Faculdade de Ciências da Universidade do Porto
Actividade Laboratorial
Capacidade Térmica Mássica
Elaborado por:
Armanda Costa
Fernanda Veríssimo
Hélder Silva
Formadores: Professor Doutor Paulo Simeão de Carvalho
Professor Doutor Manuel Joaquim Marques
Actividades Laboratoriais para o 10º e 11º anos do Ensino Secundário
Porto, 21 de Julho de 2010
Enquadramento no programa
A realização desta actividade laboratorial, ao nível do 10º Ano, é útil para o aluno consolidar o conceito
de capacidade térmica mássica, compreendendo que é uma caraterística de um material que lhe confere
propriedades específicas relativamente ao aquecimento e ao arrefecimento.
Questões-problema
Por que é que no Verão a areia fica escaldante e a água do mar não?
Por que é que os climas marítimos são mais amenos do que os continentais?
Objectivos da actividade
•
Determinação da capacidade térmica mássica da substância de que é feito um corpo metálico.
•
Analisar transferências e transformações de energia num sistema.
•
Efectuar um balanço energético das transferências energéticas com base na Lei da Conservação
da Energia.
•
Explicar determinados fenómenos com base nos valores elevados ou baixos da capacidade
térmica mássica dos materiais neles envolvidos.
•
Aplicar o conceito de capacidade térmica mássica à interpretação de fenómenos do dia-a-dia.
Leis e Teorias
•
Lei da Conservação da energia
•
Lei Zero da Termodinâmica
Conceitos a explorar
•
Energia interna
•
Temperatura
•
Transferência de Energia
•
Transformação de Energia
•
Capacidade térmica mássica
•
Equilíbrio térmico
•
Sistemas termodinâmicos
1
Questões pré-laboratoriais
1. Justifica a afirmação: ”A capacidade térmica mássica do alumínio tabelado é de 900 Jkg −1 K −1 .”?
2. Se dois blocos, um de alumínio e outro de cobre, forem aquecidos com a mesma fonte de energia
durante o mesmo intervalo de tempo, qual deles aquece mais? Justifique.
3. Se aquecermos uma massa igual de água e azeite fornecendo a mesma quantidade de energia,
verificaremos que o azeite atinge uma temperatura superior à da água. Qual destas substâncias tem
maior capacidade térmica mássica? Justifique.
4. Como se pode calcular a capacidade térmica mássica de uma substância constituinte de um corpo a
partir da quantidade de energia por ele recebida?
Material utilizado
•
Blocos de cobre e alumínio
•
Gobelé
•
Água
•
Resistência eléctrica de aquecimento
•
Termómetro digital
•
Calorímetro
•
Balança
•
Fio
2
Procedimento
A - Determinação da capacidade do calorímetro
1. Colocar uma massa conhecida de água à temperatura ambiente no calorímetro.
2. Registar o valor da temperatura da água após ter sido estabelecido o equilíbrio térmico com
calorímetro.
3. Aquecer uma massa de água a uma determinada temperatura e registar esse valor.
4. Adicionar uma massa conhecida de água quente no calorímetro.
5.
Registar a temperatura de equilíbrio.
B - Determinação da capacidade térmica mássica do cobre/alumínio
1. Colocar aproximadamente 200 mL de água no gobelé e aquecer até à ebulição desta.
2. Introduzir uma massa conhecida de água à temperatura ambiente no calorímetro e registar a sua
temperatura.
3. Atar uma linha ao bloco de cobre, por intermédio da qual se possa mergulhar e retirar o bloco de
dentro da água.
