Adriano Alberto ENG285 4ª Unidade Fonte: Arquivo da resolução da lista 1 (Adriano Alberto), Slides do Prof. Alberto B. Vieira Jr., RILEY - Mecânica dos Materiais. Momento de Inércia (I) Para seção retangular: I= . Para seção triangular reta: I= . Semi-círculo: = Momento estático (Q) Q = A . (distância do centróide à L.N.) = - . ; = . . = - . Módulo de resistência (W) = W = || á á => Wreq = 1 Adriano Alberto PROBLEMAS ENVOLVENDO FLEXÃO Nas questões abaixo, de acordo com as respostas da lista, não são calculadas as tensões máximas. Para isso, seria necessário calcular também as tensões cisalhantes e, a partir do estado de tensão resultante, calcular as tensões máximas, que podem ou não coincidir com os resultados das questões abaixo. 1) A viga carregada como mostrado tem a seção transversal da figura. Determine a tensão longitudinal: (a) num ponto a 4,5 m a contar da extremidade esquerda e 125 mm acima da superfície neutra; (b) num ponto 75 mm abaixo da superfície neutra numa seção a 1,2 m do extremo direito RA + RD = 30 + 15 + 30 = 75 kN ∑ # = 0 => - 30 . 1,5 - 15 . 4 + 5 . RD – 6 . 30 = 0 => RD = 57 kN RA = 18 kN Para 0 ≤ x < 3: V(x) = - 10x + 18 Para V(x) = 0 => x = 1,8 m Diagrama: 2 Adriano Alberto 3 a) M(4,5) = ? Para 4 ≤ x < 5: V(x) = - 27 kN M(x) = - 27x + C M(4) = - 3 kN.m = - 27 . 4 + C => C = 105 M(x) = - 27x + 105 => M(4,5) = - 27 . 4,5 + 105 => M(4,5) = - 16,5 kN.m Cálculo da Posição da Linha Neutra (L.N.) Obs: não era preciso calcular para esse caso, devido a simetria da seção. AT = 200.50.3 = 30 000 mm² A1 = 200.50= 10 000 mm²² A2 = 200.50= 10 000 mm² m² A3 = 200.50= 10 000 mm² m² = 275 mm = 150 mm = 25 mm Adriano Alberto yi = )# . )# . # . #* = +,,,,.-./)+/,)-/ 0,,,, = 150 mm ys = 300 – 150 = 150 mm Cálculo do momento de inércia Iz = + + = .1 − 3 = + A1 . -,,./,4 +- + 10 000 . 275 − 150- = 158 333 333,3.78 m4 = .1 − 3 = + A2 . /,.-,,4 +- + 10 000 .150 − 150- = 33 333 333,33.78 m4 = .1 − 3 = + A3 . -,,./,4 +- + 10 000 . 25 − 150- = 158 333 333,3 .78 m4 => Iz = 350 000 000 . 78 m4 = - . => 9: = - ;8+<,/.+,4 >.+-/.+,?4 0/,,,,,,,.+,?@A = 5 892 857,143 Pa b) x = 7 – 1,2 = 5,8 m M(5,8) = ? Para 5 ≤ x < 7: V(x) = - 15x + C V(5) = 30 = - 15 . 5 + C => C = 105 => V(x) = - 15x + 105 M(x) = - 7,5 . x² + 105 . x + C M(5) = - 30 kN.m = - 7,5 . 25 + 105 . 5 + C => C = - 367,5 M(x) = - 7,5 . x² + 105 . x - 367,5 => M(5,8) = - 7,5 . (5,8)² + 105 . 5,8 - 367,5 => M(5,8) = - 10,8 kN.m = - . => 9: = - ;8+,,B.+,4 >.8./.+,?4 0/,,,,,,,.+,?@A = - 2 314 285,714 Pa 4 Adriano Alberto 2) (a) Determine a tensão longitudinal em um ponto 100 mm abaixo da superfície neutra numa seção a 1,3 m do extremo xtremo direito da viga carregada da figura; (b) determine a máxima tensão longitudinal numa seção a 1 m do extremo esquerdo. ∑ C = 0 => RA + RB = 39 000 N ∑ # = 0 => 9 000 – 30 000 . 1,5 + 3 . RB = 0 => RB = 12 000 N RA = 27 000 N Para 1,5 ≤ x D 3,5: V(x) = - 15 000 . x + C V(1,5) = 18 000 = - 15 000 . 1,5 + C => C = 40 500 V(x) = - 15 000 . x + 40 500 Para V(x) = 0 => x = 2,7 m Diagrama: 5 Adriano Alberto Cálculo da Posição da Linha Neutra (L.N.) 6 AT = 150.50 + 150.50 = 15 000 mm² A1 = 150.50= 7 500 mm² A2 = 150.50= 7 500 mm² = 175 mm = 75 mm yi = )# . # . #* = ./,,.+./)./,,../ +/,,, = 125 mm ys = 200 – 125 = 75 mm Cálculo do momento de inércia Iz = + = = .1 .1 − 3 = + A1 . − 3 = + A2 . +/,./,4 +/,.+/,4 +- + 7 500 . 175 − 125- = 20 312 500 . 78 m4 + 7 500 . 75 − 125- = 32 812 500 . 78 m4 => Iz = 53 125 000 . 78 m4 a) x = 4 – 1,3 = 2,7 m M(2,7) = 10,8 kN.m = - . => 9: = - ;+,,B.+,4 >.8+,,.+,?4 /0+-/,,,.+,?@A b) M(1) = - 9 kN.m Cálculo das tensões acima da L.N.: = 20 329 411,76 Pa Adriano Alberto = - .F => 9: = - ;8G.+,4 >../.+,?4 /0+-/,,,.+,?@A = 12 705 882,35 Pa Cálculo das tensões abaixo da L.N.: = - .3 => 9: = - ;8G.+,4 >.8+-/.+,?4 /0+-/,,,.+,?@A = - 21 176 470,59 Pa = ,á 3) Uma barra de aço de 200 mm de diâmetro é carregada e apoiada como mostrado na figura. Determine a máxima tensão longitudinal numa seção a 1,5 m a partir da parede. R = 12 kN 12 . 3 + M = 0 => M = - 36 kN.m M(3) = - 18 kN.m Iz = HI J K = H,,+,,J K A = LM - = L0,100- = 100 mm yi = ys = 7 Adriano Alberto = - .F = - ;8+B.+,4 >.±+,,.+,?4 OP,@PPJ J = ± 22 918 311,81 Pa 8 4) Para a viga mostrada, as tensões longitudinais admissíveis na seção sob a carga são de 42 MPa T e 70 MPa C. Determine a máxima carga admissível P. RA + RC = P (I) ∑ QR = 0 => - 1 . P + 3,5 . RC = 0=> RC = S ,T (II) Substituíndo em (I): S RA + ,T = P => RA = ,T.S ,T RA = 2,5 . RC Para o trecho 0 ≤ x < 1: V(0) = V(1) = RA M(x) = RA . x + C M(0) = 0 => C = 0 => M(x) = RA . x M(1) = RA Para o trecho 1 ≤ x < 3,5: V(1) = V(3,5) = RA – P M(x) = (RA - P). x + C M(1) = RA = (RA - P). 1 + C => C = P => M(x) = (RA - P). x + P M(3,5) = (RA - P). 3,5 + P = 3,5 . RA – 3,5 . P + P = 3,5 . RA – 2,5 . P = 3,5 . Para x = 3,5: V(3,5) = RA – P + RC = RA – P + P – RA = 0 -,/.U 0,/ – 2,5 . P = 0 Adriano Alberto M(3,5) = 0 Mmáx = RA = 9 ,T.S ,T Cálculo da Posição da Linha Neutra (L.N.) AT = 200.25 + 100.25 = 7 500 mm² A1 = 200.25= 5 000 mm² A2 = 100.25= 2 500 mm² = 125 mm = 12,5 mm yi = )# . # . #* = /,,,.+-/)-/,,.+-,/ ./,, = 87,5 mm ys = 225 – 87,5 = 37,5 mm Cálculo do momento de inércia Iz = + = .1 − 3 = + A1 . = .1 − 3 = + A2 . -/.-,,4 +- +,,.-/4 +- + 5 000 . 125 − 87,5- = 23 697 916,67.78 m4 + 2 500 . 12,5 − 87,5- = 14 192 708,33.78 m4 => Iz = 37 890 625 . 78 m4 Para o trecho AB: Mmáx = ,T.S ,T Cálculo das tensões acima da L.N.: = - .F 6 => - 70 . 10 = - W A,X.Y Z.0.,/.+,?4 4,X 0.BG,<-/.+,?@A => P = 99 020,83334 N Adriano Alberto Cálculo das tensões abaixo da L.N.: 10 = - .3 => 42 . 106 = - W A,X.Y Z.8B.,/.+,?4 4,X 0.BG,<-/.+,?@A => P = 25 462,5 N = Padm 5) e 6) Se o momento mostrado atua no plano vertical, determinar a tensão no: (a) ponto A; (b) ponto B. 5) a) Como o ponto A vai ser comprimido, será negativo. Mz = 15 kN.m yi = ys = 60 mm Cálculo do momento de inércia Como a seção é simétrica, e a área interna é concêntrica com a área externa, Iz = [ - 3 : [ - 3 = = - B,.+-,4 +- . =- - K,.B,4 +- = 9 813 333,333 . 78 m4 ;+/.+,4 >.K,.+,?4 GB+0000,000.+,?@A = - 61 141 304,35 Pa b) Como o ponto B vai ser tracionado, será positivo. Mz = 15 kN.m = - .3 =- ;+/.+,4 >.8<,.+,?4 GB+0000,000.+,?@A = 91 711 956,52 Pa Adriano Alberto *** 6) 11 a) Como o ponto A vai ser comprimido, será negativo. Mz = 2,8 kN.m yi = ys = 30 mm Cálculo do momento de inércia Iz = [ - 2 . 3 = = - . =- +-,.<,4 +- - 2. H.-,J K ;-,B.+,4 >.0,.+,?4 +G,B<.-,/BB.+,?@A = 1 908 672,588 . 78 m4 = - 44 009 643,42 Pa b) Como o ponto B vai ser tracionado, será positivo. Mz = 2,8 kN.m = - . =- ;-,B.+,4 >.8-,.+,?4 +G,B<.-,/BB.+,?