CÁLCULO III – INTEGRAIS TRIPLAS Exercícios 8.5. 1. Calcule ∫∫∫ xyz dV , onde T é o paralelepípedo retângulo 0,1 × 0,2 × 1,3 2 T Solução: 2 ∫∫∫ xyz dV = T 1 2 3 1 2 3 0 0 1 2 2 ∫ ∫ ∫ xyz dzdydx = ∫ xdx ∫ ydy ∫ z dz 0 0 1 1 2 3 z3 1 22 33 1 = × × − 3 2 2 3 3 T 0 0 1 26 1 27 − 1 26 = ∴ ∫∫∫ xyz2dV = × 2 × xyz2dV = ∫∫∫ 3 3 2 3 T T 2 ∫∫∫ xyz dV = 2. Calcule x2 2 × y2 2 × y ∫∫∫ xdV , onde T é o tetraedro limitado pelos planos coordenados e pelo plano x + 2 + z = 4 . T Solução: Fig. 01 Fig. 02 y y ⇒0≤z≤4−x− (Fig. 01) 2 2 y y z = 0 ⇔ 4 − x − = 0 ⇔ = 4 − x ∴ y = −2x + 8 2 2 Assim : z=4−x− 0 ≤ x ≤ 4 0 ≤ y ≤ −2x + 8 4 −2x + 8 4−x− ∫∫∫ xdV = ∫ ∫ T ∫∫∫ xdV = T ∫∫∫ xdV = T 0 (Fig. 02) ∫ 0 0 4−x − ∫ ∫ 0 0 y 2 xz 0 4 −2x + 8 xdzdydx 0 4 −2x + 8 ∫ ∫ y 2 4 −2x + 8 dydx = ∫ ∫ −2x 0 0 y x 4 − x − dydx 2 4 x y2 xy 2 2 4x − x − dydx = 4xy − x y − ⋅ ∫0 2 2 2 −2x + 8 0 dx −2x + 8 4 x 2 2 xdV = 4xy − x y − ⋅ y dx ∫∫∫ ∫ 4 0 T 0 4 ∫∫∫ xdV = T x ∫ 4x ( −2x + 8 ) − x ( −2x + 8) − 4 ⋅ ( −2x + 8) 2 2 0 4 x ( −2x + 8) dx 4 ∫∫∫ xdV = ∫ ( −2x + 8) 4x − x ∫∫∫ xdV = x2 2 2x 8 4x x − + − + − 2x dx ( ) ∫0 2 ∫∫∫ xdV = x2 − + − 2x 8 2x ) dx ∫0 ( 2 T T T 2 0 − 4 4 4 ∫∫∫ xdV = ∫ ( −4x 2 T 4 + x + 16x − 4x 3 2 0 ∫∫∫ xdV = 64 + 128 − T 3. (Exerc. 11) Calcule 3 ) + 16x − 8x2 dx 4 0 x4 8x3 = + 8x2 − 4 3 4 = 0 44 8 × 43 + 8 × 42 − = 4 3 512 512 64 64 = 192 − = ∴ ∫∫∫ xdV = 3 3 3 3 T dxdydz ∫∫∫ ( x + y + z + 1) 2 T x + y + z = 2. ) dx = ∫ ( x 0 x4 16x2 8x3 xdV = + − ∫∫∫ 4 2 3 T Solução: dx , onde T é o sólido delimitado pelos planos coordenados e pelo plano Fig. 01 Fig. 02 z =2−x−y⇒0≤z≤2−x−y (Fig. 01) z = 0 ⇔ 2 − x − y = 0 ∴ y = −x + 2 Assim : 0 ≤ x ≤ 2 0 ≤ y ≤ −x + 2 (Fig. 02) 2 −x +2 2 − x − y dxdydz ∫∫∫ ( x + y + z + 1) 2 = T Re solvendo dzdydx ∫ ∫ ∫ ( x + y + z + 1) 2 0 0 0 dz ∫ ( x + y + z + 1) 2 : Fazendo : u = x + y + z +1 → du = 1 ∴ dz = du dz Substituindo : dz ∫ ( x + y + z + 1) 2 dz ∫ ( x + y + z + 1) 2 = du u−1 1 −2 = u du = +c=− +c ∫ u2 ∫ u ( −1) =− 1 +c x + y + z +1 2 − x +2 2 − x − y dxdydz ∫∫∫ ( x + y + z + 1) 2 = T dz ∫ ( x + y + z + 1) 2 0 =− 2 dzdydx ∫ ∫ ∫ ( x + y + z + 1) 0 0 1 +c x + y + z +1 Assim : dxdydz ∫∫∫ ( x + y + z + 1) 2 2 − x +2 = T dxdydz ∫∫∫ ( x + y + z + 1) 2 0 dxdydz 2 ∫∫∫ ( x + y + z + 1) 2 ∫ ∫ 0 0 2 − x +2 = T dxdydz 0 2 − x +2 = T ∫∫∫ ( x + y + z + 1) ∫ ∫ ∫ ∫ 0 0 2 − x +2 = T ∫ ∫ 0 0 2−x−y 1 − dydx x + y + z +10 1 1 − − − dydx x + y + 2 − x − y + 1 x + y + 0 + 1 1 1 − − − dydx 3 x + y + 1 1 1 − dydx x + y + 1 3 − x +2 − x +2 dy 1 = ∫ ∫ − dy dx x + y + 1 3 ∫0 0 0 2 dxdydz ∫∫∫ ( x + y + z + 1) 2 T dxdydz ∫∫∫ ( x + y + z + 1) 2 T dxdydz ∫∫∫ ( x + y + z + 1) 2 −x +2 1 ln x + y + 1 − y dx ) ∫0 ( 3 0 2 = 2 = 2 ∫∫∫ ( x + y + z + 1) 2 = T dxdydz ∫∫∫ ( x + y + z + 1) 2 T ) − x +2 +1 − 0 T dxdydz ∫ ln ( x 1 2 ∫ ln (3) + 3 x − 3 − ln ( x + 1) dx 0 2 = ln (3) ∫ dx + 0 2 2 2 1 2 xdx − ∫ dx − ∫ ln ( x + 1)dx ∫ 30 30 0 2 dxdydz ∫∫∫ ( x + y + z + 1) 2 T dxdydz ∫∫∫ ( x + y + z + 1) 2 1 x2 2 = x ln (3) + ⋅ − x − ( x + 1) ln ( x + 1) − ( x + 1) 3 2 3 0 = 2 ln (3) + 22 2 − × 2 − (2 + 1) ln (2 + 1) − (2 + 1) − 1 6 3 = 2 ln (3) + 4 4 4 − − 3ln (3) + 3 − 1 = − ln (3) 6 3 3 T dxdydz ∫∫∫ ( x + y + z + 1) 2 T dxdydz ∫∫∫ ( x + y + z + 1) 2 T OBS.: 1 1 ( −x + 2 ) − ln ( x + 0 + 1) + ⋅ 0 3 3 = 4 − ln (3) 3 ∫ lnudu = u ⋅ lnu − u + c Exercícios 8.7 1. (Exerc. 12) Calcular a integral ∫∫∫ ( x T e exterior ao cone x +y =z 2 2 2 . 2 ) + y2 + z2 dV , sendo T a região interior à esfera x2 + y2 + z2 = 9 Solução: Em coordenadas esféricas, temos que: ( ) x2 + y2 + z2 = 9 ⇔ r 2sen2θ cos2 φ + r2sen2θsen2φ + r2 cos2 θ = 9 ⇔ r 2sen2 θ cos2 φ + sen2φ + r2 cos2 θ = 9 Assim : ( ) r 2sen2θ + r2 cos2 θ = 9 ⇔ r 2 cos2 θ + sen2θ = 9 ⇔ r2 = 9 ∴ 0 ≤ r ≤ 3 e ( ) x2 + y2 = z2 ⇔ r2sen2θ cos2 φ + r 2sen2 θsen2φ = r2 cos2 θ ⇔ r2sen2θ cos2 φ + sen2φ = r2 cos2 θ Assim : r2 sen2θ = r2 cos2 θ ⇔ Logo : 0 ≤ r ≤ 3 3π π ≤θ≤ B: 4 4 0 ≤ φ ≤ 2π Substituindo: sen2θ 3π π = 1 ⇔ tan θ = ±1 ∴ ≤θ≤ cos2 θ 4 4 ∫∫∫ ( x 3π 2π 4 3 2 +y +z 2 2 T 2π 3π 4 3 ) dV = ∫ ∫ ∫ r r senθdrdθdφ = ∫ dφ ∫ senθdθ∫ r dr 2 2 4 π 0 4 0 0 π 4 0 Integrando : ∫∫∫ ( x 2 +y +z 2 2 ) dV = φ ( − cos θ) 2π 0 T ∫∫∫ ( x 2 T ∫∫∫ ( x 2 3 3π 4 π 4 r5 π 35 3π = π − − + − 0 2 0 cos cos ( ) 4 5 4 5 0 2 2 243 486 2π + y2 + z2 dV = 2π × + = × 2 2 5 5 ) 486 2π 5 ) + y2 + z2 dV = T 2. (Exerc. 