Termologia A termologia estuda os fenômenos do aquecimento e resfriamento dos corpos, através da definição de novas grandezas (por exemplo: pressão, temperatura, energia interna, calor) e das relações matemáticas e físicas que as envolvem. Para isso, os corpos são estudados tanto no nível macroscópico quanto no microscópio. Calorimetria A calorimetria é a parte da Termologia que estuda as trocas de calor entre corpos. Calor é energia térmica em trânsito. Calor sensível é o que acarreta variação de temperatura ao ser recebido ou perdido por um corpo. Calor latente é o calor recebido ou perdido durante uma mudança de estado. Quantidade de calor (Q) é a grandeza através da qual avaliamos a energia térmica em trânsito trocada entre sistemas a diferentes temperaturas. A Caloria é a unidade usual de quantidade de calor. A unidade oficial (SI) é joule. Relação: 1 cal = 4,186 j. O calor específico de uma substância mede numericamente a quantidade de calor recebida ou perdida por um grama da substância ao sofrer a variação de temperatura 1°C, sendo usualmente expressa em cal/g°C. 1. QUANTIDADE DE CALOR É a medida da energia térmica fornecida por um corpo para outro. Essa energia é chamada Calor. Sua unidade é a caloria e representa-se cal. Também utiliza-se o múltiplo kcal para 100 calorias. Embora não muito utilizado, no sistema internacional de unidades utiliza-se o joule (J) e temos as seguintes equivalências: 1cal = 4,186J e 1J = 0,239 cal 2. CAPACIDADE TÉRMICA ( C ) É a quantidade de calor necessária para variar em 1ºC a temperatura de todo um corpo. 3. CALOR ESPECÍFICO (c) É a quantidade de calor necessária para variar em 1ºC a temperatura de 1g de um corpo. Corresponde a capacidade térmica por unidade de massa. c = C/m 4. EQUAÇÃO FUNDAMENTAL DA CALORIMETRIA 5. PRINCÍPIO DA IGUALDADE DAS TROCAS DE CALOR De acordo com o Princípio da Conservação de Energia, a quantidade de calor cedida por um corpo somada com a quantidade de calor que o outro corpo recebeu é nula. 6. CALOR SENSÍVEL Quando o efeito produzido pelo fornecimento de calor é a variação da temperatura. 7. CALOR LATENTE Quando o efeito produzido pelo fornecimento de calor é a mudança de estado, não havendo variação na temperatura. 8. CALORÍMETRO Recipiente destinado a medir a quantidade de calor cedida ou recebida por um corpo. O calorímetro de água, um dos mais simples, tem sua constituição formada por um recipiente de alumínio, ferro ou cobre o qual é envolto por um material isolante, por exemplo o isopor. Esse recipiente contem água numa quantidade conhecida. Na parte superior desse recipiente encontrase um termômetro. Seu uso dá-se da seguinte maneira: aquecemos uma amostra do material cujo calor específico desejamos conhecer, até que ela atinja uma determinada temperatura ; agitamos então a água do calorímetro e medimos sua temperatura (1); rapidamente colocamos a amostra no calorímetro, agitamos novamente a água e então medimos a temperatura ( f) de equilíbrio entre a água contida no recipiente e a amostra. Como não há perdas de calor para o ambiente durante a experiência, o calor cedido pela amostra ao resfriar-se é igual, em valor absoluto, ao calor ganho pela água. Exemplo: 1.Dentro de um calorímetro, cuja capacidade térmica é desprezível, colocou-se um bloco de chumbo com 4kg, a uma temperatura de 80ºC. O calorímetro contem 8kg de água a uma temperatura de 30ºC. Considerando cchumbo=0,0306cal/g.ºC e cágua=1 cal/g, determinar a temperatura final do sistema. Resolução: o sistema atinge o equilibrio termico quando todas as suas partes estão à mesma temperatura. Sabendo que o calorímetro não troca calor, podemos dizer que: EQUIVALÊNCIA ENTRE CALOR E ENERGIA MECÂNICA Uma maneira de aumentarmos a temperatura de um corpo é executando-se um trabalho mecânico sobre esse corpo, por exemplo, quando batemos com um martelo a cabeça do prego aumenta sua temperatura; os bifes quando são batidos pelo batedor de carne descongelam-se. Esta descoberta foi feita e enunciada por Joule e é devido a ele que uma das maneiras de representar-se calor é utilizando a letra J de Joule. Dilatação O estudo da dilatação dos sólidos possui importantes aplicações práticas, como a compensação da dilatação dos pêndulos, a dilatação dos trilhos e das pontes (e o conseqüente cálculo da separação entre os segmentos) ou o fabrico da vidraria de laboratório resistente ao calor. Chama-se dilatação todo acréscimo às dimensões de um corpo por influência do calor que lhe é transmitido. O fenômeno é explicado pela variação das distâncias relativas entre as moléculas, associada ao aumento de temperatura. Normalmente, são estudadas em separado a dilatação dos sólidos, a dos líquidos e a dos gases, distinguindo-se, no caso dos sólidos, a dilatação