@A = 29 339 762,28 Pa Resposta da lista: 6) σa = 44,1 MPa C σb = 29,3 MPa T 7) A viga mostrada é feita de aço com tensão de escoamento igual a 250 MPa. Determinar o maior momento que pode ser aplicado à viga quando ela encurva em torno do eixo z, considerando um coeficiente de segurança de 2,5. Adriano Alberto Posição da Linha Neutra (L.N.) 12 yi = 130 mm Cálculo do momento de inércia A1 = 200.16= 3 200 mm² A2 = 228.10= 2 280 mm² A3 = 200.16= 3 200 mm² = 252 mm = 130 mm = 8 mm Iz = + + = = .1 − 3 = + A1 . -,,.+<4 +- = .1 − 3 = + A2 . +,.--B4 +- + 2 280 . 130 − 130- = 9 876 960 . 78 m4 = .1 − 3 = + A3 . -,,.+<4 +- + 3 200 . 8 − 130- = 47 697 066,67 . 78 m4 + 3 200 . 252 − 130- = 47 697 066,67 . 78 m4 => Iz = 105 271 093,3 . 78 m4 = .3 => -/,.+,] -,/ = ^_ .+0,.+,?4 +,/-.+,G0,0.+,?@A => = 80 977,76408 N.m 8) Sabendo-se que uma viga de seção transversal, como mostrado, é encurvada em torno de um eixo horizontal e está submetida a um momento fletor de 5,7 kN.m, determinar a intensidade total da força atuando: (a) na aba superior; (b) na porção sombreada da alma. Adriano Alberto 13 Posição da Linha Neutra (L.N.) yi = 87,5 mm Cálculo do momento de inércia A1 = 150.37,5= 5 625 mm² A2 = 50.100= 5 000 mm² A3 = 150.37,5= 5 625 mm² = 156,25 mm = 87,5 mm = 18,75 mm Iz = + + = = .1 − 3 = + A1 . +/,.0.,/4 +- + 5 625 . 156,25 − 87,5- = 27 246 093,75.78 m4 = .1 − 3 = + A2 . /,.+,,4 +- + 5 000 . 87,5 − 87,5- = 4 166 666,667 . 78 m4 => Iz = 58 658 854,17 . 78 m4 a) Adriano Alberto Para y = 68,75 mm (distância da L.N. ao centróide da figura) 14 = - .3 = - /,..+,4 .<B,./.+,?4 /B</BB/K,+..+,?@A => = - 6 680 577,136 Pa F = . A1 => F = - 6 680 577,136 . 5 625 . 10-6 m² => F = - 37 578,24639 N b) Para y = - 25 mm (distância da L.N. ao centróide da figura) = - . = - /,..+,4 .8-/.+,?4 /B</BB/K,+..+,?@A => = 2 429 300,777 Pa F = . A => F = 2 429 300,777 . 50 . 50 . 10-6 m² => F = 6 073,251943 N *** 9) Duas forças verticais são aplicadas a uma viga de seção transversal mostrada. Determinar as máximas tensões de tração e compressão numa seção transversal na porção BC da viga. RA + RD = 20 kN RA = RD = 10 kN Mz = 1,5 kN.m Adriano Alberto Cálculo da Posição da Linha Neutra (L.N.) 15 AT = 10.50 + 10.30 + 10.50 = 1 300 mm² A1 = 10.50= 500 mm² A2 = 10.30= 300 mm² A3 = 10.50= 500 mm² = 35 mm = 5 mm = 35 mm yi = )# . )# . # . #* = /,,.0/)0,,./)/,,.0/ +0,, = 28,07692308 mm ys = 60 - 28,07692308 = 31,92307692 mm Cálculo do momento de inércia Iz = + + = .1 + A1 . − 3 = +,./,4 +- + 500 . 35 − 28,07692308- = 128 131,1637 .78 m4 = .1 + A2 . − 3 = 0,.+,4 +- + 300 . 5 − 28,07692308- = 162 263,3137. 78 m4 = => Iz = 418 525,6411 . 78 m4 Cálculo acima da L.N. = - .F =- +,/.+,4 .0+,G-0,.<G-.+,?4 K+B/-/,<K++.+,?@A Cálculo abaixo da L.N. = - 114 412 620,6 Pa Adriano Alberto = - .3 =- +,/.+,4 .8-B,,.<G-0,B.+,?4 K+B/-/,<K++.+,?@A 16 = 100 627 967,5 Pa A resposta da lista deu diferente, mas acredito que meus cálculos estão certos. 9) 73,2 MPa T 102,4 MPa C 10) Sabendo-se que uma viga de seção transversal mostrada é encurvada sobre um eixo horizontal, e que está submetida a um momento fletor de 4 kN.m, determinar a intensidade total da força que atua na porção sombreada da viga. yi = ys = 44 mm A1 = 12.88= 1 056 mm² A2 = 40.40= 1 600 mm² A3 = 12.88= 1 056 mm² = 44 mm = 44 mm = 44 mm Cálculo do momento de inércia = Iz = 2 . + = .1 + A1 . − 3 = +-.BB4 +- = .1 + A2 . − 3 = K,.K,4 +- = 681 472 .78 m4 = 213 333,3333 . 78 m4 Adriano Alberto => Iz = 1 576 277,333 . 78 m4 17 Cálculo do centróide da figura AT = 12.44 + 20.20= 928 mm² A1 = 12.44= 528 mm² A2 = 20.20= 400 mm² A3 = 10.50= 500 mm² = 22 mm = 10 mm = )# . # . #* = - . =- = /-B.--)K,,.+, G-B = 16,82758621 mm = y K.+,4 .+<,B-./B<-+.+,?4 +/.<-..,000.+,?@A = - 42 702 095,26 Pa F = . A => F = - 42 702 095,26 . 928 . 10-6 = - 39 627,5444 N 11) Para a viga com seção transversal mostrada, determine a tensão longitudinal máxima entre as seções A e C, e localize onde ela ocorre. Aproveitando os cálculos da questão 6 da Lista 1: Adriano Alberto Para 0 ≤ x D 2: V(x) = b c. de + C1 => V(x) = b3. de + C1 => V(x) = 3x + C1 V(0) = 0 => 3 . 0 + C1 = 0 => C1 = 0 => V(x) = 3x V(0) = 0 V(2) = 3 . 2 = 6 kN M(x) = b fe. de + C2 => M(x) = b3x. de + C2 => M(x) = 1,5 x² + C2 M(0) = - 12 => 1,5 (0)² + C2 = - 12 => C2 = - 12 => M(x) = 1,5 x² - 12 M(0) = - 12 kN.m M(2) = 1,5 . (2)² - 12 => M(2) = - 6 kN.m Para 2 ≤ x D 5: V(x) = - b c. de + C3 => V(x) = - b5. de + C3 => V(x) = - 5x + C3 V(2) = 6 + 5,5 = 11,5 kN => - 5 . 2 + C3 = 11,5 => C3 = 21,5 => V(x) = - 5x + 21,5 (OK) V(2) = 11,5 kN V(5) = - 5 . 5 + 21,5 => V(5) = - 3,5 kN Para V(x) = 0 => - 5x + 21,5 = 0 => x = 4,3 m M(x) = b fe. de + C4 => M(x) = b−5x + 21,5. de + C4 => M(x) = - 2,5 x² + 21,5 . x + C4 M(2) = - 6 kN.m => - 2,5 (2)² + 21,5 . 2 + C4 = - 6 => C4 = - 39 => M(x) = - 2,5 x² + 21,5 . x – 39 18 Adriano Alberto M(2) = - 6 kN.m 19 M(5) = - 2,5 (5)² + 21,5 . 5 - 39 => M(5) = 6 kN.m Mf,máx = M(4,3) = - 2,5 . (4,3)² + 21,5 . 4,3 - 39 => Mf,máx = 7,225 kN.m Para 5 ≤ x D 7: 3 . 2 + 5,5 – 5 . 3 - 3 - V(x) = 0 => V(x) = - 6,5 kN M(x) = b fe. de + C5 => M(x) = b−6,5. de + C5 => M(x) = - 6,5x + C5 M(5) = 6 kN.m => - 6,5 . 5 + C5 = 6 => C5 = 38,5 => M(x) = - 6,5x + 38,5 M(5) = 6 kN.m M(7) = - 6,5 . 7 + 38,5 => M(7) = - 7 kN.m Diagrama: Adriano Alberto 20 Cálculo da Posição da Linha Neutra (L.N.) AT = 100.25 + 40.100 = 6 500 mm² A1 = 100.25= 2 500 mm² A2 = 100.40= 4 000 mm² = 112,5 mm = 50 mm yi = )# . # . #* = -/,,.++++-,/)K,,,./, < </,, = 74,03846154 mm ys = 125 - 74,03846154 = 50,961538 96153846 mm Cálculo do momento de inércia Iz = + = .1 − 3 + A1 . Adriano Alberto = .1 hi@ = +,,.-/4 +- hiA = − 3 + A2 . K,.+,,4 +- 21 + 2 500 . 112,5 − 74,03846154- = 3 828 433,185 . 78 m4 + 4 000 . 50 − 74,03846154- = 5 644 723,866 . 78 m4 => Iz = 9 473 157,051 . 78 m4 Para o trecho AB: Mmáx = - 12 . 10³ N.m Cálculo das tensões acima da L.N.: = - .F => 9: = - ;8+-.+,4 >./,,G<+/0BK<.+,?4 GK.0+/.,,/+.+,?@A = 64 554 874,18 Pa Cálculo das tensões abaixo da L.N.: = - .3 => 9: = - ;8+-.+,4 >.8.K,,0BK<+/K.+,?4 GK.0+/.,,/+.+,?@A = - 93 787 270,04 Pa Para o trecho BC: Mmáx = 7,225 . 10³ N.m Cálculo das tensões acima da L.N.: = - .F => 9: = - ;.,--/.+,4 >./,,G<+/0BK<.+,?4 GK.0+/.,,/+.+,?@A Cálculo das tensões abaixo da L.N.: = - 38 867 413,83 Pa Adriano Alberto = - .3 => 9: = - ;.,--/.+,4 >.8.K,,0BK<+/K.+,?4 GK.0+/.,,/+.+,?@A = 56 467 752,17 Pa 12) e 13) Para a viga com seção transversal mostrada, determine: (a) a tensão trativa máxima longitudinal na viga e onde ela ocorre; (b) a tensão compressiva máxima na viga e onde ela ocorre. 12) 30 + RC = 37,5 kN => RC = 7,5 kN ∑ Qj = 0 => 7,5 . 1 . 0,5 – 7,5 . 4 . 