14) Calcular ∫∫∫ dV , sendo T a casca esférica delimitada por x 2 + y2 + z2 = 9 e x2 + y2 + z2 = 16 . T Solução: Em coordenadas esféricas, temos que: ( ) x2 + y2 + z2 = 9 ⇔ r 2sen2 θ cos2 φ + r 2sen2 θsen2φ + r2 cos2 θ = 9 ⇔ r2sen2 θ cos2 φ + sen2φ + r 2 cos2 θ = 9 Assim : ( ) r2sen2 θ + r2 cos2 θ = 9 ⇔ r2 cos2 θ + sen2 θ = 9 ⇔ r2 = 9 ∴ 0 ≤ r1 ≤ 3 e ( ) x2 + y2 + z2 = 16 ⇔ r2sen2 θ cos2 φ + r 2sen2θsen2 φ + r2 cos2 θ = 16 ⇔ r2sen2 θ cos2 φ + sen2φ + r2 cos2 θ = 16 Assim : ( ) r2sen2 θ + r2 cos2 θ = 16 ⇔ r 2 cos2 θ + sen2 θ = 16 ⇔ r 2 = 16 ∴ 0 ≤ r2 ≤ 4 Logo : 3 ≤ r ≤ 4 B : 0 ≤ θ ≤ π 0 ≤ φ ≤ 2π Substituindo: ∫∫∫ dV = 2π π 4 2π 0 0 3 0 ∫ T 2 ∫ ∫ r senθdrdθdφ = ∫ π 4 0 3 dφ ∫ senθdθ∫ r2dr Integrando : 4 ∫∫∫ dV = φ 2π 0 T r3 43 33 ( − cos θ ) 0 = (2π − 0 ) × − cos ( π) + cos (0 ) × − 3 3 3 3 π 37 148π 64 27 − = 4π × = 3 3 3 3 ∫∫∫ dV = 2π × (1 + 1) × T ∫∫∫ dV = T 148π 3 3. (Exerc. 17) Calcular ∫∫∫ xdV , sendo T a região delimitada por x 2 + ( y − 3) + ( z − 2 ) = 9 . 2 2 T Solução: 1ª Transformação: ( x, y, z ) → (u, v, w ) u = x∴x = u v = y − 3∴y = v + 3 ∂ ( x, y, z ) dV = ∂ (u, v, w ) w = z − 2∴z = w + 2 dudvdw Onde : ∂x ∂u ∂ ( x, y, z ) ∂y = ∂ (u, v, w ) ∂u ∂z ∂u ∂x ∂v ∂y ∂v ∂z ∂v ∂x ∂w 1 0 0 ∂y = 0 1 0 =1 ∂w 0 0 1 ∂z ∂w Assim : ∂ ( x, y, z ) ∫∫∫ xdV = ∫∫∫ u ∂ (u, v, w ) dudvdw = ∫∫∫ ududvdw T T' T' Onde : T ' = u2 + v2 + w2 = 9 Logo: ∫∫∫ xdV = ∫∫∫ ududvdw T T ' : u2 + v2 + w2 = 9 T' 2ª Transformação : (u, v, w ) → (r, φ, θ ) u = rsenθ cos φ v = rsenθsenφ w = r cos θ ( ) u + v + w = 9 ⇔ r sen θ cos φ + r 2sen2 θsen2 φ + r 2 cos2 θ = 9 ⇔ r2sen2θ cos2 φ + sen2 φ + r 2 cos2 θ = 9 2 2 2 2 2 2 Assim : ( ) r 2sen2 θ + r 2 cos2 θ = 9 ⇔ r 2 cos2 θ + sen2θ = 9 ⇔ r 2 = 9 ∴ 0 ≤ r ≤ 3 Logo : 0 ≤ r ≤ 3 B : 0 ≤ φ ≤ π 0 ≤ θ ≤ 2π Assim : ∫∫∫ xdV = T 2π π 3 ∫∫∫ ududvdw = ∫ T' 2π 2 ∫ ∫ rsenθ cos φr senθdrdθdφ = 0 0 0 π 2π 3 1 1 2π ∫ 0 π 3 0 0 sen2θdθ∫ cos φ∫ r3dr π 3 ∫∫∫ xdV = ∫ sen θdθ∫ cos φ∫ r dr = ∫ 2 − 2 cos (2θ ) dθ∫ cos φdφ∫ r dr 2 T 3 0 0 0 0 3 0 0 Integrando : 3 2π π r4 1 1 xdV = θ − sen 2 θ × sen φ × ( ) ( ) ∫∫∫ 2 0 4 0 4 0 T 0 1 0 34 1 81 xdV = 2 π − 0 − sen 4 π − sen 0 × sen π − sen 0 × − 0 = π × 0 × =0 ( ) ( ) ( ) ( ) ( ) ∫∫∫ 2 4 4 4 T ∫∫∫ xdV = 0 T 4. (Exerc. 