompanhado por um aumento na síntese de várias proteínas de parede celular. Esses dados sugerem que estas células reagem contra os danos da parede celular pela ativação de um mecanismo compensatório que garante a sua estabilidade (GARCÍA-RODRIGUEZ, et al., 2000). Devido à integridade estrutural que a quitina provê a parede celular a sintase da quitina tem sido um excelente alvo para agentes anti-fúngicos (BOWMAN, FREE, 2006). 2.4. Determinação e caracterização de gene por primer walking Para seqüênciar um genoma com razoável velocidade, baixo custo (RAJA, et al., 1997) e confiabilidade, a estratégia empregada é um fator a ser considerado. Algumas das técnicas propostas são shotgun e primer walking. O shotgun é utilizado em projetos genomas de larga escala, mas a alta redundância de seqüências e grandes esforços para fechar intervalos (gaps) podem criar custos e problemas no processo de montagem dos contigs (HATTORI, et al., 1997). A estratégia de primer walking minimiza estes problemas, sendo feita com um mínimo de redundância (RAJA, et al., 1997), embora seja lenta e exija o desenho e a síntese de um variado número de oligonucleotídeos iniciadores ou primers (HATTORI, 1997). A metodologia de primer walking utiliza primers que se ligam em uma porção conhecida do DNA em estudo para determinar uma região adjacente, onde a informação da seqüência obtida será usada para o desenho de um novo primer que, por sua vez, possa seqüênciar uma porção além daquela conhecida. Pela repetição deste procedimento obtém-se uma extensão da seqüência desejada (AZHIKINA, et al., 1993). Esta técnica pode ser usada para “caminhar” ao longo da seqüência de DNA ou para buscar seqüências de nucleotídeos que devem ser desenhadas (PARKER, et al., 1991). 29 2.5. A busca pelo controle da doença Em 1957 foi criado pelo Governo Federal a "Comissão Executiva do Plano da Lavoura Cacaueira" (CEPLAC) para auxiliar os produtores de cacau no manejo das culturas. Porém, desde que a doença começou a dizimar as culturas de cacau na Bahia, um dos principais objetivos da CEPLAC tornou-se o estudo e desenvolvimento de técnicas para controlar a doença. Diferentes formas de controle vêm sendo empregadas contra a vassoura-de-bruxa, inclusive controle químico, podas fitossanitárias e seleção de clones resistentes. A eliminação de todos os tecidos infectados tem sido a principal medida de controle para reduzir a fonte de inóculo e os danos causados por M. perniciosa. O controle adequado da vassoura-de-bruxa depende da remoção das partes infectadas (BASTOS, 2000; RUDGARD, 1987; WHEELER, 1985) que consiste na remoção de grupos de vassouras infectadas (nas quais os basidiomas são formados antes da estação chuvosa), aplicação de fungicidas químicos e seleção de hospedeiros resistentes. Esta última medida tem sido a melhor opção para os cultivares da Bahia, e cultivares resistentes à doença vêm sendo selecionados a partir de germoplasmas selvagens. Este método de controle é preferido por seu baixo custo e por ser de mais fácil manejo do que a poda das partes infectadas, pois, para ser efetivo, a remoção das fontes de inóculo deve ser feita por todos os fazendeiros de uma determinada área (GRIFFITH et al., 2003). Estas estratégias aliadas à aplicação de fungicidas, no entanto, não foram suficientes para reduzir a disseminação do patógeno (ANDEBRHAN et al., 1995), já que o nível de infecção da planta determina a eficiência e o custo dessa prática (BASTOS, 1996a). A poda, por exemplo, só é efetiva quando realizada regularmente ou de forma intensiva. Embora esta seja eficaz em reduzir as fontes do inóculo, as infecções observadas em áreas onde foi realizado esse tipo de controle são provenientes das fontes não removidas ou daquelas localizadas em outras áreas (ANDEBRHAN, 1985). Portanto, o controle da doença se torna difícil se a poda não for generalizada, sendo necessária à aplicação de fungicidas para minimizar as perdas (ANDEBRHAN; BASTOS, 1980). Fungicidas para o controle químico da vassoura-de-bruxa, como o tebuconazol, por exemplo, não são suficientes, pois eles não protegem os tecidos em crescimento ativo, necessitando inúmeras pulverizações. Fungicidas sistêmicos 30 poderiam restringir o número de aplicações necessárias, no entanto, a maioria avaliada tem demonstrado eficiência somente em testes in vitro, não apresentando o mesmo comportamento em campo (TOVAR, 1991). Diferentes compostos químicos têm sido testados na tentativa de prevenir ou erradicar a vassoura-debruxa, porém os resultados não são satisfatórios (MCQUILKEN et al., 1998; SOBERANIS et al., 1999), pois o rápido crescimento da superfície dos frutos durante os dois ou três meses de desenvolvimento faz com que o fungicida tenha de ser aplicado freqüentemente, e isto é especialmente difícil em árvores altas (SOBERANIS et al., 2000). Como alternativa, tem sido utilizado o controle biológico, que envolve antagonistas capazes de suprimir a formação ou destruir os basidiomas de M. perniciosa em vassouras secas. Algumas espécies de Trichoderma sp. revelaram-se promissoras, não só no controle de fitopatógenos habitantes do solo (PAPAVIZAS, 1985) como também no controle daqueles que colonizam as partes aéreas de plantas (ELAD et al., 1993). BASTOS (1996a) demonstrou a eficiência de T. viridae Pers. no controle de M. perniciosa, com redução da incidência de frutos infectados, em comparação com os tratamentos por poda fitossanitária. Foi observada perda da viabilidade do micélio após o tratamento de culturas e de vassouras secas de cacau com suspensão de conídios de T. viridae, o qual parasita as hifas do M. perniciosa (BASTOS, 1996b). A elaboração de novas estratégias de controle através de estudos moleculares é uma das alternativas mais promissoras para o manejo da vassourade-bruxa. Estudos moleculares do M. perniciosa e sua interação com o T. cacao têm sido alvos de muitos projetos de pesquisas que visam elucidar a biologia do fungo e seus diferentes mecanismos de defesa. A partir do seqüenciamento do gDNA e do cDNAs das fases de desenvolvimento do fungo em sistema artificial e da interação Theobroma/Moniliophthora, importantes descobertas têm sido feitas, as quais têm contribuído para elaboração de uma estratégia eficiente no controle (SANTOS, 2005). Assim, o presente trabalho representa uma das etapas de um projeto proteômico que busca contribuir para o controle da doença vassoura-de-bruxa, tendo como ênfase encontrar um alvo molecular para que seja desenvolvido novos agentes químicos. A contribuição deste trabalho somado com outros da rede de genômica do estado da Bahia, poderá contribuir para a reversão do atual quadro sócio-econômico ligado à produção de cacau, e fazer com que o Brasil possa voltar 31 a ter uma das melhores, senão a melhor, posição entre os produtores da matéria prima do chocolate no mercado internacional. 3. MÉTODOS EM BIOLOGIA COMPUTACIONAL Os projetos genomas possuem como principal desafio o conhecimento da estrutura de novos alvos moleculares, principalmente proteínas e enzimas. A compreensão molecular de estruturas terá um papel cada vez mais significativo nos avanços de diagnósticos e tratamentos de doenças (SANTOS-FILHO, ALENCASTRO, 2003). Os projetos proteômicos possuem como objetivo estudar a função bioquímica de uma proteína, a qual pode ser definida por suas interações com outras moléculas, sendo a função biológica conseqüência dessas interações. Desta forma, a função de uma proteína é geralmente determinada por sua estrutura tridimensional, que esclarece o mecanismo enzimático e a interação com inibidores, mensageiros, receptores e transportadores. Por esta razão, é útil conhecer a estrutura 3D das milhares de seqüências de proteínas que surgem destes diversos projetos (SÁNCHEZ, ŠALI, 1998; KUNDROTAS, ALEXOV, 2006). Métodos experimentais para a determinação da estrutura da proteína nem sempre são bem sucedidos (SÁNCHEZ, ŠALI, 1998). Como exemplo, temos que proteínas da membrana celular raramente cristalizam, e também dificilmente podem ser tratadas de modo satisfatório por Ressonância Magnética Nuclear (RMN) (SANTOS FILHO, ALENCASTRO, 2003). Em 1971 foi estabelecido o Protein Data Bank (PDB), pelo Brookhaven National Laboratories, para arquivar as estruturas cristalinas de macromoléculas biológicas, sendo iniciado com apenas sete estruturas. Na década de 80 o número de deposições começou a crescer devido a implementos na tecnologia de processos cristalográficos e métodos de RMN. Grandes progressos vêm sendo realizados no campo de estruturas experimentais por cristalografia de raio-X e RMN, mas ainda consomem bastante tempo sem a garantia de sucesso (BERMAN et al., 2000). Assim, o número de proteínas estruturalmente caracterizadas (43.823 estruturas depositadas no PDB, até 07 de junho de 2007) é baixo em comparação com o número de proteínas com 32 seqüência conhecida (264.492 depositadas no banco de dados SWISS-PROT) (SCHWEDE, et al., 2003; SWISS-PROT 2007). Com o objetivo de superar as limitações experimentais, métodos computacionais foram desenvolvidos com base nos conceitos da Biologia e Química, os quais destacam-se os métodos ab initio, enovelamento (threading), e modelagem comparativa. Os métodos de predição ab initio concentram-se na construção de uma estrutura sem uma informação prévia. Estes métodos possuem pequenas bibliotecas de segmentos a partir dos quais as estruturas podem ser construídas, e também assumem que a estrutura nativa corresponde ao mínimo global de energia livre durante o tempo de vida da proteína. Assim o espaço estrutural a ser buscado no modelo é restrito. Desta forma, este procura encontrar uma região de mínimo através da exploração de várias conformações protéicas possíveis de existir. Ferramentas para a modelagem por este método estão disponíveis on line em http://www.bioinfo.rpi.edu/applications/i- sites/Isites/download.html e http://www.bioinfo.rpi.edu/~bystrc/hmmstr/server.php. No entanto, pouco é compreendido sobre o enovelamento de proteínas, o que torna esta metodologia ainda insipiente (HOLM, SANDER, 1998; YUAN, BYSTROFF, 2005). A metodologia de enovelamento (threading) é recomendada quando a similaridade é pequena entre uma dada seqüência problema com as disponíveis no PDB, ou quando, embora haja a mesma topologia, ocorram diferenças estruturais na região não conservada, ou mesmo no tamanho das seqüências (PANCHENKO et al., 2000). Diferente do método ab initio, em que todas as conformações possíveis são exploradas, nesta metodologia o espaço de pesquisa limita-se a conformação de estruturas conhecidas, podendo falhar para qualquer proteína com uma seqüência completamente nova (BRYANT, 1996). Vários exemplos destes métodos podem ser encontrados no site do Expert Protein Analysis System – ExPASy oferecido pelo Swiss Institute of Bioinformatics (http://ca.expasy.org/). Quanto à modelagem por homologia, esta se baseia no fato de que proteínas que estão correlacionadas evolutivamente, a partir de um ancestral comum, possuem função e estrutura semelhante, e por isso são ditas como proteínas homólogas entre si. Em outras palavras, a seqüência é menos conservada do que a estrutura. No entanto, o sucesso desta metodologia depende do quanto a seqüência entre as proteínas são similares entre si. A modelagem por homologia é 33 a ferramenta de predição melhor sucedida (SANTOS-FILHO, ALENCASTRO, 2003). Esta consiste em estudar a geometria e a propriedade das moléculas com técnicas computacionais, contribuindo para elucidar as interações intra e intermoleculares, mecanismos de reações químicas, estrutura e função de proteínas difíceis de serem purificadas em grande escala (FIGUEIREDO et al., 2005). A modelagem por homologia utiliza-se de dados cristalográficos conhecidos para determinar a estrutura de uma proteína não conhecida (FIGUEIREDO et al., 2005) baseando-se na semelhança estrutural e funcional, uma vez que as proteínas homólogas apresentam regiões internas conservadas, enquanto que suas principais diferenças estruturais estão nas regiões externas (SANTOS-FILHO, ALENCASTRO, 2003). Para realizar a modelagem por homologia costuma-se seguir uma rotina como: (i) localizar a estrutura de uma proteína conhecida; (ii) produzir o melhor alinhamento global possível entre a seqüência desconhecida (seqüência problema) e o modelo; (iii) construir um modelo do arcabouço da proteína, tendo o arcabouço da estrutura como modelo referência; (iv) nas regiões onde há lacunas (alvo ou molde), realizar a modelagem de alças para substituir os segmentos de extensão apropriada; (v) acrescentar cadeias laterais ao arcabouço do modelo; (vi) otimizar as posições das cadeias laterais e (vii) refinar a geometria obtida (GIBAS, JAMBECK, 2001) e finalmente, (viii) validar o modelo construído (GOLDSMITHFISCHMAN, HONIG, 2003; SANTOS FILHO, ALENCASTRO, 2003; PATNY, et al., 2006). Os moldes para a modelagem podem ser encontrados através de métodos de comparação de seqüências, tais como PSI-BLAST, ou baseados em métodos de threading seqüência-estrutura que podem ocasionalmente revelar relações mais distantes do que as puramente baseadas em seqüências (BAKER, ŠALI, 2001). Programas como o Swiss Model, um servidor de modelagem por homologia desenvolvido pelo Swiss Institute of Bioinformatics (SIB - http://swissmodel.expasy.org//SWISS-MODEL.html), auxiliam na construção do modelo, utilizando o programa Swiss PDB Viewer, que se trata de um ambiente gráfico interativo que analisa a proteína e a estrutura do ácido nucléico e, combinados com o servidor automatizado retornam a estrutura da nova proteína modelada (GUEX, et al., 2001). 34 Embora existam três distintas metodologias disponíveis para a geração de estruturas 3D de proteínas, a confiabilidade dos métodos ab initio e threading é muito pequena para problemas que requerem boa qualidade de informação estrutural como, por exemplo, o design de fármacos baseado na estrutura do alvo. Por outro lado, a modelagem por homologia é melhor sucedida em relação às demais. No entanto, esta somente fornece modelos razoáveis quando o grau de homologia entre as proteínas molde e alvo está entre 25-30% ou superior. Esta conclusão é baseada pela competição existente na área denominada de “Critical Assessment of techniques for protein Structure Prediction (CASP)”, a qual avalia as diferentes metodologias existentes para a predição de estruturas. (GIBAS, JAMBECK, 2001; HOLTJE et al., 2001) 3.1. Química Computacional Como existe uma necessidade de se entender o comportamento de biomacromoléculas, modelos teóricos são criados usando a Química Computacional como ferramenta. A química computacional simula estruturas e reações químicas numericamente, através de modelos matemáticos baseados em parte ou completamente nas leis fundamentais da física. Estes modelos permitem o estudo de fenômenos químicos por meio de cálculos realizados em computador antes de examinar estes fenômenos experimentalmente. Pode-se, portanto, “construir fenômenos” que sequer existem naturalmente, mudando a concepção filosófica de que o processo de fazer ciência está relacionado ao estudo de fenômenos dados pela natureza. Além da modelagem de moléculas estáveis, alguns métodos podem ser usados também na modelagem de intermediários de reação instáveis e mesmo estados de transição, fornecendo informações sobre moléculas e reações químicas impossíveis de serem obtidas através da observação. Portanto, a química computacional é tanto uma área de pesquisa independente quanto um importante complemento a estudos experimentais (FORESMAN, FRISCH, 1996). Existem várias metodologias dentro da Química Computacional, que são utilizadas a depender do fenômeno físico-químico e dos recursos computacionais disponíveis. Em se tratando de biomacromoléculas, utilizam-se os métodos 35 híbridos quantum-mechanical/molecular mechanical (QM/MM), e de mecânica molecular (MM). A metodologia QM/MM foi descrita pela primeira vez por Warshel e Levitt (1976). Estes métodos envolvem o tratamento de uma pequena região do sistema onde requer um formalismo mecânico-quântico (QM), por exemplo, onde requer quebra e formação de ligação, e trata a região remanescente da proteína e do solvente com um método de mecânica molecular, a qual possui menor custo computacional (WARSHEL, LEVITT, 1976). Esta metodologia híbrida tem sido desenvolvida devido ao alto custo computacional requerida pelos métodos QM quando aplicados a grandes sistemas (MONARD, MERZ, 1999). Neste trabalho, será dada ênfase aos métodos de mecânica molécula, uma vez que os métodos híbridos não foram utilizados por não se aplicarem ao problema em questão. Os métodos de MM usam as leis da mecânica clássica para prever a energia associada a uma dada conformação (estrutura) e propriedades moleculares. O modelo considera os átomos como esferas de raios característicos e as ligações como molas com diferentes elasticidades. A matemática relacionada à deformação de molas pode ser usada para descrever os movimentos (estiramentos, deformações e torções) e para calcular a energia potencial associada a eles (Figura 06) de modo a predizer a energia total associada a uma dada conformação molecular (FORESMAN, FRISCH, 1996). Figura 06: Movimentos atômicos de estiramento de ligação, de deformação angular, de torção e interação entre átomos não ligados. 36 A energia total da molécula, Etotal, é calculada pelo somatório de um conjunto de equações que descrevem as características atômicas. E total = Er + Eθ + Eφ + Enl + .... Onde Er é a energia associada a uma ligação que está sendo estirada ou comprimida em relação ao seu comprimento de ligação natural. De modo similar, o mesmo formalismo matemático é aplicado em relação aos ângulos de ligação, ângulos torsionais e a energia relacionada às interações entre átomos não ligados, Eθ, Eφ e Enl, respectivamente. Outros parâmetros físico-químicos também podem se adicionados à equação levando a cálculos mais apurados. Todas estas funções de energia potencial requerem dados (parâmetros) para descrever os diferentes tipos de átomos e ligações, obtidos experimentalmente ou através de cálculos ab initio1, e juntamente com os termos da equação, definem o que é denominado de campo de força. As equações usadas são relativamente simples e são desenvolvidas para uma determinada classe de compostos. Existem diferentes tipos de campos de forças que se diferenciam de acordo com a forma matemática dos termos de energia e caracterizam os diferentes métodos de mecânica molecular. Dependendo dos objetivos de estudo, outros componentes de energia podem ser incluídos (FORESMAN, FRISCH, 1996). Os métodos de mecânica molecular não consideram explicitamente os elétrons em um sistema molecular (baseiam-se em interações entre núcleos), embora os efeitos eletrônicos estejam implicitamente incluídos nos campos de força através da parametrização. Esta aproximação torna os cálculos de mecânica molecular computacionalmente rápidos, permitindo seu uso em sistemas muito grandes contendo até milhares de átomos. Entretanto, estes métodos possuem várias limitações, entre as mais importantes destacam-se: 1 Método ab initio em Química Teórica refere-se aos métodos baseados em aproximações da equação de Schrödinger, a qual fornece a energia do sistema além de outras propriedades moleculares. 