2 + 7,5 . 4 + M = 0 => M = 26,25 kN.m Para o trecho 0 ≤ x < 1: V(x) = - 7,5 . x + C V(0) = 0 = - 7,5 . 0 + C => C = 0 => V(x) = - 7,5 . x V(1) = - 7,5 kN M(x) = - .,/.: A - +C M(0) = 0 = 0 + C => M(x) = - .,/.: A - M(1) = - 3,75 kN.m Para o trecho 1 ≤ x < 5: V(x) = - 7,5 . x + C V(1) = - 7,5 + 30 = 22,5 kN = - 7,5 . 1 + C => C = 30 => V(x) = - 7,5 . x + 30 Para V(x) = 0 => x = 4 m M(x) = - .,/.: A - + 30x + C 22 Adriano Alberto M(1) = - 3,75 kN.m = M(x) = - k,T. .,/.+ - + 30 . 1 + C => C = - 30 + 30x – 30 M(4) = - .,/.+< - + 30 . 4 – 30 = 30 kN.m M(5) = - .,/.-/ - + 30 . 5 – 30 = 26,25 kN.m Para x = 5: M(5) = 26,25 – M = 0 Cálculo da Posição da Linha Neutra (L.N.) AT = 100.50 + 100.50 = 10 000 mm² A1 = 100.50= 5 000 mm² A2 = 100.50= 5 000 mm² = 125 mm = 50 mm yi = )# . # . #* = /,,,.+-/)/,,,./, +,,,, = 87,5 mm ys = 150 – 87,5 = 62,5 mm Cálculo do momento de inércia Iz = + = .1 − 3 = + A1 . +,,./,4 +- + 5 000 . 125 − 87,5- = 8 072 916,667 . 78 m4 = .1 − 3 = + A2 . /,.+,,4 +- + 5 000 . 50 − 87,5- = 11 197 916,67 . 78 m4 => Iz = 19 270 833,33 . 78 m4 Para o trecho AB: Mmáx = - 3,75 kN.m 23 Adriano Alberto 24 Cálculo das tensões acima da L.N.: = - .F => 9: = - ;80,./.+,4 >.<-,/.+,?4 +G-.,B00,00.+,?@A = 12 162 162,16 Pa Cálculo das tensões abaixo da L.N.: = - .3 => 9: = - ;80,./.+,4 >.8B.,/.+,?4 +G-.,B00,00.+,?@A = - 17 027 027,03 Pa Para o trecho BC: Mmáx = 30 . 10³ N.m Cálculo das tensões acima da L.N.: = - .F => 9: = - ;0,.+,4 >.<-,/.+,?4 +G-.,B00,00.+,?@A = - 97 297 297,31 Pa Cálculo das tensões abaixo da L.N.: = - .3 => 9: = - ;0,.+,4 >.8B.,/.+,?4 +G-.,B00,00.+,?@A = 136 216 216,2 Pa Logo: a) ;,á >* = 136 216 216,2 Pa (no trecho BC, abaixo da L.N.) b) ;,á >l = - 97 297 297,31 Pa (no trecho BC, acima da L.N.) 13) Adriano Alberto 25 Utilizando os cálculos da questão 13 da lista 1 RA – 7 . 2 – 7 – 14 . 2 + RD – 7 . 2 = 0 => RA + RD = 63 kN (I) ∑ QR = 0 => 25 – 7 . 2 . 1 – 7 . 2 – 14 . 2 . 3 – 11 + 7 . RD – 7 . 2 . 8 = 0 => RD = -+, . = 30 kN Substituíndo em (I): RA + 30 = 63 => RA = 33 kN Para 2 ≤ x D 4: V(x) = 33 – 7 . 2 – 7 – 14(x – 2) => V(x) = - 14x + 40 Para V(x) = 0 => x = 2,857142857 m Cálculo do momento fletor à partir da área do diagrama do esforço cortante: (- 25) + (14 + 38) + (0,857142857 . Diagrama: +) - – (1,142857143 . +< ) - + (11) – (16 . 3) + (14) = 0 (OK) Adriano Alberto 26 Cálculo da Posição da Linha Neutra (L.N.) AT = 120.30 + 240.30 = 10 800 mm² A1 = 120.30= 3 600 mm² A2 = 240.30= 7 200 mm² = 255 mm = 120 mm yi = )# . # . #* = 0<,,.-// -//).-,,.+-, +, +,B,, = 165 mm ys = 270 - 165 = 105 mm Cálculo do momento de inércia Iz = + = .1 − 3 = + A1 . +-,.0,4 +- + 3 600 . 255 − 165- = 29 430 000 . 78 m4 = .1 − 3 = + A2 . 0,.-K,4 +- + 7 200 . 120 − 165- = 49 140 000 . 78 m4 => Iz = 78 570 000 . 78 m4 Adriano Alberto Para o trecho AB: 27 Mmáx = - 25 . 10³ N.m Cálculo das tensões acima da L.N.: = - .F => 9: = - ;8-/.+,4 >.+,/.+,?4 .B/.,,,,.+,?@A = 33 409 698,36 Pa Cálculo das tensões abaixo da L.N.: = - .3 => 9: = - ;8-/.+,4 >.8+</.+,?4 .B/.,,,,.+,?@A = - 52 500 954,56 Pa Para o trecho CD: Mmáx = 34 . 10³ N.m Cálculo das tensões acima da L.N.: = - .F => 9: = - ;0K.+,4 >.+,/.+,?4 .B/.,,,,.+,?@A = - 45 437 189,77 Pa Cálculo das tensões abaixo da L.N.: = - .3 => 9: = - ;0K.+,4 >.8+</.+,?4 .B/.,,,,.+,?@A = 71 401 298,21 Pa Logo: a) ;,á >* = 71 401 298,21 Pa (no trecho CD, abaixo da L.N.) b) ;,á >l = - 52 500 954,56 Pa (no trecho AB, abaixo da L.N.) Adriano Alberto PROBLEMAS ENVOLVENDO FLEXÃO DE SEÇÃO HETEROGÊNEA 28 14) Duas barras de latão são unidas firmemente a duas barras de alumínio, formando a seção composta mostrada. Determinar o maior momento fletor permissível, quando a viga é encurvada em torno de um eixo horizontal. Dados: Ealum = 70 GPa ; Elat = 105 GPa ; mn = 100 MPa ; mo = 160 MPa Posição da L.N.: yi = = p.#. mo mn )p.#. p.#mn )p.#mo = .,.+,q .B,,.+,?] .0,.+,?4 )+,/.+,q .K,,.+,?] ./.+,?4 )+,/.+,q .K,,.+,?] .//.+,?4 .,.+,q .B,,.+,?] )+,/.+,q .B,,.+,?] => yi = 30 mm (OK) Cálculo do momento de inércia +,.K, − 3 t = 2 . r mn = 2 . r.1 + s. + 400. 30 − 30- t = + 4 K,.+, − 3 t = 2 . r mo = 2 . r .1 + s. + 400. 55 − 30- t = + 4 7777 T7777 . 78 m4 . 78 m4 .p.mn mn )p.mo mn = - p. 9uvwuxyw = ± 100 . 106 = .p.mo mn )p.mo mo = - p. ^_ .70.109 .±20.10−3 4APPPP @XAPPPP 70.109 . .10−12 )105.109 . .10−12 4 4 => Mz = 777 N.m Adriano Alberto 9uvwxuz = ± 160 . 106 = - ^_ .105.109 .±30.10−3 4APPPP @XAPPPP 70.109 . .10−12 )105.109 . .10−12 4 4 => => Mz = 3 081,481481 N.m (resposta) Obs: se as diferentes partes do latão e/ou do alumínio estivessem em posições diferentes em relação à L.N, seria necessário calcular as tensões correspondentes em cada parte (sendo que quanto mais distante o ponto estiver da L.N., maior será a tensão). No presente problema, devido à simetria de ambos em relação à L.N, as tensões acima e abaixo da L.N. são iguais em módulo (tração e compressão). 15) Uma barra de aço e uma de alumínio são unidas firmemente, para formar a viga composta mostrada. O módulo de elasticidade para o alumínio é de 70 GPa e para o aço é de 200 GPa. Sabendo-se que a viga é curvada em torno de um eixo horizontal por um momento M = 1500 N.m, determinar a máxima tensão no: (a) alumínio; (b) aço. 29 Adriano Alberto 30 Figura: Slide do Prof. Alberto B. Vieira Jr. Adriano Alberto 31 Figura: Slide do Prof. Alberto B. Vieira Jr. 15) a) 66,2 MPa T b) 112,4 MPa C *** 16) Uma viga de concreto é reforçada por três barras de aço, colocadas como indicado. Os módulos de elasticidade são de 20 GPa para o concreto e de 200 GPa para o aço. Usando uma tensão admissível de 10 MPa para o concreto e de 150 MPa para o aço, determinar o maior momento fletor que pode ser aplicado à viga. Econc = 20 GPa ; Eaço = 200 GPa Aaço = 3 . . 7, 7 m² ; {|}{ = 10 MPa ; ç| = 150 MPa Aconc = 0,225 . 0,500 - 3 . L . 0,012- = 0,1125 - 3 . . 7, 7 m² Adriano Alberto Posição da L.N.: yi = = p.#. {|}{ )p.#. ç| p.#{|}{ )p.#ç| 32 = 2 2 -,.+,q .r0,1125−3.L.0,012 t.-/,.+,?4 )-,,.+,q .3.L.0,012 ./,.+,?4 2 2 -,.+,q .r0,1125−3.L.0,012 t)-,,.+,q .3.L.0,012 => yi = 228,2356038 mm ys = 500 - 228,2356038 = 271,7643962 mm Cálculo do momento de inércia Iaço = 3 . r . + sç . W − 3 Z t ç| J = 3.rH.+- + L. 12- . 50 − 228,2356038- t = K = 43 163 277,54 . 78 m4 --/.K,, 4 − 3 = = .1 + s . + 225.400. 300 − 228,2356038- = 1 663 511 571.78 m + I2 = 4 .1 − 3 +s . Iaço = => I2 = 690 365 157,9 . 78 m4 --/.+,,4 +100.225. 50 − 228,2356038+- - 43 163 277,54 Iconc = I1 + I2 = 2 353 876 729 . 78 m4 .p.{|}{ {|}{ )p.ç| {|}{ = - p. ^ .-,.+,q .-.+,.<K0G<-.+,?4 _ 9uvw = ± 10 . 106 = - -,.+,q .-0/0B.<.-G.+, ?@A )-,,.+,q .K0+<0-..,/K.+,?@A => => Mz = ± 102 497,2198 N.m (resposta) .p.