Pesquisa Operacional Aplicada à Logística Prof. Fernando Augusto Silva Marins www.feg.unesp.br/~fmarins [email protected] 1 Pesquisa Operacional faz diferença no desempenho de organizações? 2 Finalistas do Prêmio Edelman 3 INFORMS 2007 • Questões Logísticas • (Pesquisa Operacional) 4 Delta Hardware Stores Problem Statement San Jose Fresno • Delta Hardware Stores is a regional retailer with warehouses in three cities in California 5 Azusa • Each month, Delta restocks its warehouses with its own brand of paint. • Delta has its own paint manufacturing plant in Phoenix, Arizona. San Jose Fresno Phoenix Azusa 6 Delta Hardware Stores Problem Statement • Although the plant’s production capacity is sometime inefficient to meet monthly demand, a recent feasibility study commissioned by Delta found that it was not cost effective to expand production capacity at this time. • To meet demand, Delta subcontracts with a national paint manufacturer to produce paint under the Delta label and deliver it (at a higher cost) to any of its three California warehouses. 7 Delta Hardware Stores Problem Statement • Given that there is to be no expansion of plant capacity, the problem is: To determine a least cost distribution scheme of paint produced at its manufacturing plant and shipments from the subcontractor to meet the demands of its California warehouses. 8 Delta Hardware Stores Variable Definition • Decision maker has no control over demand, production capacities, or unit costs. • The decision maker is simply being asked: “How much paint should be shipped this month (note the time frame) from the plant in Phoenix to San Jose, Fresno, and Asuza” and “How much extra should be purchased from the subcontractor and sent to each of the three cities to satisfy their orders?” 9 Decision/Control Variables: X1 : amount of paint shipped this month from Phoenix to San Jose X2 : amount of paint shipped this month from Phoenix to Fresno X3 : amount of paint shipped this month from Phoenix to Azusa X4 : amount of paint subcontracted this month for San Jose X5 : amount of paint subcontracted this month for Fresno X6 : amount of paint subcontracted this month for Azusa 10 Network Model San Jose National Subcontractor Fresno Azusa 11 Phoenix Mathematical Model • The objective is to minimize the total overall monthly costs of manufacturing, transporting and subcontracting paint, The constraints are (subject to): 12 The Phoenix plant cannot operate beyond its capacity; The amount ordered from subcontractor cannot exceed a maximum limit; The orders for paint at each warehouse will be fulfilled. Mathematical Model To determine the overall costs: The manufacturing cost per 1000 gallons of paint at the plant in Phoenix - (M) The procurement cost per 1000 gallons of paint from National Subcontractor - (C) The respective truckload shipping costs form Phoenix to San Jose, Fresno, and Azusa - (T1, T2, T3) The fixed purchase cost per 1000 gallons from the subcontractor to San Jose, Fresno, and Azusa - (S1, S2, S3) 13 Mathematical Model: Objective Function Minimize (M + T1) X1 + (M + T2) X2 + (M + T3) X3 + (C + S1) X4 + (C + S2) X5 + (C + S3) X6 Where: Manufacturing cost at the plant in Phoenix: M Procurement cost from National Subcontractor: C Truckload shipping costs from Phoenix to San Jose, Fresno, and Azusa: T1, T2, T3 Fixed purchase cost from the subcontractor to San Jose, Fresno, and Azusa: S1, S2, S3 X1 : amount of