linear, a superficial e a volumétrica. Os estudos teóricos partem do conceito de coeficiente de dilatação, definido como o aumento de volume, área ou comprimento experimentado pela unidade de volume (área ou comprimento) quando a temperatura varia de 1ºC. Ao denominar-se o coeficiente, se a temperatura varia de tO C, o aumento será; se o volume inicial era vo, o aumento total será, de forma que o volume v após a dilatação pode ser escrito como. De modo geral, os sólidos se dilatam menos do que os líquidos e estes menos do que os gases. Uma barra de ferro com um metro de comprimento a 0 ºC dilata-se apenas 1,2mm se a temperatura aumenta para 100o C (seu coeficiente de dilatação linear é, portanto, 1,2 x 10-5). Caso se deseje alongar a mesma barra por meio de uma força de tração, para idêntico acréscimo de comprimento seria necessário aplicar-lhe uma força de 2.400kg por unidade de área. Pode-se introduzir um conceito um pouco mais rigoroso de coeficiente de dilatação. Chamando de, respectivamente, os coeficientes linear, superficial e volumétrico, ter-se-ia: Um fio de aço apresenta curiosa anormalidade de dilatação, pois quando a temperatura atinge cerca de 700 ºC o fio experimenta uma contração para voltar a dilatar-se pouco depois. O fenômeno, reversível, denomina-se recalescência. As ligas de aço-níquel dilatam-se muito pouco e o coeficiente de dilatação varia com a maior ou menor percentagem de níquel nelas contida. O menor valor de corresponde a 36% de níquel, sendo a liga denominada invar; para 46% de níquel, esse coeficiente torna-se igual a 0,9 x 10-5, valor igual ao da platina e ao do vidro comum, sendo a liga denominada platinite. Alguns corpos como a borracha e a argila contraem-se quando a temperatura se eleva. Esses corpos se aquecem quando são alongados por uma força de tração, ao contrário dos demais, que têm sua temperatura reduzida. A água dilata-se irregularmente. Um volume de água aquecido a partir de 0 ºC se contrai até 4 ºC; aí começa a dilatar-se. A água a 4 ºC possui, portanto, sua maior densidade, sendo tomada como unidade. Por isso as camadas profundas de mares e lagos estão à temperatura constante de 4 ºC. Dilatação Térmica Um dos efeitos da temperatura, é provocar a variação das dimensões de um corpo. Pois se aumentarmos a temperatura de um corpo, aumenta a agitação das partículas de seu corpo e conseqüentemente, as partículas se afastam uma das outras, provocando um aumento das dimensões (comprimento, área e volume) do corpo. A esse aumento das dimensões do corpo dá-se o nome de dilatação térmica. Dilatação dos Líquidos Assim como os sólidos, os líquidos também sofrem dilatação com a variação de temperatura. Como os líquidos não têm forma própria, só se leva em consideração a dilatação volumétrica. Em geral, os líquidos aumentam de volume quando aquecidos e diminuem quando esfriados. Mas, com a água, o processo de dilatação é um pouco diferente. Ao ser esfriada, ela diminui de volume como os outros líquidos, mas só até 4 °C. Se a temperatura continuar caindo, para baixo de 4°C, o volume da água começa a aumentar. Inversamente, se for aquecida de 0°C a 4°C, a água diminui de volume, mas, a partir de 4°C, ela começa a se dilatar. É por essa razão que uma garrafa cheia de água e fechada estoura no congelador: de 4°C até 0°C, a água tem seu volume aumentado, enquanto a garrafa de vidro ou plástico diminui de volume. Dilatação dos Gases A dilatação dos gases, que é mais acentuada que a dos líquidos, pode ser comprovada por uma experiência bem simples. Num balão de vidro, com ar em seu interior, introduz-se um canudo dentro do qual há uma gota de óleo (figura abaixo). Segurando o balão de vidro como indicado na figura, o calor fornecido pelas mãos é suficiente para aumentar o volume de ar e deslocar a gota de óleo. Dilatação Linear Dilatação linear é aquela em que predomina a variação em uma única dimensão, ou seja, o comprimento. (Ex: dilatação em cabos, barras, etc....) Dilatação Superficial e Volumétrica Verifica-se experimentalmente que a dilatação superficial e a dilatação volumétrica dos sólidos são inteiramente semelhante à dilatação linear. Termodinâmica A descoberta de meios para utilização de fontes de energia diferentes da que os animais forneciam foi o que determinou a possibilidade da revolução industrial. A energia pode se apresentar na natureza sob diversas formas, mas, exceto no caso da energia hidráulica e dos ventos, deve ser transformada em trabalho mecânico por meio de máquinas, para ser utilizada pelo homem. A termodinâmica nasceu justamente dessa necessidade, e foi o estudo de máquinas térmicas que desenvolveu seus princípios básicos. Termodinâmica é o ramo da física que estuda as relações entre calor, temperatura, trabalho e