Sistemas de Telecomunicações I Capítulo 6 Comutação João Pires Estrutura de uma central de comutação digital • Uma central de comutação digital local é constituída por duas grandes unidades: Unidade de assinante & concentração (UAC) e unidade do grupo de comutação (UGC). A UAC pode em alguns casos estar separada da central local fazendo parte da unidade remota. O equipamento de comutação está situado na unidade de concentração e no UGC. Sinais de controlo Linha digital Unidade do grupo de comutação Unidade de assinante & concentração Interface de linha de assinante (1) Interface de linha de assinante (30) Multiplexador Linha analógica Tronca digital Bloco do Unidade grupo de de concentração Sin. MF comutação Sin. MF As centrais de comutação de troncas incluem só a UGC. CAS Tons CSS Linha analógica Sistema de Sinalização nº 7 CCS: Common Channel Signaling Controlador das interfaces CAS: Channel Associated Signalling Sistema de controlo da central IST, Sistemas de Telecomunicações I Sistema de gestão 2 Interface de linha de assinante analógico • A estrutura de uma interface de linha de assinante (ILA) analógico é a seguinte: 64 kb/s Descodificador 1 Relé de teste de acesso Relé de toque Protecção de sobretensões Alimentação de linha Unidade de supervisão Híbrido 64 kb/s Codificador Extracção de sinalização As funções de uma ILA podem-se sintetizar no acrónimo BORSCHT, ou seja alimentação (Batery), protecção contra sobre-tensões (Overvoltage protection), toque de campainha (Ringing), supervisão de linha (Supervision), codificação A/D e D/A ( Coding), híbrido (Hybrid ) e vários tipos de teste (Testing). • 1 Outras ILAs Mux 2 Mb/s Controlador de interfaces Outras ILAs 30 Sistema de controlo da central A alimentação é responsável por alimentar os telefones analógicos com uma tensão –48 DC. A protecção contra sobre-tensões protege a linha telefónica contra altas tensões (descargas atmosféricas, linhas de alta tensão). O relé de toque é responsável por gerar o sinal de toque de campainha. A unidade de supervisão extrai/insere a informação de sinalização. O híbrido faz a conversão de 2/4 e 4/2 fios. O codificador/descodificador é responsável pela conversão A/D e D/A. O relé de teste permite testar o lacete local e detectar possíveis falhas. IST, Sistemas de Telecomunicações I 3 Etapas associadas à realização de uma chamada local • Asprincipais etapas são as seguintes. Assinante Chamador Central local Assinante chamado 1) Estabelecimento de corrente DC na linha (sinal de apresar). Sinal de apresar 2) O assinante que requereu o pedido de serviço é identificado e é atribuido a esse assinante uma área de memória (registo). 1 Identificação de assinante 2 3) Depois de disponibilizar o registo a central envia para o assinante chamador o sinal de linha. 4) O assinante marca os dígitos correspondentes ao endereço do destinatário. 5) O sistema de controlo analisa os dígitos e escolhe o circuito de saída apropriado para encaminhar a chamada. Se o circuito de saída estiver ocupado será enviado para o assinante o sinal de linha impedida. Sinal de linha Endereço 4 Tom de chamada Atribuição de memória 3 Análise dos dígitos 5 Estabelece o caminho 6 Sinal de chamada 7 Sinal de resposta 6) Nesta fase são conhecidos os portos de entrada e de saída da matriz de comutação. Para estabelecer um caminho entre o porto de entrada e de saída da matriz de comutação o sistema de controlo deverá enviar para esta um sinal de controlo apropriado. Conversação Desliga o sinal e o tom de chamada Supervisão Sinal de aclarar 9 8 Sinal de aclarar inv. 10 