paint shipped this month from Phoenix to San Jose X2 : amount of paint shipped this month from Phoenix to Fresno X3 : amount of paint shipped this month from Phoenix to Azusa X4 : amount of paint subcontracted this month for San Jose X5 : amount of paint subcontracted this month for Fresno X6 : amount of paint subcontracted this month for Azusa 14 Mathematical Model: Constraints To write to constraints, we need to know: The capacity of the Phoenix plant (Q1) The maximum number of gallons available from the subcontractor (Q2) The respective orders for paint at the warehouses in San Jose, Fresno, and Azusa (R1, R2, R3) 15 Mathematical Model: Constraints • The number of truckloads shipped out from Phoenix cannot exceed the plant capacity: X1 + X2 + X3 Q1 • The number of thousands of gallons ordered from the subcontrator cannot exceed the order limit: X4 + X5 + X6 Q2 • The number of thousands of gallons received at each warehouse equals the total orders of the warehouse: X1 + X4 = R1 X2 + X5 = R2 X3 + X6 = R3 • All shipments must be nonnegative and integer: X1, X2, X3, X4, X5, X6 0 X1, X2, X3, X4, X5, X6 integer 16 Mathematical Model: Data Collection Orders: R1 = 4000, R2 = 2000, R3 = 5000 (gallons) Capacity: Q1 = 8000, Q2 = 5000 (gallons) Subcontractor price per 1000 gallons: C = $5000 Cost of production per 1000 gallons: M = $3000 17 Mathematical Model: Data Collection Transportation costs $ per 1000 gallons Subcontractor: S1=$1200; S2=$1400; S3= $1100 Phoenix Plant: T1 = $1050;T2 = $750; T3 = $650 18 Delta Hardware Stores Operations Research Model Min (3000+1050)X1+(3000+750)X2+(3000+650)X3+(5000+1200)X4+ + (5000+1400)X5+ (5000+1100)X6 Ou Min 4050 X1 + 3750 X2 + 3650 X3 + 6200 X4 + 6400 X5 + 6100 X6 Subject to: 19 X1 + X2 + X3 8000 (Plant Capacity) X4 + X5 + X6 5000 (Upper Bound order from subcont.) X1 + X4 = 4000 (Demand in San Jose) X2 + X5 = 2000 (Demand in Fresno) X3 + X6 = 5000 (Demand in Azusa) X1, X2, X3, X4, X5, X6 0 (nonnegativity) X1, X2, X3, X4, X5, X6 integer Delta Hardware Stores Solutions X1 = 1,000 gallons X2 = 2,000 gallons X3 = 5,000 gallons X4 = 3,000 gallons X5 = 0 X6 = 0 Optimum Total Cost = $48,400 20 CARLTON PHARMACEUTICALS • Carlton Pharmaceuticals supplies drugs and other medical supplies. • It has three plants in: Cleveland, Detroit, Greensboro. • It has four distribution centers in: Boston, Richmond, Atlanta, St. Louis. • Management at Carlton would like to ship cases of a certain vaccine as economically as possible. 21 CARLTON PHARMACEUTICALS • Data – Unit shipping cost, supply, and demand To From Cleveland Detroit Greensboro Demand Boston $35 37 40 1100 • Assumptions Richmond 30 40 15 400 Atlanta 40 42 20 750 St. Louis 32 25 28 750 Supply 1200 1000 800 – Unit shipping costs are constant. – All the shipping occurs simultaneously. – The only transportation considered is between sources and destinations. – Total supply equals total demand. 22 CARLTON PHARMACEUTICALS Network presentation 23 Destinations Sources D1=1100 Boston Cleveland S1=1200 Richmond D2=400 Detroit S2=1000 Atlanta D3=750 Greensboro S3= 800 24 St.Louis D4=750 CARLTON PHARMACEUTICALS – Linear Programming Model – The structure of the model is: Minimize Total Shipping Cost ST [Amount shipped from a source] [Supply at that source] [Amount received at a destination] = [Demand at that destination] – Decision variables Xij = the number of cases shipped from plant i to warehouse j. where: i=1 (Cleveland), 2 (Detroit), 3 (Greensboro) j=1 (Boston), 2 (Richmond), 3 (Atlanta), 4(St.Louis) 25 Supply from Cleveland X11+X12+X13+X14 1200 Supply from Detroit X21+X22+X23+X24 1000 Supply from Greensboro X31+X32+X33+X34 800 The supply constraints Boston D1=1100 X11 Cleveland S1=1200 X12 X13 X21 X31 Richmond X14 X22 Detroit S2=1000 D2=400 X32 X23 X24 Atlanta X33 St.Louis Greensboro S3= 800 26 D3=750 X34 D4=750 CARLTON PHARMACEUTICAL – The complete mathematical model Minimize 35X11 + 30X12 + 40X13 + 32X14 + 37X21 + 40X22 + 42X23 + 25X24+ + 40X31+15X32 ST + 20X33 + 38X34 Total shipment out of a supply node cannot exceed the supply at the node. Supply constraints: X11+ X12+ X13+ X14 X21+ X22+ X23+ X24 X31+ X32+ X33+ X34 Demand constraints: X11+ X12+ X13+ X21+ X31 X22+ X23+ X14+ All Xij are nonnegative 27 X32 X33 X24+ X34 Total shipment received at a destination node, must equal the demand at that node. 1200 1000 800 = 1100 = 400 = 750 = 750 CARLTON PHARMACEUTICALS Spreadsheet =SUMPRODUCT(B7:E9,B15:E17) =SUM(B7:E7) Drag to cells G8:G9 =SUM(B7:B9) Drag to cells C11:E11 28 CARLTON PHARMACEUTICALS Spreadsheet MINIMIZE Total Cost SHIPMENTS Demands are met Supplies are not exceeded 29 CARLTON PHARMACEUTICALS Spreadsheet - solution CARLTON PHARMACEUTICALS SOLUTION MINIMUM COST CLEVELAND DETROIT GREENSBORO RECEIVED INPUT CLEVELAND DETROIT GREENSBORO DEMAND 30 84000 SHIPMENTS (CASES) BOSTON RICHMOND ATLANTA ST. LOUIS 850 350 250 750 50 750 1100 400 750 COST (PER CASE) BOSTON RICHMOND ATLANTA ST. 35 30 40 37 40 42 40 15 20 1100 400 750 SHIPPED 1200 1000 800 750 LOUIS 32 25 28 750 SUPPLY 1200 1000 800 CARLTON PHARMACEUTICALS Sensitivity Report – Reduced costs • The unit shipment cost between Cleveland and Atlanta must be reduced by at least $5, before it would become economically feasible to utilize it • If this route is used, the total cost will increase by $5 for each case shipped between the two cities. Adjustable Cells Final Reduced Objective Allowable Allowable Cell Name Value Cost Coefficient Increase Decrease $B$7 CLEVELAND BOSTON 850 0 35 2 5 $C$7 CLEVELAND RICHMOND 350 0 30 5 17 $D$7 CLEVELAND ATLANTA 0 5 40 1E+30 5 $E$7 CLEVELAND ST. LOUIS 0 9 32 1E+30 9 $B$8 DETROIT BOSTON 250 0 37 5 2 $C$8 DETROIT RICHMOND 0 8 40 1E+30 8 $D$8 DETROIT ATLANTA 0 5 42 1E+30 5 $E$8 DETROIT ST. LOUIS 750 0 25 9 1E+30 $B$9 GREENSBORO BOSTON 0 20 40 1E+30 20 $C$9 GREENSBORO RICHMOND 50 0 15 17 5 $D$9 GREENSBORO ATLANTA 750 0 20 5 1E+30 $E$9 GREENSBORO ST. LOUIS 0 20 28 1E+30 20 31 CARLTON PHARMACEUTICALS Sensitivity Report – Allowable Increase/Decrease • This is the range of optimality. • The unit shipment cost between Cleveland and Boston may increase up to $2 or decrease up to $5 with no change in the current optimal transportation plan. Adjustable Cells Final Reduced Objective Allowable Allowable Cell Name Value Cost Coefficient Increase Decrease $B$7 CLEVELAND BOSTON 850 0 35 2 5 $C$7 CLEVELAND RICHMOND 350 0 30 5 17 $D$7 CLEVELAND ATLANTA 0 5 40 1E+30 5 $E$7 CLEVELAND ST. LOUIS 0 9 32 1E+30 9 $B$8 DETROIT BOSTON 250 0 37 5 2 $C$8 DETROIT RICHMOND 0 8 40 1E+30 8 $D$8 DETROIT ATLANTA 0 5 42 1E+30 5 $E$8 DETROIT ST. LOUIS 750 0 25 9 1E+30 $B$9 GREENSBORO BOSTON 0 20 40 1E+30 20 $C$9 GREENSBORO RICHMOND 50 0 15 17 5 $D$9 GREENSBORO ATLANTA 750 0 20 5 1E+30 $E$9 GREENSBORO ST. LOUIS 0 20 28 1E+30 20 32 CARLTON PHARMACEUTICALS Sensitivity Report – Shadow prices • For the plants, shadow prices convey the