energia. Abrange o comportamento geral dos sistemas físicos em condições de equilíbrio ou próximas dele. Qualquer sistema físico, seja ele capaz ou não de trocar energia e matéria com o ambiente, tenderá a atingir um estado de equilíbrio, que pode ser descrito pela especificação de suas propriedades, como pressão, temperatura ou composição química. Se as limitações externas são alteradas (por exemplo, se o sistema passa a poder se expandir), então essas propriedades se modificam. A termodinâmica tenta descrever matematicamente essas mudanças e prever as condições de equilíbrio do sistema. Conceitos básicos da Termodinâmica No estudo da termodinâmica, é necessário definir com precisão alguns conceitos básicos, como sistema, fase, estado e transformação. Sistema é qualquer parte limitada do universo passível de observação e manipulação. Em contraposição, tudo o que não pertence ao sistema é denominado exterior e é dele separado por suas fronteiras. A caracterização de um estado do sistema é feita por reconhecimento de suas propriedades termodinâmicas. Chama-se fase qualquer porção homogênea de um sistema. O estado depende da natureza do sistema e, para ser descrito, necessita de grandezas que o representem o mais completamente possível. Denomina-se transformação toda e qualquer mudança de estado. Quando formada por uma sucessão de estados de equilíbrio, a transformação é dita reversível. No estudo da termodinâmica, consideram-se alguns tipos particulares de transformações. A transformação isotérmica é a que se processa sob temperatura constante, enquanto a isobárica é aquela durante a qual não há variação de pressão do sistema. A transformação isométrica se caracteriza pela constância do volume do sistema, a adiabática pela ausência de trocas térmicas com o exterior e a politrópica pela constância do quociente entre a quantidade de calor trocado com o meio externo e a variação de temperatura. Conhecem-se ainda mais dois tipos de transformação -- a isentálpica e a isentrópica -- nas quais se observa a constância de outras propriedades termodinâmicas, respectivamente a entalpia (soma da energia interna com o produto da pressão pelo volume do sistema) e a entropia (função associada à organização espacial e energética das partículas de um sistema). Existem muitas grandezas físicas mensuráveis que variam quando a temperatura do corpo se altera. Em princípio, essas grandezas podem ser utilizadas como indicadoras de temperatura dos corpos. Entre elas citam-se o volume de um líquido, a resistência elétrica de um fio e o volume de um gás mantido a pressão constante. A equação de estado de uma substância sólida, líquida ou gasosa é uma relação entre grandezas como a pressão (p), a temperatura (t), a densidade (s) e o volume (v). Sabe-se, experimentalmente, que existem relações entre essas grandezas: em princípio, é possível obter uma função do tipo f (p, t, s, v) = 0. Nos casos mais gerais, essas funções são bastante complicadas. Uma forma de estudar as substâncias é representar graficamente a variação de uma grandeza com outra escolhida, estando todas as demais fixas. Para gases a baixa densidade, podem-se obter equações de estado simples. Nesse caso, observa-se um comportamento geral, que é expresso pela relação: PV = nRT em que P é a pressão do gás, V o volume por ele ocupado, T a temperatura, n o número de moles do gás e R uma constante igual a 8,3149 J/kg.mol.K. Para gases de densidades mais elevadas, o modelo do gás ideal (ou perfeito) não é válido. Existem então outras equações de estado, empíricas ou deduzidas de princípios mais fundamentais, como a de van der Waals: Leis da termodinâmica As principais definições de grandezas termodinâmicas constam de suas leis: a lei zero é a que define a temperatura; a primeira lei (calor, trabalho mecânico e energia interna) é a do princípio da conservação da energia; a segunda lei define entropia e fornece regras para conversão de energia térmica em trabalho mecânico e a terceira lei aponta limitações para a obtenção do zero absoluto de temperatura. Lei zero Embora a noção de quente e frio pelo contato com a pele seja de uso corrente, ela pode levar a avaliações erradas de temperatura. De qualquer forma, é da observação cotidiana dos corpos quentes e frios que se chega ao conceito de temperatura. Levando em conta essas observações, assim postulou-se a lei zero: se A e B são dois corpos em equilíbrio térmico com um terceiro corpo C, então A e B estão em equilíbrio térmico um com o outro, ou seja, a temperatura desses sistemas é a mesma. Primeira lei A lei de conservação de energia aplicada aos processos térmicos é conhecida como primeira lei da termodinâmica. Ela dá a equivalência entre calor e trabalho e pode enunciar-se da seguinte