ç| ç| = - p. {|}{ )p.ç| Adriano Alberto ^ .-,,.+,q .8--B,-0/<,0B80B.+,?4 _ 9uvwuç = ± 150 . 106 = - -,.+,q .-0/0B.<.-G.+, ?@A )-,,.+,q .K0+<0-..,/K.+,?@A => => Mz = ± 219 636,2917 N.m (não serve) Obs: a resposta da lista deu 79,1 kN.m, mas acredito que meus cálculos estão corretos. Conferir com o método da homogeneização. PROBLEMAS ENVOLVENDO CARGA EXCÊNTRICA 17) Duas forças de 10 kN são aplicadas a uma barra de seção retangular de 20 mm x 60 mm, como mostrado. Determinar a tensão no ponto A, quando: (a) b = 0; (b) b = 15 mm; (c) b = 25 mm. N = 10 + 10 = 20 kN Posição da L.N.: yi = ys = 0,03 m = # = -,.<,4 +- = 360 000 . 78 m4 a) b=0 Mz = 10 000 . 0,025 = 250 N.m -,,,, -/,.,,,0 9: = ,,,-,.,,,<, - 0<,,,,.+,?@A = - 4 166 666,667 Pa b) b = 15 mm Mz = 10 000 . 0,025 – 10 000 . 0,015 = 100 N.m 33 Adriano Alberto 9: = -,,,, ,,,-,.,,,<, - +,,.,,,0 0<,,,,.+,?@A 34 = 8 333 333,333 Pa c) b = 25 mm Mz = 10 000 . 0,025 – 10 000 . 0,025 = 0 -,,,, ,.,,,0 9: = ,,,-,.,,,<, - 0<,,,,.+,?@A = 16 666 666,67 Pa 18) Uma pequena coluna de 120 mm x 180 mm suporta três cargas axiais mostradas. Sabendo-se que a seção ABD é suficientemente afastada das cargas, para que permaneça plana, determinar a tensão no: (a) canto A; (b) canto B. Figura: Slide do Prof. Alberto B. Vieira Jr. 18) a) 926 kPa T b) 14,81 MPa C 19) Sabendo-se que a tensão admissível é 90 MPa, determinar a maior força P que pode ser aplicada ao elemento de máquina mostrado. Adriano Alberto 35 N=P=? S = # - Cálculo da Posição da Linha Neutra (L.N.) yi = )# . # . #* = KK.-,..,)<,.+B.0, KK.-,)<,.+B = 47,95918367 mm ys = 80 - 47,95918367 = 32,04081633 mm Cálculo do momento de inércia Iz = + = .1 + A1 . − 3 = KK.-,4 +- + 44.20 . 70 − 47,95918367- = 456 835,2077 . 78 m4 = .1 + A2 . − 3 = +B.<,4 +- + 18.60 . 30 − 47,95918367- = 672 334,8603 . 78 m4 => Iz = 1 129 170,068 . 78 m4 Mz = ? Considerando o eixo x passando pela L.N.: Mz = P . (47,95918367 – 40) U 90 . 106 = ,,,KK.,,,-,),,,<,.,,,+B - .;K.,G/G+B0<.–K,>.+,?4 .8K.,G/G+B0<..+,?4 ++-G+.,,,<B.+,?@A => Adriano Alberto U => 90 . 106 = ,,,,+G< + 338,0500089 . P => 176 400 = P + 0,662578017 . P => => P = 106 100,2841 N 20) A força axial excêntrica P atua no ponto D, que está localizado a 30 mm abaixo da borda superior da barra de aço mostrada. Para P = 90 kN, determinar: (a) a largura d da barra para que a tensão no ponto A seja máxima; (b) o correspondente valor da tensão no ponto A. N = P = 90 kN Posição da L.N.: yi = ys = = # = ,,,/,.v4 +- a) v Mz = - 90 000 . W - − 0,030Z G,,,, 9: = ,,,/,.v G,,,, ,,,/,.v = => 1 = 3 – A P,PXP.4 @A A P,PXP.4 @A A G,,,,.W –,,,0,Z. ,,+B v A 8G,,,,.W –,,,0,Z. => ,,+B v => 1 = A A W –,,,0,Z. A @A = 2 => d = 0,09 m = 90 mm b) 9: = G,,,, ,,,/,.,,,G - P,Pq P,Pq –,,,0,Z. A A P,PXP.P,Pq4 @A 8G,,,,.W = 40 MPa v < = W - – 0,030Z. v=> 36 Adriano Alberto PROBLEMAS ENVOLVENDO FLEXÃO ASSIMÉTRICA 37 21) e 22) A viga com uma seção transversal mostrada está submetida a um momento fletor M aplicado no plano a – a.. Determine: (a) a intensidade intensidade da máxima tensão de flexão; (b) a orientação do eixo neutro, mostre o resultado num esboço. 21) M = 1.200 N.m 0 tg = K => = arctg(0,75) My = - 1 200 . sen[arctg(0,75)] arctg(0,75)] Mz = 1 200 . cos[arctg(0,75)] [arctg(0,75)] Iz = 2 . r +-,.0,4 + +- Iy = 2 . r 0,.+-,4 t +- . tg = . = 120.30 30. 165 − 90- t + + +-,.0, 0,4 +- 0,.+-,4 +- = 45 360 000 . 78 m4 = 8 910 000 . 78 m4 8+-,,. ,,./.K/0<,,,,.+,?@A +-,,. ,,./.BG+,,,,.+,?@A tg = . tg A e B são os pontos mais distantes da L.N. => = - 75,32360686 ° Adriano Alberto 38 Para o ponto A: = - . . + = - +-,,.,,./.,,,G, K/0<,,,,.+,?@A + 8+-,,.,,./.,,,<, BG+,,,,.+,?@A = = - 6 753 246,753 Pa Para o ponto B: 9: = - +-,,.,,./.8,,,G, K/0<,,,,.+,?@A + 8+-,,.,,./.8,,,<, BG+,,,,.+,?@A = = 6 753 246,753 Pa 22) M = 20 kN.m My = 20 000 . sen(10°) Mz = 20 000 . cos(10°) Iz = Iy = G,.<,4 +- + 90.60. 210 − 150- + <,.G,4 +- + . +B,.0,4 +- 0,.+B,4 +- +180.30. 90 − 150- = 55 080 000 . 78 m = 4 050 000 . 78 m4 -,,,,.+,°.55080000.10−12 tg = . = -,,,,.+,°.K,/,,,,.+,?@A => = 67,36356998 ° tg = . tg 4 Adriano Alberto 39 A e B são os pontos mais distantes da L.N. Para o ponto A: = - . + . = - -,,,,.+,°.,,,G, 55080000.10−12 + -,,,,.+,°.8,,,K/ K,/,,,,.+,?@A = = - 70 771 743,83 Pa (resposta) Para o ponto B: 9: = - -,,,,.+,°.8,,+/, 55080000.10−12 + -,,,,.+,°.,,,+/ K,/,,,,.+,?@A = 66 501 594,48 Pa *** 23) Uma cantoneira de 200 x 200 x 24 mm é usada numa viga que suporta um momento fletor de + 10.000 N.m aplicado no plano yx. Os momentos de inércia obtidos em um manual de aço estrutural são Iz = Iy = 33,3 x 106 mm4, e Iyz = + 19,5 x 106 mm4. Determine: (a) a tensão de flexão no ponto A; (b) a máxima tensão de flexão e sua localização na seção transversal; (c) a orientação do eixo neutro, mostre a localização num esboço. Adriano Alberto = . 8 .) . + . . 8; > .8 . . 8; > 40 Ou = - . ) . . 8; > .y + . ) . . 8; > .z = #. y . z tg = . ) . . ) . a) My = 0 = - ; Mz = 10 000 N.m . . 8; > .y + . . 8; > .z ou = . 8 .) . . 8; > = 10 000 . r –00,0.+,].+,?@A ./B,K.+,?4 )+G,/.+,] .+,?@A .8/B,K.+,?4 00,0.+,].+,[email protected],0.+,] .+,?@A8+G,/.+,].+,?@A A = - 42 318 840,58 Pa c) tg = 19,5.106 .10−12 = 33,3.106 .10−12 => = 30,35262473° t= Adriano Alberto 41 b) A maior distância à L.N. é em relação ao ponto B, onde ocorre a maior tensão. = 10 000 . r –00,0.+,] .+,?@A .8+K+,<.+,?4 )+G,/.+,].+,?@A .8/B,K.+,?4 00,0.+,] .+,?@A .00,0.+,] .+,?@A 8+G,/.+,] .+,?@AA t = 49 084 321,48 Pa Acredito que a resposta da lista esteja errada: 23) a) 42,3 MPa T b) 55,8 MPa C c) 75,4 a partir do eixo z 24) Uma viga com uma seção cantoneira está carregada com um momento fletor de + 20 kN.m aplicado num plano yx. Determine: (a) a tensão de flexão no ponto A; (b) a orientação do eixo neutro, mostre a localização num esboço. Iz = <,.+B,4 +- + 180.60. 90 − 75- + 4 Iy = +B,.<, + 180.60. 30 − 45- + + = #. y . z <,.<,4 +60.60. 30 − 75- = 39 960 000 . 78 m <,.<,4 +60.60. 90 − 45- = 14 040 000 . 78 m +- +- 4 hi = 60.180 . 15 . 15 + 60 . 60 . 45 . 45 = 9 720 000 . 78 m4 My = 0 ; Mz = 20 000 N.m 4 Adriano Alberto a) = . 8 .) . . 8; > 42 = 20 000 . r –+K,,K.+,] .+,[email protected]+,/.+,?4 )G,.-.+,] .+,?@A.+/.+,?4 +K,,K.+,] .+,?@A .0G,G<.+,] .+,?@A –G,.-.+,] .+,?@A A t= = 69 444 444,44 Pa b) tg = = 9,72.106 .10−12 14,04.106 .10−12 => = 34,69515353° 25), 26) e 27) O momento M é aplicado a uma viga de seção transversal mostrada, em um plano formando um ângulo β com a vertical. Determinar: (a) a tensão no ponto A; (b) o ângulo que a linha neutra forma com o plano horizontal. 25) My = 2 800 . sen(20°) Mz = 2 800 . cos(20°) Iz = Iy = +,,.-,,4 +-,,.+,,4 +- = 77777777 . 78 m4 T7777777 . 