!
"
∆ $" ∆ %" ∆ &"
!#
"
" #
"
Z
!# #
Y
dP
x
dP
P
'
( !#
+,
"
!#
(
-
0
.
-
.
!
7
) "
.
!
,41" ,31" #
.
.
0
3
6
= $5 ∆ $ + % 5 ∆ %
6
= $5 ∆ $ + % 5 ∆ %
"
"
!
/
-12
8
/
!
!#
3
"
*
6
9
#
=
=
2
7
"+
#
=
2
2"
!
.
'
7
;
/
/
"
"
6
∆ =ρ ∆
ρ
∆
"
<
6
=ρ
'
3
#
2 '2=
*
=
=
<
"
;
/
!#
.
#
)
"
#
. =
:
∆ =ρ ∆
, 1/
!#
∆
=
-
/
!#
=
;
!#
3 ,41"
3 ,31
=
>
.
/
+
@
"
/
@
3
=
#
?
2
"
/
/
9
>3
/
B
C9
,
D
;1
6
/
)
;
E
;
F
3 "/
9
;
!#
.
9
( !#
G
*
.
=
>3
)
=
6
=
6
D
150
!#
"
'
6
' .
/
;
150
75
25
50
%:+H G I%2"
50
100
'
J +H G I%2 -
150
.
$:J +
A"K& + G
<
2"
I&2
!# 6
A
:
$
; (
6
" %
.
" &
"
": .
!#
"
:
=+
> #"
"
"
=
2"
.
×
=$
6
ρ
3+ 2
4+ 2
(+ 2
+72
J"J%$
J"M &
$
%:+L G I%2
J"JMK%
J
J
%
%:+L G I%2
J": %
J
J
J"JA:
:":$K
&
%:+L G I%2
J
J
J"$JJ
J"M%J
J"
J
J"J:
J"$:J
$" K
J
J"JA:
J"JM&K
J+L G I%2
:
A"K+ G
I&2
J
:"KK
$ " K
N %:"M&
3
" O NJ
P NJ"J:& + 2
Q N J"J
+ 2
3
)
+Θ2
=
=
π
%
G%
Θ
=
&π
K
!"
(
@
# $ %
-
+R 3#
/
/
.
"
2
=
=
=
%
%
[ ]
&
# $ %
+F !#
.
"
2
-
/
=
%
/ '
=
[ ]
'(
M
b
G%
=
Y
=
%
− G%
dy
x
=
%
&
=
y
h
$%
&
$%
[ ]
[ ]
x
dx
)
'(
=
)
%
=
(
%
+
%
)
=
+
'(
-
!#
.
"
3 3" /
=
=
*
=
=
+
-
>3
/
3
.
'
B/
/
3
)
+SSB2
3
T
=
T
+
×
%
AJ
>3
6
D
/
3
N %J
D
/
3
)
!#
D
/
3
)
=
!#
,
-
/
.
'/
3
-OP"
3 4
=
=
-
/
'
3
#
"
' !#
/
/
3
<
/
A$
*
+
7
%,
"
3
/
.
3$-4$/
!#
T T
=
+
-+
.
3-4 V
3 -3B4B
0
!?
/
>
/
.
/
.
3
&
!#
.
(
.
"
3 "
0
3
/
.
?
U
6
!?
/
)"
@
/
3
>
/
/
/
A%
!# =
)
!#
!?
# '
;
/
"
3"
=
+
%
±
(%θ ) = −
>3
−
%
%
+
%
%
−
6
!#
/
!?
A&
&
!#
3
B 9
W
0
3
!# 3 /
/
W
=
-
!# /
%
6
=
-
/
-
.
>3
/
3
#=
3=
+4 % + ( % 2
4=
+3 % + ( % 2
(=
+4 % + 3 % 2
'/ /
.
=
= +
%
A
-
/
'
/
6
-
B
=
!! B
=
$
$%
%
SSB
B
+
/
SSB
=
$
$%
=
(
$
'%
$%
%
+ '%
)
B
=
!! B
=
SSB
B
=
+
$
SSB
%
=
$
%
%
#6
=
=
=
A:
Download

6- Geometria de Massas