maneira: "em todo sistema quimicamente isolado em que há troca de trabalho e calor com o meio externo e em que, durante essa transformação, realiza-se um ciclo (o estado inicial do sistema é igual a seu estado final), as quantidades de calor (Q) e trabalho (W) trocadas são iguais. Assim, chega-se à expressão W = JQ, em que J é uma constante que corresponde ao ajuste entre as unidades de calor (usada na medida de Q) e Joule (usada na medida de W). Essa constante é empregada na própria definição de caloria (1 cal = 4,1868J). A primeira lei da termodinâmica pode ser enunciada também a partir do conceito de energia interna, entendida como a energia associada aos átomos e moléculas em seus movimentos e interações internas ao sistema. Essa energia não envolve outras energias cinéticas e potenciais, que o sistema como um todo apresenta em suas relações com o exterior. A variação da energia interna DU é medida pela diferença entre a quantidade de calor (Q), trocado pelo sistema com seu exterior, e o trabalho realizado (W) e é dada pela expressão DU = K - W , que corresponde ao enunciado da lei da termodinâmica. É comum no estudo das transformações o uso da função termodinâmica da entalpia (H), definida pela relação H = U + pV, em que U é a energia interna, p é a pressão e V é o volume do sistema. Num processo em que só existe trabalho de expansão (como, por exemplo, na fusão sob pressão e temperatura constante), a entalpia é a medida do calor trocado entre o sistema e seu exterior. A relação entre a variação DQ e o aumento correspondente de temperatura Dt , no limite, quando Dt tende a zero, é chamada capacidade calorífica do sistema: C = DQ/Dt O calor específico é igual à capacidade calorífica dividida pela massa do sistema: C=1DQ/mDt Tanto o calor específico quanto a capacidade calorífica do sistema dependem das condições pelas quais foi absorvido ou retirado calor do sistema. Segunda lei A tendência do calor a passar de um corpo mais quente para um mais frio, e nunca no sentido oposto, a menos que exteriormente comandado, é enunciada pela segunda lei da termodinâmica. Essa lei nega a existência do fenômeno espontâneo de transformação de energia térmica em energia cinética, que permitiria converter a energia do meio aquecido para a execução de um movimento (por exemplo, mover um barco com a energia resultante da conversão da água em gelo). De acordo com essa lei da termodinâmica, num sistema fechado, a entropia nunca diminui. Isso significa que, se o sistema está inicialmente num estado de baixa entropia (organizado), tenderá espontaneamente a um estado de entropia máxima (desordem). Por exemplo, se dois blocos de metal a diferentes temperaturas são postos em contato térmico, a desigual distribuição de temperatura rapidamente dá lugar a um estado de temperatura uniforme à medida que a energia flui do bloco mais quente para o mais frio. Ao atingir esse estado, o sistema está em equilíbrio. A entropia, que pode ser entendida como decorrente da desordem interna do sistema, é definida por meio de processos estatísticos relacionados com a probabilidade de as partículas terem determinadas características ao constituírem um sistema num dado estado. Assim, por exemplo, as moléculas e átomos que compõem 1kg de gelo, a 0o C e 1atm, apresentam características individuais distintas, mas do ponto de vista estatístico apresentam, no conjunto, características que definem a possibilidade da existência da pedra de gelo nesse estado. A variação da função entropia pode ser determinada pela relação entre a quantidade de calor trocada e a temperatura absoluta do sistema. Assim, por exemplo, a fusão de 1kg de gelo, nas condições de 273K e 1atm, utiliza 80.000cal, o que representa um aumento de entropia do sistema, devido à fusão, em 293J/K. A aplicação do segundo princípio a sistemas de extensões universais esbarra em dificuldades conceituais relativas à condição de seu isolamento. Entretanto, pode-se cogitar de regiões do universo tão grandes quanto se queira, isoladas das restantes. Para elas (e para as regiões complementares) valeria a lei do crescimento da entropia. Pode-se então perguntar por que motivo o universo não atingiu ainda a situação de máxima entropia, ou se atingirá essa condição um dia. A situação de máxima entropia corresponde à chamada morte térmica do universo: toda a matéria estaria distribuída na vastidão espacial, ocupando uniformemente os estados possíveis da energia. A temperatura seria constante em toda parte e nenhuma forma de organização, das mais elementares às superiores, seria possível. Terceira lei O conceito de temperatura entra na termodinâmica como uma quantidade matemática precisa que relaciona calor e entropia. A interação entre essas três quantidades é descrita