18) Calcular ∫∫∫ dV , onde T é elipsóide T x2 y2 z2 + + = 1. a2 b2 c2 Solução: 1ª Transformação : ( x, y, z ) → (u, v, w ) x = au y = bv Assim : z = cw x2 y2 z2 a2u2 b2v2 c2w2 + 2 + 2 = 1 ⇔ 2 + 2 + 2 = 1 ∴ T ' : u2 + v2 + w2 = 1 2 a b c a b c e ∂x ∂u ∂ ( x, y, z ) ∂y = ∂ (u, v, w ) ∂u ∂z ∂u ∂x ∂v ∂y ∂v ∂z ∂v ∂x ∂w a 0 0 ∂y = 0 b 0 = abc ∂w 0 0 c ∂z ∂w Assim : dV = ∂ ( x, y, z ) ∂ (u, v, w ) dudvdw = abcdudvdw Dessa forma: ∫∫∫ dV = ∫∫∫ abcdudvdw T Onde : T ' : u2 + v2 + w2 = 1 T' 2ª Transformação : (u, v, w ) → (r, φ, θ ) u = rsenθ cos φ v = rsenθsenφ w = r cos θ ( ) u + v + w = 1 ⇔ r sen θ cos φ + r 2sen2 θsen2φ + r2 cos2 θ = 9 ⇔ r 2sen2 θ cos2 φ + sen2 φ + r2 cos2 θ = 1 2 2 2 2 2 2 Assim : ( ) r 2sen2 θ + r 2 cos2 θ = 1 ⇔ r 2 cos2 θ + sen2 θ = 1 ⇔ r 2 = 1 ∴ 0 ≤ r ≤ 1 Logo : 0 ≤ r ≤ 1 B : 0 ≤ φ ≤ π 0 ≤ θ ≤ 2π Assim : ∫∫∫ dV = abcdudvdw = T 2π π 3 π 2π 3 0 0 0 0 0 0 ∫ 2 2 ∫ ∫ abcr senθdrdθdφ = abc∫ senθdθ ∫ dφ∫ r dr π 2π 3 0 0 0 ∫∫∫ dV = abc∫ senθdθ ∫ dφ∫ r dr 2 T Integrando : 1 π 2π r3 13 dV = abc × − cos ( θ ) × ( φ ) 0 × = abc × − cos ( π ) + cos ( 0 ) × (2π − 0 ) × − 0 ∫∫∫ 0 3 3 0 T 1 ∫∫∫ dV = abc × (1 + 1) × 2π × 3 = T ∫∫∫ dV = T 4π abc 3 4π abc 3 5. (Exerc. 20) Calcular ∫∫∫ ( x − 2y ) dV , sendo T a região delimitada por: T ( x − 1) + ( y − 2 ) = 1, z = 0 e z = x + y . 2 2 Solução: 1ª Transformação : ( x, y ) → (u, v ) u = x − 1∴ x = u + 1 Assim : ( x − 1) 2 v = y −2∴y = v + 2 z=0 e + ( y − 2 ) = 1 ⇔ u2 + v2 = 1 ∴ R = u2 + v2 = 1 2 e ∂x ∂ ( x, y ) ∂u = ∂ (u, v ) ∂x ∂v Assim: ∂y ∂ ( x, y ) 1 0 ∂u = = 1 ∴ dS = dudv = dudv ∂ (u, v ) ∂y 0 1 ∂v z =u+v+3 u + v + 3 ∫∫∫ ( x − 2y ) dV = ∫∫ ∫ (u + 1 − 2v − 4) dzdudv u + v +3 ( x − 2y ) dV = ∫∫ (u − 2v − 3) ∫ dz dudv ∫∫∫ T R 0 T R 0 ∫∫∫ ( x − 2y ) dV = ∫∫ (u − 2v − 3)dudv ( z ) T R u+ v + 3 0 ∫∫∫ ( x − 2y ) dV = ∫∫ (u − 2v − 3) (u + v + 3) dudv T R Mas : u = ρ cos φ v = ρsenφ 0 ≤ ρ ≤ 1 R: 0 ≤ φ ≤ 2π Assim : ∂u ∂ρ = ∂ ( ρ, φ ) ∂u ∂φ ∂ (u, v ) ∂ (u, v ) ∂ ( ρ, φ ) ∂v cos φ senφ ∂ρ = = ρ cos2 φ + ρsen2 φ ∂v −ρsenφ ρ cos φ ∂φ ( = ρ cos2 φ + sen2φ ) 1 =ρ Assim : dudv = ∂ (u, v ) ∂ ( ρ, φ ) dρdφ = ρdρdφ Substituindo : ∫∫∫ ( x − 2y ) dV = ∫∫ (u − 2v − 3) (u + v + 3) dudv T R 2π 1 ∫∫∫ ( x − 2y ) dV = ∫ ∫ ( ρ cos φ − 2ρsenφ − 3) ( ρ cos φ + ρsenφ + 3) ρdρdφ T I= 0 0 ∫∫∫ ( x − 2y ) dV T 2π 1 I= ∫ ∫ (ρ 2 ) cos2 φ + ρ2 cos φsenφ + 3ρ cos φ − 2ρ2senφ cos φ − 2ρ2sen2φ − 6ρsenφ − 3ρ cos φ − 3ρsenφ − 9 ρdρdφ 0 0 2π 1 I= ∫ ∫ (ρ 2 ) cos2 φ − ρ2 cos φsenφ − 2ρ2sen2φ − 9ρsenφ − 9 ρdρdφ 0 0 Resolvendo as seguintes integrais: 2π 1 I1 = ∫ ∫ (ρ 2 2π 1 ) cos φ ρdρdφ = 2 0 0 ∫ cos 2 0 2 3 0 0 2π I1 = ∫ ∫ ( cos φ )ρ dρdφ 1 φdφ∫ ρ dρ = 3 0 2π ∫ 0 1 ρ4 1 1 + cos 2 φ d φ × ( ) 2 2 4 0 2π 0 1 1 1 π π 1 1 I1 = φ + sen (2φ ) × − 0 = × 2π × = ∴ I1 = 4 4 4 4 4 2 2 0 2π 1 I2 = ∫ ∫ ( −ρ 2 0 0 ) 2π 1 0 0 cos φsenφ ρdρdφ = − ∫ cos φsenφdφ∫ ρ3dρ 2π 1 ρ4 sen2φ 1 I2 = − × = × 0 = 0 ∴ I2 = 0 4 4 0 2 0 2π 1 I3 = ∫ ∫( 0 0 2π 1 ) −2ρ2sen2 φ ρdρdφ = −2 ∫ ∫ sen2 φρ3dρdφ 0 0 1 2π 2π ρ4 1 1 I3 = −2∫ ρ dρ ∫ sen φdφ = −2 × × ∫ − cos (2φ ) dφ 4 0 0 2 2 0 0 1 3 2 2π 0 1 1 1 1 1 π π I3 = −2 × × φ − sen (2φ ) = − × × 2π = − ∴ I3 = − 4 2 4 2 2 2 2 0 2π 1 I4 = ∫ 2π 1 2 ∫ ( −9ρsenφ )ρdρdφ = −9 ∫ ∫ senφρ dρdφ 0 0 0 0 1 I4 = −9∫ ρ dρ × 2 0 2π ∫ 0 1 2π ρ3 senφdφ = −9 × × ( − cos φ ) 0 3 0 1 × − cos (2π ) + cos ( 0 ) = ( −3) × ( 0 ) = 0 ∴ I4 = 0 3 I4 = −9 × 2π 1 I5 = 2π 1 2π 1 0 0 0 0 ∫ ∫ ( −9)ρdρdφ = −9 ∫ ∫ ρdρdφ = −9 ∫ dφ∫ ρdρ 0 0 1 2π ρ2 1 I5 = −9 × ( φ ) 0 × = −9 × 2π × = −9π ∴ I5 = −9π 2 2 0 Assim : 2π 1 I= ∫ ∫ (ρ 2 ) cos2 φ − ρ2 cos φsenφ − 2ρ2sen2φ − 9ρsenφ − 9 ρdρdφ 0 0 I = I1 + I2 + I3 + I4 + I5 π π 37π + 0 − + 0 − 9π = − 4 2 4 Logo : 37π ( x − 2y ) dV = − ∫∫∫ 4 T I= Exercícios 8.9 1. (Exerc.04) Calcular o volume do sólido limitado por Solução: Temos que: z = 8 − x2 − 2y2 , no primeiro octante. z = 8 − x2 − 2y2 z = 0: 8 − x2 − 2y2 = 0 ⇔ x2 + 2y2 = 8 ∴ R : x2 y2 + =1 8 4 x = 0, y = 