37 a) Cada campo de força permite que se alcance bons resultados somente para uma classe limitada de moléculas relacionadas com aquelas as quais o campo de força foi parametrizado; b) Como não levam em consideração os elétrons, estes métodos não podem ser aplicados em problemas químicos onde os efeitos eletrônicos são predominantes como, por exemplo, em processos que envolvam formação ou quebra de ligações (FORESMAN, FRISCH, 1996; BYSTROFF, et al., 2004; YUAN, BYSTROFF, 2005; BYSTROFF, SHAO, 2002); c) Propriedades moleculares que dependem de detalhes da estrutura eletrônica também não são reprodutíveis pelos métodos de mecânica molecular (FORESMAN, FRISCH, 1996). Cálculos de mecânica molecular são preferencialmente usados no estudo de moléculas grandes, tais como proteínas, enzimas, polímeros, DNA, etc. como, por exemplo, em problemas que envolvam o reconhecimento molecular, processo fundamental dos sistemas bioquímicos e importante ponto de partida para a descoberta de novos fármacos (PATRICK, 2001). O modelo geral de interações fármaco-receptor molecular é equivalente ao modelo chave-fechadura das interações enzima-substrato. O alvo molecular ideal para um fármaco seria a de uma molécula cuja superfície fosse exatamente complementar a superfície do fármaco, em termos de forma, carga e energia potencial eletrostática. Esta metodologia é denominada de docking (BYSTROFF, SHAO, 2002), que é o estudo da interação ligante-enzima por métodos de mecânica molecular (MM) ou através de métodos híbridos, a qual fornece informações da interação entre o fármaco e o seu alvo biológico. De posse destas informações pode-se estudar as interações intermoleculares entre o ligante e a enzima-alvo, podendo, em uma etapa posterior, propor modificações do composto protótipo2 (BARREIRO, FRAGA, 2001; BYSTROFF, SHAO, 2002). Existem vários métodos de MM (campos de força) os quais diferem-se pela natureza das equações, assim como detalhes de suas parametrizações. Como exemplos de campos de força pode-se citar: SYBYL, MMX, MM3, ff94, ff99 2 Composto orgânico com desejável atividade biológica. Esta atividade normalmente é otimizada por diferentes métodos utilizados pela Química Medicinal, incluindo docking. 38 (Amber), UFF, CVFF, CHARMM, GROMOS dentre outros (FORESMAN, FRISCH, 1996). Ambos os métodos descritos anteriormente calculam a energia de uma estrutura molecular particular (arranjo espacial de átomos ou núcleos e elétrons), propriedades relacionadas à energia, e também executam a otimização da geometria, localizando a estrutura de menor energia próxima da estrutura de partida especificada. A otimização da geometria depende, primariamente, do gradiente da energia - a derivada primeira da energia em relação às posições atômicas (Figura 07), gerando assim a superfície de energia potencial (SEP) (FORESMAN, FRISCH, 1996). Figura 07: Superfície de Energia Potencial. 3.2. Emprego da química computacional na modelagem comparativa Proteínas obtidas, tanto por modelagem comparativa como por cristalografia, necessitam de refinamento (HOLTJE, et al., 2003). Durante a geração de modelos de proteínas os loops e as conformações da cadeia lateral, em geral, são criados aleatoriamente. Conseqüentemente, as conformações não correspondem a estruturas energeticamente razoáveis. Adicionalmente, estruturas cristalinas também precisam ser refinadas para remover comprimentos de ligação muito 39 extensos e interações atômicas não favoráveis (átomos muito próximos entre si). Em ambos os casos, esta desordem na posição dos átomos leva a formação de forças que resultam em movimentos distantes da estrutura original quando o processo de minimização se inicia. A metodologia geral para se eliminar esta condição consiste em “relaxar” o modelo de forma gradativa. Assim, os métodos de MM utilizam algorítmos para otimizar a geometria encontrando confórmero de menor energia na SPE. Os algorítmos aplicados para a otimização de geometria normalmente encontram regiões de mínimo nas SEP próximo as coordenas inicias (geometria de partida). Dentre os métodos de minimização de energia mais freqüentemente utilizados estão o Steepest Descent e Gradiente Conjugado, ambos utilizam técnicas que calculam a primeira derivada da energia (LIPKOWITZ, BOYD, 1990). O algorítmo de Steepest Descent calcula a energia da geometria inicial, e segue aplicando um pequeno movimento nos átomos, conforme parametrizado pelo campo de força que está sendo utilizado, gerando assim uma nova geometria. Desta forma, este processo é então repetido sempre buscando uma região de mínimo na superfície potencial. O processo total somente pára quando condições pré-estabelecidas, como valores de energia ou número de interações, são alcançadas. Como este método é lento, próximo às regiões de mínimo, é mais comumente utilizado somente para gerar uma geometria mais adequada para um outro algorítmo de minimização de energia mais sofisticado, como o Gradiente Conjugado (LIPKOWITZ, BOYD, 1990). O Gradiente Conjugado acumula a informação da função de uma interação anterior, calculando um novo vetor em direção à região de mínimo, gerando uma nova estrutura que será continuamente refinada. O custo computacional deste método é maior do que Steepest Descent. No entanto, isso é compensado pela sua eficiente convergência para a região de mínimo (LIPKOWITZ, BOYD, 1990). Dessa forma, para estruturas longe do mínimo são utilizados algorítmos como Steepest Descent para as 10-100 primeiras interações, e a seguir, o processo de refinamento é concluído com o método de Gradiente Conjugado ou um método que utiliza a segunda-derivada, como por exemplo, Newton-Raphson (HÖLTJE, et al., 2003). Se o modelo gerado é baseado somente em técnicas de modelagem comparativa, os loops e as cadeias laterais necessitam de um refinamento mais 40 apurado. Isto se deve ao fato que a geometria obtida pelo processo de otimização representa somente uma possível conformação encontrada pelo algorítmo na região de mínimo local. Sendo assim é necessário investigar o comportamento conformacional através da SEP para que se possa aproximar o máximo possível da região de mínimo global, encontrando a estrutura 3D mais favorável energeticamente. A metodologia para que possa resolver esta questão denominase dinâmica molecular (DM), que é um processo sistemático de busca conformacional, sendo uma ferramenta bastante útil para se encontrar várias regiões de mínimo da SEP (HOLTJE et al., 2003). As simulações de DM usam como estrutura de partida a geometria previamente refinada a qual aplica, de forma integrada, equações clássicas de movimento durante um período de tempo para o sistema molecular, em uma determinada temperatura. A trajetória resultante pode ser utilizada para observar o comportamento da molécula durante este período de tempo, sendo este o objetivo desta metodologia. Este método se baseia na MM, assumindo que os átomos interagem entre si de acordo com a parametrização empregada pelo campo de força. Diferentemente dos processos de otimização, dinâmica molecular é capaz de “vencer” barreiras rotacionais entre diferentes conformações. Dessa forma, é possível encontrar outras regiões de mínimo além da região próxima da estrutura de partida. No entanto, se estas barreiras são muito altas ou a estrutura possui um número muito grande de graus de liberdade, então possíveis confôrmeros podem não ser encontrados devido ao tempo utilizado pela simulação. Uma estratégia para contornar este problema é utilizar elevadas temperaturas. Os protocolos de DM geralmente usam as temperaturas de 300 K, 400 K e 600 K, fornecendo energia cinética suficiente para que as barreiras rotacionais de energia possam ser “ultrapassadas” entre diferentes confôrmeros, explorando melhor a SEP (HOLTJE, et al., 2003). A dinâmica molecular representa uma ferramenta adicional que pode ser usada para vasculhar as diferentes conformações possíveis de uma biomacromolécula. No entanto, o uso necessita de cuidados devido à escolha do método e as condições de simulação para que se possa assegurar a completa busca conformacional e a validade dos resultados (PATNY, et al., 2006). 41 4. MATERIAL E MÉTODOS Os passos seqüenciais utilizados para a identificação e caracterização da seqüência primária do gene da sintase da quitina em DNA genômico, e a caracterização da estrutura tridimensional da região filogeneticamente conservada da enzima, contendo o sítio catalítico, por modelagem comparativa é sintetizado no fluxograma mostrado na Figura 08. Busca e anotação de seqüências no Banco do Proj. Genoma M. perniciosa Desenho de oligonucleotídeos Extração e purificação de DNA total Amplificação dos fragmentos Sequenciamento de gDNA Análise das seqüências e contigs Análise filogenética Identificação de molde(s) Modelo final Modelagem comparativa Modelo inicial Refinamento do modelo Validação Figura 08: Fluxograma da metodologia utilizada para a determinação da seqüência primária do gene da sintase da quitina do fungo M. perniciosa e posterior construção do modelo 3D do provável produto gênico. 42 4.1. Busca e anotação das prováveis seqüências do gene da sintase da quitina do Banco de Dados do Projeto Genoma do M. perniciosa A busca de dados no banco de DNA genômico do Projeto Genoma do Moniliophthora perniciosa (http://www.lge.ibi.unicamp.br/vassoura/) compreendeu cinco etapas: (i) obtenção dos reads (seqüências) através de buscas textuais e buscas por similaridade (utilizando seqüências de gene), (ii) triagem dos reads coletados, (iii) montagem dos reads em contigs, (iv) triagem dos contigs obtidos, (v) análise comparativa da estrutura primária (seqüência) dos contigs e do provável homólogo aos níveis gênico e protéico (FAYYAD et al., 1996). A obtenção dos reads foi realizada através de buscas textuais, utilizando palavras-chave com os operadores booleanos, e buscas por similaridade, utilizando seqüências completas de genes e proteínas correspondentes de basidiomicetos já depositadas no NCBI/EMBL/DDDJ. Os reads resultantes das buscas textuais e por similaridade foram inspecionados com a finalidade de eliminar os que continham informações duvidosas ou espúrias, e apenas aqueles considerados de alta qualidade (valor E < 1 x 10-5, e seqüência com pelo menos 250 bases contíguas com valor Phred acima de 20) foram considerados como significativos e utilizados para as análises posteriores. A montagem do gene a partir de fragmentos derivados de seqüenciamento genômico do tipo shotgun, que corresponde à união de fragmentos (reads) com terminações similares (sobreposições) em fragmentos maiores (contigs), foi efetuada utilizando-se o programa Phrap (GREEN, 2007). Os contigs formados foram então avaliados através da análise comparativa por similaridade, utilizandose o BLAST (versão 2.2.16) (ALTSCHUL, et al., 1997) e o FastA (versão 3.4) (PEARSON, et al., 1997), com seqüências completas de genes e proteínas correspondentes de basidiomicetos já depositadas no NCBI/EMBL/DDDJ para avaliar as regiões conservadas e variáveis. Utilizou-se ainda o pacote de programas Lasergene versão 7.1.0 (BURLAND, 2000), para a inspeção e edição manuais dos contigs gerados, através da comparação com os eletroferogramas originais, sempre que necessário. 43 4.2. Desenho de oligonucleotídeos iniciadores Após a análise das prováveis seqüências do gene da sintase da quitina do Banco de Dados do Projeto Genoma do M. perniciosa, foram desenhados diversos oligonucleotídeos específicos (senso e anti-senso) que foram usados para determinar regiões não conhecidas de fragmentos de gDNA. Os oligonucleotídeos foram desenhados manualmente e verificados utilizando as informações geradas pela <https://www.operon.com/oligos/toolkit.php?> e a análise comparativa das seqüências através dos resultados da busca por similaridade com seqüências gênicas de basidiomicetos já determinadas, através do BLAST e FastA. 4.3. Extração e purificação do DNA total de M. perniciosa Para a extração do material genético do M. perniciosa utilizou-se o isolado CCMB 000257, obtido a partir de basidiomas coletados na Estação Experimental Sósthenes de Miranda (ESOMI) da CEPLAC, localizada no município de São Sebastião do Passé, Km 62/63 da rodovia Salvador-Feira de Santana, na região do Recôncavo da Bahia (12º 30’ S, 38º 29’ W). O DNA foi extraído da massa micelial crescida em meio de cultura líquido, a partir de plugs com micélio retirados de meio de cultura sólido ágar-batata-dextrose (BDA). O meio líquido era composto por LB e as culturas foram mantidas a 25 ºC, sob agitação constante de 250 RPM. A massa micelial (50-60 mg) foi macerada em nitrogênio líquido com um pistilo em um gral de porcelana. O material pulverizado resultante foi transferido para microtubos de 1,5 mL, contendo 400-650 mL de tampão de extração aquecido a 65 ºC. Utilizou-se o tampão de extração CTAB (brometo de N-acetil-n-n-ntrimetilamônio) modificado (100 mM Tris-HCl pH 8,1, 4 M NaCl, 2% CTAB, 20 mM EDTA, 1% PVP) (ROGERS, BENDICH, 1994). O DNA foi extraído duas vezes com clorofórmio-álcool-isoamílico (24:1), precipitado com isopropanol, e lavado com etanol 70%. A ressuspensão foi feita com água ultrapura previamente autoclavada. A análise qualitativa e quantitativa do material extraído foi realizada por meio de eletroforese (DNA de fago-λ, digerido com Hind III) e de espectrofotometria ultravioleta nos comprimentos de onda de 260 e 280 nm. 44 Os géis de agarose foram preparados em TAE 1x (Tris/ ácido acético/ EDTA) com SYBR Safe (Invitrogen®) a 1:10000, em concentrações de 1% e 1,2%. As amostras de DNA analisadas foram preparadas com o tampão de corrida bromofenol. A eletroforese foi feita em TAE 1x a 80 V, 70 mA e 70 W por 90 min. A visualização dos fragmentos de DNA foi visualizada através de transiluminador de luz ultravioleta. Após a corrida, os géis foram fotografados com o sistema de fotografia digital KODAK EDAS 290. 4.4. Amplificação de fragmentos de DNA genômico A reação em cadeia da polimerase (PCR) simétrica (SAIKI et al., 1988) foi à técnica empregada para amplificar, pelo método de primer walking, as regiões não conhecidas a partir de seqüências conhecidas (PARKER et al., 1991), utilizando-se várias combinações de pares de primers (direto e reverso) (Figura 09 e Tabela 01). Alvo Pchsic34 Alvo Pchsic13.3 Pchs54F 1700pb Pchsic54F Pchsic34F Pchsic13.3R Pchsic13.3F Pchsic34R Pchsic 54R 1100pb 1400pb Pchsic54R ≈ 4000pb 40 Figura 09: Esquema representativo do gene da sintase da quitina, com destaque para os fragmentos amplificados e seqüenciados neste trabalho. O icontig5 está representado em amarelo, icontig3 em azul e o contig4 em vermelho. Em branco estão as regiões inicialmente desconhecidas que foram determinadas por primer walking. As amplificações foram realizadas em um volume final de 25 µL, constituído por tampão de amplificação a 10x; mix de dNTPs a 10mM; MgCl2 a 50 mM; oligonucleotídeo específico a 10 pMol; DNA genômico de M. perniciosa (12,5 ng); Taq DNA Polymerase a 0,02 U/µL da Invitrogen® e água ultrapura autoclavada (q.s.p. 25 µL). 45 Os parâmetros das reações de amplificação foram os seguintes: desnaturação a 94 oC por 3 min., anelamento a 61,6 ºC por 45 seg., para o par Pchsic13.3F/ Pchsic13.3R; 59,7 ºC por 45 seg. para o par Pchsic34; e 65 oC para os demais primers, por 60 seg. e a extensão a 72 oC por 45 seg., perfazendo 34 ciclos com extensão final de 72 o C por 10 min. Controles negativos, sem DNA, foram preparados em cada uma das diversas séries de amplificação para se excluir a possibilidade de contaminação dos reagentes. Tabela 01: Oligonucleotídeos iniciadores utilizados para determinar as regiões desconhecidas do gene da sintase da quitina do fungo causador da vassoura-de-bruxa. Seqüência (5’ 3’) Primer Posição* Pchsic34-F ggT gAA CgT gCA gCA TAC ACg 2352 Pchsic34-R gCT CCC ACT ggT CCT Tgg AAg 2585 pchsc63-F CgA Cgg TCT CgA AgC AAT gg - pchsc63-R ggg CTg ATT CTg gCA CAT CCg 1814 Pchsic13.3-F CCA CCg TTg gTT gTT CAA CgC C 1192 Pchsic13.3-R gCC AAC gAA TgA TCC CCA Tgg 1644 pchs54-F CTA CTA Tgg CgA ATC gCC Cg Pchs54-R CAT TTA gTT CCg TCT gCA ACA TCT g 3422 ChsHindIII-F(13F) Agg gcA ACT TCA TCA CCg AgT ATC C 475 ChsXholI-R (13-R) CgT ggC TCg Agg gTgC ACC AgT Tg 1097 ChsHindIII-F(10F) ggg TAC gAA AgC TTg CgA TAA AgC C 2936 ChsXholI-R (10-R) gAA gTA CTC gAg ACA CTg TCA Tgg 3381 1 *Posição no provável gDNA Após o término da reação, 3,0 µL de cada amostra amplificada foi submetida à eletroforese em géis de agarose, na concentração de 1% e 1,2%, preparados em TAE 1x com SYBR Safe Invitrogen a 1:10000. As amostras de DNA para a análise em gel foram preparadas com o tampão de amostra azul de bromofenol (SAMBROOCK, RUSSELL, 2001). A eletroforese foi feita em TAE 1x com 70 V, 60 mA e 60 W por 90 min. A separação dos fragmentos de DNA foi visualizada através de transiluminador de luz ultravioleta e fotografados com o sistema de fotografia digital KODAK EDAS 290. Os produtos de PCR foram então purificados 46 com kit PureLink Invitrogen, adicionando-se 4x de tampão de ligação (fornecido pelo fabricante) com isopropanol para cada volume de produto de PCR (50-100 µL) contidos em uma coluna PureLink acoplada em um tubo de 1,5 mL. Em seguida, o material foi centrifugado em T.A. por 1 min. a 10.000 g, e a coluna transferida para um novo tubo. Adicionou-se 650 µL de tampão de lavagem (fornecido pelo fabricante) com etanol, seguindo para uma nova centrifugação, e após o descarte da solução filtrada, procedeu-se a uma nova centrifugação, em velocidade máxima por 3 min. para total remoção do tampão. A coluna foi transferida para um tubo de 1,7 mL, e adicionou-se 50 µL de tampão de eluição (10 mM Tris-HCl, pH 8,5) fornecido pelo fabricante. O material foi incubado por 1 min. e em seguida centrifugado por 2 min. à velocidade máxima. A coluna foi descartada e o material recuperado, contendo a amostra de DNA purificada (48 µL), que foi armazenada a 20 ºC, de acordo com as instruções do fabricante. 4.5. Seqüenciamento Os produtos de PCR purificados foram seqüenciados diretamente. Os mesmos iniciadores utilizados para amplificação (Tabela 01) foram também utilizados como iniciadores nas reações de seqüenciamento. Os amplicons purificados foram marcados com o Kit Big Dye Terminator Cycle Sequencing Ready Reaction (Applied Biosystems) de acordo com as recomendações do fabricante. As reações foram realizadas em microtubos de 0,2 mL em um volume total de 12 µL, sendo 4 µL de mistura do kit de seqüenciamento, 5 µL de água ultrapura, 1,0 µL (3,2 pmoles/µl) de solução do iniciador, e 20 ng de amplicon purificado. Após a reação de seqüenciamento, purificaram-se os produtos da reação através de precipitação com acetato de sódio 3 M pH 4,6 e etanol 95% resfriado, com subseqüentes lavagens (mínimo de duas vezes) com etanol 70%, seguido de secagem e ressuspensão do pellet em 18 µl formamida + EDTA. As seqüências foram obtidas através da eletroforese capilar em seqüenciador automático e foram feitas, no mínimo, duas repetições de cada fragmento, em ambos os sentidos (direto e reverso). 