pela terceira lei da termodinâmica, segundo a qual é impossível reduzir qualquer sistema à temperatura do zero absoluto mediante um número finito de operações. De acordo com esse princípio, também conhecido como teorema de Nernst, a entropia de todos os corpos tende a zero quando a temperatura tende ao zero absoluto. Termodinâmica estatística As leis da termodinâmica são obtidas experimentalmente, mas podem ser deduzidas a partir de princípios mais fundamentais, por meio da mecânica estatística, desenvolvida sobretudo por Josiah Willard Gibbs e Ludwig Boltzmann. O propósito fundamental da termodinâmica estatística é o de interpretar grandezas macroscópicas, como temperatura, energia interna e pressão, em termos das grandezas dinâmicas, e reescrever os princípios da termodinâmica em termos das leis gerais que as afetam. A energia interna, U, é por si uma grandeza mecânica e dispensa interpretações adicionais. A análise se concentra, portanto, nas interpretações mecânicas da temperatura e da entropia. Os fundamentos da termodinâmica estatística foram estabelecidos a partir de meados do século XIX por Rudolf Julius Emanuel Clausius, James Clerk Maxwell e Ludwig Boltzmann. A interpretação mecânica da temperatura deve muito aos trabalhos dos dois primeiros cientistas sobre o comportamento dos gases. Maxwell demonstrou que a temperatura T de um gás ideal em equilíbrio está relacionada com a energia cinética média de suas moléculas (E) por E = 3/2 k.T, em que k é a constante de Boltzmann. Seus trabalhos foram posteriormente desenvolvidos por Boltzmann e levaram a uma generalização importante desse resultado, conhecida como equipartição da energia: o valor médio da energia de um sistema cujo movimento microscópico tem s graus de liberdade (números de coordenadas de posição e de impulso que determinam as energias de translação, vibração e rotação de uma molécula), em equilíbrio termodinâmico à temperatura T, distribui-se igualmente entre os diferentes graus de liberdade, de tal modo que cada um contribui com k.T/2 para a energia total. Assim, para s graus de liberdade,E = s/2 k.T. Para gases monoatômicos, o movimento de cada molécula tem apenas três graus de liberdade de translação. Para gases diatômicos, além da translação, haverá vibrações e rotações, num total de seis graus de liberdade. A falha na previsão do valor correto para o calor específico a volume constante de gases diatômicos (e também de sólidos cristalinos monoatômicos) foi o primeiro exemplo histórico da inadequação dos conceitos e métodos da mecânica clássica para o tratamento dos movimentos microscópicos. Essa e outras contradições com a formulação teórica da equipartição da energia de Maxwell-Boltzmann vieram a ser elucidadas posteriormente, à luz dos argumentos da mecânica quântica. História A temperatura é provavelmente o primeiro conceito termodinâmico. No final do século XVI, Galileu Galilei inventou um termômetro rudimentar, o termoscópio, ao qual se seguiram outros inventos com a mesma finalidade. O objetivo desses instrumentos era medir uma quantidade até então indefinida, mais objetiva na natureza do que as sensações fisiológicas de calor e frio. Na época, acreditava-se que a temperatura fosse uma potência motriz que provoca a transmissão de um certo eflúvio de um corpo quente para outro mais frio. Mas não se sabia explicar ainda o que era transmitido entre os corpos. Francis Bacon, em 1620, e a Academia Florentina, alguns anos depois, começaram a fazer a distinção entre essa emanação e a temperatura. Somente em 1770, porém, o químico Joseph Black, da Universidade de Glasglow, diferenciou-as de maneira clara. Misturando massas iguais de líquidos a diferentes temperaturas, ele mostrou que a variação de temperatura em cada uma das substâncias misturadas não é igual em termos quantitativos. Black fundou a ciência da calorimetria, que levou à enunciação da teoria segundo a qual o calor é um fluido invisível chamado calórico. Um objeto se aquecia quando recebia calórico e se esfriava quando o perdia. A primeira evidência de que essa substância não existia foi dada, no final do século XVIII, pelo conde Rumford (Benjamin Thompson). Demonstrou-se, posteriormente, que o que se troca entre corpos de temperaturas diferentes é a energia cinética de seus átomos e moléculas, energia também conhecida como térmica. Em 1824, Sadi Carnot, um engenheiro militar francês, tornou-se o primeiro pesquisador a preocupar-se com as características básicas das máquinas térmicas e a estudar o problema de seu rendimento. A contribuição de Carnot à solução do problema, embora teórica, foi de importância fundamental, pois demonstrou as características realmente significativas do funcionamento das máquinas térmicas, ou seja: (1) que