0 : z = 8 − x2 − 2y2 ⇔ z = 8 − 0 − 0 = 8 ∴ z = 8 Assim : 8 ∫∫∫ dV = ∫∫ dxdy ∫ dz = 8∫∫ dxdy T R 0 R Onde : R: x2 y2 + =1 8 4 Re solvendo 8∫∫ dxdy, onde R : R x2 y2 + =1 8 4 1ª Transformação : ( x, y ) → (u, v ) x = 2 2u Assim : y = 2v x2 y2 8u2 4v2 + =1⇔ + = 1 ∴ R ' : u2 + v2 = 1 8 4 8 4 e ∂x ∂u = ∂ (u, v ) ∂y ∂u Assim : ∂x 2 2 0 ∂v = =4 2 ∂y 0 2 ∂v ∂ ( x, y ) dxdy = ∂ ( x, y ) ∂ (u, v ) dudv = 4 2dudv Substituindo: 8∫∫ dxdy = 8∫∫ 4 2dudv onde R ' : u2 + v2 = 1 R R' 2ª Transformação : (u, v ) → ( ρ, φ ) u = ρ cos φ v = ρsenφ 0 ≤ ρ ≤ 1 R': π 0 ≤ φ ≤ 2 e dudv = ∂ (u, v ) ∂ ( ρ, φ ) dρdφ = ( ∂u ∂ρ ∂v ∂ρ ∂u ∂φ ∂v ∂φ d ρd φ = cos φ senφ −ρsenφ ρ cos φ d ρd φ ) dudv = ρ cos2 φ + ρsen2φ dρdφ = ρdρdφ Assim : π 2 1 1 π ρ2 1 π 8∫∫ dxdy = 32 2 ∫ ∫ ρdρdφ = 32 2 × × ( φ ) 02 = 32 2 × × = 8 2π 2 2 2 0 0 0 R Logo: ∫∫∫ dV = 8∫∫ dxdy = 8 T 2π ∴ V = 8 2π R 2. (Exerc. 05) Calcular o volume do sólido acima do plano xy delimitado por Solução: Temos que: z = x2 + y2 e x2 + y2 = 16 z = 0: x2 + y2 = 0 ∴ ( 0, 0, 0 ) x = 0, y = 0 : z = 16 ∴ ( 0, 0,16 ) Assim : 16 ∫∫∫ dV = ∫∫ dxdy ∫ dz = 16∫∫ dxdy T R 0 R Onde : R : x2 + y2 = 16 Re solvendo 16 ∫∫ dxdy, onde R : x2 + y2 = 16 R Transformação : ( x, y ) → ( ρ, φ ) x = ρ cos φ y = ρsenφ 0 ≤ ρ ≤ 4 R': 0 ≤ φ ≤ π e dxdy = ∂ (u, v ) ∂ ( ρ, φ ) dρdφ = ( ∂u ∂ρ ∂v ∂ρ ∂u ∂φ ∂v ∂φ dρdφ = cos φ senφ −ρsenφ ρ cos φ dρdφ ) dxdy = ρ cos2 φ + ρsen2φ dρdφ = ρdρdφ Assim : 4 π 4 π 4 π ρ2 16 ∫∫ dxdy = 16 ∫ ∫ ρdρdφ = 16 ∫ dφ∫ ρdρ = 16 × ( φ ) 0 × 2 0 R 0 0 0 0 16 ∫∫ dxdy = 16 × π × R 42 = 128π 2 Logo : ∫∫∫ dV = 16∫∫ dxdy = 128π ∴ V = 128π T R z = x2 + y2 e x2 + y2 = 16 . 3. (Exerc. 06) Calcular o volume do sólido acima do parabolóide z = x2 + y2 e abaixo do cone z= x2 + y2 Solução: Temos que: z = x2 + y2 z= x2 + y2 Assim : ∫∫∫ dV = ∫∫∫ dxdydz T T x = rsenθ cos φ y = rsenθsenφ z = r cos θ z = x + y ⇔ r cos θ = r sen θ cos φ + r 2sen2 θsen2 φ 2 2 2 2 ( 2 ) r cos θ = r 2sen2 θ cos2 φ + sen2φ ⇔ r cos θ = r 2sen2θ ∴ r = cos θ sen2θ e z= x2 + y2 ⇔ r cos θ = r 2sen2 θ cos2 φ + r2sen2θsen2 φ ( ) r cos θ = r 2sen2θ cos2 φ + sen2 