47 4.6 Análise das seqüências Os eletroferogramas obtidos foram analisados pelo programa FinchTV (versão 1.4.0) (Geospiza Inc.) e as seqüências correspondentes foram comparadas pelo SeqMan (versão 4.0) (BURLAND, 2000) e incorporadas aos contigs previamente analisados. As seqüências nucleotídicas dos contigs obtidos experimentalmente foram então traduzidas pelo EditSeq (BURLAND, 2000) em seqüências aminoacídicas nas seis possíveis fases de leitura e submetidas à análise comparativa por similaridade com seqüências completas de genes e proteínas correspondentes de basidiomicetos já depositadas no NCBI/EMBL/DDDJ, utilizando-se o BLAST (versão 2.2.16) e o FastX (versão 3.46) e Clustal W (http://www.ebi.ac.uk/clustalw/). A determinação das bordas de éxons-íntrons, e, conseqüentemente, do número, tamanho e estrutura primária dos íntrons no provável gene da sintase da quitina de M. perniciosa foi realizada tanto através da comparação com seqüências de DNA genômico dos genes homólogos de basidiomicetos como também através de um algoritmo baseado em redes neurais treinadas com bordas de éxons-íntrons dos genomas de espécies de Aspergillus (NetAspGene 1.0 Server) (http://www.cbs.dtu.dk/services/NetAspGene/). A análise de domínios e regiões conservadas da provável proteína foi efetuada utilizando-se o InterPro que integra 11 bases de dados proteômicos, como o UniProt (integra informações sobre proteínas contidas no Swiss-Prot, TrEMBL e pIR), ProSite (base de dados de famílias e domínios de proteínas), Pfam (dados de multiplas sequencias alinhadas), SMART (identificação e anotação de dominios e arquiteturas de domínios de famílias protéicas), o TMHMM v2.0 e TMPRED (domínios transmembranares) e SignalP v3.0 e PSORT (localização subcelular e presença de peptídio-sinal), Swiss Model (servidor de modelagem molecular por homologia), CATH (classificação estrutural de proteínas) e muitos outros. 48 4.7 Análise filogenética O conjunto de dados utilizados compreendeu as seqüências aminoacídicas completas da sintase da quitina, depositadas no NCBI/EMBL/DDDJ, de todos os táxons do clado fúngico com identidade igual ou superior a 50% (o que corresponde a um valor-E de 0,0 e score acima de 882 bits) à provável proteína da sintase da quitina de M. perniciosa, utilizando o programa BLASTp 2.2.17 (24-jun2007), com a matriz BLOSSUM 80. As árvores resultantes foram enraizadas no ramo cujo terminal é o Ascomycota Tuber borchii Kauffman (Pezizomycetes), uma vez que os Ascomycota são o grupo-irmão dos Basidiomycota e, dentro dos Ascomycota, os Pezizomycetes provavelmente originaram-se anteriormente aos grupos correspondentes às demais espécies amostradas (HIBBETT et al., 2007). Foram efetuadas análises filogenéticas nos programas PAUP 4.0b10 (SWOFFORD, 2002), PHYLIP versão (FELSENSTEIN, 2005) e Mr. Bayes 3.1 (RONQUIST, HUELSENBECK, 2003), utilizando métodos de distância, parcimônia máxima, verossimilhança máxima e bayesianos para os conjuntos de seqüências protéicas. Na análise pelo método de distância foram utilizadas as distâncias médias e o algorítmo do vizinho-mais-próximo (Neighbour-Joining ou NJ), enquanto que no modelo de parcimônia máxima, utilizou-se a parcimônia simples, sem pesagem, não considerando os indels como um outro caráter. Para a análise de verossimilhança máxima, utilizou-se o modelo de evolução molecular de proteínas JTT (Jones-Taylor-Thornton), com amostragem de todos os caracteres com taxas de evolução heterogêneas entre os caracteres, seguindo uma distribuição gama (alfa = 0,5). Na análise bayesiana, utilizou-se o modelo de BLOSSUM como probabilidade anterior, com a amostragem de todos os caracteres com taxas de evolução heterogêneas entre os caracteres também adotando uma distribuição gama (alfa = 0,5). A análise foi efetuada com 100.000 gerações, utilizando 4 cadeias distintas. A avaliação do suporte dos grupos formados nas árvores filogenéticas foi acessada por valores percentuais de reamostragem aleatória com reposição (bootstrap), utilizando-se 1000 pseudoreplicações (FELSENSTEIN, 1985), para as análises de distância, parcimônia e verossimilhança máxima, e valores percentuais 49 de probabilidades posteriores para a análise bayesiana. As árvores geradas foram editadas utilizando-se o programa TreeView versão 1.6.6 (PAGE, 1996). 4.9 Determinação da estrutura 3D: Modelagem da região conservada contendo o sítio ativo A predição da estrutura 3D da região conservada da sintase da quitina foi realizada por modelagem comparativa (GOLDSMITH-FISCHMAN, HONIG, 2003; SANTOS FILHO, ALENCASTRO, 2003), utilizando métodos computacionais como ferramentas do Swiss PDB Viewer (versão 3.7), que permite a submissão de uma seqüência, retornando respostas por processos automatizados, como no processo de modelagem por homologia descrito por Gibas, Jambeck (2001). 4.9.1 Identificação e alinhamento seqüencial da proteína molde Assim, a seqüência primária da região conservada da proteína foi submetida ao PSI-BLAST (ALTSCHUL et al., 1997) contra as proteínas presentes no Protein Data Bank (PDB) (BERMAN, et al., 2000). Dessa forma, foram selecionadas estruturas de proteínas conhecidas como molde(s), que apresentaram grau de homologia igual ou superior a 25% (GOLDSMITH-FISCHMAN, HONIG, 2003). Como a busca por um molde para toda a região selecionada não retornou resposta, seguiu-se para a divisão da região conservada em quatro partes aleatórias, buscando manter a região do provável sítio ativo em uma única porção. Os fragmentos da região conservada foram novamente submetidos ao PSI-BLAST, obtendo-se os moldes esperados. O molde e a seqüência alvo foram alinhadas pelas ferramentas disponíveis no Swiss PDB Viewer (versão 3.7) e em seguida foi submetido ao Swiss Institute of Bioinformatics (SIB), que é um servidor de modelagem por homologia (Figura 10). 50 A B Figura 10: Processo de alinhamento da seqüência problema com o molde. A: em verde, fragmento da estrutura primária da seqüência de sintase da quitina de M. Perniciosa, em vermelho está a região da seqüência que apresenta identidade com o molde, e em laranja, a região do molde que tem identidade com a seqüência; B: Estrutura e molde alinhados, com a estrutura molde sobreposta pela seqüencial problema (Fonte: Swiss PDB Viewer 3.7). 4.9.2 Construção e refinamento do modelo O modelo 3D da proteína-problema foi construído através da metodologia de corpos rígidos (SANTOS FILHO, ALENCASTRO, 2003). Para o seu refinamento, foram utilizados dois métodos de MM, MM3 (LII, ALLINGER, 1989) e ff99, conhecido também como Amber (CASE, et al., 2004; PEARLMAN et. al., 1995). Os cálculos envolvendo os método MM3 foram executados no programa BioMedCache 6.1 desenvolvido pela Fujitsu (2005) usando computador tipo PC em ambiente Windows, presente no Laboratório de Modelagem Molecular da Universidade Estadual de Feira de Santana, enquanto os cálculos realizados pelo campo de força ff99 foram executado pelo pacote Amber 8.0 (CASE, et al., 2004; PEARLMAN et. al., 1995) utilizando a estação de trabalho RedWood, presente no Mississipi Center for Supercomputing Research (MCSR) da University of Mississipi via acesso remoto (Figura 11). Ambos os pacotes possuem rotinas para minimização de geometria e simulação por dinâmica molecular de biomacromoléculas. No entanto, as proteínas foram previamente preparadas pelo programa tLEaP, presente no pacote Amber 51 8.0, a qual gerou uma proteína com carga neutra sendo utilizada tanto no BioMedCache como no Amber 8.0 (CASE, et al., 2004). Após a neutralização da proteína, foi realizado um prévio estudo cujo o objetivo foi determinar qual seria a distância das interações de Van der Walls para átomos não ligados a ser empregado em todos os cálculos a seguir. Esta distância é denominada de cut-off, e a sua prévia determinação é importante uma fez que quanto maior é esta distância, maior também é o custo computacional (tempo de processamento e memória), sendo que isto necessariamente não traduz em uma alteração significativa na geometria durante o processo de refinamento. Para isso, variou-se o valor de cut-off entre 3 a 20 Ǻ através de cálculos single point pelo método MM3. Para o refinamento do modelo foi feita a sua minimização, que consistiu em encontrar a melhor conformação da molécula na superfície de energia potencial através dos algorítmos Steepest Descent e, posteriormente, Gradiente Conjugado. Ambas as metodologias buscam uma região de mínimo na SEP, sendo o gradiente conjugado descrito como mais sofisticado (HOLTJE, et al., 2003). A seguir iniciou-se a etapa de refinamento do modelo através de otimização de geometria, sempre através dos algorítmos Steepest Descent e, posteriormente, Gradiente Conjugado, seguido de simulações de dinâmica molecular (DM) nos dois métodos, a qual foi empregado protocolos distintos entre si. Através do método MM3 (BioMedCache 6.1), foram executados uma série de cálculos de otimização com 300 passos, seguidos de simulações de DM. Inicialmente, os átomos da cadeia principal e das alfa-hélices foram fixos, e a cada ciclo de otimização e DM as alfa-hélices foram relaxados uma a uma ,sempre a estrutura de menor energia para o cálculo seguinte, até que se obteve uma estrutura final completamente livre. O primeiro ciclo foi realizado à 1.000 K, e os ciclos posteriores à 600 K. Todas as simulações foram realizadas por 50 ps, gerando 2501 estruturas (FUJITSU, 2005). Paralelamente, a proteína modelo também foi refinada pelo campo de força Amber. Neste caso, a proteína foi otimizada com 800 ciclos para cada algorítmo descrito acima. A seguir, a estrutura de equilíbrio foi submetida à simulações de DM, por 300, 1000, e 200 e 3000 ps à 300 K, incluindo uma adicional simulação por 300 ps à 600 K, obtendo no final do processo 5.000 estruturas diferentes em casa simulação (CASE, et al., 2004). Dessa forma, no final do processo obteve-se dois 52 modelos por diferentes métodos. As estruturas geradas por ambos os programas foram descritas graficamente. Este processo permitiu obter uma estrutura refinada, a qual se encontra em uma região de mínimo na SEP, além de permitir estudar o movimento atômico, avaliar o comportamento termodinâmico e observar a estabilidade da proteína. Swiss Model Construção do Modelo BioMedCache Neutralização: tLEaP AMBER Determinação de cut-off BioMedCache AMBER BioMedCache Congelamento da cadeia principal e α-Hélices Minimização Minimização Steepest Decent Steepest Decent Gradiente Conjugado Gradiente Conjugado Dinâmica 1000 K/50 ps Minimização Steepest Decent Liberação de um turn por vez em cada α-Hélices Dinâmica 300 K/300, 1000, 2000, 3000 ps Dinâmica 600 K/300 ps Modelo Proposto Figura 11: Fluxograma da metodologia para construção do modelo. 53 4.9.3. Validação O modelo foi avaliado sobre a qualidade do efeito estérico da cadeia principal (ŠALI, BLUNDELL 1993) utilizando o programa Procheck (Versão 3.0). Este programa gera variados gráficos que demonstram a qualidade geométrica, através das coordenadas da estrutura da proteína, estabelecendo uma pontuação para a qualidade estérica do modelo em estudo. Neste programa é possível gerar o gráfico de Ramachandran, que determina os ângulos de torção ω (Phi) e φ (Psi) dos resíduos da estrutura. Separadamente é gerado um Ramachandran para os resíduos de glicina e prolina, pois estes aminoácidos diferem dos demais em sua conformação, e conseqüentemente, sua região favorável também é diferente. Em um terceiro gráfico é representado os ângulos de torsão chi1 e chi2 pra todos os resíduos. A qualidade do Ramachandran, planaridade das ligações peptídicas, má interação entre os átomos não-ligados, energia de ligação hidrogênio na cadeia principal, propriedades da cadeia lateral e outros parâmetros também são ilustrados pelo Procheck 3.0 (LASKOWSKI et al., 1994). Uma outra opção de validação utilizada é o ANOLEA (Atomic Non-Local Environment Assessment), também disponível pelo Swiss Model. Segundo MELO e FEYTMANS (1998) este método calcula o somatório da interação dos átomos, dentro de um raio de 7 Ǻ, para cada um dos aminoácidos (Atomic mean force potencial - AMFP) obtendo o perfil de energia potencial da estrutura de uma proteína, demonstrando quanto o ambiente químico ao redor do átomo contribui para a sua estabilidade. Este cálculo gera uma pontuação para cada aminoácido que é demonstrado graficamente. As menores pontuações são encontradas em loops ou regiões de diferença entre o molde e a proteína alvo (GUEX, PEITSCH, 1997; GUEX et al., 2001). 54 5. RESULTADOS E DISCUSSÃO 5.1. Seqüenciamento do gene da sintase da quitina A busca no banco de dados do Projeto Genoma do Moniliophthora perniciosa retornou 72 reads, com os quais foram formados 19 contigs. Nenhum dos contigs formou o gene inteiro da sintase da quitina, mas alguns deles tiveram um valor-E consideravelmente negativo, o que significa ser este um alinhamento altamente significativo e não devido ao acaso, sendo os mais adequados para os estudos funcionais. Três deles (iContig3, iContig4 e iContig5) apresentaram significativa identidade à sintase da quitina de Agaricus bisporus, sendo mapeados com sucesso, no citado produto gênico, com uma cobertura descontínua de 76%, com dois intervalos na região central do gene (Figura 12 e Tabela 02). MGDFKPSPNSSQTRIDNYGDPFADRPRQTQFVEPERPYGSSASARPFESSASLPQDLGGGFDDEEYV EKLPLNTGGNFAGGFYPPGPVDPSAYGDSHIHPGRPSSVVSTSTNGVDSAWRRRQTIKRGVTRKVKL TQGNFIAEYPVPTPILNAVEDKWKSTNKTEFSHMRYTAATVDPDEFSEENGWSLRTKMYNRDTEILI AVTSYNEDKTLYARTLHGVMLNIRDICKTKQSKYWRRHAEEGTPGWQKITVALIVDGLEPMDKTVLD ILATIGVYQDGVMKKQVDGKDTVAHIFEYTTQLSVDATPQLVLPRAEDPNNLVPVQIIFVLKAQNQK KINSHRWLFNAIGRMLNPEICVLIDAGTKPGHKSIYYLWEAFYNDPHLGGCCGEIHAMIKGGKKLLN PLVAAQNFEYKMSNILDKPLESSFGYVSVLPGAFSAYRFQAITGCPLEQYFHGDHSLADRLGPKGIY GMNIFTKNMFLAEDRILCFELVAKAKDRWTLTYVKPSKAETDVPESAAELIGQRRRWLNGSFAASVY ALVNFFKLYRSGHGIIRMFFLHIQGLYNVFSLIFSWFALANMWLTFSIIIDLVPSQGIVIFGTETVT HWVNLSFKWLYLSFLALQFILALGNRPKGERMAYVATLWVYGFLAVYLLVCSFALTIKAFKNIPNEL SFEGKSAGEIVLQFFEPPVGALIAAMISTYGIYLVASFLYRDPWHMFSSFLQYLCLAPSFTNVLNVY AFCNLHDVSWGTKGSDKAEALPSVSSSKTKGADMAVVEDTTKIQEDVDAAFKETVTRAITKIESKEV VEKPTMDDQNKTFRTRLVSLWMLSNATLAIAIENISGLPSKDPSVDADTLQKRQSTYFAIILYSTFG LAMVRFIGCLFYFFKRNLFRCCRKNRLFQVVNGHDSSF Figura 12: Chs1 de Agaricus bisporus (909aa). Destaque para a delimitação das regiões de similaridade, obtida por BLAST, com contigs de M. perniciosa. Amarelo: icontig 5 - Fase de leitura -88 +1: Valor-E = 1e , Identidade = 55%, Positividade = 63%, Gaps = 12%, Fase de leitura +2: Valor-E -37 -37 = 1e , Identidade = 91%, Positividade = 98%, Gaps = 0% e Fase de leitura +3: Valor-E = 1e , Identidade = 83%, Positividade = 91%, Gaps = 0%; Azul: icontig 3 - Valor-E = 6e-37 Identidade = 78%, Positividade = 81%, Gaps = 0%; Verde: icontig 4 - Valor-E = 1e-82, Identidade = 58%, Positividade = 66%, Gaps = 24%, 690 aminoácidos (aprox. 76% do total de 909 aa). Aminoácidos em negrito correspondem ao alvo do par de primers Pchsic13.3 e Pchsic34, respectivamente; Aminoácidos grifados representam a região de anelamento do Pchsic13.3, em vermelho, e do Pchsic34, em azul. 55 Tabela 02 – Seqüências do M. perniciosa relacionados aos genes da sintase da quitina em Agaricus bisporus (Número de acesso: emb|CAB96110.1) identificados por BLASTx. Reads Contigs Valor-E CP02-S3-000-118-A08-UC.G CP02-PF-096-002-C08-UC.F CP02-PF-096-002-C08-UC.G 3 6e-37 CP02-S2-000-036-D04-EM.R CP02-S2-000-166-A03-CL.F CP02-S2-000-166-C10-UC.F 4 1e-82 CP02-S1-000-007-A08-CL.F CP02-S2-038-242-G02-EM.F CP02-S2-000-180-A03-UC.F CP02-S2-000-138-A09-EM.R CP02-S1-000-015-C08-EM.F CP02-S2-000-032-G09-EM.R 5 1e-88 O resultado do BLASTx do iContig5 mostrou ainda significativa similaridade com o início do gene da sintase da quitina de Pleurotus ostreatus (Jacq.) P. Kumm. (6 e-72) e Coprinopsis cinerea (Schaeff.) Redhead, Vilgalys & Moncalvo (2e-69). Na busca de um provável códon de iniciação para representar a metionina da sintase da quitina do M. perniciosa, com a região inicial do iContig5, traduzida para a fase de leitura +1, de acordo com o BLASTx, pôde-se encontrar uma metionina a sete aminoácidos antes do início do códon encontrado no BLAST do icontig5 comparada à seqüência de AbChs1, mostrando-se como um indício de que esta seja a região 5’ do provável gene CHS do M. perniciosa. Esta mesma região também resultou num alinhamento com 100% de identidade, entre as regiões iniciais dos genes de Puccinia graminis Pers. e P. ostreatus (Figura 13). Outra evidência para essa suposição é a presença de uma região rica em AT, com 6 nucleotídeos (TTAATT), correspondendo a um sinal de transcrição inicial, a exatamente 39 nucleotídeos antes do provável códon de iniciação, indicando ser a região promotora do gene alvo (Figura 14). Isso confirma a informação de que genes eucarióticos apresentam uma região promotora conhecida como TATA BOX numa faixa de 35 a 40 nucleotídeos antes do códon de iniciação (SMALE, KADONAGA, 2003). 