a máquina recebe de uma fonte qualquer certa quantidade de calor a temperatura elevada; (2) que ela executa um trabalho externo; e (3) que rejeita calor a temperatura mais baixa do que a correspondente ao calor recebido. Apesar de fundamentar suas teorias na noção de que o calor é um fluido imponderável, o calórico, Carnot encontrou a expressão correta do rendimento máximo que se pode obter com uma máquina térmica qualquer, operando entre duas fontes de temperaturas diferentes. Na década de 1840, James Prescott Joule assentou as bases da primeira lei da termodinâmica ao mostrar que a quantidade de trabalho necessária para promover uma determinada mudança de estado é independente do tipo de trabalho (mecânico, elétrico, magnético etc.) realizado, do ritmo e do método empregado. Joule concluiu que o trabalho pode ser convertido em calor e vice-versa. Em 1844, Julius Robert von Mayer deduziu a lei de equivalência do calor e do trabalho, segundo a qual, num ciclo produtor de trabalho, o calor introduzido deve exceder o calor rejeitado em uma quantidade proporcional ao trabalho e calculou o valor da constante de proporcionalidade. Em 1849, Lord Kelvin (William Thomson), engenheiro de Glasgow, mostrou o conflito existente entre a base calórica dos argumentos de Carnot e as conclusões obtidas por Joule. No ano seguinte, Rudolf Julius Emanuel Clausius solucionou o problema ao enunciar a primeira e a segunda leis da termodinâmica. Alguns anos depois, Clausius definiu a função da entropia, que se conserva em todas as transformações reversíveis, e deduziu da segunda lei da termodinâmica o princípio do aumento da entropia. A publicação dos estudos de Clausius em 1850 marca o nascimento da ciência termodinâmica. De 1873 a 1878, Josiah Gibbs criou um método matemático que serviu como base para a fundação da termodinâmica química e para diversas aplicações da termodinâmica clássica. No início do século XX, Henri Poincaré elaborou as equações matemáticas das leis de Clausius, e Constantin Carathéodory apresentou uma estrutura lógica alternativa das teorias termodinâmicas que evitava o termo calor, considerado obsoleto. Em 1918, o Prêmio Nobel Walther Nernst, enunciou o princípio de Nernst, que coincide essencialmente com a terceira lei da termodinâmica. Mudanças de Estado Físico da Matéria Para efeitos de nosso estudo os estados físicos da matéria são três: sólido, líquido e gasoso. Mudando-se a temperatura e/ou pressão podemos fazer com que os corpos passem de um estado para outro. Em nosso estudo, no momento, estudaremos apenas as passagens que se dão sem se modificar a pressão, ou seja, estudaremos as mudanças de estado ocasionadas pelas mudanças na temperatura. FUSÃO: é a passagem do estado sólido para o estado líquido. Isto se verifica quando o corpo sólido recebe calor, o que provoca uma elevação na sua temperatura até o ponto em que a agitação das átomos passa a ser tanta que a estrutura deixa de ser cristalina e passam a ter uma movimentação maior, caracterizando o líquido. Durante a fusão a temperatura permanece constante, conforme podemos constatar ao retirarmos um bloco de gelo do congelador e colocar em um prato. Supondo que o gelo esteja à - 8ºC, ele irá receber calor do ambiente até chegar à temperatura de 0ºC, nesse ponto irá começar a passar do estado sólido para o líquido. Enquanto esse processo estiver se desenvolvendo a temperatura tanto do bloco de gelo restante quanto da água que foi aparecendo, estará em 0ºC. Quando todo o gelo estiver derretido novamente a temperatura da água começará a subir, até atingir o equilíbrio térmico com o meio ambiente. TEMPERATURA DE FUSÃO: É a temperatura na qual ocorre a passagem do estado sólido para o líquido. SOLIDIFICAÇÃO: É a passagem do estado líquido para o sólido. Isto se verifica quando se retira calor do corpo líquido, o que provoca uma diminuição na sua temperatura até o ponto em que a agitação dos átomos diminui tanto que passam a vibrar segundo uma estrutura cristalina. TEMPERATURA DE SOLIDIFICAÇÃO: É a temperatura na qual ocorre a passagem do estado líquido para o sólido. Durante a solidificação a temperatura permanece constante. VAPORIZAÇÃO: É a passagem do estado líquido para o gasoso e pode ocorrer de duas maneiras: EVAPORAÇÃO E EBULIÇÃO. EVAPORAÇÃO: ocorre a qualquer temperatura e seu processo se dá de maneira lenta. Um exemplo são as roupas que se coloca a secar nos varais. Este processo se dá através de algumas das moléculas do líquido, que estão em movimento, as quais conseguem escapar da superfície do líquido. A velocidade de evaporação depende de três fatores: 1-quanto maior for a temperatura do líquido maior será a energia das moléculas que se encontram próximas a superfície, portanto maior velocidade de evaporação. Ex: a água à 80 graus evapora mais rápido do que à 20 graus. 