cost savings realized for each extra case of vaccine produced. For each additional unit available in Cleveland the total cost reduces by $2. Constraints Cell $G$7 $G$8 $G$9 $B$11 $C$11 $D$11 $E$11 33 Name CLEVELAND SHIPPED DETROIT SHIPPED GREENSBORO SHIPPED RECEIVED BOSTON RECEIVED RICHMOND RECEIVED ATLANTA RECEIVED ST. LOUIS Final Shadow Constraint Allowable Allowable Value Price R.H. Side Increase Decrease 1200 -2 1200 250 0 1000 0 1000 1E+30 0 800 -17 800 250 0 1100 37 1100 0 250 400 32 400 0 250 750 37 750 0 250 750 25 750 0 750 CARLTON PHARMACEUTICALS Sensitivity Report Constraints Cell $G$7 $G$8 $G$9 $B$11 $C$11 $D$11 $E$11 Name CLEVELAND SHIPPED DETROIT SHIPPED GREENSBORO SHIPPED RECEIVED BOSTON RECEIVED RICHMOND RECEIVED ATLANTA RECEIVED ST. LOUIS Final Shadow Constraint Allowable Allowable Value Price R.H. Side Increase Decrease 1200 -2 1200 250 0 1000 0 1000 1E+30 0 800 -17 800 250 0 1100 37 1100 0 250 400 32 400 0 250 750 37 750 0 250 750 25 750 0 750 – Shadow prices 34 • For the warehouses demand, shadow prices represent the cost savings for less cases being demanded. For each one unit decrease in demanded in Richmond, the total cost decreases by $32. – Allowable Increase/Decrease • This is the range of feasibility. • The total supply in Cleveland may increase up to $250, but doesn´t may decrease up, with no change in the current optimal transportation plan. Modifications to the Transportation Problem Cases may arise that require modifications to the basic model: - Blocked Routes - Minimum shipment - Maximum shipment 35 Cases may arise that require modifications to the basic model: Blocked routes - shipments along certain routes are prohibited Remedies: – Assign a large objective coefficient to the route of the form Cij = 1,000,000 – Add a constraint to Excel solver of the form Xij = 0 Shipments on a Blocked Route = 0 36 Cases may arise that require modifications to the basic model: Blocked routes - shipments along certain routes are prohibited Remedy: - Do not include the cell representing the route in the Changing cells Shipments from Greensboro to Cleveland are prohibited 37 Only Feasible Routes Included in Changing Cells Cell C9 is NOT Included Cases may arise that require modifications to the basic model: • Minimum shipment - the amount shipped along a certain route must not fall below a pre-specified level. –Remedy: Add a constraint to Excel of the form Xij B • Maximum shipment - an upper limit is placed on the amount shipped along a certain route. –Remedy: Add a constraint to Excel of the form Xij B 38 Problema (Desbalanceado) de Max Lucro com possibilidade de estoque remanescente Uma empresa tem 3 fábricas e 4 clientes, referentes a um determinado produto, e conhece-se os dados abaixo: Fábrica Capacidade Custo de mensal da produção Demanda Cliente mensal Preço de venda produção ($/unidade) F1 85 50 C1 100 100 F2 90 30 C2 80 110 F3 75 40 C3 20 105 C4 40 125 Total 240 Total 250 ($/unidade) 39 39 Problema (Desbalanceado) de Max de Lucro com possibilidade de estoque remanescente Conhecem-se os custos de se manter o produto em estoque ($/unidade estocada) nas Fábricas 1 e 2: $1 para estocagem na Fábrica 1, $2 para estocagem na Fábrica 2. Sabe-se que a Fábrica 3 não pode ter estoques. Os custos de transporte ($/unidade) são: Local de Locais de Venda Fabricação C1 C2 C3 C4 F1 43 57 33 60 F2 30 49 25 47 F3 44 58 33 64 Encontrar o programa de distribuição que