7) O sinal de chamada é enviado para o destinatário (toque de campainha) e o tom de chamada é enviado para o originário. Desliga o equipamento 8) O assinante chamador atende levando ao estabelecimento de uma corrente DC. A conversação pode-se iniciar usando o circuito estabelecido através da matriz de comutação. IST, Sistemas de Telecomunicações I 4 Matriz de comutação barras cruzadas • Esta matriz não apresenta bloqueio de interligação • A complexidade aumenta com o quadrado da dimensão da matriz • A eficiência decresce inversamente com N • Apresenta baixa fiabilidade (qualquer avaria num ponto de 1 2 3 4 5 2 1 4 3 Mapa das ligações 1 2 3 4 5 3 1 5 2 4 5 cruzamento implica que uma ligação não se pode efectuar) IST, Sistemas de Telecomunicações I 5 Comutação espacial • As matrizes de comutação espacial eram usadas nas antigas centrais de comutação analógias, como também são usadas nas modernas centrais digitais. São ainda usadas como malhas de interligação nos comutadores de alta velocidade (ATM). • Matriz espacial com um único andar: Consiste numa matriz de pontos de cruzamento, designada por matriz de barras cruzadas. Para ligar N linhas de entrada a N linhas de saída requer N2 pontos de cruzamento. Matriz de comutação espacial n× ×k 1 2 3 Ponto de cruzamento 1 1 2 3 n× ×m Entradas 2 n m<n: concentrador m>n: expansor m=n: distribuior m 3 Elemento de comutação n 1 1 2 3 m 2× ×2 2 1 2 A matriz espacial monoandar apresenta para o caso em que n=m uma complexidade de C(1)=n2 e uma eficiência de utilização reduzida ou seja ε=n/C(1)=1/n. Saídas IST, Sistemas de Telecomunicações I 6 Arquitecturas com dois andares • As arquitecturas multiandar são baseadas em sub-matrizes sem bloqueio • Com estas arquitecturas aumenta-se a eficiência • Para estruturas com dois andares a complexidade é igual a 2N2/n (N: linhas de entrada e n: entradas da sub-matriz) • Devido ao número limitado de ligações as arquitecturas com dois andares introduzem bloqueio de interligação 1 2 1 2 3 4 3 4 1 3 2 4 ? 3 2 4 1 ? IST, Sistemas de Telecomunicações I 7 Matriz de comutação espacial multiandar As matrizes de comutação espacial monoandar apresentam uma complexidade (número de pontos de cruzamento) que aumenta com o quadrado da dimensão da matriz, enquanto a eficiência decresce com n . A fiabilidade também é baixa (qualquer avaria num ponto de cruzamento implica que uma ligação não se pode efectuar). • Para resolver essas limitações usam-se as matrizes multiandar. Na figura seguinte representa-se uma matriz espacial com três andares NxN. n×k r×s k×n n×k r×s k×n n×k r×s k×n #N/n #k #N/n r=s=N/n N linhas de saída N linhas de entrada • Nesta estrutura as N entradas e as N saídas são divididas em sub-grupos de dimensão n e existem k percursos de uma dada entrada para uma dada saída. Complexidade IST, Sistemas de Telecomunicações I N2 C (3) = k ( 2 N + 2 ) n 8 Teorema de Clos para redes com três andares • Para verificar o teorema de Clos suponha-se que se pretende realizar uma ligação entre uma entrada livre a e uma saída livre b. A pior situação é representada abaixo. As n-1 entradas da sub-matriz a que pertence a estão ocupadas e as n-1 saídas da sub-matriz a que pertence b também estão ocupadas. Além disso, estas 2(n-1) ligações são realizadas através de sub-matrizes do andar intermédio diferentes. Assim, requer-se uma sub-matriz adicional no andar intermédio, o que perfaz um total de k=2n-1 sub-matrizes intermédias. 