78 m4 = a) Para o ponto A: Adriano Alberto . = - . + = - -B,,.-,°.,,+,, APPPPPPPP .+,?@A 4 + -B,,.-,°.,,,/, XPPPPPPP .+,?@A 4 = - 1 073 739,803 Pa Para o ponto B: 9: = - -B,,.-,°.8,,+,, APPPPPPPP .+,?@A 4 + -B,,.-,°.,,,/, XPPPPPPP .+,?@A 4 = 6 819 678,211 Pa b) tg = . tg = APPPPPPPP .+,?@A 4 XPPPPPPP .+,?@A 4 . tg20° => = 75,96375653° 26) My = 10 000 . sen(55°) Mz = - 10 000 . cos(55°) Iz = 2 . r 160.103 12 + 160.10. 175 − 902 t + 10.1603 12 = 26 560 000 . 78 m 4 43 Adriano Alberto Iy = 2 . r 10.1603 12 t+ 160.103 12 = 6 840 000 . 78 m 4 44 a) Para o ponto A: 9: = - 8+,,,,.//°.,,,G, -</<,,,,.+,?@A + +,,,,.//°.,,,B, <BK,,,,.+,?@A = 115 243 205,2 Pa Para o ponto B: = - . + . =- 8+,,,,.//°.,,,G, -</<,,,,.+,?@A + +,,,,.//°.8,,,B, <BK,,,,.+,?@A = - 76 371 308,12 Pa b) tg = . tg = -</<,,,,.+,?@A <BK,,,,.+,?@A . tg55° => = 79,77801655° 27) My = 25 000 . sen(15°) Mz = 25 000 . cos(15°) Iz = G,.B,4 +- + 90.80. 120 − 100- + 0,.B,4 +- + 30.80.40 − 100- = 16 640 000 . 78 m4 Adriano Alberto B,.0, 4 Iy = B,.G, + = 5 040 000 . 78 m ++4 4 45 a) Para o ponto A: . = - + . =- -/,,,.+/°.,,,<, +<<K,,,,.+,?@A + -/,,,.+/°.,,,K/ /,K,,,,.+,?@A = - 29 300 532,31 Pa Para o ponto B: 9: = - -/,,,.+/°.,,,<, +<<K,,,,.+,?@A + -/,,,.+/°.8,,,K/ /,K,,,,.+,?@A = - 144 844 748,9 Pa b) tg = . tg = +<<K,,,,.+,?@A /,K,,,,.+,?@A . tg15° => = 41,49782689° *** 28) Uma carga axial P é aplicada como mostrado a curto perfil estrutural em forma de T. Determinar: (a) a maior distância a para que a tensão máxima de compressão não exceda a 120 MPa; (b) o ponto correspondente onde a linha neutra intercepta a linha AB. Dados: A = 4450 mm2, Iy = 9,16 x 106 mm4, Iz = 6,00 x 106 mm4 = 135 000 . a Qi = 135 000 . 0,024 = 3 240 N.m Adriano Alberto a) = # - . + 46 . 8+0/,,, 0-K,.,,,-. - 120 . 106 = KK/,.+,?] - <.+,] .+,?@A + +0/,,,.u.8,,+,- G,+<.+,] .+,?@A => => - 75 082 921,35 = - 1 503 275 109 . a => a = 49,946228 mm b) Q = 135 000 . 0,049946228 = 6 742,740781 N.m . tg = . = <.K-,.K,.B+.<.+,] .+,?@A 0-K,.G,+<.+,] .+,?@A tg(53,73664016°) = -.ww i => = 53,73664016° => z = 19,80690113 mm PROBLEMAS ENVOLVENDO CISALHAMENTO NA FLEXÃO Nas questões abaixo, de acordo com as respostas da lista, não são calculadas as tensões máximas. Para isso, seria necessário calcular também as tensões longitudinais e, a partir do estado de tensão resultante, calcular as tensões máximas, que podem ou não coincidir com os resultados das questões abaixo. 29) O cortante vertical em certa seção de uma viga cuja forma é mostrada na figura é 18 kN. Determinar: (a) a tensão tangencial horizontal máxima, e indique onde ela ocorre dentro da seção transversal; (b) a tensão tangencial vertical 80 mm abaixo do topo. Adriano Alberto 47 Figura: Slide do Prof. Alberto B. Vieira Jr. Adriano Alberto 48 Figura: Slide do Prof. Alberto B. Vieira Jr. a) 822 kPa no eixo neutro b) 707 kPa 30) Uma viga com 6 m de comprimento está simplesmente apoiada em suas extremidades e tem uma seção transversal como mostrado. A viga suporta uma carga uniformemente distribuída de 5 kN/m em todo o seu comprimento. Determine: (a) a tensão transversal vertical em um ponto 0,5 m a partir do extremo direito e 100 mm abaixo da superfície do topo da viga; (b) as tensões tangenciais máximas horizontal e vertical, e mostre onde cada uma ocorre. RA + RB = 30 kN RA = RB = 15 kN V(x) = - 5x + 15 Adriano Alberto Cálculo da Posição da Linha Neutra (L.N.) 49 AT = 60.200 + 60.160 + 60.200 = 33 600 mm² A1 = 60.200= 12 000 mm² A2 = 60.160= 9 600 mm² A3 = 60.200= 12 000 mm² = 100 mm = 30 mm = 100 mm yi = )# . )# . # . #* = +-,,,.+,,)G<,,.0,)+-,,,.+,, 00<,, = 80 mm ys = 200 - 80 = 120 mm Cálculo do momento de inércia Iz = + + = .1 − 3 = + A1 . <,.-,,4 +- + 12 000 . 100 − 80- = 44 800 000 . 78 m4 = .1 − 3 = + A2 . +<,.<,4 +- + 9 600 . 30 − 80- = 26 880 000 . 78 m4 = .1 − 3 = + A3 . <,.-,,4 +- + 12 000 . 100 − 80- = 44 800 000 . 78 m4 = => Iz = 116 480 000 . 78 m4 a) x = 6 – 0,5 = 5,5 m V(5,5) = - 5 . 5,5 + 15 = - 12,5 kN Adriano Alberto 50 = - . . Q = Q1 + Q2 Q1 = Q2 => Q = 2 . Q2 − 3 | Q1 = A1 . | − 3 | = 60 . 100 . |150 − 80| = 420 000 . 78 m³ Q2 = A2 . | Q = 840 000 . 78 m³ b = 2 . 60 = 120 mm = 0,120 m ¡: = - ;8+-,/.+,4 >.BK,,,,.+,?q ++<KB,,,,.+,?@A .,,+-, b) . = . V = ± 15 kN = 751 201,9231 Pa Adriano Alberto Acima da L.N.: 51 Q = Q1 + Q2 Q1 = Q2 => Q = 2 . Q2 − 3 | Q1 = A1 . | − 3 | = 60 . 120 . |140 − 80| = 432 000 . 78 m³ Q2 = A2 . | Q = 864 000 . 78 m³ b = 2 . 60 = 120 mm = 0,120 m ¡: = - ;±+/.+,4 >.B<K,,,.+,?q ++<KB,,,,.+,?@A .,,+-, = ± 927 197,8022 Pa Abaixo da L.N.: Q = Q1 + Q2 + Q3 − 3 | = 80 . 60 . |40 − 80| = 192 000 . 78 m³ Q1 = A1 . | − 3 | = 160 . 60 . |30 − 80| = 480 000 . 78 m³ Q2 = A2 . | − 3 | = 80 . 60 . |40 − 80| = 192 000 . 78 m³ Q3 = A3 . | Q1 = Q3 Q = 864 000 . 78 m³ b = 2 . 60 = 120 mm = 0,120 m ¡: = - ;±+/.+,4 >.B<K,,,.+,?q ++<KB,,,,.+,?@A .,,+-, = ± 927 197,8022 Pa 30) a) 751 kPa b) 927 kPa na superfície neutra dos apoios *** 31) Uma viga com 4 m de comprimento tem a seção transversal mostrada na figura. Ela é simplesmente apoiada nos extremos e suporta uma carga uniformemente distribuída de 4 kN/m sobre todo seu comprimento. Em um ponto a 500 mm da extremidade esquerda e 40 mm abaixo da superfície neutra, determine: (a) a tensão longitudinal (b) a tensão tangencial horizontal; (c) a tensão tangencial vertical. Adriano Alberto 52 RA + RB = 16 kN RA = RB = 8 kN V(x) = - 4x + 8 x = 0,5 m V(0,5) = - 4 . 0,5 + 8 = 6 kN M(x) = - 2x² + 8x + C M(0) = 0 = - 2 . 0 + 8 . 0 + C => C = 0 => M(x) = - 2x² + 8x M(0,5) = - 2(0,5)² + 8 . 0,5 = 3,5 kN.m Posição da Linha Neutra (L.N.) yi = 100 mm Cálculo do momento de inércia A1 = 40.180= 7 200 mm² A2 = 40.120= 4 800 mm² A3 = 40.180= 7 200 mm² = 180 mm = 100 mm = 20 mm Adriano Alberto Iz = + + = .1 − 3 = + A1 . +B,.K,4 +- + 7 200 . 180 − 100- = 47 040 000 . 78 m 53 4 = .1 − 3 = + A2 . K,.+-,4 +- + 4 800 . 100 − 100- = 5 760 000 . 78 m4 = .1 − 3 = + A3 . +B,.K,4 +- + 7 200 . 20 − 100- = 47 040 000 . 78 m4 = => Iz = 99 840 000 . 78 m4 a) = - .3 => 9: = - ;0,/.+,4 >.8K,.+,?4 GGBK,,,,.+,?@A = 1 402 243,59 Pa b) Cálculo abaixo da L.N. para a área abaixo de y = 40 mm . = - . Q = Q1 + Q2 − 3 | = 20 . 40 . |50 − 100| = 40 000 . 78 m³ Q1 = A1 . | − 3 | = 180 . 40 . |20 − 100| = 576 000 . 78 m³ Q2 = A2 . | Q = 616 000 . 78 m³ Adriano Alberto b = 40 mm = 0,040 m ¡: = - ;<.+,4 >.<+<,,,.+,?qq GGBK,,,,.+,?@A .,,,K, ,K, c) = 925 480,7692 Pa 54 = - 925 480,7692 Pa ??????? Qual a diferença entre tensão tangencial horizontal e tensão tangencial vertical? 