φ = r 2sen2θ = rsenθ Assim : r cos θ = rsenθ ⇔ senθ π = 1 ⇔ tan θ = 1 ∴ θ = cos θ 4 Assim : π 0 ≤ θ ≤ 4 cos θ T : 0 ≤ r ≤ sen2 θ 0 ≤ φ ≤ 2π Substituindo : π cos θ 2 π 4 sen2 θ ∫∫∫ dV = ∫∫∫ dxdydz = ∫ ∫ ∫ T T 0 0 cos θ ∫∫∫ dV = ( φ ) T 2π 0 r2senθdrdθdφ 0 π 4 r3 sen2θ × × ∫ senθdθ 3 0 0 π 4 3 π 1 2π 4 cos3 θ cos θ dV = 2π × × ∫ senθdθ = dθ 2 ∫∫∫ 3 0 sen θ 3 ∫0 sen5θ T π 2π 4 2π dV = cot an3θ cos sec2 θdθ = u3 cos sec2 θ ∫∫∫ ∫ ∫ 3 3 T 0 ∫∫∫ dV = − T 1 2π 3 2π u4 u du = − × ∫ 3 0 3 4 1 =− 0 du − 2 cos sec θ 2π 1 π π × = − ∴V = 3 4 6 6 4. (Exerc. 11) Calcular o volume do sólido delimitado pelas superfícies Solução: Temos que: x2 + y2 = 16, z = 2, x + z = 9 x2 + y2 = 16, z = 2, x + z = 9 ∴ z = 9 − x Assim : ∫∫∫ dV = T ∫∫∫ dV = T 9−x ∫∫ ∫ R dzdxdy = 2 ∫∫ (9 − x − 2) dxdy R 2π 4 2π 4 2π 4 0 0 0 0 0 0 ∫ 2 ∫ (7 − ρ cos φ )ρdρdφ = 7 ∫ ∫ ρdρdφ − ∫ ∫ ρ cos φdρdφ 4 0 ρ3 4 2π 2π ρ2 dV = 7 × × φ − × sen φ ( )0 ( )0 ∫∫∫ 2 3 0 T 0 Assim : 42 dV = 7 × × 2π = 112π ∴ V = 112π ∫∫∫ 2 T 5. (Exerc.13) Calcular o volume do sólido delimitado pelas superfícies Solução: Temos que: z = 2x2 + y2 e z = 4 − 3x2 − y2 Assim : 2x2 + y2 = 4 − 3x2 − y2 ⇔ 2x2 + 3x2 + y2 + y2 = 4 ⇔ 5x2 + 2y2 = 4 Dividindo por 4 : 5x2 5x 2y y2 x2 y2 + =1⇔ 5 + = 1∴R : + =1 4 4 4 4 2 2 5 5 2 2 4 − 3x2 − y2 ∫∫∫ dV = T ∫∫ ∫ R 2 dzdxdy = 2 ∫∫ ( 4 − 3x 2 ) − y2 − 2x2 − y2 dxdy R 2x + y Assim : ∫∫∫ dV = T ∫∫ ( 4 − 5x 2 R ) − 2y2 dxdy, onde R : x2 y2 + =1 4 2 5 z = 2x2 + y2 e z = 4 − 3x2 − y2 . 1ª Transformação ( x, y ) → (u, v ) 2 5 u y = 2v 5 ∂ ( x, y ) dxdy = dudv ∂ (u, v ) x= Onde : ∂x ∂u = ∂ (u, v ) ∂x ∂v ∂ ( x, y ) ∂y 2 5 ∂u = 5 ∂y 0 ∂v ∫∫∫ dV = ∫∫ ( 4 − 5x T 2 0 = 2 ) − 2y2 dxdy = R 2 10 5 ∫∫ ( 4 − 4u 2 R' − 4v2 ) 2 510 dudv, onde R ' : u 2 + v2 = 1 Assim : ∫∫∫ dV = T 2 10 5 ∫∫ ( 4 − 4u 2 ) − 4v2 dudv, onde R ' : u2 + v2 = 1 R' 2ª Transformação : (u, v ) → ( ρ, φ ) u = ρ cos φ v = ρsenφ 0 ≤ ρ ≤ 1 R': 0 ≤ φ ≤ 2π Assim : ∫∫∫ dV = T 2 10 5 2 10 dV = ∫∫∫ 5 T ∫∫ ( 4 − 4u ) − 4v2 dudv 2 R' 2π 1 ∫ ∫ ( 4 − 4ρ 2 ) cos2 φ − 4ρ2sen2φ ρdρdφ 0 0 Assim : ∫∫∫ dV = T 2π 1 2π 1 2π 1 2 10 3 2 