4. Introduzir o cobre na água em ebulição (de forma que fique suspenso por intermédio da linha).
5. Registar a temperatura da água em ebulição.
6. Retirar o cobre da água em ebulição, e, rapidamente, introduzi-lo no calorímetro.
7. Fechar o calorímetro com a tampa e agitar ligeiramente.
8. Registar a temperatura quando se atinge novo equilíbrio térmico.
9. Repetir o procedimento anterior para o bloco de alumínio.
Resultados obtidos
A. Capacidade térmica do calorímetro
mágua fria/g
mágua quente/g
θágua fria/ºC
θágua quente/ºC
θequilíbrio/ºC
134,4
116,6
23,2
100,2
57,2
3
B. Capacidade térmica mássica do cobre
mcobre/g
mágua/g
θcobre/ºC
θágua/ºC
θequilíbrio/ºC
68,5
160,6
100,0
23,4
26,2
C. Capacidade térmica mássica do alumínio
malumínio/g
mágua/g
θalumínio/ºC
θágua/ºC
θequilíbrio/ºC
21,3
160,0
99,7
23,9
26,3
Tratamento dos dados
A. Capacidade térmica do calorímetro
Q = m × c × ∆θ
Qágua quente + Qágua fria + Qcalorímetro = 0
mq c ∆θ + mf c ∆θ + C ∆θ = 0
116,6 x 10-3 x 4,18 x 103 x (57,2 – 100,2) + 134,4 x 10-3 x 4,18 x 103 x (57,2 – 23,2)
+ C (57,2 – 23,2) = 0
C = 54,6 J/ ºC
B. Capacidade térmica mássica do cobre
Q = m × c × ∆θ
Qcobre+ Qágua+ Qcalorímetro = 0
4
m cCu ∆θ + m cH2O ∆θ + C ∆θ = 0
68,5 x 10-3 x cCu x (26,2 – 100,0) + 160,6 x 10-3 x 4,18 x 103 x (26,2 – 23,4) + 54,6 x
(26,2 – 23,4) = 0
cCu = 402 J/kg ºC
% errorelativo =
% errorelativo =
c médio − ctabelado
ctabelado
385 − 402
385
× 100%
× 100% = 4,42%
C. Capacidade térmica mássica do alumínio
Q = m × c × ∆θ
Qalumínio+ Qágua+ Qcalorímetro = 0
m cAl ∆θ + m cH2O ∆θ + C ∆θ = 0
21,3 x 10-3 x cAl x (26,3 – 99,7) + 160,0 x 10-3 x 4,18 x 103 x (26,3 – 23,9) + 54,6 x
(26,3 – 23,9) = 0
cAl = 1110 J/kg ºC
% errorelativo =
% errorelativo =
c médio − ctabelado
ctabelado
900 − 1110
900
× 100%
× 100% = 23,3%
5
Questões pós-laboratoriais
1. Qual o melhor recipiente para um refrigerante, garrafas de vidro ou latas de alumínio?
c(Al) = 900 J/kg ºC; c(vidro) = 2100 J/kg ºC
2. Faça uma discussão com todos os grupos, de modo a dar resposta às questões iniciais que se
relembram de seguida:
Num dia de Verão, quando caminhamos sobre a areia, por que ”queima” muito mais a areia seca do
que a areia molhada, embora ambas tenham sido igualmente aquecidas?
Por que é que os climas marítimos são mais amenos do que os continentais?
Conclusão / Crítica
As diferenças obtidas relativamente aos valores tabelados poderão dever-se a:
•
Perda de energia para o exterior quando se retira o metal da água em ebulição e se introduz no
calorímetro;
•
Foi transferida juntamente com o bloco uma pequena quantidade de água que tinha sido utilizada
para o aquecer;
•
O aquecimento do bloco pode não ter ocorrido de forma homogénea.
•
O calorímetro não é um sistema perfeitamente isolado;
•
Os metais utilizados podem conter impurezas;
•
Erros cometidos na realização das medições.
6
Bibliografia
Caldeira, Helena; Bello Adelaide. Ontem e Hoje 10º Ano. Porto Editora, 2007.
Rodrigues, M. Margarida; Dias, Fernando Morão. Física Na Nossa Vida 10º Ano. Porto Editora, 2007.
Ventura, Graça; Fiolhais, Carlos; entre outros. 10 F A. Texto Editora, 2007.
Silva, Daniel Marques. Desafios da Física 10º Ano. Lisboa Editora, 2007.
Silva, António José; Resende, Fernanda; Ribeiro, Manuela. Física 10. Areal Editores, 2007.
Programa de Física e Química A 10º Ano, Ministério da Educação, Departamento do Ensino
Secundário, 2001.
7
Anexos
8
“V” DE GOWIN
ALA METODOLÓGICA
ALA CONCEPTUAL
Teoria
Teoria corpuscular da matéria
Princípios e Leis
Lei da conservação da
energia.