proporcione lucro máximo. Formule o modelo de PL e aplique o Solver do Excel para 40 40 resolvê-lo. Modelo de PO para a Expansão de Centros de Distribuição • Uma empresa está planejando expandir suas atividades abrindo dois novos CD’s, sendo que há três Locais sob estudo para a instalação destes CD’s (Figura 1 adiante). Quatro Clientes devem ter atendidas suas Demandas (Ci): 50, 100, 150 e 200. • As Capacidades de Armazenagem (Aj) em cada local são: 350, 300 e 200. Os Investimentos Iniciais em cada CD são: $50, $75 e $90. Os Custos Unitários de Operação em cada CD são: $5, $3 e $2. • Admita que quaisquer dois locais são suficientes para atender toda a demanda existente, mas o Local 1 só pode atender Clientes 1, 2 e 4; o Local 3 pode atender Clientes 2, 3 e 4; enquanto o Local 2 pode atender todos os Clientes. Os Custos Unitários de Transporte do CD que pode ser construído no Local i ao Cliente j (Cij) estão dados na Figura 1 (slide 67). • Deseja-se selecionar os locais apropriados para a instalação dos CD’s de forma a minimizar o custo total de investimento, operação e distribuição. 41 Rede Logística, com Demandas (Clientes), Capacidades (Armazéns) e Custos de • Transporte (Armazém-Cliente) A1=350 C2 = 100 C12=9 C11=13 C22=7 C21=10 C14=12 C1 = 50 A2 =300 C32=2 C23=11 C3=150 C24=4 C4=200 C34=7 A3=200 Figura 1 42 C33=13 Variáveis de Decisão/Controle: Xij = Quantidade enviada do CD i ao Cliente j Li é variável binária, i {1, 2, 3} sendo 1, se o CD i for instalado Li = 43 0, caso contrário Modelagem Função Objetivo: Minimizar CT = Custo Total de Investimento + Operação + Distribuição CT = 50L1 + 5(X11 + X12 + X14) + 13X11 + 9X12 + 12X14 + 75L2 + 3(X21+X22+X23+X24) + 10X21+7X22+11X23 + 4X24 + 90L3 + 2(X32 + X33 + X34) + 2X32 + 13X33 + 7X34 Cancelando os termos semelhantes, tem-se CT = 50L1 + 75L2 + 90L3 + 18X11 + 14X12 + 17X14 + 13X21+ 10X22+14X23+7X24 + 4X32 + 15X33 + 9X34 44 Restrições: sujeito a X11 + X12 + X14 350L1 Produção X21 + X22 + X23 + X24 300L2 X32 + X33 + X34 200L3 L1 + L2 + L3 = 2 Instalar 2 CD’s X11 + X21 = 50 X12 + X22 + X32 = 100 Demanda X23 + X33 = 150 X14 + X24 + X34 = 200 Xij 0 Não - Negatividade Li {0, 1} Integralidade 45 Check Point 10 Problema (Desbalanceado) de Maximização de Lucro com possibilidade de multa devido a falta de produto Uma empresa tem fábricas onde fabrica o mesmo produto. Existem depósitos regionais e os preços pagos pelos consumidores são diferentes em cada caso. Tendo em vista os dados das tabelas a seguir, qual o melhor programa de produção e distribuição? Sabe-se que o Cliente 3 é preferencial (tem que ser atendido totalmente). Além disso, não é economicamente viável entregar o produto da Fábrica A ao Cliente 4. 46 Problema (Desbalanceado) de Max Lucro com possibilidade de multa devido a falta de produto Fábrica 47 Capacidade Multas por mensal da falta produção Cliente Demanda mensal ($/unidade) Preço de venda ($/unidade) F1 80 C1 4 90 30 F2 200 C2 5 150 32 F3 100 C3 *M 150 36 F4 100 C4 2 100 34 Total 480 Total 490 *M = valor muito grande, pois C3 é preferencial 47 Problema (Desbalanceado) de Max Lucro com possibilidade de multa devido a falta de produto *M = valor muito grande, pois não é viável a entrega Local de Fabrica Locais de Venda çã o C 1 C 2 C 3 C 4 F 1 3 9 5 *M F 2 1 7 4 6 F 3 5 8 3 3 4 F4 7 8 2 Encontrar o programa de distribuição que proporcione lucro máximo. Formule o modelo de PL e aplique o Solver do Excel para resolvê-lo. 48