3 2 ∫ ∫ 4ρdρdφ − 4 ∫ ∫ ρ cos φdρdφ − 4 ∫ ∫ ρ sen φdρdφ 5 0 0 0 0 0 0 Resolvendo as Integrais: ∫∫∫ dV = 2 10 4 ∫ ∫ 4ρdρdφ − 5 0 0 5 ∫∫∫ dV = 2 10 ( I1 + I2 + I3 ) 5 2π 1 T T 2π 1 3 2 3 2 ρ cos φ d ρ d φ − 4 ∫0 ∫0 ∫0 ρ sen φdρdφ 2π 1 ∫ 0 Onde : 2π 1 2π 1 0 0 0 0 1 2π I1 = 4 ∫ ∫ ρdρdφ = 4 ∫ dφ∫ ρdρ = 4 × ( φ ) 0 I2 = − 4 5 2π 1 ∫ 3 2 ∫ ρ cos φdρdφ = − 0 0 1 ρ2 12 × = 4 × 2π × = 4π ∴ I1 = 4π 2 2 0 4 × ∫ ρ3dρ × 5 0 2π 1 1 ∫ 2 + 2 cos (2φ )dφ 0 Integrando : 2π 1 0 1 1 4 ρ4 1 I2 = − × × φ + sen (2φ ) = − 4 × 5 4 0 2 4 4 0 ( ) 2π = −π ∴ I2 = −π × 2 e 2π 1 1 2π 0 0 0 0 I3 = −4 ∫ ∫ ρ3sen2 φdρdφ = −4 × ∫ ρ3dρ × 1 1 ∫ 2 − 2 cos (2φ )dφ Integrando : 2π 1 0 1 ρ4 1 1 I3 = −4 × × φ − sen (2φ ) = − 4 × 4 4 4 0 2 0 ( ) 2π = −π ∴ I3 = −π × 2 Substituindo : ∫∫∫ dV = T 2 10 2 10 2 10 4 10 4 10 × 2π = ∴V = ( I1 + I2 + I3 ) = ( 4π − π − π ) = 5 5 5 5 5 6. (Exerc. 10) Calcule o volume da parte da esfera, região. Solução: x2 + y2 + z2 = 9 , entre os planos z= 1; z= 2. Esboce a z = 1: x2 + y2 + z2 = 9 ⇔ x2 + y2 + 12 = 9 ⇔ x2 + y2 + 1 = 9 ∴ x2 + y2 = 8 z = 2: x2 + y2 + z2 = 9 ⇔ x2 + y2 + 22 = 9 ⇔ x2 + y2 + 4 = 9 ∴ x2 + y2 = 5 (I) Cálculo de V1: Utilizando coordenadas cilíndricas: 2 2π 5 9 − r2 2π 3 V1 = ∫ ∫ ∫ rdrdθdz + ∫ ∫ 0 0 0 r2 V1 = 2 5 0 ∫ rdzdrdθ 0 5 ( 5) × 2π × 2 = 2 2π 3 × 4π + ∫ ∫ r 9 − r2 drdθ 2 0 0 5 1 9−r = 11π − 2π 9−9 3 5 8 16π 46π 46π V1 = 10π + 2π × = 10π + = ∴ V1 = 3 3 3 3 1 V1 = 10π + 2π − 3 ( 2 ) 3 3 ( ) 3 0 − 1 3 ( 3 9−5 ) (II) Cálculo de V2: Utilizando coordenadas cilíndricas: 1 2π 8 9 − r2 2π 3 V2 = ∫ ∫ ∫ rdrdθdz + ∫ ∫ 0 0 0 r2 V2 = 2 8 0 ∫ rdzdrdθ 0 8 ( 8) × 2π × 1 = 2 2π 3 × 2π + ∫ ∫ r 9 − r 2 drdθ 2 0 0 8 1 9−r = 8π − 2π 9−9 3 8 1 2π 26π 26π V2 = 8π + 2π × = 8π + = ∴ V2 = 3 3 3 3 1 V2 = 8π + 2π − 3 ( 2 ) 3 3 ( ) 3 0 − 1 3 ( Assim : V = V1 − V2 = 46π 26π 20π 20π − = u.v. ∴ V = u.v. 3 3 3 3 Resolução de 2 ∫ r 9 − r dr 2 ∫ r 9 − r dr = ? Fazendo : u = 9 − r2 ⇒ u2 = 9 − r2 → 2u du = − 2r ∴ rdr = −udu dr Substituindo : u3 ∫ r 9 − r dr = ∫ u ( −udu) = − ∫ u du = − 3 + c Assim : 2 2 ∫ r 9 − r dr = − 2 1 3 ( 9 − r2 ) 3 +c 9−8 ) 3