56 iC5-MpChs A.bisporus P.ostreatus P.graminis MANRPPLP------------------SNA--SSSTVNDPYA--DPFADRPRQ MGDFKPSPN----------------------SSQTRIDNYG--DPFADRPRQ MSNTPPTPRFDAPRPSTPLSLMPSQGRSGSLSSTPEPSVYGGDDPFGDSRSQ MSPHRNDPFSDQPNPDL--------GRYHLS--DNDDSFTG--QPPVDNHHY 30 28 52 40 Figura 13: Alinhamento entre o icontig5 de M. perniciosa e a região inicial da seqüência codante do cDNA da CHS de M. perniciosa com A. Bisporus (emb|CAB96110.1), P. ostreatus (dbj|BAF37219.1) e P. graminis (gb|ABB70409.1) (Fonte: Resultados experimentais, http://tcoffee.vital-it.ch/). A iC5: CCATCTTGCCCTTGCCTCGCTTTCTGTCACGACTCTTGTTGCTTAATTCTT iC5: TCCTTAGCTTTCAGTTTTTTTCTTCCTTTGACTACTATGGCGAATCGCCCG +1: M A N R P iC5: CCACTCCCTTCAAATGCTTCTAGCTCTACAGTCAATGATCCTTATGCAGAC +1: P L P S N A S S S T V N D P Y A D B Figura 14: A - Tradução da região inicial do iContig5 na fase de leitura +1. A - Os aminoácidos em azul representam o início da similaridade, por BLASTX, com A. bisporus; destaque, em verde, para o provável códon de iniciação que está situado a sete aminoácidos antes do início do BLAST, com o sexto aminoácido da referida enzima. Em vermelho, provável região promotora (TATA BOX), B Cromatograma do sequenciamento da placa CP02-S1-000-015-C08-EM-F na região do provável TATA BOX, disponível no banco de dados do genoma do M. perniciosa (Fonte: Resultado experimental gerado pelo programa FinchTV). A tradução do iContig3, na fase de leitura +2, revelou a presença do domínio QRRRW, considerado como a assinatura da sintase da quitina em leveduras e fungos filamentosos. Esta informação foi confirmada também por BLASTx e em alinhamentos, onde se pode perceber 100% de identidade nas seqüências completas de sintase de quitina de Basidiomycota (Figura 15). Esta região também é indicada como provável região do domínio catalítico (TELLAM, et al. 2000). O DNA total do M. perniciosa foi extraído da massa micelial segundo Rogers e Bendich (1994) e analisado em gel de agarose 1%. Com a espectrofotometria 57 ultravioleta nos comprimentos de onda de 260 nm determinou-se que o material extraído apresentava uma massa de 3.972 ng/µL. A partir das seqüências obtidas no banco de dados foi possível construir pares de primers com os quais foram feitas as amplificações dos fragmentos desconhecidos. O fragmento menor com cerca de 290 pb foi obtido com o par de primers Pchsic34F e Pchsic34R, e o par Pchsic13.3F e Pchsic13.3R originou um fragmento maior com aproximadamente de 480 pb (Figura 16), como o esperado. Mperniciosa Abisporus Ccinerea824 Postreatus Ccinerea864 Cneoformans901 Cneoformans931 Umaydis Pgraminis868 Pgraminis977 GKKLLNPLVAAQNFEYKMSNILDKPLESSFGYVSVLPGAFSAYRYRAILGRPLEQYFHGD GKKLLNPLVAAQNFEYKMSNILDKPLESSFGYVSVLPGAFSAYRFQAITGCPLEQYFHGD GKKLLNPLVAAQNFEYKMSNILDKPLESSFGYVSVLPGAFSAYRFKALLGRPLEQYFHGD GKKLLNPLVAAQNFEYKMSNILDKPLESSFGYVSVLPGAFSAYRYRAILGKPLEQYFHGD GKRLLNPLVAAQNFEYKMSNILDKPFESSFGYVSVLPGAFSAYRYRAIQGRPLEQYFHGD GVKLFNPLVAAQNFEYKMSNILDKPLESSFGYVSVLPGAFSAYRYKAIQGRPLTQYFHGD GVKLFNPLVAAQNFEYKMSNILDKPLESSFGYVSVLPGAFSAYRYKAIQGRPLTQYFHGD GRKLINPLVAAQNFEYKMSNILDKPLESTFGYVSVLPGAFSAYRFRAIQGRPLQQYFHGD GKKLINPLVAAQNFEYKMSNILDKPLESAFGYVSVLPGAFSAYRFRALSGRPLQQYFHGD GKKLINPLVAAQNFEYKMSNILDKPLESSFGYVSVLPGAFSAYRYRAILGRPLQQYFHGD * :*:********************:**:***************::*: * ** ****** 461 456 384 479 417 429 464 504 434 495 Mperniciosa Abisporus Ccinerea824 Postreatus Ccinerea864 Cneoformans901 Cneoformans931 Umaydis Pgraminis868 Pgraminis977 HSLADRLGPKRYYGNEHLHQEHVLAEDRILCFELVAKKNDRWTLTYVKPSKAETDVPESA HSLADRLGPKGIYGMNIFTKNMFLAEDRILCFELVAKAKDRWTLTYVKPSKAETDVPESA HSLADRLGPKGIHGMSIFTKNMFLAEDRILCFELVAKKGDRWTLTYVKPSKAETDVPESV HSLADRLGAKGIHGMSIFTKNMFLAEDRILCFELVAKAGDRWTLTYVKPSKAETDVPESA HSLADRLGEHGINGMSIFQKNMFLAEDRILCFELMAKRGEKWTLGYVKDSKAETDVPETA ATLAARLGKKGIYGMGIFTKNMFLAEDRILCFELVAKKGEKWVLQYVKPSKAETDVPEQA ATLAARLGKKGIYGMGIFTKNMFLAEDRILCFELVAKKGEKWVLQYVKPSKAETDVPEQA HTLADRLGKKGLHGMDIFTKNMFLAEDRILCFELVAKAGDKWTLTYVKPSKGETDVPEGA HTLADRLGKKGLNGMGIFTKNMFLAEDRILCFELAAKANDAWLLSYVRAAKGETDVPEQA HSLSERLGKKGIQGMGIFKKNMFLAEDRILCFELVAKAKSRWVLGYVKPAKGETDVPEQA :*: *** : * : :: .*********** ** . * * **: :*.****** . 521 516 444 539 477 489 524 564 494 555 Mperniciosa Abisporus Ccinerea824 Postreatus Ccinerea864 Cneoformans901 Cneoformans931 Umaydis Pgraminis868 Pgraminis977 PELIGQRRRWLNGSFAASVYALVNFFKLYQSGHGIFRMFFFHVQALYNIFSLVFSWFSLA AELIGQRRRWLNGSFAASVYALVNFFKLYRSGHGIIRMFFLHIQGLYNVFSLIFSWFALA AELIGQRRRWLNGSFAASVYALVNFFSFYRSGHGPIRMFFFHIQAIYNVLSLVFSWFALA AELIGQRRRWLNGSFAASVYALVNFFKIYKSGHGIIRLFFLHLQALYNSFSLFFTWFALA PELIGQRRRWLNGSFAASIYALVHFWRVYQSGHNFVRIFFFHIQALFNAFNLFFSWFALA AELISQRRRWLNGSFAASVYSVFHFFRLYRSGHGPIRMLFLHIQAIYNVFSLIFSWFALA AELISQRRRWLNGSFAASVYSVFHFFRLYRSGHGPIRMLFLHIQAIYNVFSLIFSWFALA AELISQRRRWLNGSFAASIYSLVHFFRIYKSNHGIIRLFFLHIQALYNAIVLLFSWFALA AELISQRRRWLNGSFAASIYATIHFFRFYKSSHNPIRLLMFHVQALFNIFQLIFTWFSLA AELIGQRRRWLNGSFAAGIYSLAHFSRMYSSSHGIVRMFFLHVQAFYATAGLIMSWFALG .***.************.:*: :* .* *.*. .*::::*:*.:: *.::**:*. 581 576 504 599 537 549 584 624 554 615 Figura 15: Alinhamento mostrando a região do domínio característico das sintases da quitina e provável sítio catalítico em Basidiomycota. Com diferentes combinações dos pares de primers construídos para a sintase da quitina foi possível também realizar a amplificação de todo o gene, com extensões diferentes e contínuas (Figura 17). Com os pares Pchs54F/Pchsic13.3R, 58 Pchsic13.3F/Pchsic34R e Pchsic34F/Pchs54R obtiveram-se amplicons de diferentes regiões do gene em estudo que apresentaram, respectivamente, 1700, 1400 e 1100 pb. Com o par Pchs54F/Pchs54R o gene da sintase da quitina foi amplificado por inteiro, apresentado cerca de 4 kb. Os fragmentos amplificados foram seqüenciados, confirmando as informações dos experimentos anteriores, bem como aquelas contidas no banco de dados do projeto. A montagem de contigs, a partir dos fragmentos amplificados e seqüenciados, sugere que no M. perniciosa há, pelo menos, um gene da sintase da quitina. M 1 2 3 4 500 pb Figura 16: Análise eletroforética dos produtos de amplificação do DNA total do M. perniciosa via PCR. No gel de agarose a 1,0% foi aplicado 3 µL do produto da reação de amplificação em cada poço. A eletroforese ocorreu por 90 min., 60 v e 50 mA. M - Marcador de massa molecular 100 base pair Ladder da Fermentas®. Condições experimentais: 2,5 µL de tampão de amplificação a 10x; 0,5 µL do mix de dNTPs a 10 mM; 0,8 µL de MgCl2 a 50 mM; 1,0 µL de cada oligonucleotídeo específico a 10 pMol; 1,0 µL de gDNA de M. perniciosa (12,5 ng); 0,13 µL de Taq DNA Polymerase (5U/µL) da Phoneutria® e água ultrapura (q.s.p. 25 µL). 1 e 2 - Fragmentos de cerca de 290 pb obtido com o par de oligonucleotideo Pchsic34F e Pchsic34R. A desnaturação procedeu-se a 94 ºC por 1 min, anelamento a 59,7 ºC por 1 min. e extensão a 72 ºC por 2 min., perfazendo 34 ciclos com extensão final de 72 ºC por 1 min. 3 e 4 Fragmento de cerca de 480 pb obtido com o par de oligonucleotideo CHSiC13.3F e CHSiC13.3R. A desnaturação procedeu-se a 94 ºC por 1 min, anelamento a 61,6 ºC por 1 min. e extensão a 72 ºC por 2 min., perfazendo 34 ciclos com extensão final de 72 ºC por 2 min. 59 M 1 2 3 4 5 6 7 8 4000 pb 1000 pb Figura 17: Análise eletroforética dos produtos de amplificação do DNA total do M. perniciosa por PCR. Condições experimentais: 2,5 µL de tampão de amplificação a 10x; 0,5 µL do mix de dNTPs a 10 mM; 0,8 µL de MgCl2 a 50 mM; 1,0 µL de cada oligonucleotídeo específico a 10 pMol; 1,0 µL de gDNA de M. perniciosa (12,5 ng); 0,13 µL de Taq Platinum DNA Polymerase (5U/µL) da Invitrogen® e água ultrapura (q.s.p. 25 µL). A desnaturação procedeu-se a 94 ºC por 3 min, anelamento a 65,0 ºC por 1 min. e extensão a 72 ºC por 2 min., perfazendo 34 ciclos com extensão final de 72 ºC por 10 min. Análise de 3 µL do produto da reação de amplificação em gel de agarose a 1,2%, por 120 min., 60 v e 50 mA. M Marcador de massa molecular DNA Step Ladder Promega®; 1 e 2 - Pchs54-F/Pchsic13.3-R, com fragmento de 1700 pb; 3 e 4 - Pchsic13.3F/PchsiC34R, com fragmento de 1400 pb; 5 e 6 PchsiC34F/Pchs54F, com fragmento de 1100 pb e 7 e 8 – Pchs54F/Pchs54R, com fragmento de aproximadamente 4000 pb. Com as informações disponíveis no banco de dados e aquelas resultantes dos seqüenciamentos dos intervalos desconhecidos, foi possível a determinação da provável seqüência gênica para a sintase da quitina de M. perniciosa. O gene MopCHS é composto por 3443 pares de bases, organizados em 13 íntrons e 14 éxons que constituem um cDNA com uma fase de leitura aberta com 2739 pb e uma proteína com 913 aminoácidos (Figura 18/Tabela 03). Os íntrons seguiram um padrão característico, tanto para as bordas (GT/AG), sendo o mesmo encontrado descrito para as bordas da sintase da quitina de Exophiala dermatitidis (LIU et al., 2004) quanto para o tamanho apresentado que foi entre 51 e 60 pb. Na análise do número de íntrons e éxons existentes nos genes completamente seqüenciados de representantes de Basidiomycota, existe uma redução em número nos genes destas espécies em relação aos grupos considerados filogeneticamente mais antigos. É possível que este decréscimo seja uma possível tendência evolutiva dentro de Basidiomycota. 60 A proteína predita apresenta, aproximadamente, 102 KDa, com um pI de 8,43 em pH 7,0, o que a caracteriza como altamente básica em comparação com o recém-seqüenciado gene MsCHS2 da sintase da quitina de Manduca sexta e Lentinula edodes que apresentaram pH de 6,06 (HOGENKAMP, 2006) e 5,33 (NISHIHIMA et al., 2007) respectivamente. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 500 pb Figura 18: Esquema representativo demonstrando a organização do gDNA da sintase da quitina de M. perniciosa. As linhas representam os éxons e as barras verticais os íntrons. Tabela 03: Característica da organização dos éxons e íntrons do gene da sintase da quitina de M. perniciosa. EXON INTRON Tamanho Tamanho Nº Posição Nº Posição (5’ ... 3’) (pb) (pb) GTGAGC...CCTCAG 1 275 1-275 1 53 276-328 GTAAGT...GGCCAG 2 237 329-565 2 55 566-620 GTTTGT...CTATAG 3 391 621-1011 3 52 1012-1063 GTAAGC...CATCAG 4 168 1064-1231 4 55 1232-1286 GTAAGT...CCACAG 5 199 1287-1485 5 55 1486-1540 GTAAGT...TTCTAG 6 350 1541-1890 6 56 1891-1946 GTAAGT...CTCCAG 7 81 1947-2027 7 53 2028-2080 GTAAGT...TTCTAG 8 132 2081-2212 8 52 2213-2264 GTGCGA...GAATAG 9 119 2265-2383 9 51 2384-2434 GTGAGC...ACTTAG 10 200 2435-2634 10 60 2635-2694 GTACGT...CTCTAG 11 29 2695-2723 11 51 2724-2774 GTACGT...TCCTAG 12 102 2775-2876 12 51 2877-2927 GTACGT...TGACAG 13 405 2928-3332 13 57 3333-3389 14 51 3390-3440 (Fonte: Resultados experimentais) Uma análise da predição da topologia da proteína pelo software TMHMM (v2.0) (www.cbs.dtu.dk/services/TMHMM-2.0/), revelou um total de oito regiões com hélices transmembranares, seis delas com probabilidade de aproximadamente 1,0 e duas com probabilidade próximas a 0,6 (Figura 19). A mesma análise foi feita também pelo software SOSUI da Universidade de Nagoya (http://bp.nuap.nagoyau.ac.jp/sosui/sosui_submit.html) e confirmaram os resultados para algumas das hélices preditas (Tabela 04). Em ambas as análises nota-se a concentração das 61 hélices transmembranares a partir da segunda metade da proteína, confirmando que esta é uma região rica em aminoácidos hidrofóbicos. Esta análise sugere que a provável região do domínio catalítico da enzima em estudo esteja em uma região intermembranar. Tellam et al. (2000), os primeiros a determinarem a seqüência completa de cDNA da provável sintase da quitina de artrópodo, utilizando esta ferramenta de análise, detectaram de 15 a 18 hélices transmembranas, indicando que a enzima, no artrópodo, é uma proteína integral de membrana. A analise da topologia transmembranar de outros basidiomicetos filogeneticamente relacionados ao M. perniciosa relevam semelhanças, principalmente no que se refere a posição inicial dos aminoácidos transmembranares como pode ser visto na tabela 05. Figura 19: Predição da topologia de hélices transmembranares na sintase da quitina (Fonte: TMHMM). Tabela 04: Predição de Hélices transmembrana para o gene MopCHS. TMHMM N-Terminal SOSUI C-Terminal N-Terminal 559 581 554 585 614 636 617 651 673 652 705 727 705 737 759 735 838 860 880 902 (Fonte: Resultado experimental, http://www.cbs.dtu.dk/services/TMHMM-2.0/ e http://bp.nuap.nagoya-u.ac.jp/sosui/sosui_submit.html C-Terminal 576 607 638 674 727 757 - 62 Tabela 05: Predição das topologias transmembranares das sintase da quitina de Basidiomicota, obtida em análise realizada pelo TMHMM. Nº de regiões transmembrana Nº de regiões transmembrana (Prob. > 1.0) Posição inicial das prováveis regiões transmembranas M. perniciosa 8 6 559 A. bisporus 7 6 526 C. cinerea 7 5 487 C. cinerea2 7 6 454 C. neoformans 7 6 535 C. neoformans2 7 6 389 C. neoformans3 7 6 570 P. ostreatus 7 6 558 P. gaminis 7 6 541 P. graminis2 7 7 593 U. maydis 7 6 574 L. edodes 7 7 919 Basidiomicota Nº de Acesso EU154354 SOUZA et al., 2007 CAB96110.1 SREENIVASAPRASAD, et al., 2000 EAU87177.1 BIRREN, et al., 2003 EAU84753.1 BIRREN, et al., 2003 EAL20616.1 FUNG, et al., 2004 XP_570882.1 LOFTUS, et al., 2005 AAW43575.2 LOFTUS, et al., 2005 BAF37219.1 NISHIHARA, et al., 2007 ABB70408.1 BROEKER, et al., 2006 ABB70409.1 BROEKER, et. Al., 2006 P30598 KAMPER, et al. 2006; WEBER, et al. 2006 e BOWEN, et al. , 1992; AB262360 NISHIHARA, et al., 2007 Motifs altamente conservados podem ser encontrados na seqüência determinada, tais como EDRXL, QRRRW e QXXEY que são considerados como assinaturas, pois estão presentes em todos os tipos de sintase da quitina, sendo, como supracitado, uma possível região catalítica. O motif QXFEY é comum em fungos e nematódeos, e é descrito como altamente conservado também em insetos (MERZENDORFER, ZIMOCH, 2003). Sugere-se que o motif (S/T)WGTKG, também encontrado em MopCHS, possa desempenhar um importante papel na catálise, sendo que a substituição do triptofano (W) e da segunda treonina (T) resulte na perda dessa atividade (MERZENDORFER, 2006). A proteína determinada possui todos os domínios descritos por Ruiz-Herrera et al. (2002) como sendo característicos (D/E)YPVP(T/S)(A/P)I(Q/L)SA, da Classe III, RTLHGVM(Q/L)N(V/I)RDI, quais sejam: LNPE(I/V)C, PLEQYFHG, RMFF, WF(A/S)LA, LQF(I/V)LALGNRPK, FRT(S/R)LV. Apresenta 63 ainda outros 09 domínios referenciados como específicos da Divisão 1, que são: EF(T/SAK)X(L/M)(T/R)YXA(A/VC)T(C/V/S), T(M/Y/S)YNE(D/E/N), LAEDRILC(F/W/Y)(E/D)(L/V)(V/A), WXK(I/V)XVXX(I/V)XDG, (L/I)(L/I/V)(D/E)(A/V/C)GT, F(C/V)(L/M)K(E/Q/A)XNXKK(L/I)NSH)R/L)W, TDVP, PLV(A/Y)XQNFEYK(MI/L)SNILDK(P/T)(L/TV)ESX(F/M)G(Y/F/H)(I/V)(S/T)VLP(G/A)A(F/L)(S/C)AYR, E(F/L)(I/V)- XQRRRW(L/I)N(G/Q)X(FL/M)(F/A)A (Figura 20) e, de acordo co Coquer et al. (2004), os motifs DAGT e TSYNE apresentam provável função na ligação de substrato; presume-se que o motif LAEDRIL refere-se a uma base catalítica. 1 456 Consensos da Classe-III Consensos da Divisão 1 913 Consensos de todas as CS Figura 20: Localização dos domínios que são considerados consenso e que identificam a sintase da quitina e caracterizam a Classe III e a Divisão 1. O BLASTp revelou uma semelhança entre os domínios conservados presentes nas bases de dados do Pfam e COG (Figura 21), e apresentou um alinhamento com valor E = 0,0 para as 50 diferentes seqüências que são apresentadas na Tabela 07. Além do valor de confiança dos alinhamentos, os valores de cobertura da região alinhada, tanto para a seqüência em estudo (MopCHS) como para as seqüências depositadas, são bastante significativos, variando de 81 a 100%. Contra o A. bisporus o valor de identidade foi de 79% e contra P. ostreatus foi de 67%, com coberturas de, respectivamente, 98 e 100%. A análise de domínios conservados na base de dados do Pfam08407, pela ferramenta de pesquisa de proteína (Pfam v21.0/HMMs - http://pfam.janelia.org/) apresentou três domínios de valores estatísticos altamente significativos, como pode ser visto na Tabela 06 e Figura 21. Dentre os 41 componentes da base de dados Pfam08407 encontra-se o A. bisporus (Q9P4U1_AGABI), mais uma vez corroborando a identidade entre estas proteínas e a proteína em estudo. 64 A Sintase_quit-1N: domínio 1 de 1, de 129 até 209: Valor-E = 3.2e-42 Pfam08407 *->RRRKTIRRKVKLVNGQGNLVSLDCPVPTKLLNQLPRKYRDERDSDEF +R ++ RKVKL++ GN++ +++PVPT +L++++ KY++ + + EF MopCHS 129 IKRGVT-RKVKLTK--GNFI-TEYPVPTPILSATEAKYTA-TSTTEF Pfam08407 MopCHS 171 THMRYTAVTCDPDDFTVENGYTLRQALYNPPRETELFIVIT<-* +HMRYTA+TCDPD+F++ NGY+LR+++YN RETEL+I++T SHMRYTAATCDPDEFSEANGYSLRTKMYN--RETELLIAVT 170 209 B Figura 21: Domínios conservados da sintase da quitina de M. perniciosa nos bancos de dados: e-62 e-25 e-22 pfam01644, com Valor-E 2 , pfam08407 com valor-E 7 , COG1215 com Valor-E 2 e e-19 pfam03142 com Valor-E 4 . Tabela 06: Alinhamento com pontuação de alta significância do provável produto gênico (sintase da quitina) de M. perniciosa contra a base de dados do Pfam. Modelo Pfam08407 Pfam03142 Pfam01644 Alinhamento MopCHS Pfam 129-209 180-739 211-382 1-88 1-548 1-168 Valor-E Descrição 3.2e-42 5.5e-06 8.3e-93 Sintase da quitina N-terminal l Sintase da quitina l Sintase da quitina l Nº de representantes alinhados 41 10 14 O resultado do BLAST das seqüências de proteína com valor-E igual a 0,0 e identidade igual ou superior a 50% foi utilizado para análise filogenética pelos métodos de distância, de parcimônia máxima, de verossimilhança máxima e inferência bayesiana, além de uma última análise na qual foi feito o consenso de maioria dos resultados dos quatro métodos supracitados (Figuras 22, 23, 24 e 25/Tabela 07). A filogenia das seqüências da sintase da quitina dos fungos citados, utilizando tanto a análise de parcimônia como a bayesiana, mostraram a separação dos grupos Basidiomycota e Ascomycota, com medidas de suporte confiáveis, independente do tipo de análise realizada. 65 A análise de Parcimônia, utilizando seqüências de nucleotídeos, apresentou índice de consistência (CI) igual a 0,6198, índice de retenção (RI) igual a 0,7256 e índice de homoplasia (HI) igual a 0,3802. Para a analise de distância utilizou-se seqüências de nucleotídeos, apresentou índice de consistência (CI) igual a 0,6160, índice de retenção (RI) igual a 0,7211 e índice de homoplasia (HI) igual a 0,3840. A proximidade filogenética entre A. bisborus e M. perniciosa foi confirmada pela semelhança entre seus respectivos genes de sintase da quitina, a qual facilitou a identificação de regiões conservadas. 66 T.borchii P. graminis2 P. graminis 1.00 U. maydis C.neoformans3 0.96 1.00 C.neoformans 0.64 0.62 C.neoformans2 C.cinerea P.ostreatus C.cinerea2 0.98 0.98 0.96 0.98 0.98 A.nidulans N. fischeri2 1.00 1.00 A.niger2 A.oryzae 1.00 1.00 M.perniciosa A.bisporus A.niger 1.00 A.terreus 1.00 A.oryzae2 A.clavatus N. fischeri2 A.fumigatus 0.99 0.99 0.99 0.98 A.fumigatus2 0.97 A.fumigatus3 E.dermatides B.fuckeliana M.grisea 1.00 C.globosum N.crassa 1.00 1.00 N.crassa2 1.00 1.00 N.crassa3 1.00 0.98 G.graminicola G.zeae 1.00 B.fuckeliana2 1.00 1.00 1.00 0.70 G.zeae2 F.oxysporum 0.58 A.nudulans2 1.00 E.nudulans P. chrysogenum A.clavatus2 N.fischeri3 A.fumigatus4 A.fumigatus5 0.98 A.fumigatus6 A.oryzae3 A.niger3 1.00 1.00 A.terreus2 A.capsulatus 1.00 1.00 1.00 1.00 1.00 C.posadasii 1.00 C.immitis Figura 22: Método de inferência bayesiana. A identificação completa dos fungos utilizados está descrita na tabela 07. Números abaixo dos ramos correspondem ao suporte dado por valores percentuais de probabilidade posterior. 67 T.borchii Tub bor Glo gra G.graminicola 0.56 Gib zea G.zeae Mag gri M.grisea 0.95 Cha glo C.globosum 0.90 Neu cra N.crassa 0.95 0.90 N.crassa2 Neu cra 2 1.00 N.crassa3 Neu cra 3 0.68 Bot fuc 2 B.fuckeliana2 G.zeae2 Gib zea 2 0.80 1.00 0.99 Fus oxy F.oxysporum E.dermatides Exo der B.fuckeliana Bot fuc P. Penchrysogenum chr Asp nig 3 A.niger3 1.00 Asp ter 2 A.terreus2 Asp ory 3 A.oryzae3 0.53 0.98 Asp cla 2 A.clavatus2 N.fischeri3 Neo fis 3 0.86 1.00 1.00 Asp fum 4 0.80 A.fumigatus4 0.98 Asp fum 5 A.fumigatus5 0.83 Asp A.fumigatus6 fum 6 0.74 Asp nid 2 A.nudulans2 1.00 1.00 E.nidulans Eme nid 1.00 Aje cap A.capsulatus C.posadasii Coc pos 1.00 Coc imi C.immitis A.terreus Asp ter A.oryzae2 Asp ory 2 0.99 A.oryzae Asp ory 0.54 0.64 A.niger Asp nig A.clavatus Asp cla N. Neofischeri fis 1.00 Asp fum 2 A.fumigatus2 1.00 Asp fum 1.00 A.fumigatus 0.99 1.00 Asp fum 3 A.fumigatus3 A.nidulans Asp nid 1.00 1.00 Neofischeri2 fis 2 N. A.niger2 Asp nig 2 P. Pucgraminis2 gra 2 P. Pucgraminis gra C.cinerea Cop cin 1.00 P.ostreatus Ple ost C.cinerea2 Cop cin 2 0.99 0.99 1.00 M.perniciosa Mon per 0.90 0.99 0.97 A.bisporus Aga bis U. Ust maydis may 0.99 Cry neo 2 C.neoformans2 Cry neo 1.00 C.neoformans 1.00 Cry neo 3 C.neoformans3 10 Figura 23: Método de distância. A identificação completa dos fungos utilizados está descrita na tabela 07. Números abaixo dos ramos correspondem ao suporte dado por valores percentuais de bootstrap. 