31) a) 1,402 MPa T b) 0,925 MPa c) 0,925 MPa 32) Para a viga mostrada, a reação esquerda esque é de 5,36 kN para cima. Determine: (a) a tensão longitudinal máxima da viga; (b) a tensão tangencial horizontal máxima. RA = 5,36 kN 5,36 + RC = 12 kN => RC = 6,64 kN ∑ QR = 0 => - 6 – 6 . 1,5 + 3 . 6,64 + M = 0 => M = - 4,92 kN.m Diagrama: Adriano Alberto Posição da Linha Neutra (L.N.) 55 yi = 100 mm Cálculo do momento de inércia A1 = 50.100= 5 000 mm² A2 = 50.100= 5 000 mm² A3 = 50.100= 5 000 mm² = 175 mm = 100 mm = 25 mm Iz = + + = .1 − 3 = + A1 . +,,./,4 +- + 5 000 . 175 − 100- = 29 166 666,67 . 78 m4 = .1 − 3 = + A2 . /,.+,,4 +- + 5 000 . 100 − 100- = 4 166 666,667 . 78 m4 = .1 − 3 = + A3 . = +,,./,4 +- + 5 000 . 25 − 100- = 29 166 666,67 . 78 m4 => Iz = 62 500 000,01 . 78 m4 a) yi = ys Para o trecho 0≤ x <1: Mmáx = 4,36 kN.m = - .3 => 9: = - ;K,0<.+,4 >.±+,,.+,?4 <-/,,,,,,,+.+,?@A = ± 6 975 999,999 Pa Adriano Alberto Para o trecho 1≤ x <3: 56 Mmáx = - 4,92 kN.m = - .3 => 9: = - ;8K,G-.+,4 >.±+,,.+,?4 <-/,,,,,,,+.+,?@A = ± 7 871 999,999 Pa (resposta) b) Vmáx = - 6,64 kN . = - . Q = Q1 + Q2 − 3 | = 100 . 50 . |175 − 100| = 375 000 . 78 m³ Q1 = A1 . | − 3 | = 50 . 50 . |125 − 100| = 62 500 . 78 m³ Q2 = A2 . | Q = 437 500 . 78 m³ b = 50 mm = 0,050 m ¡: = - ;8<,<K.+,4 >.K0./,,.+,?q <-/,,,,,,,+.+,?@A .,,,/, = 929 599,9999 Pa 33) Uma viga T com 5 m de comprimento é simplesmente apoiada em suas extremidades e tem a seção transversal mostrada na figura. É especificado que a tensão longitudinal de tração não pode exceder 12 MPa e que a tensão tangencial horizontal não ultrapasse 0,7 MPa. Determine a carga concentrada para baixo máxima que pode ser aplicada a 3 m da extremidade direita. Adriano Alberto 57 RA + RB = P - 2P + 5 . RB = 0 => RB = 0,4 . P RA = 0,6 . P Cálculo da Posição da Linha Neutra (L.N.) AT = 200.75 + 200.50 = 25 000 mm² A1 = 200.75= 15 000 mm²² A2 = 200.50= 10 000 mm² m² = 150 mm = 25 mm yi = )# . # . #* = +/,,,.+/, +/,)+,,,,.-/ -/ -/,,, = 100 mm ys = 250 – 100 = 150 mm Cálculo do momento de inércia Iz = + = .1 − 3 = + A1 . = .1 − 3 = + A2 . ./.-,,4 +- -,,./,4 +- + 15 000 . 150 − 100- = 87 500 000.7 000 8 m4 + 10 000 . 25 − 100- = 58 333 333,33.7 333,33 8 m4 Adriano Alberto => Iz = 145 833 333,3 . 78 m4 58 Cálculo das tensões abaixo da L.N.: = - .3 => 12 . 106 = - +,-.U.8+,,.+,?4 +K/B00000,0.+,?@A => P = 14 583,33333 N Vmáx = 0,6 . P . = - . Cálculo acima da L.N. − 3 | = 150 . 75 . |175 − 100| = 843 750 . 78 m³ Q = A . | b = 75 mm = 0,075 m ,,<.U.BK0./,.+,?q 0,7 . 106 = - +K/B00000,0.+,?@A .,,,./ => P = 15 123,45679 N Cálculo abaixo da L.N. Q = Q1 + Q2 − 3 | = 50 . 75 . |75 − 100| = 93 750 . 78 m³ Q1 = A1 . | − 3 | = 200 . 50 . |25 − 100| = 750 000 . 78 m³ Q2 = A2 . | Q = 843 750 . 78 m³ b = 50 mm = 0,075 m ,,<.U.BK0./,.+,?q 0,7 . 106 = - +K/B00000,0.+,?@A .,,,./ => P = 15 123,45679 N Logo, Pmáx = 14 583,33333 N Adriano Alberto 34) e 35) Para a viga com carregamento indicado, considerar a seção n–n e determinar: (a) a maior tensão normal, e indicar onde ela ocorre; (b) a tensão de cisalhamento no ponto A; (c) a maior tensão de cisalhamento e indicar onde ela ocorre 34) RA = 36 kN - 36 . 0,760 + M = 0 => M = 27,36 kN.m Mz = - 0,600 . 36 = - 21,6 kN.m yi = ys = 75 mm A1 = 100.8= 800 mm² A2 = 134.8= 1 072 mm² A3 = 134.8= 1 072 mm² A4 = 100.8= 800 mm² = 146 mm = 75 mm = 75 mm = 4 mm Cálculo do momento de inércia Iz = + + + = = = .1 − 3 = + A1 . = .1 − 3 = + A2 . +,,.B4 +- B.+0K4 +- + 800 . 146 − 75- = 4 037 066,667.78 m4 + 1 072 . 75 − 75- = 1 604 069,333.78 m4 59 Adriano Alberto => Iz = 11 282 272 . 78 m4 60 Como a seção é simétrica, e a área interna é concêntrica com a área externa, este cálculo apresentaria o mesmo resultado subtraíndo-se [ - 3 : +,,.+/,4 +- = - - .3 BK.+0K4 +- =- = 11 282 272 . 78 m4 ;8-+,<.+,4 >.±./.+,?4 ++-B--.-.+,?@A = ± 143 588 100 Pa (no topo ou na base da seção) b) V(0,160) = 36 kN . = - . − 3 | = 100 . 8 . |146 − 75| = 56 800 . 78 m³ Q = A . | b = 2 . 8 mm = 0,016 m 0<.+,4 ./<B,,.+,?q ¡: = = 11 327 505,67 Pa ++-B--.-.+,?@A .,,,+< c) Cálculo acima da L.N. Q = Q1 + Q2 + Q3 − 3 | = 8 . 100 . |146 − 75| = 56 800 . 78 m³ Q1 = A1 . | − 3 | = 8 . 67 . |108,5 − 75| = 17 956 . 78 m³ Q2 = A2 . | Q3 = Q2 = 17 956 . 78 m³ Q = 92 712 . 78 m³ Adriano Alberto Como a seção é simétrica, e a área interna é concêntrica com a área externa, este cálculo apresentaria o mesmo resultado subtraíndo-se [ - 3 : 75 . 100 . |112,5 − 75| - 84 . 67 . |108,5 − 75| = 92 712 . 78 m³ b = 2 . 8 mm = 0,016 m 0<.+,4 .G-.+-.+,?q ¡: = - ++-B--.-.+,?@A .,,,+< = 18 489 361,01 Pa (ocorre na L.N.) 35) RA = RB = 80 kN Para 0 ≤ x < 0,9: V(x) = 80 kN M(x) = 80x Mz = M(0,6) = 80 . 0,6 = 48 kN.m yi = ys = 130 mm A1 = A2 = A7 = A8 = 80.12= 960 mm² A3 = A6 = 180.16= 2 880 mm² A4 = A5 = 68.16= 1 088 mm² = = 220 mm = 172 mm 61 Adriano Alberto = T = 130 mm 62 = 88 mm ¢ = 40 mm k = Cálculo do momento de inércia Iz = + + + + T + + k + ¢ hi@ = hiA = hi£ = hi¤ hi4 = hi] hiJ = hiX Iz = 4 . + 2 . + 2 . = .1 − 3 = + A1 . = .1 − 3 = + A3 . = .1 − 3 = + A4 . +-.B,4 +- +B,.+<4 ++<.<B4 +- + 960 . 220 − 130- = 8 288 000 .78 m4 + 2 880 . 172 − 130- = 5 141 760 .78 m4 + 1 088 . 130 − 130- = 419 242,6667.78 m4 => Iz = 44 274 005,33 . 78 m4 = - .3 =- ;KB.+,4 >.±+0,.+,?4 KK-.K,,/,00.+,?@A b) V(0,6) = 80 kN . = - . Cálculo acima da L.N. Q = 2 . Q1 = ± 140 940 489,9 Pa (no topo ou na base da seção) Adriano Alberto − 3 | = 2 . 80 . 12 . |220 − 130| = 172 800 . 78 m³ Q = 2 . A . | b = 2 . 12 mm = 0,024 m ¡: = - B,.+,4 .+.-B,,.+,?q KK-.K,,/,00.+,?@A .,,,-K = 13 009 891,37 Pa c) Cálculo acima da L.N. Q = Q1 + Q2 + Q3 + Q4 + Q5 Q1 = Q2 Q4 = Q5 Q = 2 . Q1 + Q3 + 2 . Q4 − 3 | = 12 . 80 . |220 − 130| = 86 400 . 78 m³ Q1 = A1 . | − 3 | = 16 . 180 . |172 − 130| = 120 960 . 78 m³ Q3 = A3 . | − 3 | = 34 . 16 . |147 − 130| = 9 248 . 78 m³ Q4 = A4 . | Q = 312 256 . 78 m³ b = 2 . 16 mm = 0,032 m B,.+,4 .0+--/<.+,?q ¡: = - KK-.K,,/,00.+,?@A .,,,0- = 17 632 016,67 Pa (ocorre na L.N.) PROBLEMAS ENVOLVENDO COMBINAÇÃO DE CARREGAMENTO *** 36) a alavanca AB tem uma seção transversal retangular de 10 x 30 mm. Sabendo-se que θ = 40º, determinar as tensões normal e de cisalhamento nos três pontos indicados (a, b e c). 63 Adriano Alberto 64 1 780 . sen(40°) . 0,125 = M => M = 222,5 . sen(40°) N.m |M |= |M¦ | = |M | = |M§ | = 1 780 7 . sen(40°) . 0,100 = 178 . sen(40°) N.m N = 1 780 . cos(40°) N yi = 15 mm (posição da L.N.) = # - . ; = V = 1 780 . sen(40°) Iz = +,.0,4 +- 9u = ; − 3 | Q = A . | b = 0,010 0,0 m = 22 500 . 78 m4 +.B,.K,° ,,,,,0 = - ; . . + . . +.B. K,°.,,,+/ --/,, /,,.+,?@A = 80 822 660,05 Pa A = 0 => = 0 9^ = B,B--<<,,,/), - = 40 411 330,03 Pa R = ¡u¨á© = ª77, 7 7 - + 0- = 40 411 330,03 Pa 9u¨á© = 9^ + R = 80 822 660,05 Pa 9u¨í¬ = 9^ - R = 0 Adriano Alberto 65 9 = +.B,.K,° ,,,,,0 = - + . . +.B. K,°., --/,,..