2º andar n-1 saídas do 1ºandar ocupadas 1º andar 1 n-1 3º andar b n-1 entradas ocupadas Entrada livre nxk n kxn Saída livre n-1 saídas ocupadas a 2n-2 É necessária uma sub-matriz adicional n-1 entradas no 3ºandar ocupadas 2n-1 IST, Sistemas de Telecomunicações I 9 Representação de uma matriz espacial por um grafo • Considera-se uma matriz 9x9, com n=3 e k=3 9 3 3 3 3 3 3 9 nxk 3 Grafo da matriz 3 3 Grafo de canal IST, Sistemas de Telecomunicações I 10 Probabilidade de bloqueio • Em muitas centrais de comutação telefónica não são requeridas redes de comutação sem bloqueio em sentido estrito. Por exemplo os concentradores são dimensionados para proporcionarem algum bloqueio na horas de ponta, tendo presente que os telefones residenciais só estão ocupados em cerca de 10 % do tempo na hora de ponta. • O cálculo da probabilidade de bloqueio pode ser realizado usando o método de Lee. Este método baseia-se na independência entre caminhos alternativos e na independência entre ramos da mesma ligação. • Seja pi a probabilidade de ocupação do caminho i. A probabilidade de bloqueio de uma ligação constituída por n caminhos alternativos é dada por B = p1 p2 .... pn • B = pn p1 = p2 = .... = pn = p Seja pi a probabilidade de ocupação do ramo i. A probabilidade de bloqueio de uma ligação constituída por n ramos em série é dada por B = 1 − (1 − p 1 )( 1 − p 2 ).....( 1 − p n ) B = 1 − (1 − p ) n IST, Sistemas de Telecomunicações I p 1 = p 2 = .... = p n = p 11 Bloqueio em redes com três andares • Considere-se uma rede com três andares, que é caracterizada por cada submatriz do 1º andar ter n entradas e k saídas ( k<(2n-1)). O grafo de canal dessa rede é o seguinte: 1 p :probabilidade de ocupação da linha de entrada p1 :probabilidade de ocupação das ligações entre matrizes p1 Probabilidade de bloqueio para a rede com três andares 2 p p p1 pn = p1k • p1 k B = [1 − (1 − p1 ) 2 ]k = [1 − (1 − pn / k ) 2 ]k Quando nas sub-matrizes de entrada se têm k>n, a condição de independência dos diferentes caminhos conduz probabilidades de bloqueio superiores aos reais. Uma formulaçao mais exacta correspode ao método de Jacobaeus. De acordo com este método a probabilidade de bloqueio para a rede com três andares é dada por (n!) 2 B= p k (2 − p) 2 n − k k!(2n − k )! IST, Sistemas de Telecomunicações I p :probabilidade de ocupação da linha de entrada 12 Comutação digital telefónica • A comutação digital também é conhecida por comutação por divisão no tempo, porque neste tipo de comutação o circuito associado a uma conversação só é activado durante o intervalo de tempo correspondente a essa conversação. Note-se que, neste método antes da operação de comutação os canais telefónicos são amostrados à frequência de 8 kHz (o que origina um intervalo de amostragem de 125µ µs), codificados com 8 bits e multiplexados para formar um sinal TDM. 1 trama 1 32 31 3 2 1 1 1 32 31 Temporal 1 32 31 3 2 1 3 2 1 O canal 3 (time-slot 3) da linha 1 de entrada é comutado para o canal 31 (time-slot 31) da linha N de saída. A comutação tem lugar quer no domínio do espaço (linha 1 para a linha N), quer no domínio do tempo (do time-slot 3 para o time-slot 31). N N • 3 2 1 1 Espacial e 1 trama 1 32 31 Comutador A comutação temporal consiste em transferir o conteúdo de um time-slot para outro timeslot. Trama #1 Trama #2 Trama #1 TS2 Trama #2 TS7 TS7 TS7 TS2 TS7 TS2 TS2 Tempo Tempo IST, Sistemas de Telecomunicações I 13 Comutação temporal • A comutação temporal é implementada usando um dispositivo designado por TSI (TimeSlot Interchange). Exemplifica-se em seguida a utilização de um TSI para realizar o intercâmbio de time-slots entre tramas de entrada e tramas de saída. Trama#1 Entrada do TSI 2 3 