2-quanto maior for a superfície do liquido em contato com o ar maior será a velocidade de evaporação. Ex.: um líquido num prato evapora mais rápido do que se estivesse em uma garrafa. 3-quanto maior a umidade próxima a superfície do líquido, menor a velocidade de evaporação porque as moléculas que iriam se desprender da superfície encontrarão já o espaço ocupado por outras moléculas. Ex: em dias úmidos as roupas custam mais a secar. EBULIÇÃO: ocorre à uma determinada temperatura, característica de cada líquido, chamada TEMPERATURA DE EBULIÇÃO. Cada substância possui uma determinada temperatura de ebulição e a mesma permanece constante enquanto se verifica o processo. Ex: a água entra em ebulição à 100ºC e permanece nessa temperatura enquanto estiver fervendo. CONDENSAÇÃO: É a passagem do estado gasoso para o líquido. Isto se verifica quando se retira calor de uma substância que está em ebulição. SUBLIMAÇÃO: É a passagem do estado sólido direto para o estado gasoso, sem passar pelo estado líquido. Ex: naftalina, CO2 sólido, cânfora. CRISTALIZAÇÃO: É a passagem do estado gasoso direto para o estado sólido, sem passar pelo estado líquido. Ex: se aquecermos iôdo cristalino o mesmo irá evaporar. Colocando-se uma superfície fria logo acima da evaporação notaremos que o mesmo se liga a superfície na forma de pequenos cristais. DETALHE IMPORTANTE: a água tem um comportamento diferente quando é aquecida de 0 a 4ºC pois seu volume diminui nessa faixa de temperatura. Após os 4ºC volta a Ter o comportamento como as demais substâncias, ou seja, o volume aumenta. Isto explica o aparecimento dos Icebergs apenas com uma pequena parte de seu volume na superfície e também esta é a causa do congelamento apenas na superfície dos lagos, uma vez que, quando a água começa a perder temperatura, antes de congelar, tem seu volume diminuido, consequentemente tornando-se mais densa. Como é mais densa a camada superior desloca-se para baixo até que a temperatura diminui de 0ºC onde não há mais diminuição do volume, congelando então apenas a parte superior. Isto mantém as espécies marinhas vivas. Transmissão de Calor Denomina-se transmissão de calor à passagem da energia térmica de um local para outro. Essa transmissão pode ocorrer de três formas diferentes: condução, convecção e radiação. Transmissão de Condução É o processo de transmissão de calor em que a energia térmita passa de um local para o outro através das partículas do meio que os separa. Na condução, a passagem da energia térmica de uma região para outra se faz da seguinte maneira: na região de maior temperatura, as partículas estão mais energizadas, vibrando com maior intensidade; assim, estas partículas transmitem energia para as partículas vizinhas, menos energizadas, que passa a vibrar com intensidade maior; estas, por sua vez, transmitem energia térmica para as seguintes, e assim sucessivamente. Notemos que, se não existissem as partículas constituintes do meio, não haveria a condução de calor. Portanto: A condução de calor é um processo que exige a presença de um meio material para a sua realização, não podendo ocorrer no vácuo (local isento de partículas). O calor propaga-se através da parede do forno de uma pizzaria. Transmissão de Convecção Para ilustrarmos a convecção, imagine uma sala onde ligamos um aquecedor elétrico que está colocado no chão, no centro dessa sala. O ar em torno do aquecedor se aquece, tornando-se menos denso que o restante. Com isto, ele sobe e o ar frio desce, havendo uma troca de posição do ar quente que sobe com o ar frio que desce. A este movimento de massas de fluido chamamos convecção e as correntes de ar formadas são correntes de convecção. Na sala, o ar quente (menos denso) sobe, enquanto o ar frio (mais denso) desce. Portanto. a convecção se constitui de movimentos de massas fluidas. trocando de posição. Notemos que não tem significado falar em convecção no vácuo. Assim, podemos afirmar que a convecção somente ocorre nos fluidos (líquidos, gases e vapores), não podendo ocorrer nos sólidos c no vácuo. A convecção pode ser natural, quando é ocasionada por diferenças de densidade devido à diferença de temperatura entre as massas de fluido, ou forçada, quando é ocasionada por bombas ou ventiladores. Observemos que na convecção não há passagem de energia de um corpo para outro, mas apenas estes é que mudam de posição. Sendo assim, concluímos que, a rigor, a convecção não é um processo de transmissão de calor, pois não há passagem de energia de um corpo para outro. Exemplos: I) Aparelho de ar-condicionado e aquecedor elétrico No verão, o aparelho de ar-condicionado introduz o ar frio nas salas, pela parte superior. Desse modo, devido