68 T.borchii Tub bor B.fuckeliana Bot fuc G.graminicola Glo gra M.grisea Mag gri 0.99 Cha glo C.globosum 0.84 Neu cra N.crassa 0.99 Neu cra 2 N.crassa2 1.00 1.00 Neu cra 3 N.crassa3 G.zeae Gib zea 0.57 B.fuckeliana2 Bot fuc 2 0.65 G.zeae2 Gib zea 2 F.oxysporum Fus oxy 0.83 1.00 E.dermatides Exo der P. Penchrysogenum chr 1.00 0.52 Asp nig 3 A.niger3 A.terreus2 Asp ter 2 A.oryzae3 Asp ory 3 Asp cla 2 A.clavatus2 1.00 0.50 Neo fis 3 N.fischeri3 0.95 1.00 0.72 Asp fum 4 1.00 A.fumigatus4 A.fumigatus5 fum 5 0.98 Asp A.fumigatus6 Asp fum 6 Asp nid 2 A.nudulans2 0.91 1.00 E.nidulans Eme nid Aje cap A.capsulatus 1.00 Coc pos C.posadasii 1.00 C.immitis Coc imi P. Puc graminis2 gra 2 P. Puc graminis gra 1.00 U. maydis Ust may C.cinerea Cop cin P.ostreatus Ple ost 0.65 0.98 0.70 C.cinerea2 Cop cin 2 M.perniciosa Mon per 0.99 0.89 0.70 0.58 A.bisporus Aga bis C.neoformans3 Cry neo 3 1.00 Cry neo C.neoformans Cry neo 2 C.neoformans2 0.82 A.terreus Asp ter A.oryzae2 Asp ory 2 A.oryzae Asp ory 0.55 0.90 1.00 A.niger Asp nig Asp cla A.clavatus N.fischeri Neo fis 0.99 Asp fum A.fumigatus 1.00 Asp fum 2 0.99 A.fumigatus2 0.70 1.00 A.fumigatus3 Asp fum 3 1.00 0.94 10 Asp nid A.nidulans N.fischeri 2 Neo fis 2 A.niger2 Asp nig 2 Figura 24: Máxima Verossimilhança. A identificação completa dos fungos utilizados está descrita na tabela 07. Números abaixo dos ramos correspondem ao suporte dado por valores percentuais de bootstrap. 69 T.borchii Tub bor Bot fuc B.fuckeliana Glo gra G.graminicola M.grisea Mag gri Cha glo C.globosum Neu cra N.crassa 0.99 N.crassa2 Neu cra 2 1.00 0.83 0.55 1.00 1.00 N.crassa3 Neu cra 3 Gib zea G.zeae B.fuckeliana2 Bot fuc 2 0.66 Gib zea 2 G.zeae2 Fus oxy F.oxysporum 0.80 1.00 1.00 0.99 E.dermatides Exo der P. Pen chrysogenum chr A.niger3 Asp ory 3 0.99 A.terreus2 Asp nig 3 A.oryzae3 Asp ter 2 A.clavatus2 Asp cla 2 0.52 N.fischeri3 Neo fis 3 0.95 Asp fum 4 0.99 1.00 A.fumigatus4 Asp fum 5 0.99 A.fumigatus5 Asp fum 6 A.fumigatus6 Asp nid 2 A.nudulans2 0.91 1.00 Eme E.nidulans nid Aje cap A.capsulatus 1.00 1.00 Coc pos C.posadasii 1.00 C.immitis Coc imi P. graminis2 Puc gra 2 P. graminis Puc gra 1.00 Ust may U. maydis C.cinerea Cop cin P.ostreatus Ple ost 0.62 0.99 0.66 0.99 0.66 0.90 0.59 C.cinerea2 Cop cin 2 M.perniciosa Mon per A.bisporus Aga bis Cry neo 3 C.neoformans3 Cry neo 1.00 C.neoformans Cry neo 2 C.neoformans2 A.terreus Asp ter A.oryzae2 Asp ory 2 A.oryzae 0.51 Asp ory A.niger Asp nig 0.91 0.98 A.clavatus Asp cla 0.82 Neo fis N.fischeri 1.00 0.97 A.fumigatus Asp fum 0.99 fum 2 A.fumigatus2 0.71 Asp A.fumigatus3 Asp fum 3 A.nidulans Asp nid 10 N.fischeri2 A.niger2 Asp nig 2 Neo fis 2 1.00 0.93 Figura 25: Método da Parcimônia. A identificação completa dos fungos utilizados está descrita na tabela 07. Números abaixo dos ramos correspondem ao suporte dado por valores percentuais de bootstrap. 70 Tub bor T.borchii A.nidulans Asp nid N. fischeri2 Neo fis 2 0.75 0.75 A.niger2 Asp nig 2 Asp nig A.niger 0.75 1.00 A.oryzae Asp ory A.oryzae2 0.75 Asp ory 2 0.75 A.terreus Asp ter 0.75 A.clavatus Asp cla N. fischeri Neo fis 0.75 A.fumigatus Asp fum 0.75 A.fumigatus2 Asp fum 2 0.75 0.50 A.fumigatus3 Asp fum 3 Exo der E.dermatides P.chrysogenum Pen chr A.oryzae3 Asp ory 3 A.clavatus2 Asp cla 2 0.75 0.75 N.fischeri3 Neo fis 3 0.75 A.fumigatus4 Asp fum 4 0.50 0.75 A.fumigatus5 Asp fum 6 0.75 0.50 A.fumigatus6 0.75 Asp fum 5 0.50 A.terreus2 Asp ter 2 0.75 A.niger3 Asp nig 3 Eme nid E.nidulans 0.75 0.75 A.nudulans2 Asp nid 2 0.75 A.capsulatus Aje cap C.posadasii Coc pos 0.75 0.75 C.immitis Coc imi B.fuckeliana Bot fuc Glo gra G.graminicola M.grisea Mag gri 0.50 0.50 C.globosum Cha glo 0.75 N.crassa Neu cra 0.75 0.50 N.crassa3 Neu cra 3 0.75 0.75 N.crassa2 0.75 Neu cra 2 G.zeae Gib zea B.fuckeliana2 Bot fuc 2 0.50 G.zeae2 Gib zea 2 0.75 F.oxysporum 0.75 Fus oxy P. graminis2 Puc gra 2 P. graminis Puc gra 0.75 Ust may U.maydis C.cinerea Cop cin 0.75 P.ostreatus Ple ost 0.75 0.75 C.cinerea2 Cop cin 2 0.75 M.perniciosa Mon per 0.75 0.75 A.bisporus Aga bis 0.75 C.neoformans3 Cry neo 3 C.neoformans Cry neo 0.75 0.50 Cry neo 2 C.neoformans2 1 Figura 26: Consenso de maioria dos quatro diferentes métodos. A identificação completa dos fungos utilizados está descrita na tabela 07. Números abaixo dos ramos correspondem aos valores percentuais de ocorrência dos grupos formados nos quatro diferentes métodos. 71 TABELA 07: Seqüências de sintase da quitina (CHS) de Basidiomycota e Ascomycota com valor esperado (E) = 0,0 e identidade = ou > que 50%. Espécie ID Agaricus bisporus (A. bisporus) Ajellomyces capsulatus (A. capsulatus) Aspergillus clavatus NRRL 1 (A. clavatus) Aspergillus clavatus NRRL 1 (A. clavatus2) Aspergillus fumigatus (A. fumigatus) Aspergillus fumigatus Af293 (A. fumigatus2) Aspergillus fumigatus (A. fumigatus3) Aspergillus fumigatus (A. fumigatus4) Aspergillus fumigatus (A. fumigatus5) gi|8919410|emb|CAB96110.1| Provável enzima sintase da quitina gb|ABQ88371.1| Sintase da quitina 2 gi|121719536|XP_001276467.1 gi|119404665|gb|EAW15041.1| Sintase quitina C gi|121706256|XP_001271391.1 gi|119399537|gb|EAW09965.1| Sintase quitina G gi|1523778|CAA63929.1 Sintase quitina C gi|70985514|XP_748263.1 gi|66845891|gb|EAL86225.1| Sintase quitina C gi|83301407|Q92197 Sintase quitina C (Classe-III) gi|1353638|AAB07679.1 Sintase quitina G (classE III) gi|1197187|CAA63928.1 Sintase quitina G gi|70998925|XP_754184.1 gi|6166003|sp|P54267| gi|1353636|gb|AAB07678.1| gi|66851821|gb|EAL92146.1| Sintase quitina G (Classe III) gi|67528338|XP_661971.1 gi|40741338|gb|EAA60528.1| Proteína hipotética AN4367.2 gi|67524131|XP_660127.1 gi|40745472|gb|EAA64628.1| Sintase quitina B gi|145247670|ref|XP_001396084.1 Proteína hipotética An12g10380 gi|134058200|emb|CAK38392.1| gi|145235725|XP_001390511.1 Proteína hipotética An03g06360 gi|145242142|XP_001393717.1 gi|134078262|emb|CAK96843.1 Proteína hipotética gi|83769560|BAE59695.1 Produto de proteína não nomeado gi|134080824|emb|CAK41385.1|gi|19071963|BAB85683.1 Proteína hipotética An12g10380 gi|13641436|AAK31732.1 gi|83772151|dbj|BAE62281.1 Sintase quitina Aspergillus fumigatus Af293 (A. fumigatus6) Aspergillus nidulans FGSC A4 (A. nidulans) Aspergillus nidulans FGSC A4 (A. nidulans2) Aspergillus niger (A. niger) Aspergillus niger (A. niger2) Aspergillus niger (A. niger3) Aspergillus oryzae (A. oryzae) Aspergillus oryzae (A. oryzae2) Aspergillus oryzae (A. oryzae3) Proteína (aa) cDNA (nt) Cobertura Seqüênciaalvo (query) (%) Cobertura Seqüência do Banco (subject) Score (bits) Ident (%) Simil. (%) Gaps (%) 909 2730 99 98 1733 79 86 2 905 2715 99 96 1031 51 67 8 896 2688 88 88 976 54 70 4 911 2733 89 91 995 53 68 7 889 2667 87 91 967 53 67 6 856 2568 83 97 957 52 66 5 893 2679 89 91 983 53 68 5 911 2733 89 95 987 51 66 6 911 2733 89 95 990 51 66 6 911 2733 89 95 993 51 66 6 905 2715 85 87 916 53 67 6 916 2748 98 95 1007 51 65 9 884 2652 88 90 815 52 68 4 873 2619 90 92 974 53 68 5 914 2742 98 95 992 50 64 9 876 2628 86 89 931 54 68 4 893 2679 86 99 952 49 63 7 916 2748 97 94 970 50 64 9 72 Aspergillus terreus NIH2624 (A. terreus) Aspergillus terreus NIH2624 (A. terreus2) Botryotinia fuckeliana (B. fuckeliana) Botryotinia fuckeliana (B. fuckeliana2) Chaetomium globosum CBS 148.51 (C. globosum) Coccidioides immitis RS (C. immitis) Coccidioides posadasii (C. posadasii) Coprinopsis cinerea okayama 7#130 (C. cinerea) Coprinopsis cinerea okayama 7#130 (C. cinerea2) Cryptococcus neoformans var. neoformans B-3501ª (Filobasidiella neoformans) (C. neoformans) Cryptococcus neoformans var. neoformans JEC21 (C. neoformans2) (Cryptococcus neoformans var. neoformans JEC21 (Filobasidiella neoformans ) (C. neoformans3) Emericella nidulans (E. nidulans) Exophiala dermatitidis (E. dermatidis) Fusarium oxysporum f. sp. Lycopersici (F. oxysporum) Gibberella zeae PH-1 (G. zeae) Gibberella zeae PH-1 (G. zeae2) Glomerella graminicola gi|114190488|gb|EAU32188.1| Sintase quitina C gi|115390352|XP_001212681.1 gi|114195077|gb|EAU36777.1| Sintase da quitina G gi|20162483|AAM14606.1 | Sintase da quitina classe III gi|22212820|AAM94406.1 Sintase quitina classe III 896 2688 86 90 938 52 66 7 915 2745 99 95 1007 51 66 8 911 2733 89 90 1008 54 68 6 904 2712 87 90 882 49 65 7 906 2718 87 88 967 53 68 6 903 2709 99 96 1039 52 66 7 755 2265 99 96 1039 64 75 7 gi|116504282|gb|EAU87177.1| Proteína hipotética CC1G_05866 864 2595 89 95 1240 64 76 6 gi|116501858|gb|EAU84753.1| Proteína hipotética CC1G_00272 824 2475 92 100 1535 76 85 2 gi|134112149|ref|XP_775263.1| gi|50257918|gb|EAL20616.1| Proteína hipotética CNBE3240 901 2706 86 90 1232 64 75 6 gi|58267452|XP_570882.1 755 2265 81 99 1168 64 75 7 gi|71064312|gb|AAW43575.2| Sintase da quitina 7 931 2796 98 99 1239 58 70 8 916 2748 98 95 1008 51 65 9 885 2655 84 85 1016 57 71 6 978 2934 89 83 907 52 67 5 905 2715 85 85 924 53 68 4 995 2985 85 77 889 53 68 4 912 2736 97 96 996 51 65 8 gi|88184893|gb|EAQ92361.1| gi|116179936|XP_001219817.1 Sintase quitina 1 gi|119191199|XP_001246206.1| gi|90304992|gb|EAS34623.1 Sintase da quitina G gi|10436182|AAG16851.1 Sintase da quitina classe III gi|1091875|prf||2022175B | gi|6166002|Q00757 gi|465391|dbj|BAA04807.1 gi|1732431|dbj|BAA11845.1 Sintase da B (Classe-III) gi|3582755|gb|AAC35278.1|gi|6165999|P30602 Sintase da quitina 3 (Classe-III) gi|50429187|AAT77183.1 Sintase quitina class III gi|46137201|XP_390292.1 Proteína hipotética FG10116.1 gi|46115152|XP_383594.1 Proteína hipotética FG03418.1 gi|19068024|AAL23718.1 73 (G. gramminicola) Magnaporthe grisea 70-15 (M. grisea) Neosartorya fischeri NRRL 181 (N. fischeri) Neosartorya fischeri NRRL 181 (N. fischeri2) Neosartorya fischeri NRRL 181 (N. fischeri3) Neurospora crassa (N. crassa) Neurospora crassa 80 (N. crassa2) Neurospora crassa OR74A (N. crassa3) Penicillium chrysogenum (P. chrysogenum) Pleurotus ostreatus (P. ostreatus) Puccinia graminis f. sp. tritici (P. graminis) Puccinia graminis f. sp. tritici (P. graminis2) Tuber borchii (T. borchii) Ustilago maydis (U. maydis) Sintase quitina B gi|145613215|XP_363876.2 gi|145020341|gb|EDK04470.1 Sintase quitina 2 gi|119499407|XP_001266461.1 gi|119414625|gb|EAW24564.1| Sintase quitina C gi|119474341|XP_001259046.1| gi|119407199|gb|EAW17149.1| Sintase quitina gi|119490296|XP_001263020.1 gi|119411180|gb|EAW21123.1| Sintase quitina G gi|67476617|P29070 gi|18376397|emb|CAD21286 Sintase quitina 1 (Classe-III). gi|168773|AAA33568.1 gi|228519|prf||1805248A Sintase quitina: ISOTYPE=1 gi|85102490|XP_961338.1|gi|28922882|gb|EAA32102.1 Sintase quitina 3 gi|6166424|AAF04828.1 Sintase quitina classe III gi|118420983|dbj|BAF37219.1| gi|119224834|dbj|BAF41224.1| Sintase da quitina gi|81296277|gb|ABB70408.1| Sintase da quitina hipotética classe III gi|81296279|gb|ABB70409.1| Sintase da quitina hipotética classeIII gi|14275780|CAC39621.1 | Sintase da quitina classe III gi|122065152|sp|P30598|CHS1_USTMA Sintase quitina 1 (Chitin-UDP acetil-glicosaminiltransferase 1) 929 2787 94 93 979 51 66 7 856 2568 83 89 962 56 70 3 788 2364 86 99 966 54 69 4 911 2733 89 95 993 51 66 6 917 2751 88 88 964962 53 68 5 960 2880 80 87 920 53 68 4 960 2880 83 79 948 55 70 4 915 2745 97 94 989 50 65 9 938 2817 100 100 1472 67 76 7 868 2607 90 93 1160 60 73 6 977 2934 97 99 1027 50 63 13 892 2676 89 90 1025 55 69 6 939 2820 97 95 1217 58 71 7 1 - O cDNA inclui o códon de terminação (tamanho da proteína x 3) +3. 2 - O gDNA inclui o códon de terminação. 3 - Cálculo do percentual da cobertura da seqüência: (posição final – posição inicial do alinhamento) +1 ⁄ tamanho original da seqüência (obs. Somar com uma unidade corresponde a fórmula matemática do cálculo de intervalos). Obs: arrendondamento quando igual ou superior a metade de uma unidade (0,5). 4 - Em azul estão identificados os Basidiomycota e em preto os Ascomycota. 74 5.2. Resultados em Química Computacional Após a determinação da seqüência de nucleotídeos e posterior tradução para aminoácido, optou-se por selecionar apenas uma região para a construção da estrutura 3D (Figura 27). Esta decisão justifica-se pela dificuldade em modelar proteínas de membrana celular, descrita em literatura (SALI, SANCHEZ, 1998) e pela ausência de moldes que contemplassem todo o gene descrito. A escolha da região a ser modelada considerou o fato desta ser uma região de grande similaridade com o gene de outros fungos como, por exemplo, dos Basidiomycota com seqüências completas da sintase da quitina e, principalmente, pela presença do motif QRRRW, provável região do sítio catalítico do produto gênico em estudo. Sendo assim, a região escolhida compõe-se por 281 resíduos, estando eles na posição 325-606 da provável sintase da quitina de M. perniciosa. Uma análise realizada pelo EditSeq/Lasrgene (BURLAND, 2000) mostrou que o fragmento apresenta uma massa molecular de cerca de 32,08 KDa. Dos aminoácidos que o compõem, 31 são básicos (Lys, Arg), 22 ácidos (Asp, Glu), 118 hidrofóbicos (Ala, Ile, Leu, Phe, Trp, Val) e 63 polares (Asn, Cys, Gln, Ser, Thr, Tyr). Para esta região foi feito o PSI-BLAST contra o PDB (http://www.rcsb.org/pdb/home/home.do) para buscar estruturas que pudessem servir de molde para a construção do modelo proposto. A ferramenta de busca de moldes disponível no Swiss PDB Viewer (SPDBV) (versão 3.7) e o BLAST de proteínas, utilizando a base de dados do PDB, não retornaram resultados satisfatórios. Por este motivo, a estratégia foi, mais uma vez, fragmentar a seqüência e, retornar para o BLAST de proteínas contra a base de dados do PDB. Os fragmentos da seqüência resultaram, para algumas regiões, em diversos possíveis moldes, sendo escolhido aquele com melhor valor de identidade, baseado no alinhamento local (Figura 28/Tabela 08). 75 A 1 B 325 606 1 281 913aa M.perniciosa A.bisporus C.cinerea C.neoformans U.maydis P.ostreatus P.graminis P.graminis2 VGVYQDGVMKKQVDGKDTVAHIFE-YTTQLSVDATPQLVLP--QANDP-NNLVPVQIIFV IGVYQDGVMKKQVDGKDTVAHIFE-YTTQLSVDATPQLVLP--RAEDP-NNLVPVQIIFV VGVYQDGIMKKKVDGKDTVAHIFE-YTTQLSVDDKPQLVLP--QENDDGSNLVPVQIILV IGVFQDGILKKEVDGKKTAAHIFEQYTTQLSIDATPQLVQP--HPGEP-NNLVPVQIIFV VGVYQDGVMKRKVDGKDTVAHLFE-YTTQLSVDPTPALIQP--HADDA-SNLVPVQMIFC VGVYQDGVMKKDVDGKDTVAHIFE-YTTQLSVDAKPQLVLP-TEGNDA-LNLVPVQIIFV VGVYQDGLMKKEIDGKETVAHIFE-YTTQLSVDHKPSLVVPTQDGDSK-TNLVPVQMIFC IGLYQDGIMKRQVDGKETQAHVFE-YTTLLSVSPKPELIQP-H-ANDP-ANLVPVQMTLV :*::***::*:.:***.* **:** *** **:. .* *: * . ******: : 333 328 291 301 376 351 306 367 M.perniciosa A.bisporus C.cinerea C.neoformans U.maydis P.ostreatus P.graminis P.graminis2 LKAKNQKKINSHRWLFNAIGKILNPEVCVLIDAGTKPGHKSIFYLWKAFYNDPHLGGCCG LKAQNQKKINSHRWLFNAIGRMLNPEICVLIDAGTKPGHKSIYYLWEAFYNDPHLGGCCG VKAKNQKKINSHRWLFNALGRQLNPEICVLIDAGTKPGYKAIYHLWEAFYNNENLGGCAG LKQENSKKINSHRWLFNALGRQLQPEICVLLDAGTKPGHKAIYHLWEAFYNNRNLGGACG LKQKNSKKINSHRWLFNALGRHLQPELCVLIDAGTKPGHKSLYYLWEAFYNNANLGGACG LKAKNQKKINSHRWLFNAIGRMLEPETCVLIDAGTKPGHKSIYYLWEAFYNDRNMGGCCG LKQKNSKKINSHRWLFNAIGRQLDPEVCILIDAGTKPGKRSLYYLWQAFHNDRNLGGACG LKQKNAKKINSHRWLFNAVAAHLEPEVCILIDAGTKPGTRSLYYLWEAFHHNPHMGGACG :* :* ************:. *:** *:*:******* ::::: *..* 393 388 351 361 436 411 366 427 M.perniciosa A.bisporus C.cinerea C.neoformans U.maydis P.ostreatus P.graminis P.graminis2 EIHAMIKGGKKLLNPLVAAQNFEYKMSNILDKPLESSFGYVSVLPGAFSAYRYRAILGRP EIHAMIKGGKKLLNPLVAAQNFEYKMSNILDKPLESSFGYVSVLPGAFSAYRFQAITGCP EIYAM--GGKRLLNPLVAAQNFEYKMSNILDKPFESSFGYVSVLPGAFSAYRYRAIQGRP EIHAMIKKGVKLFNPLVAAQNFEYKMSNILDKPLESSFGYVSVLPGAFSAYRYKAIQGRP EIHAMIKNGRKLINPLVAAQNFEYKMSNILDKPLESTFGYVSVLPGAFSAYRFRAIQGRP EIHAMIKGGKKLLNPLVAAQNFEYKMSNILDKPLESSFGYVSVLPGAFSAYRYRAILGKP ETYAMLKGGKKLINPLVAAQNFEYKMSNILDKPLESAFGYVSVLPGAFSAYRFRALSGRP EIHAMLSRGKKLINPLVAAQNFEYKMSNILDKPLESSFGYVSVLPGAFSAYRYRAILGRP * :** * :*:********************:**:***************::*: * * 453 448 409 421 496 471 426 487 M.perniciosa A.bisporus C.cinerea C.neoformans U.maydis P.ostreatus P.graminis P.graminis2 LEQYFHGDHSLADRLGPKRYYGNEHLHQEHVLAEDRILCFELVAKKNDRWTLTYVKPSKA LEQYFHGDHSLADRLGPKGIYGMNIFTKNMFLAEDRILCFELVAKAKDRWTLTYVKPSKA LEQYFHGDHSLADRLGEHGINGMSIFQKNMFLAEDRILCFELMAKRGEKWTLGYVKDSKA LTQYFHGDATLAARLGKKGIYGMGIFTKNMFLAEDRILCFELVAKKGEKWVLQYVKPSKA LQQYFHGDHTLADRLGKKGLHGMDIFTKNMFLAEDRILCFELVAKAGDKWTLTYVKPSKG LEQYFHGDHSLADRLGAKGIHGMSIFTKNMFLAEDRILCFELVAKAGDRWTLTYVKPSKA LQQYFHGDHTLADRLGKKGLNGMGIFTKNMFLAEDRILCFELAAKANDAWLLSYVRAAKG LQQYFHGDHSLSERLGKKGIQGMGIFKKNMFLAEDRILCFELVAKAKSRWVLGYVKPAKG * ****** :*: *** : * : :: .*********** ** . * * **: :*. 513 508 469 481 556 531 486 547 M.perniciosa A.bisporus C.cinerea C.neoformans U.maydis P.ostreatus P.graminis P.graminis2 ETDVPESAPELIGQRRRWLNGSFAASVYALVNFFKLYQSGHGIFRMFFFHVQALYNIFSL ETDVPESAAELIGQRRRWLNGSFAASVYALVNFFKLYRSGHGIIRMFFLHIQGLYNVFSL ETDVPETAPELIGQRRRWLNGSFAASIYALVHFWRVYQSGHNFVRIFFFHIQALFNAFNL ETDVPEQAAELISQRRRWLNGSFAASVYSVFHFFRLYRSGHGPIRMLFLHIQAIYNVFSL ETDVPEGAAELISQRRRWLNGSFAASIYSLVHFFRIYKSNHGIIRLFFLHIQALYNAIVL ETDVPESAAELIGQRRRWLNGSFAASVYALVNFFKIYKSGHGIIRLFFLHLQALYNSFSL ETDVPEQAAELISQRRRWLNGSFAASIYATIHFFRFYKSSHNPIRLLMFHVQALFNIFQL ETDVPEQAAELIGQRRRWLNGSFAAGIYSLAHFSRMYSSSHGIVRMFFLHVQAFYATAGL ****** ..***.************.:*: :* .* *.*. .*::::*:*.:: * 573 568 529 541 616 591 546 607 M.perniciosa A.bisporus C.cinerea C.neoformans U.maydis P.ostreatus P.graminis P.graminis2 VFSWFSLANIWLTFSIIIDLLPNL--------------------PGDTAIIVFGTKAVTH IFSWFALANMWLTFSIIIDLVPSQ------------------------GIVIFGTETVTH FFSWFALANLWLTFSIIIDLLPAN--------------------------IKGANLVFFH IFSWFALANLWLTFSIIIELLPE-----------------------SANINLFGTADVTH LFSWFALANLWLTFSIIIEFLPDEL-------LKNS---------------SHTTLVVFH FFTWFALANLWLTFSIIIDLLPSQG-------VVIISRAFVRLAPSDVNWADFGS-LQAH IFTWFSLANLWLTFSIIIELLPQN------------------------GVFLFKDEVITH IMSWFALGNWFTTFSAIIDIIAENWRDPFLAAGISN--YTLTPPP-SPPNSSEGAQALVA .::**:*.* : **: **:::. 613 604 563 578 654 643 582 664 Figura 27: A - Esquema representativo do gene da sintase da quitina de M. perniciosa, a porção em vermelho corresponde à região conservada utilizada na construção da estrutura tridimensional; B: Alinhamento da seqüência da sintase da quitina de M. perniciosa com A. bisporus (CAB96110.1), C. cinerea (EAU87177.1), , C. neoformans (EAL20616.1), U. maydis (sp|P30598) P. ostreatus (BAF37219.1) e P. graminis (ABB70408.1 e ABB70409.1 ), com destaque para a região conservada. Os aminoácidos em vermelho correspondem àqueles utilizados no modelo proposto (Fonte: NOTRADAME et al., 2000 <http://www.tcoffee.org>). 76 Achs1 pdb|2D4W|B Cadeia B, Estrutura Cristal da Glicerol quinase de Cellulomonas sp. Nt3060 Extensão = 504 Identitidade = 12/27 (44%), Positividade = 16/27 (59%), Gaps = 0/27 (0%) Query 110 Sbjct 110 VSVLPGAFSAYRYRAILGRPLEQYFHG V L G A +Y++I+G PL YF G VDELGGDEGAEKYKSIVGLPLATYFSG 136 136 Achs2 pdb|2BYT|D Cadeia D, Thermus thermophilus Leucyl-tRNA Synthetase Complexed With A Trnaleu Transcript Length=878 Identities = 13/33 (39%), Positives = 20/33 (52%), Gaps = 0/38 (0%) Query 6 Sbjct 260 VLAEDRILCFELVAKKNDRWTLTYVKPSKAETD VLA + L EL A + L YV+ +K +T+ VLAPEHPLTLELAAPEKREEVLAYVEAAKRKTE 38 292 Achs3 pdb|1Z3X|A Cadeia A, Estructura de Gun4-1 de Thermosynechococcus elongatus Length=238 Identidade = 8/13 (61%), Positividade = 9/13 (69%), Gaps = 3/13 (23%) Query 7 Sbjct 126 Achs4 pdb|2HY5|A Length=130 ELIG---QRRRWL EL G Q+RRWL ELAGPLAQKRRWL 16 138 Cadeia A, Estructura Cristal de Dsrefh Identidade = 8/13 (61%), Positividade = 11/13 (84%), Gaps = 0/13 (0%) Query 10 Sbjct 29 QSGHGIFRMFFFH + GH IFR+FF+H EKGHEIFRVFFYH 22 41 Figura 28: PSI-BLAST contra o banco de dados do PDB, mostrando o alinhamento dos fragmentos com os moldes das estruturas correspondentes. 