Topics
1.
2.
3.
4.
5.
6.
H+
Acids and Bases
Definition of pH
Reversible reactions, equilibrium, mas action
HendersonpHasselbalch equation
Buffers. Buffer capacity
H+
Suppose chloride acid dissolved in water
HCl
H+ + Cl-
The entity H+, hydrogen stripped from the electron, is simply a proton, without electronic
cloud, with dimensions at least 4 orders smaller than a real atom. Its strong electrical field
Impedes a free existence. What really happens, upon dissolution of HCl in water is:
HCl + H2O
H3O+ + ClH3O+
H2O + H+
HCl
H++ Cl-
[H+]
Rutherford-Thompson atom: Dimensions
10-15(Fermi)
10-10 (Å)
m
Acids and Bases
Brønsted-Lewy Concept (1923)
Acid
HA
H+ + A Base
B- + H+
BH
Arrhenius Concept (1890)
Acid
HA
Base
COH
H+ + A C+ + OH-
Acid + base
salt + water
2NaOH + H2SO4
Na2SO4 +
2H2O
Water has amphoteric character
2H2O
H3O- + H+
pH, reversible reaction, equilibrium, mass action
𝑝𝐻 = βˆ’π‘™π‘œπ‘”10 𝐻+ = π‘™π‘œπ‘”10
𝐸 = 𝐸0 +
𝑅𝑇
ln
𝐹
𝐻+ = 𝐸 0 +
1
𝐻+
2.3𝑅𝑇
pH
𝐹
Reversible Reactions – Rate constants - Equilibrium
K1
BA
B+A
k-1
π‘˜1 𝐡𝐴 = π‘˜βˆ’1 𝐡 𝐴
Henderson-Hasselbalch equation
K1
HCl
k-1
At equilibrium
H+ + Cl-
π‘˜1 𝐾𝐢𝑙 = π‘˜βˆ’1 𝐻+ πΆπ‘™βˆ’
π‘˜1
[𝐢𝑙 βˆ’ ]
+
= 𝐻
π‘˜βˆ’1
𝐻𝐢𝑙
1
1 𝐢𝑙 βˆ’
=
π‘˜1 𝐻𝐢𝑙
𝐻+
π‘˜βˆ’1
βˆ’π‘™π‘œπ‘”
𝐻+
π‘˜1
=𝐾
π‘˜βˆ’1
[𝐢𝑙 βˆ’ ]
= βˆ’π‘™π‘œπ‘” 𝐾 + log
𝐻𝐢𝑙
πΆπ‘™βˆ’
𝑝𝐻 = 𝑝𝐾 + π‘™π‘œπ‘”
𝐻𝐢𝑙
Buffers and Buffer capacity
π‘‘π‘›π‘Ž
𝛽=
= 2.3
𝑑𝑝𝐻
𝐻+
π‘›π‘Ž 𝐾 𝐻+
+
+ π‘‚π»βˆ’
+
2
𝐾+ 𝐻
In a given pH, Ξ² is a function of pH
and buffer concentration
Bibliography
β€’ Bockris, J.O’M and Reddy, A.K.N.: Modern Electrochemistry.
Plenum Press, 1970. Vol.1, 1970. Chap. 5. Protons in solution.
Questions
1.
2.
3.
For a [H+] of 10-10M to 10-1M, in steps fo 10-3M, draw a plot of
pH x [H+].
Consider 1 L of a solution of a buffer of pK=7.5 amd
concentration of 10 mM. Starting with a buffer base
concentration of 9,9 mM, add progressively a strong acid, in
amounts of 0.05 mmol. At equilibrium draw the curve relating
pH to the total amount of acid added. Where is the point of
maximal buffering power?
Suppose a buffer if pK=7.0 in concentration of 5 mM. What are
the concentrations of acid and base for buffering a solution at
a pH of 6,0.
Medidas de pH
I. Eletródios
II. Indicadores fluorescentes
Bibliografia
Koryta, J.: Ion-Selective Electrodes. 1974. Cambridge
University Press.
Vanysek, P.> The glass pH electrode.The Electrochemical
Society Interface. 2004
Lakowicz, J.R.: Principles of fluorescence spectroscopy.
2nd ed., 1999. Fluwer Academy/Plenum Press
Electrochemical potential of a solute in a phase – Macroscopic view
Thermal energy
C2
ø2
C1
ø1
T (K)
C: concentration,
mol/l
Ø: Electrical potential, V
M
πœ‡π‘– 1 = πœ‡π‘–
πœ‡π‘– 2 = πœ‡π‘–
βˆ†πœ‡π‘– = 𝑅𝑇𝑙𝑛
π‘œ
π‘œ
1 + 𝑅𝑇𝑙𝑛𝑐𝑖 1 + 𝑧𝑖 πΉβˆ…(1)
2 + 𝑅𝑇𝑙𝑛𝑐𝑖 2 + 𝑧𝑖 πΉβˆ…(2)
𝑐𝑖 1
+ 𝑧𝑖 𝐹 βˆ…(1)βˆ’ βˆ…(2)
𝑐𝑖 2 𝑖
R= 8.3 J mol-1 K-1
πœ‡π‘– = 𝐽 π‘šπ‘œπ‘™ βˆ’1
𝐹 = 𝑁𝐴 𝑒 βˆ’ = 1,6022 × 104 × 6.03 × 1023
𝐹 = 9.6485 × 104 π‘π‘œπ‘’π‘™ π‘šπ‘œπ‘™ βˆ’1
Thermal energy – microscopic view
Thermal energy
Bezanilla simulation
Campos elétricos – forças elétricas
Força elétrica – lei de Coulomb
+
+
Carga do
e-
Constante de
Faraday
q1 ο‚΄ q2
f ο€½k*
2
r
1,60*10-19 coul
F=NA*e-=
96484 coul/mol
Diferença de potencial elétrico
W
V ο€½
q
Campo elétrico


f
ο€½
q
dV
ο€½
dx
Membrane (M) Properties
C2
ø2
C1
ø1
M
1. Impermeable membrane
2. Membrane permeable to solutes
𝑐 1
𝑖 2 𝑖
βˆ†πœ‡π‘– = 𝑅𝑇𝑙𝑛 𝑐𝑖
+ 𝑧𝑖 𝐹 βˆ…(1)βˆ’ βˆ…(2) =0
3. Membrane permeable to cations or to anions
βˆ†πœ‡π‘– = 𝑅𝑇𝑙𝑛
𝑐𝑖 1
𝑐𝑖 2 𝑖
+ 𝑧𝑖 𝐹 βˆ…(1)βˆ’ βˆ…(2) =0
𝑅𝑇 𝑐𝑖 1
βˆ†βˆ… = βˆ’
ln
𝑧𝑖 𝐹 𝑐𝑖 2
Ion Exchangers – Glass Electrodes
H+
H+
+
H+ H
H+
H+
H+
-
-
H+
H+
H+
H+
H+
H+
H+
H+
H+
π‘‰π‘€π‘Žπ‘™π‘™/π‘ π‘œπ‘™π‘’π‘‘π‘–π‘œπ‘› =
𝑅𝑇
2.303π‘™π‘œπ‘” 𝐻3 𝑂+
𝐹
π‘‰πΈπ‘™π‘’π‘π‘‘π‘Ÿπ‘œπ‘‘π‘’ = 𝑉 β€² +
𝑅𝑇
2.303 𝑝𝐻
𝐹
BCECF
Download

Dimensions