à sua maior densidade, o ar frio desce, provocando a circulação do ar contido na sala. O aparelho de ar-condicionado deve ser colocado na parte superior da parede da sala. No inverno, o ar aquecido pelo aquecedor elétrico deve ser produzido na parte inferior da sala. Note-se que se fosse feito o contrário, o ar frio (mais denso) continuaria embaixo e o ar quente (menos denso) continuaria em cima, não havendo circulação de ar. II) Brisas litorâneas À beira-mar, a areia, tendo calor específico muito menor que o da água, aquece-se mais rapidamente que a água durante o dia e resfria-se mais rapidamente durante a noite. Sendo assim, temos: DURANTE O DIA: O ar próximo da areia fica mais quente que o restante e sobe, dando lugar a uma corrente de ar da água para a terra. o vento que, durante o dia, sopra do mar para a terra. Durante o dia, as brisas sopram do mar para a terra. DURANTE A NOITE: O ar próximo da superfície da água resfria-se menos que o restante. Com isso, ele fica mais quente que o restante e sobe, dando lugar a uma corrente de ar da terra para a água. Éo vento que, durante a noite, sopra da terra para o mar. Durante a noite, as brisas sopram da terra para o mar III) Geladeira doméstica Nas geladeiras, o congelador é sempre colocado na parte superior, para que o ar se resfrie na sua presença e desça, dando lugar ao ar mais quente, que sobe. Nas geladeiras domésticas, os alimentos são resfriados pelo ar frio, que desce devido à convecção. As prateleiras são feitas em grades (e não inteiriças) para permitir a convecção do ar dentro da geladeira. Transmissão de Radiação É o processo de transmissão de calor por meio de ondas eletromagnéticas (ondas de calor). A energia emitida por um corpo (energia radiante) propaga-se até o outro, através do espaço que os separa. Sendo uma transmissão de calor feita por ondas eletromagnéticas, a radiação não exige a presença do meio material para ocorrer, isto é, a radiação ocorre no vácuo e também em meios materiais. Entretanto, não são todos os meios materiais que permitem a propagação das ondas de calor através deles. Desta forma, podemos classificar os meios materiais em: — Diatérmicos: São os meios que permitem a propagação das ondas de calor através deles (são os meios transparentes às ondas de calor). Ex.: ar atmosférico. — Atérmicos: São os meios que não permitem a propagação das ondas de calor através deles (são os meios opacos às ondas de calor). A energia térmica vem do Sol por meio de ondas eletromagnéticas. Como exemplo de radiação, podemos citar a energia solar que recebemos diariamente, a energia emitida por uma lareira que nos aquece no inverno, a energia emitida por uma lâmpada de filamento, cujo efeito sentimos eficazmente quando dela nos aproximamos etc. Toda energia radiante, transportada por onda de rádio, infravermelha, ultravioleta, luz visível, raios X, raios gama, etc., pode converter-se em energia térmica por absorção. Entretanto, só as radiações infravermelhas são chamadas de ondas de calor ou radiações caloríficas. Vaso de Dewar - garrafa térmica O vaso de Dewar ou garrafa térmica é um dispositivo utilizado para manter a temperatura do seu conteúdo inalterada o maior intervalo de tempo possível. Para tanto, as paredes do sistema devem ser adiabáticas, não permitindo transmissão de calor com o meio ambiente. Como a energia térmica pode ser trocada por condução, convecção e radiação, foram usados os seguintes artifícios: 1) Para evitar a saída ou entrada de calor por condução, o líquido foi envolvido por vácuo. Por isso a garrafa térmica possui parede dupla de vidro (péssimo condutor) entre as quais se faz o vácuo. 2) Para evitar a convecção (processo que exige trocas de partículas), deve-se manter sempre bem fechada a tampa da garrafa. 3) Para evitar a radiação, as paredes são espelhadas, assim os raios infravermelhos e as demais radiações refletem-se no espelho, retornando ao meio de origem. É bom observar que este sistema não é perfeito; assim, depois de algumas horas, o líquido interno acaba atingindo o equilíbrio térmico com o meio ambiente. A estufa Principalmente em países onde o inverno é muito rigoroso, são usadas estufas para o cultivo de verduras, legumes e flores. A estufa é um local fechado, com paredes e teto de vidro que recebem as radiações solares. O vidro é transparente à luz visível e praticamente opaco às ondas de calor (raios infravermelhos). Porém, uma pequena parte de raios infravermelhos consegue passar pelo vidro e são os principais responsáveis pelo aquecimento do interior da estufa. Esses raios são absorvidos e depois são emitidos numa forma mais ampla de raios infravermelhos que poderão sair pelo vidro apenas numa pequena parte; o restante volta a ser absorvido pelas plantas.