4 5 1 2 3 4 5 A B C D E A B C D E A C B E D A C B Saída do TSI • Trama#1 1 Padrão de ligações 1⇒3 2 ⇒5 3 ⇒4 4 ⇒2 5 ⇒1 Implementação (Escrita sequencial e leitura aleatória) 1 A B C D 2 E 3 tempo 4 5 Escrita sequencial controlada pelo contador Contador Endereço da célula A B C D E Conteúdo da célula Memória de dados E D A C B tempo Escrita aleatória controlada pela memória de endereços 1 2 3 4 5 5 4 1 3 2 Memória de endereços IST, Sistemas de Telecomunicações I 14 Comutador de intercâmbio de time-slots • Exemplo de aplicação de um comutador de intercâmbio de time-slots (TSI): Trama 0 1 99 H - DMUX & D/A 99 Durante cada time-slot tem lugar uma operação de escrita e uma operação de leitura. Assim o tempo de acesso à memória é dado por ta≤125µs/(2w), onde w é o número de canais por trama 1 0 1 99 0 1 99 H H A/D & MUX Endereço de leitura Endereço de escrita 0 Trama 0 1 99 1 99 Memória de endereços Contador de time-slots 1 • Memória de dados 99 As amostras dos diferentes canais (conteúdo dos time-slots) são escritos sequencialmente na memória de dados (com capacidade para 100 octetos). Os endereços de escrita são gerados por um contador de time slots. A memória de dados é lida segundo a ordem determinada pelo conteúdo da memória de endereços (ou de controlo). No exemplo apresentado para ligar as linhas telefónicas 1 a 99, a posição de memória de endereços nº1 é programada com o múmero 99 e a posição 99 com o 1. IST, Sistemas de Telecomunicações I 15 Estrutura básica de um TSI • Estrutura básica de um TSI de 32 canais com escrita sequencial e leitura aleatória 8 bits 2.048 Mbit/s 8 bits S/P P/S Memória de dados 32x8 Endereços E/L 5 bits Relógio TS#N E E L E L L Selector Endereço de escrita Endereço de leitura Contador Controla a leitura da memória de endereços e a escrita da memória de dados TS#1 TS#2 Selecciona a operação de escrita ou leitura 5 bits 8×32kHz=256 kHz Memória de endereços 32x5 Do sistema de controlo da central Endereço de leitura 5 bits E/L Selector Endereço de escrita 5 bits IST, Sistemas de Telecomunicações I 16 Comutador digital espacial • Um comutador digital espacial pode ser visto como uma matriz de pontos de cruzamento cuja configuração (estado dos pontos de cruzamento) pode ser alterada de time-slot para time-slot. Esses pontos de cruzamento são implementados usando portas lógicas rápidas, as quais são controladas por memórias (memórias de conexão). 1 2 m O comutador compreende uma matriz nxm e um conjunto de memórias de conexão. As n linhas de entrada transportam vias TDM com w time-slots, enquanto as m linhas de saída transportam também vias TDM com w time-slots. 1 2 Os pontos de cruzamento em cada uma das m colunas são controlados por uma memória de conexão com capacidade para armazenar um número de palavras igual ao número de time-slots w. A cada ponto de cruzamento de uma coluna é atribuído um endereço binário único. n Descodificador de endereços 1 1 1 Memórias de conexão w w w A dimensão das palavras da memória de endereços deverá ser suficiente para armazenar um endereço binário para cada um dos n pontos de cruzamento de cada coluna, mais um endereço para manter todos os pontos desactivados. São necessários n+1 endereços, cada um identificado por um número binário de log2 (n+1) bits. IST, Sistemas de Telecomunicações I 17 Comutação digital espacial (exemplo) • Exemplifica-se na figura abaixo a utilização de um comutador espacial para implementar um determinado padrão de ligações. Sinais TDM de entrada com w time-slots 1 22 3 1 2 2 3 w tempo 1 2 3 w 2 1 2 33 w 2 3 7 1 Padrão de ligações 