+,?@A = 4 545 197,029 Pa Q = 0,010 . 0,015 . 0,0075 = 1,125 . 78 m³ ¡ = - 9^ = +.B,.K,°.+,+-/.+, +,?] --/,,.+,?@A .,,,+, K/K/+G.,,-G), - = - 5 720 809,726 Pa = 2 272 598,515 Pa 515- + 5720809,726- = 6 155 677,699 Pa R = ¡¨á© = ª2272598,515 Adriano Alberto 9¨á© = 9^ + R = 8 428 276,214 Pa 66 9¨í¬ = 9^ - R = - 3 883 079,184 Pa senS = 9 = /.-,B,G,.-< <+//<..,<GG +.B,.K,° ,,,,,0 { = - . . + => S = 34,16724521° (anti-horário) +.B. K,°.8,,,+/ --/,, /,,.+,?@A A = 0 => { = 0 9^ = 8.+.0--</,GG), - = - 35 866 133 Pa R = ¡¨á© = 35 866 133 Pa = - 71 732 265,99 Pa Adriano Alberto 9¨á© = 9^ + R = 0 9¨í¬ = 9^ - R = - 71 732 265,99 Pa Acredito que a resposta da lista considera apenas as tensões normais e cisalhantes separadamente, sem calcular as tensões máximas. Além disso, os valores parciais encontrados diferem um pouco das respostas. Possivelmente foram feitas muitas aproximações. 36) σa = 80,85 MPa T τa = 0 σb = 4,55 MPa T τb = 5,70 MPa σc = 71,8 MPa C τc = 0 *** 37) O eixo mecânico de um automóvel é feito para suportar as forças e o torque mostrado. Sabendo-se que o diâmetro do eixo é de 30 mm, determinar as tensões normal e de cisalhamento no: (a) ponto H; (b) ponto K. 67 Adriano Alberto 68 N=0 Vy = ; Vz = 0 T = - 2 800 N.m My = 0 Mz = - 2 700 . 0,350 + 2 700 . 0,200 = - 405 N.m Iz = Iy = HI J K = H,,,+/J K AT = LM - = L0,015 = # + + a) Para o ponto H: 9® = 0 - K,/.,,,+/ OP,P@XJ J ¯ + ,., OP,P@XJ J 8-B,, = - 152 788 745,4 Pa 8/<,, ¡ ¯ = ,,/.H.I4 = ,,/.H,,,+/4 = H,,,+/4 => * = - 528 158 626 Pa ¡® = ¡ ¯ + ¡°_ = ¡ ¯ + 0 = - 528 158 626 Pa Adriano Alberto 69 R = á = 533,6549769 MPa á = - 610,049349,6 Pa Para o ponto K: 9± = 0 + K,/., OP,P@XJ J ¯ + ,.8,,,+/ OP,P@XJ J -B,, =0 /<,, ¡ ¯ = ,,/.H.I4 = ,,/.H,,,+/4 = H,,,+/4 => * = 528 158 626 Pa ¡± = ¡ ¯ + ¡°² = ¡ ¯ + 0 = 528 158 626 Pa De acordo com o desenho, que não está muito claro, como as forças em y estão equilibradas, não existe força cortante em y no ponto k. Logo, Vy = 0 = . . =0 Adriano Alberto Através do circulo de Mohr, ³á = ³á = 528 158 626 Pa Acredito que a resposta da lista está errada. 37) H: σx = 151 MPa C σz = 0 τxz = 527 MPa K: σx = σy = 0 τxy = 527 MPa *** 38) Uma mola é feita de um arame circular de raio c, formando uma hélice de raio R. Determinar a máxima tensão de cisalhamento produzida pelas forças P e P’, iguais e opostas. (Sugestão: determinar inicialmente a força cortante V e o torçor T numa seção transversal.) V=P T = P . 2R = I= . . .{ * = =- * 7,T..{ . M = T = 2PR Para o ponto A: # = # + * Q = 0 => ¡°´ = 0 70 Adriano Alberto ¡R = ¡ ¯ = # = - 9^ = -Uµ ,,/.H. 4 -· 8 O¸J J =- ¤»¼ ), O¸4 - = ¢¹º { =- S¶ { 71 ¹º { Uµ R = ª4- + 4- . H 4 = 9R¨á© = 9^ + R = 9R¨í¬ = 9^ - R = senS = K √0- K· H 4 K· H 4 + - √.S¶ { K√-.Uµ H 4 K√-.Uµ H 4 = #á = = ;√8>.S¶ { 8;√)>.S¶ { => S = 22,5° (anti-horário) Adriano Alberto 72 Para o ponto B: = + * Q= H. A - . U. ¡j = O.¸J J K. 0H A¸4 4 .-. = - 4 0 + .-· ,,/.H. 4 = J 4 H A H. U U. + .-· ,,/.H. 4 = ,,/.H. 4 = 0 á = á = J 4 ,,/..U. ).-· { SW )ºZZ { est questão. A lista não apresentou a resposta para esta = { SW )ºZZ { Adriano Alberto *** 39) Várias forças são aplicadas ao tubo mostrado. Sabendo-se que o tubo tem diâmetro, interno e externo, de 40 mm e 48 mm, respectivamente, determinar as tensões normal e de cisalhamento no: (a) ponto H; (b) ponto K. N = 660 N ; Vy = 0 ; Vz = 0 T = 880 . 0,250 = 220 N.m My = 660 . 0,100 + 220 . 0,250 – 880 . 0,250 = - 99 N.m Mz = - 660 . 0,250 = - 165 N.m Iz = Iy = H,,,-KJ 8,,,-,J K = # - + = 1,349125549 . 78k m4 Para o ponto H: <<, 8+</.,,,-K 8GG., 9® = H,,,-KA 8,,,-,A - +,0KG+-//KG.+,?£ + +,0KG+-//KG.+,?£ => = 30 546 008,14 Pa ¡¯ = --,.,,,-K ,,/.H.,,,-KJ 8,,,-,J = 19 568 230,71 Pa ¡® = ¡ ¯ + ¡°_ = ¡ ¯ + 0 = ¡ ¯ => = 19 568 230,71 Pa 9^ = 0,/K<,,B,+K), - = 15 273 004,07 Pa 73 Adriano Alberto 74 R = ¡®¨á© = ª15273004,07- + 19568230,71- = 24 822 979,4 Pa 9®¨á© = 9^ + R = 40 095 983,47 Pa 9®¨í¬ = 9^ - R = - 9 549 975,33 Pa senS = +G/<B-0,,.+ -KB--G.G,K => S = 26,01398101° (horário) Para o ponto K: <<, 8+</., 8GG.,,,-K 9± = H,,,-KA 8,,,-,A - +,0KG+-//KG.+,?£ + +,0KG+-//KG.+,?£ => = - 16 417 745,57 Pa --,.,,,-K ¡ ¯ = ,,/.H.,,,-KJ 8,,,-,J = 19 568 230,71 Pa ¡¾ = ¡ ¯ + ¡°² = ¡ ¯ + 0 = ¡ ¯ => ¿ = 19 568 230,71 Pa Adriano Alberto 75 9^ = 8+<K+..K/,/.), - = - 8 208 872,783 Pa R = ¡¾¨á© = ª8208872,783 783- + 19568230,71- = 21 220 302,67 Pa 9¾¨á© = 9^ + R = 13 011 429,89 Pa 9¾¨í¬ = 9^ - R = - 29 429 175,45 Pa +G/<B-0,,.+ senS = -+--,0,-,<. => S = 33,6209754° (anti-horário) Obs: As respostas da lista não ão são as tensões máximas: H: σx = 30,5 MPa T σz = 0 τxz = 19,56 MPa K: σx = 16,4 MPa C σy = 0 τxy = 19,56 MPa Adriano Alberto 76 Figura: Slide do Prof. Alberto B. Vieira Jr. Adriano Alberto 77 Figura: Slide do Prof. Alberto B. Vieira Jr. Adriano Alberto 40) e 41) Os eixos maciços são carregados como mostrado nas figuras. Determine, e mostre num esboço, as tensões principais e a tensão tangencial máxima no ponto A da superfície do eixo. 40) Como Vz, ao flexionar a barra em torno de y, causa uma tração no ponto A, a convenção de sinais deve ser de forma que seja positivo. Ou seja, sentido anti-horário como positivo. N = - 80 000 N ; Vy = 0 ; Vz = 10 000 N T = - 0,600 . 10 . 10³ = - 6 000 N.m My = 0,900 . 10 . 10³ = 9 000 N.m Mz = 0 O sinal do torque T tem que seguir a mesma convenção para os sinais de My e Mz. Iz = Iy = HI J K = # + = H,,,/J K + Para o ponto A: 8B,,,, 9R = H,,,/A + ¯ ,., OP,PXJ J ¡ ¯ = ,,/.H.I4 = + G,,,.,,,/ OP,PXJ J 8<,,, ,,/.H.,,,/4 => # = 81 487 330,86 Pa = - 30 557 749,07 Pa ¡R = ¡ ¯ + ¡°² = ¡ ¯ + 0 = ¡ ¯ => # = - 30 557 749,07 Pa A representação das tensões de cizalhamento, do estado de tensão, deve seguir a mesma convenção. 78 Adriano Alberto 79 9^ = B+KB.00,,B<), - = 40 743 665,43 Pa R = ¡R¨á© = ª40743665,43 43- + 30557749,07- = 50 929 581,79 Pa 9R¨á© = 9^ + R = 91 673 247,22 Pa 9R¨í¬ = 9^ - R = - 10 185 916,36 Pa senS = 0,//..KG,,. /,G-G/B+,.G => S = 18,43494882° (anti-horário) Adriano Alberto 41) 80 Como Vz, ao flexionar a barra em torno de y, causa uma tração no ponto A, a convenção de sinais deve ser de forma que seja positivo. Ou seja, sentido anti-horário anti como positivo. N = - 60 000 N ; Vy = 0 ; Vz = - 5 000 N e 3 000 N T = - 0,100 . 5 000 – 0,100 . 3 000 = - 800 N.m My = 5 000 . 2 – 3 000 . 2 = 4 000 N.m Mz = 0 O sinal do torque T tem que seguir a mesma convenção para os sinais de My e Mz. Iz = Iy = HI J K = # + = H,,,-/J K + Para o ponto A: 8<,,,, 9R = H,,,-/A + ¯ ,., OP,PXJ J ¡ ¯ = ,,/.H.I4 = + K,,, ,,,.,,,-/ OP,PAXJ J 8B,, ,,/.H.,,,-/ ,-/4 => # = 295 391 574,4 Pa = - 32 594 932,35 Pa ¡R = ¡ ¯ + ¡°² = ¡ ¯ + 0 = ¡ ¯ => # = - 32 594 932,35 Pa A representação das tensões de cizalhamento, do estado de tensão, deve seguir a mesma convenção. Adriano Alberto 9^ = -G/0G+/.K,K), - = 147 695 787,2 Pa 2- + 32594932,35- = 151 249 711,3 Pa R = ¡R¨á© = ª147695787,2 9R¨á© = 9^ + R = 298 945 498,5 Pa 9R¨í¬ = 9^ - R = - 3 553 924,1 Pa senS = 0-/GKG0-,0/ +/+-KG.