77 Tabela 08: Identificação dos moldes utilizados para construção do modelo 3D da sintase da quitina de M. perniciosa. Fragmento Achs1 Achs2 Achs3 Achs4 Molde Identidade Estrutura 2D4W 44 Transferase 39 Sintetase 61 Ativador de transferase 61 Transferase (IMADA, et al., 2005) 2BYT (TUKALO, et al., 2005) 1Z3X (DAVISON, et al., 2005) 2HY5 (SHIN, et al., 2006) (Fonte: Resultado experimental – PSI-BLAST/PDB) Em resposta à submissão dos projetos (seqüências problemas alinhadas estruturalmente aos seus respectivos moldes) ao Swiss Model, obtém-se o resultado finalizado da modelagem por homologia (Figura 29) (GUEX et al., 2001). Foi necessária a construção de quatro estruturas que contemplaram diferentes extensões de toda a região conservada (Figura 30). A C B D Figura 29: Resultado da submissão dos projetos dos fragmentos com os moldes da estrutura correspondentes. A – achs1; B – achs2; C – achs3 e D – achs4. (Fonte: Swiss PDB Viewer 3.7). 78 Os modelos foram construídos pelas ferramentas do Swiss PDB Viewer e foram validados inicialmentepelo Procheck 3.0, o qual gerou o gráfico de Ramachandran apresentado na Figura 31 e Tabela 09. Nos parâmetros do Ramachandran, considera-se um modelo satisfatório quando este possui 90% dos resíduos dentro representação de das regiões favoráveis Ramachandran é o (LASKOWSKI melhor et al., 1994). A indicativo da qualidade estereoquímica do modelo de uma proteína (LASKOWSKI, et al., 1993). Posteriormente utilizou-se o BioMedCache 6.1, para construiu as ligações peptídicas, formando uma única proteína onde a seqüência primária foi respeitada. Em seguida, a molécula foi neutralizada pelo programa tLEaP, presente no pacote Amber 8.0, sendo adicionados 09 íons cloretos (Cl-) a estrutura. Após a construção partiu-se para determinação do valor de cutoff através do BiomedCache 6.0, onde foi calculado valores de 3 a 20 Å . Os resultados obtidos apontaram o cutoff 14 com sendo o valor ideal para posteriores cálculos da estrutura resultante. O modelo inicial da região conservada da sintase da quitina de M. perniciosa, denominado de 0CSM, é composto por 281 aminoácidos, formados por 4.571 átomos, unidos por 4.630 ligações químicas. Em análise realizada pelo VDM (Versão 1.8.6), com um cutoff padronizado para 3,2 Ǻ, o modelo possui 03 ligações salinas (Asp-100-Arg206; Asp192-Lys94 e Glu158-Arg143), que são elementos que influenciam positivamente em sua estabilidade. Em sua extensão, este modelo apresenta 10 α-hélices, 11 folhas-β e 22 turns. As α-hélices são as estruturas mais facilmente reconhecidas e ocorre devido à semelhança nos ângulos de torção dos carbonos-α (Figura 32). Nas α-hélices do modelo 3D gerado ocorrem 03 prolinas (Pro62, Pro114 e Pro186) em diferentes hélices. De acordo com Höltje et al., (2003) o aminoácido prolina normalmente não ocorre nas α-hélices devido a sua incompatibilidade estrutural (forma cíclica com presença de nitrogênio), mas pode aparecer nas proteínas transmembranares, como é o caso da sintase da quitina. A presença da prolina pode gerar distorções locais na geometria da hélice. 79 A B C D E Figura 30: Modelos construídos a partir das seqüências fragmentadas. Em A: Estrutura resultante da submissão do fragmento achs1 com o molde 2D4W; B: fragmento achs2 com o molde 2BYT; C: fragmento achs3 com o molde 1Z3X; D: fragmento achs4 com o molde 2HY5 e E: modelo 0CSM, resultante da junção dos modelos iniciais gerados no Swiss Model, sem refinamento, para a região conservada da sintase da quitina (Fonte: VMD 1.8.6, HUMPHREY et al., 1996). 80 A B C D Figura 31: Validação representada pelo gráfico de Ramachandran (Procheck 3.0) dos fragmentos que compõem o modelo 3D da região conservada da sintase da quitina. Em A - fragmento achs1; B - fragmento achs2; C: fragmento achs3 e D: fragmento achs4. Tabela 09: Sumário dos gráficos de Ramachandran para os fragmentos que compõem o modelo 3D da região conservada da sintase da quitina. Posição dos resíduos (%) Fragmento A - achs1 B - achs2 C - achs3 D - achs4 Favorável 87,8 84,6 89,5 93,0 Permitido 9,6 15,4 5,3 5,3 Aceitável 2,6 0,0 0,0 1,8 Desfavorável 0,0 0,0 5,3 * 0,0 *Representa a apenas 01 aminoácido (Glu7, correspondente ao Glu199 do modelo integral). 81 Sete folhas-β paralelas e 4 antiparalelas podem ser encontradas no modelo proposto. Em geral, as folhas paralelas (4 ou mais) são mais comuns que as antiparalelas (2 a 3) (HÖLTJE et al., 2003). Este também é um outro tipo estrutural facilmente reconhecido e é parte de um sistema mais complexo, pois, ao contrário das α-hélices, neste arranjo as ligações de hidrogênio não são estabelecidas de forma intramolecular, mas sim, intermolecular, o que faz com que elas sejam energeticamente menos favoráveis. As folhas antiparalelas podem ser compostas por várias cadeias que podem se distribuir por várias partes da seqüência, podendo ser composto por aminoácidos hidrofílicos, como os resíduos Asn14, Gln15, Ser20, Gly29 e Thr44, ou hidrofóbicos, (Val9, Phe8, Ala12, Ile18, e Leu32), que compõe o modelo proposto (HÖLTJE et al., 2003). Neste modelo têm-se ainda turns, que são as estruturas que revertem a direção da cadeia do polipeptídio e podem conectar as folhas-β. Um terço dos resíduos de uma proteína geralmente estão envolvidos com a formação de turns, que são predominantemente constituídos por aminoácidos polares com cargas, como os resíduos Glu70, His72, Lys101, Asp192 e Arg234 (SIBANDA, THORNTON, 1985) deste modelo. A B Figura 32: Destaque para as α-hélices (A) e folhas-β (B) que compõem o modelo proposto. A qualidade geométrica do modelo 0CSM foi avaliada pelo programa Procheck (Versão 3.0), como pode ser observado nas figuras 33-36 e, adicionalmente, pelo software ANOLEA, disponível no Swiss Model. O gráfico de 82 Ramachandran (Figura 33A) tem 93,5% dos resíduos na região favorável e 6,5% em área desfavorável, o que significa apenas um resíduo (Glu199). De forma semelhante, o Procheck analisa separadamente os resíduos de glicina e prolina, conforme é mostrado pelas figuras 33B e 33C, respectivamente. Esta separação é necessária, pois estes aminoácidos apresentam diferenças estereoquímicas, e isso requer diferentes características em suas regiões favoráveis ou desfavoráveis (LASKOWSKI et al., 1993). A figura 36 (A –Q) mostra a qualidade estereoquímicas dos ângulos de torção da cadeia lateral de todos os aminoácidos. A figura 35 avalia a qualidade do gráfico de Ramachandran obtido, planaridade das ligações peptídicas, má interação entre os átomos não-ligados e energia de ligação de hidrogênio na cadeia principal. Nestas representações o desejado é que o modelo em estudo, representado pelo ponto em preto, atinja o núcleo da região sombreada (LASKOWSKI et al., 1994). 83 A B C Figura 33: Gráfico de Ramachandran (Procheck 3.0) do modelo 0CSM da região conservada da sintase da quitina. Em A: Ramachandran da estrutura; B: Ramachandran da Glicina e C: Ramachandran da Prolina, onde se pode notar, em destaque vermelho para os resíduos em região desfavorável (Fonte: Procheck 3.0). 84 A B C D E F G H I J K L M N Figura 34: De A até N - Gráficos Chi-1 e Chi-2 dos resíduos. Os números de resíduos são mostrados entre parênteses, e a coloração vermelha representa o resíduo que está com o ângulos desfavoráveis; as regiões sombreadas representam a áreas favoráveis (Fonte: Procheck 3.0). 85 A C B D E Figura 35: Analise da cadeia principal do modelo 0CSM: A - avaliação do gráfico de Ramachandran; B - planaridade da ligação peptídica; C - interações ruins entre os átomos não-ligados; D - distorção dos angulos tetraedricos dos carbonos alfa; E - energia das ligações de hidrogênio.O eixo das coordenadas está descrito em Å (Fonte: Procheck 3.0). 86 A B C D E Figura 36: Análise da cadeia lateral do modelo 0CSM da região conservada da sintase da quitina: A - Conformação gauche menos; B - Conformação trans; C - Conformação gauche mais; D Somatório de todos os desvios padrões para Chi1; E - Conformação trans para o ângulo torcional Chi2. O eixo das coordenadas está descrito em Å (Fonte: Procheck 3.0). 87 Em todas as validações citadas obteve-se um resultado satisfatório para o modelo inicial proposto. No entanto, a análise de energia obtida através da representação do gráfico de ANOLEA (MELO, FEYTMANS, 1998), que calcula o desempenho de cada residuo da cadeia de proteína apresentou um resultado insatisfatório para uma maioria, como pode ser observado no gráfico da figura 37. Por esta análise apenas os resíduos Pro3 (-5,803), Val4 (-17,803), Gln5 (-23,381), Ile6 (-24.101), Ile7 (-19.781), Phe8 (-11,351), Val9 (-8,798), Leu10 (-6,707), Lys11 (-4,274), Ala12 (-5,642), Lys13 (-8,093), Asn14 (-3,671), Gln15 (-1,145), Lys16 (5,567), Lys17 (-4,084), Ile18 (-3,045), Asn18 (-5,611), Ser20 (-4,692) Ile28 (-2.793), Gly29 (-7.187) Lys30 (-8.932), Ile31 (-8.574), Leu32 (-5.811), Asn33 (-3.815), Met74 (-8.124), Ile75 (-9.170), Lys76 (-15.529), Gly77 (-12.857), Gly78 (-7.355) Lys79 (-2.072), Arg128 (-1.980), Pro129 (-1.987), Leu130 (-2.345) apresentaram um valor de energia negativo, sendo que a maior parte deles (80,43%) obteve um valor positivo e, portanto, insatisfatório. Esta validação apresentou um valor total de energia de 16910,907 E/kT. A energia do gráfico do ANOLEA é dada pela razão entre a energia (E) e a constante de Boltzmann (k = 0,582 kcal/mol) pela temperatura (MELO, FEYTMANS, 1998). Figura 37: Gráfico do ANOLEA (energia potencial de cada átomo na cadeia de proteína). As projeções em vermelho referem-se a um valor positivo de energia potencial para cada resíduo, e as projeções em verde identificam os valores de energia que são satisfatórios, ou seja, os valores negativos (Fonte: Swiss Model). 88 A estratégia para melhorar a qualidade da estrutura 3D e torná-la energeticamente mais favorável cosistiu em submeter o modelo gerado à dinâmica molecular. O processo foi desenvolvido em dois diferentes campos de força, o MM3 que foi realizado no BioMedCache e o ff99, no Amber, sendo que esse processo utilizou os seguintes parâmetros: i) imin=1, realiza a otimização da estrutura; ii) maxcyc=600, número máximo de ciclos; iii) ncyc=300, números de ciclos necessários para a mudança de Steeptest Descent para Gradiente Conjugado; iv) cut=14, valor de cutoff; v) ntb=0, manter volume constante; vi) igb=0, não incluir modelo de solvatação. Ao fim do processo foram obtidos 08 modelos que estão sumarizados na tabela 10. No BioMedCache seguiu-se um protocolo que consiste em submeter a molécula a uma dinâmica seriada, levandose em conta o número de α-hélices presentes no modelo. Para o cálculo de dinâmica de cada hélice, a molécula de menor energia de superfície gerada durante a dinâmica foi utilizada no passo seguinte. Alguns dos gráficos gerados pela dinâmica molecular realizada no Amber e no BioMedCache 6.1 podem ser visualizados, respectivamente nas Figuras 38 e 39. Tabela 10: Sumário dos modelos gerados para a região conservada do gene da sintase da quitina destacando o resultado da validação representada pelo gráfico de Ramachandran realizada pelo Procheck 3.0 Software utilizado Modelo AMBER 8.0 e BioMedCache 6.1 Posição dos resíduos (%) Metodologia Aplicada Favorável Não favorável 0csm 93,5 6,5 Modelo inicial gerado por homologia neutralizado BioMedCache 6.1 csc1 86,5 13,5 Após a DM + Otimização travada BioMedCache 6.1 csc2 86,6 13,4 Após a DM + Otimização “relaxada” AMBER 8.0 1csm 96,3 3,7 Modelo otimizado por 800 ciclos/300 K AMBER 8.0 2csm 91,0 9,0 Dinâmica Molecular 300 ps/300 K AMBER 8.0 3csm 94,1 5,9 Modelo gerado por homologia Dinâmica Molecular 1000 ps/300 K AMBER 8.0 4csm 94,5 5,5 Modelo gerado por homologia Dinâmica Molecular 2000 ps/300 K AMBER 8.0 5csm 92,3 7,7 Modelo gerado por homologia Dinâmica Molecular 3000 ps/300 K 89 Como pode ser observado pela figura 38 e 39, o valor de rms, determinado sempre em relação à estrutura de partida, torna-se praticamente constante. Na figura 39, após atingir 600 x (103) Kcal/mol não há variação significativa em sua geometria, atingindo uma estrutura de equilíbrio. A B C D Figura 38: Mapas gerados pela dinâmica realizada pelo BioMedCache 6.1. Os pontos em cinza indicam a posição das moléculas de menor energia. Em A: Dinâmica Molecular realizada para a Hélice h3; B: Dinâmica Molecular realizada para a Hélice h4, C: Dinâmica Molecular realizada para a Hélice h5 e D: Dinâmica Molecular realizada A Hélice h6. Nesta figura, pode ser observado que a cada simulação a proteína assume uma conformação de menor energia na SPE, a qual é indicado por um ponto nos gráficos de energia potencial pelo tempo. As simulações iniciais, mostradas através das figuras 38 A e B, possuem estruturas com alto valor de energia, sendo mostrado pelas cores verde, amarelo e vermelho. No entanto, durante as simulações seguintes, figuras 38C e D, a proteína atinge o seu equilíbrio termodinâmico, não havendo variações nos valores da energia potencial (cor azul). 90 600 500 400 300 200 100 485.40 462.40 439.40 416.40 393.40 370.40 347.40 324.40 301.40 278.40 255.40 232.40 209.40 186.40 163.40 140.40 117.40 94.40 71.40 48.40 25.40 0 2.40 Energia Relativa (101000 Kcal/mol) 700 Figura 39: Mapa gerado pela dinâmica molecular de 200 ps realizada pelo Amber 8.0. Os modelos resultantes das dinâmicas realizadas pelo campo de força MM3 apresentaram incongruências na posição de alguns resíduos demonstrados pela validação do Procheck e também do ANOLEA. No entanto, os modelos gerados pela dinâmica molecular (300, 1000, 2000 e 3000 picossegundos) no campo de força ff99 do Amber resultaram em um melhor arranjo espacial da cadeia principal na representação de Ramachandran (91,0, 94,1, 94,5 e 92,3%, respectivamente), e mesmo tendo havido uma redução da qualidade dos parâmetros da cadeia principal, pode-se perceber um um aumento da qualidade do modelo nas cadeias laterais. Considerando a análise feita no ANOLEA, obteve-se uma melhor energia total (-1006,215 /kT) para o modelo submetido à dinâmica do Amber com 2000 ps, denominado 4CSM, como pode ser visualizado na figura 40, sendo que, neste modelo, apenas 14,84% dos resíduos (Tabela 11) apresentaram uma energia positiva. 91 A B C D E F G Figura 40: Representação gráfica da validação dos modelos do gene da sintase da quitina após a realização da dinâmica molecular. A e B – Modelos CHS-a1 e CHS-a2, submetidos ao campo de força MM3 (BioMedCache), C, D, E, F e G – Modelos 1csm, 2csm, 3csm, 4csm e 5csm, respectivamente, resultantes do campo de força ff99 (Amber). Destaque, em vermelho, para o grafico que a presentou o melhor valor de energia (Fonte: ANOLEA). 92 Tabela 11: Sumário dos resíduos de aminoácidos que apresentaram valor de energia positiva na análise do ANOLEA gerado para o modelo 4csm. Identidade do Resíduo Leu1 Val2 Val38 Phe107 Gly108 Tyr109 Val110 Ser111 Ser118 Leu144 Gly145 Pro146 Energia (E/kT)* 0,000 0,000 0,058 30,186 32,280 34,719 36,003 35,366 0,030 0,365 25,375 27,044 Nº de contatos 190 66 11 190 113 503 130 128 41 165 87 145 Identidade do Resíduo Lys147 Arg148 Tyr149 Ala173 Asp177 Trp179 Gly231 Ile259 Pro271 Ile280 Val281 Energia (E/kT)* 25,723 27,123 26,800 0,076 0,169 0,162 4,406 0,252 0,535 0,000 0,000 Nº de contatos 284 246 184 0 0 44 59 140 285 69 232 *E/kT: E = Energia; kT = Constante de Boltz-mann que corresponde a 0,582 kcal/mol (MELO, FEYTMANS, 1998). Comparando os métodos utilizados para o refinamento do modelo, podemos observar que a qualidade dos modelos gerados pelo Amber foram melhores do que os modelos obtidos pelo MM3. Isto pode ser explicado por dois fatos. Primeiro, o Amber é executado utilizando sempre dois arquivos (topológicos e coordenadas) como inputs, tornando assim os cálculos mais eficientes por incluir maiores informações sobre a proteína. Segundo, os termos de parametrização no campo de força e da equação podem estar influenciando de forma intrínseca ao sistema (CASE, et al., 2004). Assim, o Amber foi capaz de gerar um modelo a qual foi capaz em satisfazer as exigências de duas metodologias de validação distintas, Procheck e ANOLEA. Após o refinamento do modelo, pôde-se chegar a uma estrutura protéica cuja energia potencial de -1498,6502 Kcal/mol pelo Amber. De acordo com o gráfico de Ramachandran (Figura 41), 94,5% dos resíduos encontram-se em regiões energeticamente favoráveis. Na validação da cadeia principal e da cadeia lateral, verificados pelo Procheck (Figura 42 e 43), nota-se que o modelo submetido ao refinamento e a dinâmica molecular, 4csm, possui uma melhor qualidade em relação ao modelo 0csm (Figuras 33-36), e também foi o que melhor respondeu às análises do ANOLEA sendo, portanto, o modelo 3D proposto para o estudo da região do provável sítio catalítico sintase da quitina de M. perniciosa. 93 A B C Figura 41: Gráfico de Ramachandran para o modelo 4csm proposto para a região conservada da sintase da quitina do M. perniciosa. 94 A B C D E Figura 42: Analise da cadeia principal do modelo 4csm: A - avaliação do gráfico de Ramachandran; B - planaridade da ligação peptídica; C - interações ruins entre os átomos não-ligados; D - distorção dos angulos tetraedricos dos carbonos alfa; E - energia das ligações de hidrogênio.O eixo das coordenadas está descrito em Å (Fonte: Procheck 3.0). 95 A B C D E Figura 43: Análise da cadeia lateral do modelo 4CSM da região conservada da sintase da quitina: A - Conformação gauche menos; B - Conformação trans; C - Conformação gauche mais; D Somatório de todos os desvios padrões para Chi1; E - Conformação trans para o ângulo torcional Chi2. O eixo das coordenadas está descrito em Å (Fonte: Procheck 3.0). 96 Após a DM, em análise realizada pelo VDM (Versão 1.8.6), com um cutoff padronizado para 3,2 Ǻ, o modelo possui que inicialmente apresentou apenas 3 pontes salinas, passou a presentar 16 ligações salinas (Glu153-Arg121; Asp177Lys174; Asp41-Arg204; Asp100-Arg206; Glu195-Lys94; Glu170-Arg128; Glu35Arg206; Glu158-Arg143; Glu104-Arg148; Glu35-Lys45; Asp164-Lys79; Glu35Lys11; Asp100-Lys80; Asp100-Lys11; Asp192-Lys49 e Glu163-Lys79). A região descrita como provável sítio catalítico foi construída a partir do molde 1Z3X. Este sítio compreende os resíduos 190-194. Os aminoácidos 190-192 e 193-194 assumem uma conformação α–hélice e turn, respectivamente. Como pode ser observado pela figura 43A, estas estruturas secundárias localizam-se essencialmente em uma região mais externa da proteína, ou seja, estão expostos ao solvente. A figura 43B mostra detalhes do arranjo espacial do sítio ativo, o qual as cadeias laterais dos aminoácidos Arg191, Arg193 e Trp194 estão direcionados para a parte externa da proteína, enquanto que nos aminoácidos Gln190 e Arg192 estas estão direcionados para o interior. Neste ambiente enzimático, o ligante pode complexar-se com os nitrogênios protonados das argininas 191 e 193 através de ligação de hidrogênio. Adicionalmente o ligante pode realizar uma interação com o Trp194, através de uma outra ligação de hidrogênio e/ou com uma interação hidrofóbica. Com isso, têm-se indicações para o design de ligantes inibidores da sintase da quitina. A figura 43C mostra em destaque as estruturas secundárias presentes na proteína resultante. 