001 2 001 001 tempo 11 1 tempo tempo 1 3 010 010 111 111 010 72 tempo 111 Endereço do ponto de cruzamento 1/TS1→ →2/TS1 2/TS1 →1/TS1 7/TS1 →7/TS1 7/TS2 →1/TS2 2/TS2 →2/TS2 1/TS2 →7/TS2 1/TS3 →1/TS3 7/TS3 →2/TS3 2/TS3 →7/TS3 Descodificador de endereços 1 2 3 w 010 111 001 1 2 3 w 001 010 111 1 2 3 111 001 010 Memórias de conexão w IST, Sistemas de Telecomunicações I 18 Arquitecturas de comutação digital • Os comutadores digitais podem ser baseados na matriz espacial digital (andar S), ou no TSI (andar T), ou ainda na combinação de ambos. Os andares S não podem comutar timeslots o que reduz a sua aptidão para interligar quaisquer dois assinantes . Por sua vez, a dimensão dos comutadores digitais basedas em andares T é limitada pelo tempo de acesso às memórias. Assim, usa-se, normalmente combinações de andares S e T. • As arquitecturas com 2 andares introduzem bloqueio. Para ultrapassar o problema do bloqueio é necessário recorrer a arquitecturas com pelo menos 3 andares (Ex: TST ou STS). Arquitectura TS 2 8 1 TSI 2 TSI Arquitectura TST 15 15 2 Comutador Espacial 1 1 2 2 15 8 20 21 TSI TSI 21 15 TSI 20 15 TSI Bloqueio: conflito entre dois time-slots 15 Espacial 1 2 NxN NxN N TSI Comutador N Ligações exemplificadas N TSI TSI 15 N [1,2] ⇒ [N,15] [1,8] ⇒ [2,15] IST, Sistemas de Telecomunicações I 19 Interligações numa matriz de comutação T-S-T Pretende-se estabelecer a interligação: A2/TS10→ →C1/TS45 • Memória de dados TSI Para realizar este tipo de interligações o sistema de controlo escolhe um timeslot livre na matriz espacial. Neste caso o time-slot considerado é o 124 Memória de endereços A1 MD-A1 MD-C1 45 ME-A1 124 10 C1 1 2 10 A2 45 1 124 45 124 3 MD-A2 10 124 ME-C1 ME-A2 Escrita sequencial- Leitura aleatória Escrita aleatória-Leitura sequencial Matriz espacial digital 124 No time-slot 124 é lido o conteúdo da célula de memória de dados com endereço 10. 2 MC-B2 MC-B3 No time-slolt 124 é escrita a célula da memória de dados com endereço 45. Memória de conexão MC-B1 No time-slot 124 é activado o ponto de cruzamento com endereço 2. IST, Sistemas de Telecomunicações I 20 Interligações numa matriz de comutação S-T-S • Pretende-se estabelecer a interligação: A1/TS10→ →C1/TS45 Matriz espacial de entrada 10 Matriz espacial de saída 45 Memória de dados A1 Memória de endereços A2 C1 C2 B1 A3 C3 MD-B2 1 1 ME-B2 1 1 B2 2 2 10 45 10 3 3 B3 MD-B3 10 45 ME-B3 Memórias de conexão MC-A1 2 MC-A2 2 2 3 10 Escrita sequencial-Leitura aleatória 45 3 MC-C2 MC-C3 2 2 Memória de conexão MC-C1 MC-A3 No time-slot 10 é activado o ponto de cruzamento com endereço 3 da entrada A1 No time-slot 45 é lida a célula da memória de dados com endereço 10 IST, Sistemas de Telecomunicações I No time-slot 45 é activado o ponto de cruzamento nº3 da saída C1 21 Arquitecturas de comutação multiandar • As arquitecturas de comutação digital usadas normalmente usam três andares. A arquitectura STS usa um andar S (comutador digital espacial), seguido de um andar T (comutador de intercâmbio de time-slots) e termina com um andar S. A arquitectura TST é oposta daquela. Arquitectura STS Probabilidade de bloqueio 1 2 8 2 Comutador 1 15 TSI 8 Espacial 15 TSI 2 1 Comutador 15 Espacial B = [1 − (1 − p1 ) 2 ]k = [1 − (1 − pN / k ) 2 ]k 2 Condição de Clos NxK KxN k 15 TSI N k ≥ 2N −1 N Arquitectura TST 2 1 2 8 TSI TSI Probabilidade de bloqueio 20 21 TSI Comutador Espacial 21 1 B = [1 − (1 − p1 ) 2 ]l = [1 − (1 − pw / l ) 2 ]l 15 TSI 2 l:time-slots internos w:time-slots externos NxN 20 N TSI TSI 15 N IST, Sistemas de Telecomunicações I Condição de Clos l ≥ 2w − 1 22