++,0 => S = 6,222551599° (anti-horário) *** 42) Uma barra de aço de 50 mm de diâmetro está carregada como mostrado na figura. Determine, e mostre num esboço, a tensão principal máxima no topo da superfície adjacente ao apoio. 81 Adriano Alberto 82 Como Vy, ao flexionar a barra em torno de z, causa uma tração no ponto superior, a convenção de sinais deve ser de forma que seja positivo. Ou seja, sentido horário como positivo. N = 15 000 N ; Vy = - 5000 N ; Vz = 0 T = 1 200 N.m My = 0 Mz = 500 . 0,900 = 450 N.m O sinal do torque T tem que seguir a mesma convenção para os sinais de My e Mz. Iz = Iy = HI J K = # + = H,,,-/J K + Para o ponto: +/,,, 9: = H,,,-/A + ¯ K/,.,,,-/ ¡ ¯ = ,,/.H.I4 = OP,PAXJ J => = 44 308 736,16 Pa +-,, ,,/.H.,,,-/ ,-/4 = 48 892 398,52 Pa ¡: = ¡ ¯ + ¡°_ = ¡ ¯ + 0 = ¡ ¯ => = 48 892 398,52 Pa A representação das tensões de cizalhamento, do estado de tensão, deve seguir a mesma convenção. 9^ = KK0,B.0<,+<), - = 22 154 368,08 Pa Adriano Alberto R = ¡wá: = ª22154368,08 08- + 48892398,52- = 53 677 580,59 Pa 9:¨á© = 9^ + R = 75 831 948,67 Pa 9:¨í¬ = 9^ - R = - 31 523 212,51 Pa senS = KBBG-0GB,/- /0<../B,,/G => S = 32,81176569° (horário) Na resposta da lista tem anti-horário. anti Issoo seria válido para um torque negativo. Mas, o torque tem que ser positivo de acordo com a convenção adotada. *** 43) O eixo circular maciço de aço está submetido aos torques e cargas indicados. Determine, e mostre num esboço, as tensões principais principais e a tensão tangencial máxima nos pontos: (a) A; (b) B. 83 Adriano Alberto 84 a) Como Vz, ao flexionar a barra em torno de y, causa uma compressão no ponto A, A a convenção de sinais deve ser de forma que como negativo. N = 8 000 . N ; Vy = 0;; seja negativo. Ou seja, sentido horário Vz = 500 . N T = - 5 000 . L + 3 000 . L = - 2 000 . N.m My = - 1,5 . 500 . L = - 750 . N.m Mz = 0 O sinal do torque T tem que seguir a mesma convenção para os sinais de My e Mz. Iz = Iy = HI J K = # + = B,,,.H H,,,/J K + 9: = H,,,/A ¯ ./,.H.,,,/ ¡ ¯ = ,,/.H.I4 = OP,PXJ J => = - 20 800 000 Pa 8-,,,.H ,,/.H.,,,/4 = - 32 000 000 Pa ¡: = ¡ ¯ + ¡°² = ¡ ¯ + 0 = ¡ ¯ => = - 32 000 000 Pa A representação das tensões de cizalhamento, do estado de tensão, deve seguir a mesma convenção. 9^ = 8-,B,,,,,), - = - 10 400 000 Pa Adriano Alberto R = ¡R¨á© = ª10400000- + 32000000- = 33 647 585,35 Pa 9:¨á© = 9^ + R = 23 247 585,35 Pa 9:¨í¬ = 9^ - R = - 44 047 585,35 Pa senS = 0-,,,,,, 00<K./B/,0/ => S = 35,9979192° (horário) b) B,,,.H 9: = H,,,/A + 0 + 0 => = 3 200 000 Pa 85 Adriano Alberto ¡¯ = ¯ ,,/.H.I 4 ¡°_ = °_ .À Á. = Q=A. ¡°_ = HI A - 500.L. = . 8-,,,.H ,,/.H.,,,/4 K.I 0H AP,PX4 4 OP,PXJ .,,+,, J = = - 32 000 000 Pa = 266 666,6667 Pa ¡: = ¡ ¯ + ¡°_ = - 32 000 000 + 266 666,6667 => = - 31 733 333,33 Pa A representação das tensões de cizalhamento, do estado de tensão, deve seguir a mesma convenção. 9^ = 0-,,,,,), - = 1 600 00 000 Pa R = ¡j¨á© = ª3200000- + 31733333,33- = 31 773 643,86 Pa 9:¨á© = 9^ + R = 33 373 643,86 Pa 9:¨í¬ = 9^ - R = - 30 173 643,86 Pa 0+.00000,00 senS = 0+..0<K0,B< => S = 43,55679075° (anti-horário) O resultado da lista deu diferente. Mas, pelos cálculos, cál = 1 600 000 Pa coincide. Então, a diferença está no = - 31 733 333,33 Pa. Como o torque não variou em relação relaç à letra “a” (cuja resposta foi igual à da lista), o erro está no cálculo do = 266 666,6667 Pa. Pa Porém, acredito que meus cálculos estejam corretos. 86 Adriano Alberto 87 43) b) σ1 = 33,1 MPa T σ2 = 29,9 MPa C σ3 = 0 τmáx = 31,5 MPa θp = 43,5º *** 44) Sabendo-se se que nos pontos A e B, sobre o eixo da figura, as tensões normal e tangencial são limitadas a 90 MPa T e 60 MPa,, respectivamente. Determine o valor máximo permissível de P. Adriano Alberto 88 ;,á ># = ;,á > = 90 . 106 Pa ;,á ># = ;,á > = 60 . 106 Pa P=? Convenção de sinais: sentido horário positivo para o ponto A e negativo para o ponto B N = 8P ; Vy = P ; Vz = 0 T = 0,200 . P My = 0,200 . 8P = 1,6 . P Mz = 0,400 . P O sinal do torque T tem que seguir a mesma convenção para os sinais de My e Mz. Iz = Iy = = # HI J K + = H,,,/J K + Para o ponto A: BU 9R = H,,,/A + 9R = 8,,K,,..8,,,/ OP,PXJ J BU.,,,/)+,<.U H,,,/4 ¯ ¡ ¯ = ,,/.H.I4 = + +,<.U., Á² => # = 5 092,958179 . P ,,-,,.U ,,/.H.,,,/4 = 1 018,591636 . P ¡R = ¡ ¯ + ¡°_ = ¡ ¯ + 0 = ¡ ¯ => # = 1 018,591636 . P Para o ponto B: BU => 9R = H,,,/A + ,,K,,.U.K H,,,/4 => Adriano Alberto 9j = BU H,,,/A 9j = BU.,,,/)<,K.U H,,,/4 + ,,K,,.., Á_ + +,<.U.,,,/ OP,PXJ J => 9j = BU H,,,/A + +,<.U.K H,,,/4 => => = 17 316,05781 . P = * + = - . . = Q=A. ¡°² = - HI A - . K.I 0H AP,PX4 4 OP,PXJ .,,+,, J U. = = - 169,7652726 . P ¡j = - 1 018,591636 . P - 169,7652726 . P => = - 1 188,356909 . P No ponto B, a força P em Vy e o torque T apresentam o mesmo sentido. Logo, devem ter o mesmo sinal que, no caso, deve ser o de T, que já foi convencionado negativo no início dos cálculos. Como as tensões foram maiores no ponto B, utiliza-se esses valores pra o círculo de Mohr. 9^ = +.,0+<,/.B+.+,4 .), - = 8,658028905 . 7 . P R = ¡j¨á© = ª8,658028905. 100 . P- + 1188,356909. P- = 8,73920229 . 103 . P 89 Adriano Alberto 9j¨á© = 9^ + R = 17,3972312 . 103 . P 60 . 106 = 8,73920229 . 103 . P => P = 6 865,615191 N (não serve) 90 . 106 = 17,3972312 . 103 . P => P = 5 173,236992 N = Padm Resp da lista: 5199 N 45) Sabendo-se que o tubo estrutural mostrado tem uma espessura da parede uniforme de 6 mm, determinar a tensão de cisalhamento em cada um dos três pontos indicados (a, b e c). Vy = - 40 000 N Posição da L.N.: yi = ys = 30 mm Iz = +,,.<,4 +- - BB.KB4 +- = 988 992 . 78 m4 T = 40 000 . 0,047 = 1 880 N.m * = * o.# = +BB, -.,,,,<.,,,GK.,,,/K = 30 864 197,53 Pa Para o ponto a: = ÃÄ + * ÃÄ = - . b = 0,006 . 2 = 0,012 m Q = A’ . Å′ = -.,,,,<.,,,0,.,,,+/),,,BB.,,,,<.,,,-. = 0,022135135 m Å′ -.,,,,<.,,,0,),,,BB.,,,,< Q = (2.0,006.0,030 + 0,088.0,006) . 0,022135135 = 19,65599988 . 78 m³ ¡u = - 8K,,,,.+G,<//GGGBB.+,?] GBBGG-.+,?@A .,,,+- + 30 864 197,53 = 97 113 469,11 Pa 90 Adriano Alberto Para o ponto b: 91 = ÃÄ + * ÃÄ = - . b = 0,006 . 2 = 0,012 m Q = A’ . Å′ = 0,027 m Å′ Q = (0,100. 0,006) . 0,027 = 16,2 . 78 m³ ¡ = - 8K,,,,.+<,-.+,?] GBBGG-.+,?@A .,,,+- + 30 864 197,53 = 85 465 245,87 Pa Para o ponto c: { = ÃÇ + * => ¡ = 0 + ¡ ¯ => { = 30 864 197,53 Pa 45) τa = 97,1 MPa τb = 85,5 MPa τc = 30,9 MPa