97 A B C Figura 44: Modelo 4CSM final. A - Destaque para a região do provável domínio catalítico do gene da sintase da quitina do Moniliophthora perniciosa; B - Região do provável domínio catalítico em destaque e C – Representação tridimensional do modelo 4CSM (Amber) gerado pelo VMD 1.8.6. Os hidrogênios dos átomos de carbono foram suprimidos para uma melhor visualização. 98 6. CONCLUSÃO As análises das seqüências do banco de dados do Projeto Genoma, a amplificação dos fragmentos alvo por PCR, que atenderam aos tamanhos esperados e cobriram os intervalos existentes, e o posterior seqüenciamento completo por primer walking, indicam que um gene da sintase da quitina de M. perniciosa foi totalmente identificado e caracterizado. Este gene compreende 3443 pb, organizado em 14 éxons e 13 íntrons, compreendendo um cDNA com uma fase de leitura aberta com 2739 pb e codificando uma proteína com 913 aa. O produto gênico obtido apresenta extensas regiões conservadas e significativa similaridade com as seqüências das sintases da quitina de outros Basidomycota (principalmente) e Ascomycota, com a ocorrência de motifs que o caracterizam como pertencente à Classe III e Divisão 1 das sintases da quitina, assim como a maioria das sintases da quitina de fungos. De posse da seqüência primária da sintase da quitina, foi construído um modelo 3D da sintase da quitina (0csm) por modelagem comparativa. Esta foi submetida a diferentes processos de refinamento, usando dois métodos MM bem distintos, gerando 06 modelos finais. Estes foram respectivamente validados sendo o modelo denominado de 4csm, obtido a partir do Amber, o que apresentou os melhores resultados frente ao Procheck e ANOLEA, embora a identidade entre a seqüência problema e os moldes tenha sido inferior à 30%. Isso também mostra que a intervenção humana é melhor sucedida para a construção de modelos protéicos do que os processos automatizados por homologia. Como perspectivas futuras, sugerem-se: (i) a identificação do número de cópias do gene por Southern Blot, (ii) o isolamento e clonagem do cDNA deste gene, (iii) expressão heteróloga, purificação e caracterização da proteína recombinante e (iv) a seleção e teste de inibidores específicos da sintase da quitina de M. perniciosa in vitro e in vivo. A continuação destes estudos, in silico e experimentalmente, é uma estratégia essencial para desenvolvimento de inibidores específicos para o fitopatógeno do cacau. O modelo 3D proposto, não somente possui um sítio ativo bem definido, mas também outros elementos que compõe o ambiente protéico e pode ser utilizado em posteriores estudos de interação ligante-receptor por 99 metodologias de docking, QM/MM e considerando o efeito do solvente. simulações Car-Parrinello, inclusive 100 7. REFERÊNCIAS ADAMS, D. J. Fungal cell wall chitinases and glucanases. Microbiology. v150. p 2029-2035, 2004. AIME M. C., PHILLIPS–MORA, W. The causal agents of witches’ broom and frosty pod rot of cacao (chocolate, Theobroma cacao) from a new lineage of Marasmiaceae. Mycologia, v97, n5, p1012-1022, 2005. ALMEIDA, L. C., ANDEBHAN, T. Recuperação de plantas de cacau com alta incidência de vassoura-de-bruxa na Amazônia Brasileira. In: CONFERÊNCIA INTERNACIONAL DE PESQUISAS EM CACAU, 10. Santo Domingo, proceeding, Lagos: Cocoa Producers Alliance. p337-339, 1987. ALTSCHUL, S. F., MADDEN, T. L., SCHÄFFER, A. A., ZHANG, J., ZHANG, Z., MILLER, W. LIPMAN, D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. v25, p3389-3402, 1997. ANDEBRHAN, T. Studies on the epidemiology and control of witches’ broom disease of cacao in the Brazilian Amazon. In: International Research Conference, 9. London, Proceedings, Lagos: Cocoa Producers Alliance, p395-402, 1985. ANDEBRHAN, T., BASTOS, C. N. Epidemiologia da vassoura-de-bruxa. Belém: CEPLAC/DEPEA. p50-55 (Informe Técnico), 1980. ANDEBRHAN, T., FIGUEIRA, A. YAMADA, M. M., CASCARDO, J., FURTEK, D. B. Molecular fingerprinting suggestes two primary outbreaks of witches' broom disease (Crinipellis perniciosa) of Theobroma cacao in Bahia, Brasil. European Journal of Plant Pathology. v105, p167-175, 1999. ANDEBRHAN, T., HAMMERSTONE, J. F., ROMANCZYK, L. J. FURTEK, D. B. Sensitivity of Crinipellis perniciosa of procyanidins from Theobroma cacao L. Physiological and Molecular Plant Pathology, v46, p339-348, 1995. ANDEBRHAN, T., MADDISON, A. C., ARIAS, R., MAFFIA, L. A. Disease gradients of Crinipellis perniciosa. In: RUDGARD, S. A., ANDEBRHAN, T., MADDISON, A. C. (Ed.) Disease management in cocoa: Comparative epidemiology of witches’ broom disease. London, UK, Chapman & Hall, p157-164, 1993. AZHIKINA, T., VESELOVSKAYA, S., MYASNIKOV, V., POTAPOV, V., ERMOLAYEVA, O., SVERDLOV, E. Strings of contiguous modified pentanucleotides with increased DNA-binding affinity can be used for DNA sequencing by primer walking. Biochemistry. v90, p11460-11462, 1993. BAKER, D., SALI, A. Protein structure prediction and struytural genomics. Science. v294, p93-96, 2001. BARREIRO, FRAGA, C. A. M. Quimica Medicinal: as bases moleculares da ação dos farmacos. 243p. Artmed. Porto Alegre, 2001. 101 BASTOS, C. H., EVANS, H. C., A new pathotype of Crinipellis perniciosa (witches’ broom disease) on solanaceous hosts. Plant Pathology, v34, p306, 1985. BASTOS, C. N. Biologia do Crinipellis perniciosa. Belém, CEPLAC/CEPEA, 1988. BASTOS, C. N. Epifitiologia, hospedeiros e controle de vassoura-de-bruxa (Crinipellis perniciosa (Stahel) Singer), Ilhéus: CEPLAC/CEPEC, 21p, (Boletim Técnico, 168), 1990. BASTOS, C. N. Mycoparasitic nature of the antagonism between Trichoderma viride and Crinipellis perniciosa. Fitopatologia Brasileira, v21, n1, 1996b. BASTOS, C. N. Potencial de Trichoderma viridae no controle de vassoura –debruxa (Crinipellis perniciosa) do cacaueiro. Fitopatologia Brasileira, v21, n4, 1996a. BASTOS, C. N. Retrospectiva e avanços no controle da vassoura-de-bruxa do cacaueiro. Fitopatologia Brasileira, v25, p305-036, 2000. BASTOS, E. Cacau: a riqueza agrícola da América. São Paulo: Ícone, 130p., 1987. BEAUVAIS, A. (2003) Aspergillus. Pasteur Institute. Disponível em <http://www.pasteur.fr/icono/RAR/RAR2003/photo1_Aspergil.jpg>. Acesso em 08.jun.2007. BERMAN, H. M., WESTBROOK, J., FENG, Z., GILLILAND, G., BHAT, T. N., WEISSIG, H., SHINDYALOV, I. N., BOURNE, P. E. The protein data bank. Nucleic Acids Reseach, v28, n1, p235-242, 2000. BIRREN,B., LANDER,E., GALAGAN,J., NUSBAUM,C., DEVON,K., MA,L.-J., JAFFE,D., BUTLER,J., ALVAREZ,P., GNERRE,S., GRABHERR,M., KLEBER,M., MAUCELI,E., BROCKMAN,W., ROUNSLEY,S., YOUNG,S., LABUTTI,K., BOWEN, A.R., CHEN-WU,J.L., MOMANY,M., YOUNG,R., SZANISZLO,P.J., ROBBINS,P.W. (1992). Classification of fungal chitin synthases. Proc. Natl. Acad. Sci. U.S.A. v89, n2, p519-523. BOWMAN, S. M., FREE, S. The structure and synthesisof the fungal cell wall. BioEssays. v28, p799-808, 2006. BROEKER, K., FEHSER,S. MOERSCHBACHER,B.M. (2006). Survey and expression analysis of five new chitin synthase genes in the biotrophic rust fungus Puccinia graminis. Curr. Genet. v50, n5, p295-305. BRYANT, S. H. Evaluation of threading specificity and accuracy. Proteins, v26, p172-185, 1996. BURLAND, T. G. DNASTAR's Lasergene sequence analysis software. Methods Mol Biol. v132. p71-91, 2000. 102 BYSTROFF, C., SHAO, Y. Fully automated ab initio protein structure prediction using I-SITES, HMMSTR and ROSETTA. Bioinformatics. 18 Suppl 1:S54-61. 2002. BYSTROFF, C., SHAO, Y., YUAN, X. Five hierarchical levels of sequence-structure correlation in proteins. Appl Bioinformatics. v3(2-3), p97-104, 2004 CABIB, E., ROH, D. H., SCHMIDT, M., CROTTI, L. B., VARMA, A. The yeast cell wall and septum paradigms of cell growth and morphogenesis. The Journal of Biological Chemistry. v. 276, n. 23, Issue of June 8, p19679-19682, 2001. CABIB, E., SBURLATI, A., BOWERS, B., SILVERMAN, S. J. Chitin Synthase 1, an Auxiliary Enzyme for Chitin Synthesis in Saccharomyces cerevisiae. J. Cell Biol. v108, p1665-1672, 1989. CABIB, E., SBURLATI, A., Bowers, B., and Silverman, S.J. Chitin synthase 1, an auxiliary enzyme for chitin synthesis in Saccharomyces cerevisiae. J. Cell Biol. v108, p1665-1672, 1989. CAMPBELL, J. A., DAVIES, J.G., BULONE, V., HENRISSAT, B. A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. Biochem J. 15; 326(Pt 3): p929–939, 1997. CASE, D. A., DARDEN, T. A., CHEATHAM, T. E., SIMMERLING, C. L., WANG, J., DUKE, R. E. LUO, R., MERZ, K. M., WANG, B.,. PEARLMAN, D.A., CROWLEY, M., BROZELL, S., TSUI, V., GOHLKE, H., MONGAN, J., HORNAK, V., CUI, G.,, BEROZA, P., SCHAFMEISTER, C., CALDWELL, J. W., ROSS, W. S., KOLLMAN, P. A. AMBER 8, University of California, San Francisco, 2004. CHOQUER, M., BOCCARA, M., GONÇALVES, I. R., SOULIE, M. C., VIDALCROS, A. Survey of the Botrytis cinerea chitin synthase multigenic family through the analysis of six euascomycetes genomes. Eur. J. Biochem. v271, p2153-2164, 2004. COLE, G. T., HUNG, C. Y. The parasitic cell wall of C. immitis. Med. Mycol., v39 (Suppl 1), p31-40, 2001. COSTA, J. C. B. Progresso da vassoura-de-bruxa em órgãos vegetativos do cacaueiro em Altamira e Tomé-Açu, PA. Viçosa. p52. Dissertação (Mestrado em Genética e Biologia Molecular) Universidade Federal da Viçosa, 1993. DAVISON, P.A., SCHUBERT, H.L., REID, J.D., IORG, C.D., ROBINSON, H., HILL, C.P., HUNTER, C.N. Structural and Biochemical Characterization of Gun4 Suggests a Mechanism for Its Role in Chlorophyll Biosynthesis. Biochemistry. v44 p7603-7612 , 2005 DBGET, 2005.GenomeNet, Kyoto University and Bioinformatics Center. Disponível em: <http://www.genome.ad.jp/dbget-bin/www_bget?ec:2.4.1.16>. Acesso em: 28 jun 2005. 103 DE GROOT, P. W. J., RAM, A. F., KLIS, F. M. Features and functions of covalently linked proteins in fungal cell walls. Fungal Genetics and Biology, v42, p657–675, 2005. ELAD, Y., ZIMAND, D. G., ZAQS, Y., ZURIEL, S., CHET, I. Use of TriIchoderma harzianuIm in combinations or alternation with fungicides to control cucumber grey mould (Botritis cinerea) under commercial green-house conditions. Plant Pathology, v42, p324-332, 1993. EVANS, H. C. Pleomorphism in Crinipellis perniciosa, causal agent of witches’ broom disease of cocoa. Transactions of the British Mycological Society. v74, p515-523, 1980. FAO, Production Yearbook, v54. Rome, 2002. 260 p. FAYYAD, U. M. et al. 1996. Advances in Knowledge Discovery and Data Mining. Cambridge: AAI Press. 560p. FELSENSTEIN, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. v39, p783-791. FELSENSTEIN, J. 2005. PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle. FIGUEIREDO, J. E. F., ROCHA, W. D., BENEDITO, V. A., COLELHO, V. T. S. Estudo de modelagem por homologia para análise genômica funcional. Comunicado técnico nº 129. Novembro de 2005. FORESMAN, J. B., FRISCH, A. Exploring chemistry with electronic structure methods. 2ed. Gaussian, Pitsburgh. PA, 1996. FRIAS, G. A., PURDY, L. H., SCHMIDT, R. A. Infection biology of Crinipellis perniciosa on vegetative flushes of cacao. Plant Disease. v75, p552-556, 1991. FUJITSU,(2002). BioMedCaChe protein-drug discovery modeling software on windows. Disponível em: <http://www.cachesoftware.com/biomedcache/index.shtml>. Acesso em: 23 mai 2005. FUNG,E., HYMAN,R.W., ROWLEY,D., BRUNO,D., MIRANDA,M., FUKUSHIMA,M., WICKES,B.L., FU,J. AND DAVIS,R.W. (2004) Cryptococcus neoformans serotype D sequencing. Disponível em: <http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&id=50257918>. Acesso em: 26. Jul. 2007 GARCÍA-RODRIGUEZ, L. J. TRILLA. J. A, CASTRO, C. VALDIVIESO, M. H DURÁN, A., RONCERO, C. FEBS Letters. v478, p84-88, 2000. GEORGOPAPADAKOU, N. H., TKACZ, J. S. The fungal cell wall as a drug target. 104 Trends Microbiol. v3, n3, p98-104, 1995. GIBAS, C., JAMBECK, P. Desenvolvendo Bioinformática. 293p, Campus, Rio de Janeiro, 2001. GLASER, L., BROWN, D. H. The synthesis of chitin in cell-free extracts of Neurospora crassa. J. Biol. Chem. v228, p729-742, 1957. GOLDSMITH-FISCHMAN, S., HONIG, B. Strutural genomics: Computational methods for struture and analysis. Protein Science. v12, p1813-1821, 2003. GREEN, P. Phrap Documentation: Algorithms. Phred/Phrap/Consed System Home Page; <http://www.phrap.org> (current May 2007). GRIFFITH, G. W. et al. Witches’ brooms and frosty pods: two major pathogens of cacao. New Zealand Journal of Botany. v41, p423-435, 2003. GRIFFITH, G. W., HEDGER, J. N. Spatial distribution of mycelia of the liana (L) biotype of the agaric Crinipellis perniciosa (Stahel) Singer in tropical forest. New Phytol. v127, p243-259, 1994. GUEX, N., DIEMAND, A., PEITSCH, M. C., SCHWEDE, T. Deep View: The SwissPDB Viewer User Guide version 3.7. Geneva, 2001. GUEX, N., PEITSCH, M.C. SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis, v18, p2714-2723, 1997. HATTORI, M., TSUKAHARA, F., FURUHATA, Y., TANAHASHI, H., HIROSE, M., SAITO, M., TSUKUNI, S., SAKAKI, S. A novel method for making nested deletions and itsapplication for sequencing of a 300 kb region of human APP locus. Nucleic Acids Research. v25, n9. p1802–1808, 1997. HIBBETT, D. S., BINDER, M., BISCHOFF, J. F., BLACKWELL, M., CANNON, P. F., ERIKSSON, O. E., HUHNDORF, S., JAMES, T., KIRK, P. M., LÜCKING, R., LUMBSCH, T., LUTZONI, F., MATHENY, P. B., MCLAUGHLIN, D. J., POWELL, M. J. , REDHEAD, S., SCHOCH, C. L., SPATAFORA, J. W., STALPERS, J. A. , VILGALYS, R., AIME, M. C., APTROOT, A., BAUER, R., BEGEROW, D., BENNY, G. L., CASTLEBURY, L. A., CROUS, P. W., DAI, Y.-C., GAMS, W., GEISER, D. M. , GRIFFITH, G. W., GUEIDAN, C., HAWKSWORTH, D. L., HESTMARK, G., HOSAKA, K. , HUMBER, R. A., HYDE, K., IRONSIDE, J. E., KÕLJALG, U., KURTZMAN, C. P., LARSSON, K.-H., LICHTWARDT, R., LONGCORE, J., MIADLIKOWSKA, J., MILLER, A., MONCALVO, J.-M., MOZLEY-STANDRIDGE, S., OBERWINKLER, F., PARMASTO, E., REEB, V., ROGERS, J. D., ROUX, C., RYVARDEN, L., SAMPAIO, J. P., SCHÜßLER, A., SUGIYAMA, J., THORN, R. G., TIBELL, L., UNTEREINER, W. A., WALKER, C., WANG, Z. WEIR, A., WEIß, M., WHITE, M. M., WINKA, K., YAO, Y.-J., ZHANG, N. A higher-level phylogenetic classification of the Fungi. Mycological Research. Mycological Research, v111, n5, p509-547, 2007. 105 HOGENKAMP., D. G. Chitin metabolism in insects: chitin synthases and beta-nacetylglucosaminidases. Abstract of a dissertation. Manhattan, Kansas, 2006 HOLM, L., SANDER, C. Protein folds and families: sequence and structure alignments. Nucleic Acids research, 1999. v27, n1, p244-247, 1998. HÖLTJE, H. D, SIPPL, W., ROGNAN, D., FOLKERS, G. Molecular Modeling: Basic principles and applications. 2ed. Wiley-VCH, Germany, 2003. IMADA, K., TAMURA, T., INAGAKI, K. (2005) Structure of glycerol kinase from Cellulomonas sp. Disponível em: <http://www.rcsb.org/pdb/explore/explore.do?structureId=2D4W>. Acesso em: 26. Jul. 2007. ISAAC, S., HARDWICK, K., COLLIN, H. Interactions between the pathogen Crinipellis perniciosa and cocoa tissue. In Aspects of Tropical Mycology (eds ISAAC, S., FRANKLAND, J. C., WATLING R., WHALLEY, A. J. S.), p219-232. Cambridge University Press: Cambridge, U.K, 1993. KAMPER,J., KAHMANN,R., BOLKER,M., MA,L.J., BREFORT,T., SAVILLE,B.J., BANUETT,F., KRONSTAD,J.W., GOLD,S.E., MULLER,O., PERLIN,M.H., WOSTEN,H.A., DE VRIES,R., RUIZ-HERRERA,J., REYNAGA-PENA,C.G., SNETSELAAR,K., MCCANN,M., PEREZ-MARTIN,J., FELDBRUGGE,M., BASSE,C.W., STEINBERG,G., IBEAS,J.I., HOLLOMAN,W., GUZMAN,P., FARMAN,M., STAJICH,J.E., SENTANDREU,R., GONZALEZ-PRIETO,J.M., ENNELL,J.C., MOLINA,L., SCHIRAWSKI,J., MENDOZA-MENDOZA,A., GREILINGER,D., MUNCH,K., ROSSEL,N., SCHERER,M., VRANES,M., LADENDORF,O., VINCON,V., FUCHS,U., SANDROCK,B., MENG,S., HO,E.C., CAHILL,M.J., BOYCE,K.J., KLOSE,J., KLOSTERMAN,S.J., DEELSTRA,H.J., ORTIZ-CASTELLANOS,L., LI,W., SANCHEZ-ALONSO,P., SCHREIER,P.H., HAUSER-HAHN,I., VAUPEL,M., KOOPMANN,E., FRIEDRICH,G., VOSS,H., SCHLUTER,T., MARGOLIS,J., PLATT,D., SWIMMER,C., GNIRKE,A., CHEN,F., VYSOTSKAIA,V., MANNHAUPT,G., GULDENER,U., MUNSTERKOTTER,M., HAASE,D., OESTERHELD,M., MEWES,H.W., MAUCELI,E.W., DECAPRIO,D., WADE,C.M., BUTLER,J., YOUNG,S., JAFFE,D.B., CALVO,S., NUSBAUM,C., GALAGAN,J. AND BIRREN,B.W. (2006). Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature. v444,n7115, p97-101. KOLLÁR, R., REINHOLDS, B.B., PETRÁKOVA, E.; YEH, H.J.C., ASHWELL, G, DRGONOVÁ, J., KAPTEYN, J.C., KLIS, F.M., CABIB, E. Architecture of the yeast cell wall. Journal of Biological Chemistry. v272, p17762-17775, 1997. KUNDROTAS, P. J., ALEXOV, E. Electrostatic Properties of Protein-Protein Complexes. Biophys. J. v91, p1724-1736, 2006. LAGORCE, A., BERRE-ANTON, V., AGUILAR-USCANGA, B., MARTIN-YKEN, H., DAGKESSAMANSKAIA, A., FRANÇOIS, J. Involvement of GFA1, which encodes glutamine–fructose-6-phosphate amidotransferase, in the activation of the chitin synthesis pathway in response to cell-wall defects in Saccharomyces cerevisiae. Eur. J. Biochem. v269, p1697-1707, 2002. 106 LASKOWSKI, R. A., MACARTHUR, M. W., MOSS, D. S., THORNTON, J. M. PROCHECK: a program to check the stereochemistry of protein structures. J. Appl. Cryst. v26. p283-291, 1993. LASKOWSKI, R. A., MAC-ARTHUR, M.W., SMITH, D. K., JONES, D.T., HUTCHINSON, E. G., MORRIS, A. L., NAYLOR, D., Moss, D., THORNTON, J. M. Manual Procheck v.3.0: Programs to check the Stereochemical Quality of Protein Structures. Australia, 1994. LASS, R. A. Diseases. In: WOOD, G. A. R.; LASS, R. A. (Ed.) Cocoa. 4th ed. London, UK, Longmans. p265-365, 1985. LII, J. H., ALLINGER, N. L. Molecular mechanics. The MM3 force field for hydrocarbons. 3. The van der Waals' potentials and crystal data for aliphatic and aromatic hydrocarbons. J. Am. Chem. Soc., v111, n23, p8576 - 8582, 1989 LIPKOWITZ, K. B., BOYD, D. Reviews in computacional chemistry. VCH Publishes, New York, 1990. LIU, H., KAUFFMAN, S., Becker, J. M., Szaniszlo, P. J. Wangiella (Exophiala) dermatitidis WdChs5p, a class v chitin synthase, is essential for Sustained Cell Growth at temperature of infection. Eukaryotic Cell, p40-51, 2004. LOFTUS,B.J., FUNG,E., RONCAGLIA,P., ROWLEY,D., AMEDEO,P., BRUNO,D., VAMATHEVAN,J., MIRANDA,M., ANDERSON,I.J., FRASER,J.A., ALLEN,J.E., BOSDET,I.E., BRENT,M.R., CHIU,R., DOERING,T.L., DONLIN,M.J., D'SOUZA,C.A., FOX,D.S., GRINBERG,V., FU,J., FUKUSHIMA,M., HAAS,B.J., HUANG,J.C., JANBON,G., JONES,S.J., KOO,H.L., KRZYWINSKI,M.I., KWONCHUNG,J.K., LENGELER,K.B., MAITI,R., MARRA,M.A., MARRA,R.E., MATHEWSON,C.A., MITCHELL,T.G., PERTEA,M., RIGGS,F.R., SALZBERG,S.L., SCHEIN,J.E., SHVARTSBEYN,A., SHIN,H., SHUMWAY,M., SPECHT,C.A., SUH,B.B., TENNEY,A., UTTERBACK,T.R., WICKES,B.L., WORTMAN,J.R., WYE,N.H., KRONSTAD,J.W., LODGE,J.K., HEITMAN,J., DAVIS,R.W., FRASER,C.M. AND HYMAN,R.W (2005). The genome of the basidiomycetous yeast and human pathogen Cryptococcus neoformans. Science. v307n5713, p1321-1324. LOPES, M. Estudo Molecular de Quitinases de Crinipellis perniciosa (Stahel) Singer. Dissertação (Mestrado em Genética e Biologia Molecular) Universidade Estadual de Santa Cruz, 2006. MCQUILKEN, M. P. SUPRIADI, S., RUDGARD, S. A. Sensitivity of Crinipellis perniciosa to two triazole funficides in vitro and their effect on development of the fungus in cocoa. Plant Pathology. v37, p499-506, 1998. MELO, F., FEYTMANS, E. Assessing Protein Structures with a Non-local Atomic Interaction Energy. Journal of Molecular Biology. v277, p1141-1152, 1998. MERZENDORFER, H., ZIMOCH, L. Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases. The Journal of Experimental 107 Biology. v206, p4393-4412, 2003. MERZENDORFER. H. Insect chitin synthases: a review. J Comp Physiol B. v176, p1-15, 2006. MIO, T., YABE, T., ARISAWA, M., YAMADA-OKABE, H. The Eukaryotic UDP-Nacetylglucosamine pyrophosphorylases: gene cloning, protein expression, and catalytic mechanism. The Journal of Biological Chemistry. v273, p14392-14397, 1998. MONARD, G., MERZ, K. M, Jr., Combined Quantum Mechanical/Molecular Mechanical Methodologies Applied to Biomolecular Systems. Acc. Chem. Res. v32, p904-911, 1999. MULLER, C., HJORT, C. M., HANSEN, K., NIELSEN, J. Altering the expression of two chitin synthase genes differentially affects the growth and morphology of Aspergillus oryzae . Microbiology, v148, p4025–4033, 2002. MUSE, R., COLLIN, H. A. ISSAC, S., WARDWICK, K. Effects of the fungus Crinipellis perniciosa, causal agent of witches’ broom disease, on cell and tissue cultures of cocoa (Theobroma cacao L.). Plant Pathology. v45, p145-154, 1996. NISHIHARA, M., WATANABE, A, ASADA, Y. Isolation and characterization of the gene encoding a chitin synthase with a myosin motor-like domain from the edible basidiomycetous mushroom, Lentinula edodes, and its expression in the course of fruit-body formation. Mycoscience, v48, p109-116, 2007. NOTRADAME, C., HIGGINS, D., HERINGA, J. T-Coffee: A novel method for multiple sequence alignments. Journal of Molecular Biology, v302, p205-217, 2000. ORCHARD, J., COLLIN, H. A. HARDWICK, K., ISAAC, S. Changes in morphology and measurement of cytokinin levels development of witches’ broom on cocoa. (Theobroma cacao L.). Plant Pathology. v43, p65-72, 1994. PAGE, R. D. M. Treeview: An application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences. v12, p357-358, 1996. PANCHENKO, A. R., MARCHLER-BAUER, A., BRYANT, S. H. Combination of threading potentials and sequence profiles improves fold recognition. J. Mol. Biol. v296, p1319-1331, 2000. PAPAVIZAS, G. C. Trichoderma and Gliocladium: biology, ecology and potencial for biocontrol. Annual rewiew of Phytopathology, v23, p23-54, 1985. PARKER, J. D, RABINOVITCH, P. S., BURMER, G. C. Targeted gene walking polymerase chain reaction. Nucleic Acids Research, v19, n11, p3055-3060, 1991. 108 PATNY, A., DESAI, P. V.AVERY, M. A. Homology modeling of G-protein-coupled receptors and implications in drug design. Current Medicinal Chemistry. v13, p1667-1691, 2006. PATRICK, G. L. An introdution to medicinal chemistry. 2ed. Oxford University, 2001. PEARLMAN, D .A., CASE, D .A., CALDWELL, J. W., ROSS, W. S., CHEATHAM, T. E., DEBOLT, S., FERGUSON, D., SEIBEL, G., KOLLMAN, P. AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Comp. Phys. Commun. v19, p1-41, 1995. PEARSON, W. R., WOOD, T., ZHANG, Z., MILLER, W. Comparison of DNA Sequences with Protein Sequences. Genomics. v46, p24–36, 1997. PEREIRA, G. A. G. 2004. The witches broom Genome Project. Disponível em: <www.lge.ibi.unicamp.br/vassoura>. Acesso em: maio 2005. PEREIRA, J. L. RAM, A., FIGUEIREDO J. M., ALMEIDA L. C. C. The first occurrence of witches’ broom disease in the principal cocoa growing region of Brazil. Tropical Agriculture. v67, p188–189, 1990. PIROVANI, C. P., LOPES, M. A., OLIVEIRA, B. M., DIAS, C. V., SOUZA, C. S., GALANTE, R. S., SANTOS-JUNIOR, M. C., SILVA, B.G.M., UETANABARO, A. P. T., TARANTO, A. G., CRUZ, S. H.,ROQUE, M. R. A., MICHELI, F. F. L., GESTEIRA, A. S., SCHRIEFER, A., CASCARDO, J. C. M, PEREIRA, G. A. G., GÓES-NETO, A. Knowledge discovery in genome database: the chitin metabolic pathway in Crinipellis perniciosa. Proceedings of I International Symposium on Mathematical and Computational Biology (e-paper), 2005. PURDY, L. H., SCHMIDT, R. A. Status of cacao witches' broom: biology, epidemiology and management. Annu. Rev. Phytopathol. v34, p573-594, 1996. PUSHPARAJ,V., DECAPRIO,D., CRAWFORD,M., KOEHRSEN,M., ENGELS,R., MONTGOMERY,P., PEARSON,M., HOWARTH,C., LARSON,L., LUOMA,S., WHITE,J., KODIRA,C., ZENG,Q., ALVARADO,L., YANDAVA,C., OLEARY,S., DIETRICH,F. AND PUKKILA,P. Annotation of the Coprinopsis cinerea genome. Disponível em: <http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&id=116504282>. Acesso em: 26. jul. 2007. QUEIROZ, V. T., GUIMARÃES, C. T., ANHERT, D., SCHUSTER, I., DAHER, R. T., PEREIRA, M. G., MIRANDA, V. R. M., LOGUERCIO, L. L., BARROS, E. G., MOREIRA, M. A. Identification of a major QTL in cocoa (Theobroma cacao L.) associated with resistance to witches´ broom disease. Plant Breeding. v122, p268272, 2003. RAJA, M. C., ZEVIN-SONKIN, D., SHWARTZBURD, J., ROZOVSKAYA, T. A., SOBOLEV, I. A., CHERTKOV, O., RAMANATHAN, V., LVOVSKY, L., 109 ULANOVSKY, L. E.. DNA sequencing using differential extension with nucleotide subsets (DENS). Nucleic Acids Research. v25, n4, p800-805, 1997. ROCHA, H. M., WHEELER, B. E. J. Factors influencing the production of basidiocarps and the deposition and germination of basidiospores of Crinipellis perniciosa, the causal gent of witches’ broom disease on cocoa (Theobroma cacao L.). Plant Pathology. v34, p319-328, 1985. ROGERS, S. O., BENDICH, A. J. Extraction of total cellular DNA from plants, algae and fungi. In: GELVIN, S. B.; SCHILPEROORT, R. A. (eds.). Plant Molecular Biology Manual. Dordrecht: Kluwer Academic Publishers, 1994. RONCERO, Cesar. The genetic complexity of chitin synthesis in fungi. Curr Genet. v41, p367-378, 2002. RONQUIST, F. R., HUELSENBECK, J. P. MrBayse 3: Bayesian phylogenetic, inference under mixed models. Bioinformatics. v19, n12. p1572–1574. 2003. RUDGARD, S. A. Witches’ broom disease on cocoa in Rondonia, Brazil: Infection of vegetative flushes and flower cushions in relation to host phenology. Plant Pathology. v36, p523-530,1987. RUIZ-HERRERA, J., GONZÁLEZ-PRIETO, J. M., RUIZ-MEDRANO, R. Evolution and phylogenetic relationships of chitin synthases from yeast and fungi. FEMS Yeast Research. v1, p247-256, 2002. SAIKI, R. K., GELFAND, D. H., STOFFEL, S., SCHARF, S. J., HIGUCHI, R., HORN, G. T., MULLIS, K. B., ERLICH, H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. v239, n4839, p487-91, 1988. ŠALI, A., BLUNDELL, T. L. Comparative Protein Modelling by Satisfaction of Spatial Restraints. J. Mol. Biol. v234, p779-815, 1993. SAMBROOCK, J., RUSSELL, DW. Molecular cloning – a laboratory manual. 3ed. New York: Cold Spring Harbor. v3, 2001. SÁNCHEZ, R., ŠALI, A. Comparative Protein structure Modeling in Genomics. Journal of Computational Physics. v151, p388-401, 1998. SANTOS, S. C. Caracterização de hidrofobinas do fungo Crinipellis perniciosa (Stahel) Singer, causador da doença vassoura-de-bruxa no cacaueiro. Dissertação (Mestrado em Genética e Biologia Molecular) – Universidade Estadual de Santa Cruz, 2005. SANTOS-FILHO, O. A., ALENCASTRO, R. B. Modelagem de proteínas por homologia. Química Nova. v26, n2, p253-259, 2003. SCHWEDE, T., KOPP, J., GUEX, N., PEITCH, M.C. Swiss-Model: An automated protein homologia-modeling server. Nucleic Acids Reseach. v31, n13, p3381- 110 3385, 2003. SHIN, D.H., SCHULTE, A., DAHL, C., KIM, R., KIM, S.H. (2006). Crystal structure of DsrEFH. Disponível em: <http://www.rcsb.org/pdb/explore/explore.do?structureId=2HY5>. Acesso em: 26. Jul. 2007. SIBANDA, B. L., THORNTON, J. M. β-Hairpin families in globular proteins. Nature. v316, p170-174, 1985. SINGER, R. Agaricales in Modern Taxonomy. Koeltz Scientific Books: Koeningstein, 1986. SMALE, S. T., KADONAGA, J. T. The RNA polymerase II core promoter. Annu Rev Biochem. v72, p449-479, 2003. SOBERANIS, W. et al. Increased frequency of phytosanitary pod removal in cacao (Theobroma cacao) increases yield economically in eastern Peru. Crop protection. v11, p677-685, 1999. SREENIVASAN, T. N., DABYDEEN, S. Modes of penetration of young cocoa leaves by Crinipellis perniciosa. Plant Disease. v73, n6, p478-481, 1989. SREENIVASAPRASAD, S., BURTON, K. S., WOOD, D. A. Cloning and characterisation of a chitin synthase gene Cdna from the cultivated mushroom Agaricus bisporus and its expression during morphogenesis. FEMS Microbiology Letters. v189, p73-77, 2000. SWOFFORD, D. L. PAUP Phylogenetic analysis using parsimony and other methods, version 4.0b10. Sunderland: Sinauer, 2002. TAUFER, M. CROWLEY, M. PRICE, D., CHIEN, A. A., BROOKS, C. L. Study of a Highly Accurate and Fast Protein-Ligand Docking Algorithm Based on Molecular Dynamics. Parallel and Distributed Processing Symposium, 2004. Proceedings. 18th International Disponível em: <http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1303203> Acesso em: 23.abr.2007. TELLAM, R. L., VUOCOLO, T., JOHNSON, S. E., JARMEY, J., PEARSON, R. D. Insect chitin synthase: cDNA sequence, gene organization and expression. European Journal of Biochemistry, v267, p6025-6042, 2000. TOVAR, G. La escaba de bruja del cacao Crinipellis perniciosa (Stahel) Singer: descripción de síntomas de la enfermedad. Agronomia Colombiana, v8, n1, p227239, 1991. TUKALO, M., YAREMCHUK, A., FUKUNAGA, R., YOKOYAMA, S., CUSACK, S. The crystal structure of leucyl-tRNA synthetase complexed with tRNALeu in the post-transfer-editing conformation. Nat. Struct. Mol. Biol. v12, p923-930, 2005. 111 WARSHEL, A., LEVITT, M. Theoretical studies of enzymic reactions: Dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. J. Mol. Biol. v103, n2, p227-249, 1976. WEBER,I., ASSMANN,D., THINES,E. AND STEINBERG, G. (2006). Polar localizing class V myosin chitin synthases are essential during early plant infection in the plant pathogenic fungus Ustilago maydis. Plant Cell. v18, n1, p225-242. WESSELS, J.G.H. Wall growth, protein excretion and morphogenesis in fungi. New Phytol. v123, p397-413, 1993. WHEELER, B.E.J. The growth of Crinipellis perniciosa in living and dead cocoa tissue. In: Moore D, Casselton LA, Wood DA, Frankland JC, eds. Developmental Biology of Higher Fungi. Cambridge University Press. p.103-116, 1985. YEAGER, A. R., FINNEY, N. S. The first direct evaluation of the two-active site mechanism for chitin synthase. J. Org. Chem, v69, p613-618, 2004. YUAN, X, BYSTROFF, C. Non-sequential structure-based alignments reveal topology-independent core packing arrangements in proteins. Bioinformatics. v21 n7, p1010-9, 2005. ZHANG, D, MILLER, M.J. 1999. Polyoxins and nikkomycins: progresss in synthetic and biological studies. Curr. Pharm. Des. p73-99, 1999. 112 Apêndices 113 Apêndice I >Provável protéina da sintase da quitina de Moniliophthora perniciosa com 913 aa MANRPPLPSNASSSTVNDPYADPFADRPRQTHFTEPQHPYPSQASIPRPFESATSLPQEFGARDQQFEEDDYVE KQPLTGGQAFAGGFYPPGPVDPEAYGDPYAGSRPASVVSSSTGGEKSAWRRRQTIKRGVTRKVKLTKGNFITEY PVPTPILSATEAKYTATSTTEFSHMRYTAATCDPDEFSEANGYSLRTKMYNRETELLIAVTSYNEDKTLYARTL HGVMLNIRDICKTKQSKYWRRQAEEGNPGWQKITVALIVDGLEPMDKSVLDILATVGVYQDGVMKKQVDGKDTV AHIFEYTTQLSVDATPQLVLPQANDPNNLVPVQIIFVLKAKNQKKINSHRWLFNAIGKILNPEVCVLIDAGTKP GHKSIFYLWKAFYNDPHLGGCCGEIHAMIKGGKKLLNPLVAAQNFEYKMSNILDKPLESSFGYVSVLPGAFSAY RYRAILGRPLEQYFHGDHSLADRLGPKRYYGNEHLHQEHVLAEDRILCFELVAKKNDRWTLTYVKPSKAETDVP ESAPELIGQRRRWLNGSFAASVYALVNFFKLYQSGHGIFRMFFFHVQALYNIFSLVFSWFSLANIWLTFSIIID LLPNLPGDTAIIVFGTKAVTHWVNFGFKWIYLAFLALQFVLALGNRPKGERAAYTVTLWVYAILALYLLVVYAI LALYLLVCSFWLTIQAFQNIPKLVQANGGDAIKTLFQGPVGALIAAMFSTYGIYIIASFLYRDPWHMFSSFFQY LLLAPSFTNVLNVYAFCNLHDVSWGTKGSDKAEALPSVSSSKAKDADVAVVEDTAKVQEDVDAAFKETVTRAVT KIETKEEIEKPTMDDQNKTFRTRLVAFWMLSNASLAVAISNLNGLPSSNPAQDEKDLADKQSTYFNIILYSTFG LAFVRFIGCLWYFFKRNLFRCCRRN >Provável cDNA da sintase da quitina de Moniliophthora perniciosa 2739 pb (gDNA = 3440 + códon de terminação, 14 exons, 13 introns) ATGGCGAATCGCCCGCCACTCCCTTCAAATGCTTCTAGCTCTACAGTCAATGATCCTTATGCAGACCCGTTTGC AGACCGTCCTCGGCAGACCCACTTTACTGAACCCCAGCACCCTTATCCTTCACAAGCCAGCATTCCTCGTCCTT TCGAGAGCGCGACTTCTCTGCCGCAGGAGTTTGGAGCACGGGACCAGCAGTTCGAAGAAGATGACTACGTAGAA AAGCAACCGTTGACAGGCGGACAAGCGTTCGCTGGCGGGTTCTATCCACCAGGTCCTGTTGATCCTGAGGCCTA TGGCGATCCTTATGCTGGGAGTCGCCCTGCTTCCGTCGTGTCATCGTCGACAGGCGGTGAAAAAAGTGCATGGC GACGACGACAGACCATCAAGCGTGGTGTTACCCGCAAGGTCAAACTGACCAAGGGCAACTTCATCACCGAGTAT CCAGTCCCTACACCTATTCTCAGCGCGACAGAAGCCAAATATACTGCCACGTCCACAACCGAGTTTTCGCATAT GCGATACACAGCTGCAACATGCGATCCGGATGAATTTTCAGAGGCCAACGGTTACTCACTGCGAACAAAGATGT ACAACCGTGAGACCGAGCTTCTTATTGCCGTTACGTCATACAACGAAGACAAGACGCTCTACGCCCGTACTCTG CATGGCGTCATGCTGAACATTCGTGACATTTGCAAGACAAAGCAATCCAAATACTGGCGTCGACAGGCCGAGGA AGGCAATCCAGGGTGGCAAAAGATCACCGTTGCGTTGATTGTAGATGGACTTGAACCAATGGACAAGAGTGTAC TGGATATCCTGGCCACCGTGGGCGTATACCAGGACGGCGTCATGAAGAAGCAAGTCGATGGAAAAGACACCGTC GCCCATATTTTCGAGTACACCACTCAATTATCAGTGGATGCCACTCCTCAACTGGTGCTTCCTCAGGCCAACGA TCCAAACAACCTGGTTCCTGTTCAAATCATTTTTGTCTTGAAGGCTAAGAATCAGAAGAAGATCAACTCCCACC GTTGGTTGTTCAACGCCATCGGCAAGATTCTCAACCCCGAAGTTTGTGTCTTGATTGATGCGGGTACGAAGCCC GGCCACAAATCAATCTTCTACCTCTGGAAGGCTTTCTATAATGACCCTCACCTCGGTGGTTGCTGTGGTGAAAT TCATGCCATGATCAAGGGTGGAAAGAAGCTTCTGAATCCATTGGTTGCCGCTCAAAATTTTGAGTACAAGATGT CCAATATCTTGGACAAACCTCTGGAAAGTAGTTTCGGCTACGTCTCTGTGTTACCTGGTGCTTTCTCAGCGTAC CGTTATCGTGCCATCCTCGGACGTCCATtGGAGCAATATttCCATGGGGATCATTCGTTGGCAGACCGGCTCGG ACCCAAAAGGTATTACGGAAATGAACATCTTCACCAAGAACATGTCTTGGCCGAAGATCGTATTCTGTGCTTCG AGCTGGTGGCAAAGAAGAATGATAGATGGACGCTGACATACGTGAAACCAAGTAAAGCAGAAACGGATGTGCCA GAATCTGCCCCCGAATTAATCGGTCAGCGTCGTCGTTGGTTGAACGGTTCTTTCGCTGCCTCAGTGTACGCTCT GGTCAATTTCTTCAAACTCTACCAATCTGGCCATGGCATTTTCCGCATGTTCTTCTTCCATGTTCAGGCTTTAT ACAACATCTTTTCGCTGGTCTTCTCTTGGTTTTCTCTTGCCAACATCTGGTTGACATTTAGTATCATCATCGAC TTGCTTCCCAACCTGCCCGGTGATACTGCCATTATAGTGTTTGGCACAAAGGCAGTTACACACTGGGTCAACTT TGGTTTCAAATGGATCTACCTGGCTTTCCTTGCTTTACAATTCGTCCTCGCCCTCGGGAACCGGCCGAAAGGTG AACGTGCAGCATACACGGTTACTTTATGGGTATATGCCATACTCGCTCTTTACTTGCTTGTTGTATATGCCATA CTCGCTCTTTACTTGCTTGTTTGCTCTTTCTGGCTTACCATTCAAGCCTTTCAGAACATACCCAAACTGGTCCA GGCAAACGGTGGCGATGCAATCAAGACGCTCTTCCAAGGACCAGTGGGAGCTTTGATCGCAGCCATGTTTTCGA CTTATGGTATCTATATCATCGCTTCCTTCCTCTACCGTGATCCTTGGCACATGTTCTCGAGTTTCTTCCAATAT CTCTTGTTGGCGCCCAGCTTCACCAATGTACTCAACGTCTATGCGTTCTGCAATCTCCACGATGTCTCGTGGGG TACGAAAGGTAGCGATAAAGCCGAAGCACTACCTTCAGTGTCATCTTCCAAAGCAAAAGACGCTGATGTGGCTG TTGTCGAGGATACCGCAAAGGTCCAAGAGGATGTTGACGCTGCATTCAAGGAAACCGTCACAAGAGCCGTCACC AAAATCGAAACCAAGGAGGAAATTGAAAAGCCTACGATGGACGACCAGAACAAGACATTCCGTACTCGTCTCGT CGCGTTCTGGATGTTGTCCAATGCATCGCTTGCCGTTGCTATTTCAAACTTGAATGGTCTGCCTAGTTCAAACC CTGCCCAAGACGAAAAAGACTTGGCCGACAAGCAGAGCACATATTTCAACATCATCTTGTATTCAACATTTGGT CTTGCTTTCGTTCGTTTCATTGGATGTCTCTGGTACTTCTTCAAGCGCAACCTCTTCAGATGTTGCAGACGGAA CTAA 114 >Provável gDNA da sintase da quitina de Moniliophthora perniciosa 3440 + códon de terminação, 14 exons (1-275; 329-565; 621-1011; 1064-1231; 12871485; 1541-1890; 1947-2027; 2081-2212; 2265-2383; 2435-2634; 2695-2723; 2775-2876; 2928-3332 e 3390-3440) e 13 íntrons (276-328; 566-620; 10121063; 1232-1286; 1486-1540; 1891-1946; 2028-2080; 2213-2264; 2384-2434; 2635-2694; 2724-2774; 2877-2927; 3333-3389). ATGGCGAATCGCCCGCCACTCCCTTCAAATGCTTCTAGCTCTACAGTCAATGATCCTTATGCAGACCCGTTTGC AGACCGTCCTCGGCAGACCCACTTTACTGAACCCCAGCACCCTTATCCTTCACAAGCCAGCATTCCTCGTCCTT TCGAGAGCGCGACTTCTCTGCCGCAGGAGTTTGGAGCACGGGACCAGCAGTTCGAAGAAGATGACTACGTAGAA AAGCAACCGTTGACAGGCGGACAAGCGTTCGCTGGCGGGTTCTATCCACCAGGGTGAGCTCTTTTTTTCAGTTA TACGTGTTTTATCAGCTCACCTTTGACCTCAGTCCTGTTGATCCTGAGGCCTATGGCGATCCTTATGCTGGGAG TCGCCCTGCTTCCGTCGTGTCATCGTCGACAGGCGGTGAAAAAAGTGCATGGCGACGACGACAGACCATCAAGC GTGGTGTTACCCGCAAGGTCAAACTGACCAAGGGCAACTTCATCACCGAGTATCCAGTCCCTACACCTATTCTC AGCGCGACAGAAGCCAAATATACTGCCACGTCCACAACCGAGTTTTCGTAAGTCCAACTGTCAATCGATCATGT TCTTTTCTTTCTCATTACCCTTGGCCAGGCATATGCGATACACAGCTGCAACATGCGATCCGGATGAATTTTCA GAGGCCAACGGTTACTCACTGCGAACAAAGATGTACAACCGTGAGACCGAGCTTCTTATTGCCGTTACGTCATA CAACGAAGACAAGACGCTCTACGCCCGTACTCTGCATGGCGTCATGCTGAACATTCGTGACATTTGCAAGACAA AGCAATCCAAATACTGGCGTCGACAGGCCGAGGAAGGCAATCCAGGGTGGCAAAAGATCACCGTTGCGTTGATT GTAGATGGACTTGAACCAATGGACAAGAGTGTACTGGATATCCTGGCCACCGTGGGCGTATACCAGGACGGCGT CATGAAGAAGCAAGTCGATGGAAAAGACACCGTCGCCCATATTTTCGAGGTTTGTACAAGAGTAATCGTGGCCA AGTTTACAATACTTATTCTACCTATAGTACACCACTCAATTATCAGTGGATGCCACTCCTCAACTGGTGCTTCC TCAGGCCAACGATCCAAACAACCTGGTTCCTGTTCAAATCATTTTTGTCTTGAAGGCTAAGAATCAGAAGAAGA TCAACTCCCACCGTTGGTTGTTCAACGCCATCGGCAAGATTCTCAACGTAAGCTTGTTTCTTCGTTGCTATCTG TATACGTGTCTTGATTCGGTATCATCAGCCCGAAGTTTGTGTCTTGATTGATGCGGGTACGAAGCCCGGCCACA AATCAATCTTCTACCTCTGGAAGGCTTTCTATAATGACCCTCACCTCGGTGGTTGCTGTGGTGAAATTCATGCC ATGATCAAGGGTGGAAAGAAGCTTCTGAATCCATTGGTTGCCGCTCAAAATTTTGAGTACAAGATGTCCAATAT CTTGGGTAAGTTGCACCACTACCACATTGTGTTTGTTCACTCATTCCGTCATCACCACAGACAAACCTCTGGAA AGTAGTTTCGGCTACGTCTCTGTGTTACCTGGTGCTTTCTCAGCGTACCGTTATCGTGCCATCCTCGGACGTCC ATtGGAGCAATATttCCATGGGGATCATTCGTTGGCAGACCGGCTCGGACCCAAAAGGTATTACGGAAATGAAC ATCTTCACCAAGAACATGTCTTGGCCGAAGATCGTATTCTGTGCTTCGAGCTGGTGGCAAAGAAGAATGATAGA TGGACGCTGACATACGTGAAACCAAGTAAAGCAGAAACGGATGTGCCAGAATCTGCCCCCGAATTAATCGGTCA GCGTCGTCGTTGGTTGAACGGTTCTTTCGCTGCCTCAGTGGTAAGTTTCCGTGTTTGTCTTTATAATGAGTTGC TGTAATCAAGATGGCTTTCTAGTACGCTCTGGTCAATTTCTTCAAACTCTACCAATCTGGCCATGGCATTTTCC GCATGTTCTTCTTCCATGTTCAGGCTTTAGTAAGTCGCATCTTATTCTACTTTCTGATCATAGATATTCATGCT GTCTCCAGTACAACATCTTTTCGCTGGTCTTCTCTTGGTTTTCTCTTGCCAACATCTGGTTGACATTTAGTATC ATCATCGACTTGCTTCCCAACCTGCCCGGTGATACTGCCATTATAGTGTTTGGCACAAAGGCAGTTGTAAGTGC TATGCGTTCGCGATTGACAGGACGAAATTGAAAGCGTCTTCTAGACACACTGGGTCAACTTTGGTTTCAAATGG ATCTACCTGGCTTTCCTTGCTTTACAATTCGTCCTCGCCCTCGGGAACCGGCCGAAAGGTGAACGTGCAGCATA CACGGTTACTTTATGGTGCGACACACTATAGCTACGTGGATCGAGCTAACATTAATCATGGAATAGGGTATATG CCATACTCGCTCTTTACTTGCTTGTTGTATATGCCATACTCGCTCTTTACTTGCTTGTTTGCTCTTTCTGGCTT ACCATTCAAGCCTTTCAGAACATACCCAAACTGGTCCAGGCAAACGGTGGCGATGCAATCAAGACGCTCTTCCA AGGACCAGTGGGAGCTTTGATCGCAGCCATGTTTTCGACTTATGGTGAGCCTTTCAGGTTCTTGGCTTGCTGTC TGGTTGGGCTAACCTGTGAACAACACTTAGGTATCTATATCATCGCTTCCTTCCTCTACGTACGTTGCAGACCT GCGCTTGATGACTACCGTATTCACCGTTGCCTCTAGCGTGATCCTTGGCACATGTTCTCGAGTTTCTTCCAATA TCTCTTGTTGGCGCCCAGCTTCACCAATGTACTCAACGTCTATGCGTTCTGCAATCTCCACGATGTACGTATAT GTGTATCTTTTACATTTAAGGTTCTAAGAGCCCTTTCCTAGGTCTCGTGGGGTACGAAAGGTAGCGATAAAGCC GAAGCACTACCTTCAGTGTCATCTTCCAAAGCAAAAGACGCTGATGTGGCTGTTGTCGAGGATACCGCAAAGGT CCAAGAGGATGTTGACGCTGCATTCAAGGAAACCGTCACAAGAGCCGTCACCAAAATCGAAACCAAGGAGGAAA TTGAAAAGCCTACGATGGACGACCAGAACAAGACATTCCGTACTCGTCTCGTCGCGTTCTGGATGTTGTCCAAT GCATCGCTTGCCGTTGCTATTTCAAACTTGAATGGTCTGCCTAGTTCAAACCCTGCCCAAGACGAAAAAGACTT GGCCGACAAGCAGAGCACATATTTCAACATCATCTTGTATTCAACATTTGGTCTTGCTTTCGTTCGTTTCATTG GAGTACGTTTTATCTACTCGCGTTGTGCAAGGAGTTGATTGACATTACATCCATGACAGTGTCTCTGGTACTTC TTCAAGCGCAACCTCTTCAGATGTTGCAGACGGAACTAA 115 Seja gentil com a natureza, Imprima apenas o indispensável.