Lei zero da termodinâmica.
Por que é que no Verão
a areia fica escaldante e
a água do mar não?
Por que é que o climas
marítimos são mais
amenos que os
continentais?
Conceitos
Energia interna
Temperatura
Transferência de Energia
Capacidade térmica mássica
Equilíbrio térmico
Sistemas termodinâmicos
Material/Procedimento
∗
∗
∗
∗
∗
∗
∗
∗
Blocos de cobre e alumínio
Gobelé
Água
Resistência eléctrica de aquecimento
Termómetro digital
Calorímetro
Balança
Fio
A - Capacidade do calorímetro
1. Colocar uma massa conhecida de água à temperatura ambiente
no calorímetro.
2. Registar o valor da temperatura da água após ter sido estabelecido
o equilíbrio térmico com o calorímetro.
3. Aquecer uma massa de água a uma determinada temperatura e
registar esse valor.
4. Adicionar uma massa conhecida de água quente no calorímetro.
5. Registar a temperatura de equilíbrio.
B- Capacidade térmica mássica do cobre/alumínio
1. Colocar aproximadamente 200 mL de água no gobelé e
aquecer até à ebulição desta.
2. Introduzir uma massa conhecida de água à temperatura
ambiente no calorímetro e registar a sua temperatura.
3. Atar uma linha ao bloco de cobre, por intermédio da qual se
possa mergulhar e retirar o bloco de dentro da água.
4. Introduzir o cobre na água em ebulição (de forma que fique
suspenso por intermédio da linha).
5. Registar a temperatura da água em ebulição.
6. Retirar o cobre da água em ebulição, e, rapidamente, introduzilo no calorímetro.
7. Fechar o calorímetro com a tampa e agitar ligeiramente.
8. Registar a temperatura quando se atinge novo equilíbrio
térmico.
9. Repetir o procedimento anterior para o bloco de alumínio.
Juízos Cognitivos
O material de que é feita a areia e a água
apresentam capacidades térmicas mássicas
diferentes, devido a serem substâncias
diferentes. Se considerarmos uma dada massa de
água e igual massa de areia, aquecidas pela
radiação solar durante o mesmo intervalo de
tempo, a elevação de temperatura na areia é
muito mais elevada, porque a capacidade
térmica mássica da areia é muito menor que a da
água. Isto faz com que a mesma quantidade de
energia transferida provoca uma menor variação
de temperatura da água do que aquela que se
verifica na areia.
Podemos ainda referir que os climas marítimos
são mais amenos do que os continentais porque,
devido à sua enorme capacidade térmica
mássica, a água é capaz de armazenar grandes
quantidades de energia ao longo do dia, que
aquando do arrefecimento nocturno pode
libertar, aquecendo o ar da vizinhança.
Juízos de Valores
Para as mesmas temperaturas iniciais dos blocos
e da água verificam-se diferentes temperaturas
de equilíbrio. Pode-se então concluir que a
variação de temperatura ocorrida pelos
diferentes blocos depende da constituição dos
mesmos.
Transformações dos registos
Experimental
Tabelado
Erro
Dados, factos e medidas
Medição de temperaturas
Determinação de massas
Cálculo da energia transferida como calor
Cálculo das capacidades térmicas mássicas
Controlo de Variáveis
Massa dos blocos de metal
9
Mapa de conceitos
CAPACIDADE TÉRMICA
MÁSSICA
relaciona-se com
Energia como calor
Massa dos
materiais
m (kg)
Q (J)
pode ser
Energia
Recebida Q > 0
Energia
Cedida Q < 0
depende
temperatura
final
>
temperatura
inicial
∆θ > 0
Variação de
temperatura
∆θ (ºC)
depende
temperatura
final
<
temperatura
inicial
∆θ < 0
implica
implica
transferência de
energia
VIZINHANÇA - SISTEMA
transferência de
energia
SISTEMA - VIZINHANÇA
deixa de haver transferência de energia
Equilíbrio térmico
diferentes
materiais
CAPACIDADE TÉRMICA
MÁSSICA
diferente
exemplos
c (Al) = 900 J kg-1 ºC-1
c (Cu) = 385 J kg-1 ºC-1
10
Download

Capacidade térmica mássica